JPH09124382A - Production of ceramic substrate - Google Patents

Production of ceramic substrate

Info

Publication number
JPH09124382A
JPH09124382A JP7282082A JP28208295A JPH09124382A JP H09124382 A JPH09124382 A JP H09124382A JP 7282082 A JP7282082 A JP 7282082A JP 28208295 A JP28208295 A JP 28208295A JP H09124382 A JPH09124382 A JP H09124382A
Authority
JP
Japan
Prior art keywords
ceramic
firing
molded body
temperature
metallized layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7282082A
Other languages
Japanese (ja)
Other versions
JP3792283B2 (en
Inventor
Kenichi Tajima
健一 田島
Hiroshi Maruyama
博 丸山
Hidehiro Nanjiyou
英博 南上
Tetsuya Kimura
哲也 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP28208295A priority Critical patent/JP3792283B2/en
Publication of JPH09124382A publication Critical patent/JPH09124382A/en
Application granted granted Critical
Publication of JP3792283B2 publication Critical patent/JP3792283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5122Pd or Pt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5127Cu, e.g. Cu-CuO eutectic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5133Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5144Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the metals of the iron group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for baking a ceramic substrate in a short time at a temperature lower than the conventional baking temperature without deteriorating the properties of ceramic and a metallized layer. SOLUTION: A surface of a formed ceramic 3 such as alumina, aluminum nitride, silicon nitride, silicon carbide, mullite or glass ceramic is coated with a metallizing paste containing a metal such as W, Mo, Ni, Cu or Pt and the coated ceramic is irradiated with high-frequency radiations such as microwave to bake the formed ceramic 3 and the metallizing paste at the same time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、配線などのメタラ
イズ層を有するセラミック基板の製造方法に関し、詳細
には、生産性、低コスト性に優れ、メタライズ接着強度
に優れるセラミック基板の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ceramic substrate having a metallized layer such as wiring, and more particularly to a method for manufacturing a ceramic substrate excellent in productivity, low cost and excellent in metallizing adhesion strength. Is.

【0002】[0002]

【従来技術】従来よりセラミックスは、絶縁性、機械強
度、耐食性、耐熱性、熱伝導性、絶縁耐圧等に優れるこ
とから配線回路を具備する基板材料として用いられてい
る。
2. Description of the Related Art Conventionally, ceramics have been used as a substrate material for a wiring circuit because they are excellent in insulation, mechanical strength, corrosion resistance, heat resistance, thermal conductivity, and dielectric strength.

【0003】その中でもメタライズにより配線層が形成
されたセラミック基板は、特にコンピューターのCPU
部のパッケージ等に主に使用されている。
Among them, a ceramic substrate on which a wiring layer is formed by metallization is particularly suitable for a CPU of a computer.
It is mainly used for some packages.

【0004】近年、著しくCPUの高性能化、高集積化
が進むと同時に、高性能コンピュータの需要が拡大して
おり、パッケージに対する要求特性が高まると同時に、
納期、生産数量、コストに対する要求が特に厳しくなっ
ている。
In recent years, the demand for high-performance computers has expanded at the same time as the performance and integration of CPUs have increased remarkably, and the required characteristics for packages have increased.
The requirements for delivery time, production quantity, and cost have become particularly strict.

【0005】通常、メタライズ層を具備するセラミック
ス基板は、まず、セラミック粉末により、例えばシート
状に成形してグリーンシートを作製し、これを抵抗加熱
炉でセラミックスの焼成温度まで徐々に昇温させ一定時
間保持後に降温して焼結させた後、反りや変形を研削加
工等により修正し、その後、メタライズペーストを塗布
して焼き付ける方法が知られているが、最近では、生産
性を良くするため、セラミック成形体を焼成する前に、
メタライズペーストを塗布して多層に積層した後、これ
を加熱炉にて加熱することによりメタライズ層とセラミ
ック成形体とを同時に焼成することが行われている。
Usually, a ceramic substrate provided with a metallized layer is first formed from a ceramic powder into, for example, a sheet shape to prepare a green sheet, which is gradually heated to a firing temperature of the ceramic in a resistance heating furnace to a constant temperature. After the temperature is lowered and sintered after holding for a period of time, a method of correcting warpage or deformation by grinding or the like, and then coating and baking a metallizing paste is known, but recently, in order to improve productivity, Before firing the ceramic molded body,
After the metallizing paste is applied and laminated in multiple layers, the metallizing layer and the ceramic molded body are simultaneously fired by heating this in a heating furnace.

【0006】[0006]

【発明が解決しようとする課題】この同時焼成法は、生
産性の面で優れ、多層化のためには不可避的な技術であ
るが、セラミックスを焼結させるには、900℃以上の
温度が必要であり、とりわけ窒化アルミニウムや窒化ケ
イ素、炭化ケイ素などの非酸化性セラミックスの焼成に
は1700℃を越える温度で焼成することが必要であ
る。
This co-firing method is excellent in terms of productivity and is an unavoidable technique for multilayering, but in order to sinter ceramics, a temperature of 900 ° C. or higher is required. It is necessary, and in particular, firing of non-oxidizing ceramics such as aluminum nitride, silicon nitride and silicon carbide requires firing at a temperature higher than 1700 ° C.

【0007】このような高温での焼成は、メタライズ金
属の溶融やセラミックスとの反応等が生じやすく、これ
を抑制するために雰囲気を制御する等の手段を必要と
し、セラミックスとメタライズ金属種との組み合わせも
限られてしまい、安価な金属を用いることができなかっ
た。
Firing at such a high temperature is apt to cause melting of the metallized metal, reaction with the ceramics, etc., and means for controlling the atmosphere is required to suppress the melting, and the ceramics and the metallized metal species are mixed. Combinations were also limited, and inexpensive metals could not be used.

【0008】このような問題に対して、焼結助剤を多量
に添加したり、焼成時間を延長する等により低温での焼
成を可能にする方法も種々検討されているが、焼結助剤
を多量に添加すると主成分となるセラミックスの特性が
変化したり、焼成時間が長くなるのも量産性の点では不
適当であり、セラミックスの特性を活かしつつ低温で焼
成する方法がないのが現状であった。
In order to solve such problems, various methods have been investigated for adding a large amount of a sintering aid or prolonging the firing time to enable firing at a low temperature. Addition of a large amount of Mn changes the characteristics of the main component ceramics and lengthens the firing time, which is unsuitable from the viewpoint of mass productivity.There is currently no method for firing at low temperature while taking advantage of the characteristics of ceramics. Met.

【0009】また、最近では、ガラスとセラミックスと
の複合化により1000℃前後の焼成温度で焼成可能な
ガラスセラミック焼結体も知られている。しかしなが
ら、このガラスセラミックスにおいてもより低温での焼
成化が望まれるが、ガラス組成やセラミックとの複合化
の組み合わせを厳密に制御する必要があったり、わずか
な焼成条件の変化によりガラスの結晶相が変化する等、
低温での焼成に合わせ、特性の安定した焼結体を歩留り
よく生産するのが難しいのが現状である。
Recently, a glass-ceramic sinter capable of firing at a firing temperature of about 1000 ° C. by compounding glass and ceramics is also known. However, even in this glass ceramics, firing at a lower temperature is desired, but it is necessary to strictly control the combination of the glass composition and the compounding with the ceramic, or the crystal phase of the glass may change due to slight changes in the firing conditions. Change, etc.
At present, it is difficult to produce a sintered body with stable characteristics at a high yield in accordance with firing at a low temperature.

【0010】したがって、本発明は、セラミックスやメ
タライズ層の特性を劣化させることなく、従来の焼成温
度よりも低温且つ短時間で焼成することのできる新規な
製造方法を提供することを目的とするものである。
Therefore, it is an object of the present invention to provide a novel manufacturing method capable of firing at a temperature lower than the conventional firing temperature and in a short time without deteriorating the characteristics of ceramics and metallized layers. Is.

【0011】[0011]

【課題を解決するための手段】本発明者らは、従来のメ
タライズ層を有するセラミック基板の製造方法におい
て、特に焼成方法の観点から検討を重ねた結果、メタラ
イズペーストが塗布されたセラミック成形体を焼成する
にあたり、これまでの抵抗加熱法による焼成に変えて、
マイクロ波などの高周波を成形体に照射することにより
加熱して焼成を行うことにより、従来の抵抗加熱法によ
る焼成温度よりも低い温度で焼成緻密化することが可能
となることを見いだした。
DISCLOSURE OF THE INVENTION The inventors of the present invention have conducted extensive studies in the conventional method for producing a ceramic substrate having a metallized layer, particularly from the viewpoint of the firing method, and as a result, have found that a ceramic molded body coated with a metallized paste is formed. When firing, instead of the conventional resistance heating method,
It has been found that by irradiating a molded body with a high frequency wave such as microwaves to heat and calcination, it becomes possible to densify the calcination at a temperature lower than the calcination temperature by the conventional resistance heating method.

【0012】[0012]

【作用】本発明によれば、マイクロ波等の高周波加熱法
によりメタライズペーストが塗布されたセラミック成形
体を焼成することにより、従来の抵抗加熱法による焼成
に比較して、低温、短時間で緻密化でき、通常の抵抗加
熱法に比較して50〜100℃低温で焼成が可能であ
り、その焼成時間も0.1〜2時間程度で緻密化するこ
とができる。また、高周波加熱法によれば、消費電力が
少ないために焼成における費用を低減することができ
る。
According to the present invention, the ceramic compact coated with the metallizing paste is fired by a high-frequency heating method such as microwave, so that the ceramic compact can be compacted at a low temperature in a short time as compared with the conventional resistance heating method. And can be fired at a temperature lower than 50 to 100 ° C. as compared with the ordinary resistance heating method, and the firing time can be densified in about 0.1 to 2 hours. Further, according to the high frequency heating method, since the power consumption is low, the cost for firing can be reduced.

【0013】高周波加熱法により抵抗加熱法よりも低温
で緻密化できることに起因して、これまでセラミックス
とメタライズとの同時焼成において、メタライズ層のセ
ラミックスとの反応や、メタライズ層の酸化反応により
導電性が低下していたものも低温での焼成が可能となる
ために、セラミックスとの反応性が抑制され、また酸化
反応が抑制されるために、形成できるメタライズ層の種
類を拡大することができ、これにより高価な金属から安
価に金属を用いることができる。
Due to the fact that the high-frequency heating method can densify at a temperature lower than that of the resistance heating method, the conductivity of the metallized layer has been increased by the reaction with the ceramic in the metallized layer and the oxidation reaction of the metallized layer in the simultaneous firing of the ceramic and the metallized layer. Since it is possible to fire even at low temperature, the reactivity with ceramics is suppressed, and the oxidation reaction is suppressed, so that the types of metallized layers that can be formed can be expanded, As a result, the metal can be used at a low cost from the expensive metal.

【0014】また、セラミック成形体とともに同時焼成
されたメタライズ層が、従来の抵抗加熱法による同時焼
成の場合よりもセラミックスに対する密着性が向上する
という優れた効果を奏する。これは、高周波の照射によ
って、短時間で焼成されるためにメタライズが微細な結
晶粒から構成されるためセラミックアンカー効果がより
強く発揮されたためと考えられる。
Further, the metallized layer co-fired with the ceramic molded body has an excellent effect that the adhesion to ceramics is improved as compared with the case of co-firing by the conventional resistance heating method. It is considered that this is because the ceramic anchor effect was exerted more strongly because the metallization was composed of fine crystal grains because it was fired in a short time by irradiation with high frequency.

【0015】さらに、抵抗加熱法では、成形体の外部に
加熱源が存在するための加熱が成形体の表面と内部、あ
るいは炉内での温度差が大きいために焼成ムラが生じる
などの問題があったが、高周波加熱法によれば、加熱源
が成形体自体となるために、加熱ムラがなく、成形体全
体を均一に加熱焼結させることができる。
Further, in the resistance heating method, there is a problem that uneven heating occurs due to a large temperature difference between the surface and the inside of the molded body or the temperature inside the furnace due to the presence of a heating source outside the molded body. However, according to the high frequency heating method, since the heating source is the molded body itself, there is no uneven heating and the entire molded body can be uniformly heated and sintered.

【0016】これにより、メタライズ層を有するセラミ
ック基板の製造コストの低減とともに、生産性を向上さ
せることができる。
This makes it possible to reduce the manufacturing cost of the ceramic substrate having the metallized layer and improve the productivity.

【0017】[0017]

【発明の実施の形態】本発明におけるセラミック成形体
は、例えば、アルミナ、窒化アルミニウム、窒化ケイ
素、炭化ケイ素、ムライト、ガラスセラミックスの群か
ら選ばれる少なくとも1種を主成分とするものである。
ガラスセラミックスとは、ガラスとフィラー成分として
クリストバライト、フォルステライト、コージェライ
ト、クオーツ、石英ガラス、アルミナ、マグネシア、ス
ピネルなどの無機化合物との混合物である。成形体は、
上記の主成分以外に公知の添加成分を添加してもよく、
Ca、Srなどのアルカリ土類金属化合物、Y,Laな
どの周期律表第3a族元素化合物、Ti、Zr、W、M
o、Nb、Vなどの周期律表第4a、5a、6a族元素
化合物などが配合できる。成形体は、これらのセラミッ
ク粉末を所望の成形手段によって成形したものであっ
て、例えば、シート状の成形体を作製するには、スラリ
ーを調製した後、これをドクターブレード法により成形
するか、またはセラミック粉末をプレス成形、圧延法な
どによりシート成形するか、バルク体を作製するには、
例えば、金型プレス,冷間静水圧プレス,押出し成形、
射出成形等により任意の形状に成形すればよい。
BEST MODE FOR CARRYING OUT THE INVENTION The ceramic molded body in the present invention contains at least one selected from the group consisting of alumina, aluminum nitride, silicon nitride, silicon carbide, mullite, and glass ceramics as a main component.
Glass ceramics is a mixture of glass and an inorganic compound such as cristobalite, forsterite, cordierite, quartz, quartz glass, alumina, magnesia, and spinel as a filler component. The molded body is
In addition to the above-mentioned main components, known additive components may be added,
Alkaline earth metal compounds such as Ca and Sr, Group 3a element compounds of the periodic table such as Y and La, Ti, Zr, W and M
Compounds of group 4a, 5a, 6a of the periodic table such as o, Nb and V can be blended. The molded body is one obtained by molding these ceramic powders by a desired molding means. For example, in order to prepare a sheet-shaped molded body, after preparing a slurry, this is molded by a doctor blade method, or Or to form a ceramic powder into a sheet by press molding, rolling, etc., or to make a bulk body,
For example, die press, cold isostatic press, extrusion molding,
It may be molded into an arbitrary shape by injection molding or the like.

【0018】次にこのセラミック成形体の表面に、メタ
ライズペーストを塗布する。メタライズペーストは、
W、Mo、Ag、Cu、Al、Au、Pd、Pt、Ni
の群から選ばれた少なくとも1種、特に、W、Mo、N
i、Cu、Ptの群から選ばれる少なくとも1種をを主
成分とするものであり、この金属成分に対して、さらに
有機溶剤、分散剤などを添加して混合したものである。
Next, a metallizing paste is applied to the surface of this ceramic molded body. The metallized paste is
W, Mo, Ag, Cu, Al, Au, Pd, Pt, Ni
At least one selected from the group consisting of W, Mo, N
The main component is at least one selected from the group consisting of i, Cu, and Pt, and an organic solvent, a dispersant, and the like are further added to and mixed with the metal component.

【0019】ペースト中の金属成分は、これを塗布する
セラミック成形体の焼成温度において溶融しない金属が
選択される。例えば、アルミナ主成分の成形体に対して
は、W,Mo、Ni、Pd、Ptなどが使用できる。窒
化アルミニウム、窒化ケイ素、炭化ケイ素などの非酸化
物系セラミックス主成分の成形体にはW、Mo、Ptな
どが、ガラスセラミックス主成分の成形体には、Ag、
Cu、Auなどが採用できる。
As the metal component in the paste, a metal that does not melt at the firing temperature of the ceramic compact to which it is applied is selected. For example, W, Mo, Ni, Pd, Pt and the like can be used for the formed body containing alumina as a main component. W, Mo, Pt, and the like are used for the non-oxide ceramics-based compacts such as aluminum nitride, silicon nitride, and silicon carbide, and Ag, for the glass-ceramics-based compacts.
Cu, Au, etc. can be adopted.

【0020】このメタライズペーストは、上記セラミッ
ク成形体の表面にスクリーン印刷法やオフセット印刷
法、グラビア印刷法などにより印刷塗布する。
This metallizing paste is applied by printing on the surface of the ceramic molded body by a screen printing method, an offset printing method, a gravure printing method or the like.

【0021】次に、メタライズペーストが塗布されたセ
ラミック成形体を、高周波加熱炉内に収納して焼成を行
う。図1に典型的な高周波加熱炉の概略配置図を示し
た。
Next, the ceramic compact coated with the metallizing paste is placed in a high frequency heating furnace and fired. FIG. 1 shows a schematic layout of a typical high-frequency heating furnace.

【0022】図1によれば、ステンレス等からなる焼成
炉筐体1内には、セラミック等からなる支持台2を設置
され、その支持台2の上に成形体3を載置する。支持台
2および成形体3は、マイクロ波等の高周波の透過性の
よい断熱材4内に設置されている。なお、焼成炉内は、
ガス導入路5を通じて所望の焼成雰囲気が形成されてい
る。一方、焼成炉の外部には、マイクロ波発振器6が設
置され、発振器より発生したマイクロ波は、発振器6の
出力窓7、導波管8および焼成炉筐体1の一部に形成さ
れた導入窓9を通じて成形体3に直接照射される。成形
体の支持台2には、成形体の温度を測定するための熱電
対10が設けられ、熱電対10により成形体の温度を測
定しながらマイクロ波の出力を調整して所望の焼成温度
に設定することができる。
According to FIG. 1, a support base 2 made of ceramic or the like is installed in a firing furnace housing 1 made of stainless steel or the like, and a molded body 3 is placed on the support base 2. The support base 2 and the molded body 3 are installed in a heat insulating material 4 having a high permeability to high frequencies such as microwaves. In addition, in the firing furnace,
A desired firing atmosphere is formed through the gas introduction path 5. On the other hand, a microwave oscillator 6 is installed outside the firing furnace, and microwaves generated by the oscillator are introduced into the output window 7 of the oscillator 6, the waveguide 8 and a part of the firing furnace casing 1. The molded body 3 is directly irradiated through the window 9. A thermocouple 10 for measuring the temperature of the molded body is provided on the support 2 of the molded body, and while measuring the temperature of the molded body by the thermocouple 10, the microwave output is adjusted to a desired firing temperature. Can be set.

【0023】本発明によれば、この高周波加熱炉により
周波数300MHz〜300GHzのマイクロ波を成形
体に照射する。マイクロ波の発振源としては、マグネト
ロン、クライストロン、ジャイラトロン等が用いられる
が、セラミックスを均一に焼結するためには、シングル
モードのミリ波が望ましく、具体的には20〜100G
Hzを発振するジャイラトロンが望ましい。この照射に
より、成形体は自己加熱し、成形体の内外差なく均一に
焼結することができる。なお、焼成温度は、マイクロ波
の出力によって任意に制御することができ、通常は1〜
10KWが適当であり、焼成時間は0.1〜2時間程度
で焼結できる。
According to the present invention, a microwave having a frequency of 300 MHz to 300 GHz is applied to the compact by the high frequency heating furnace. A magnetron, a klystron, a gyrotron, or the like is used as a microwave oscillation source, but a single-mode millimeter wave is desirable in order to uniformly sinter ceramics.
A gyrotron that oscillates Hz is desirable. By this irradiation, the molded body is self-heated and can be uniformly sintered without any difference between inside and outside of the molded body. The firing temperature can be arbitrarily controlled by the output of microwaves, and usually 1 to
10 kW is suitable, and sintering can be performed with a firing time of about 0.1 to 2 hours.

【0024】かかる焼成方法における焼成温度は、セラ
ミック成形体を構成する主成分とその他の添加剤により
種々変化するが、概して言えば、セラミック成形体を構
成する主成分がアルミナの場合は、1000〜1500
℃、ムライトの場合には1300〜1600℃、窒化ア
ルミニウムの場合には1500〜1800℃、窒化ケイ
素の場合には1500〜1800℃、炭化ケイ素の場合
には、1600〜2000℃、ガラスセラミックスの場
合には850〜1050℃の温度で焼成緻密化すること
ができる。
The firing temperature in such a firing method varies depending on the main component constituting the ceramic molded body and other additives, but generally speaking, when the main component constituting the ceramic molded body is alumina, the firing temperature is from 1000 to 1,000. 1500
C., 1300 to 1600 ° C. for mullite, 1500 to 1800 ° C. for aluminum nitride, 1500 to 1800 ° C. for silicon nitride, 1600 to 2000 ° C. for silicon carbide, and glass ceramics In particular, it can be sintered and densified at a temperature of 850 to 1050 ° C.

【0025】以下、本発明を具体的な実験例で説明す
る。 実験例 アルミナ(純度92%、SiO2 、CaO、MgO含
む)、ムライト(純度99%)、窒化アルミニウム(Y
2 3 5重量%添加品)、窒化ケイ素(Y2 33重量
%、Al2 3 5重量%)、炭化ケイ素(B4 C0.5
重量%、C 2重量%)、ガラスセラミックス(硼珪酸
ガラス70重量%、Al2 3 30重量%)の各セラミ
ック粉末に対してバインダー、可塑剤、溶剤をそれぞれ
添加し、ボールミルにて20時間混合した。得られたス
ラリーをドクターブレード法により厚さ0.05〜1.
5mmのテープ状に成形した。
The present invention will be described below with reference to specific experimental examples. Experimental Example Alumina (purity 92%, including SiO 2 , CaO, MgO), mullite (purity 99%), aluminum nitride (Y
2 O 3 5% by weight added product), silicon nitride (Y 2 O 3 3% by weight, Al 2 O 3 5% by weight), silicon carbide (B 4 C0.5
% By weight, C 2% by weight) and glass ceramics (70% by weight borosilicate glass, 30% by weight Al 2 O 3 ) to which a binder, a plasticizer and a solvent have been added, and a ball mill is used for 20 hours. Mixed. The obtained slurry has a thickness of 0.05-1.
It was molded into a 5 mm tape shape.

【0026】一方、メタライズ金属として純度99%以
上のW、Mo、Ni、Pt、Cuに対して、セルロース
などを添加しボールミルで24時間混合してメタライズ
ペーストを作製し、上記テープ状成形体の表面に配線回
路パターン状にスクリーン印刷法によりペーストを塗布
しそれらを15枚積層圧着して60mm角の大きさの積
層成形体を作製した。
On the other hand, to W, Mo, Ni, Pt, and Cu having a purity of 99% or more as a metallized metal, cellulose or the like was added and mixed in a ball mill for 24 hours to prepare a metallized paste. A paste was applied on the surface in the form of a wiring circuit pattern by a screen printing method, and 15 sheets of them were laminated and pressure-bonded to produce a laminated molded body having a size of 60 mm square.

【0027】そして、この積層成形体を500℃の還元
雰囲気中5時間の脱脂処理を施した後、焼成した。焼成
には、ヒーター抵抗加熱炉(RH)としてトンネル炉、
バッチ炉を使用し、また、高周波加熱炉として図1に示
した構成において、28GHz、最大出力10KWのジ
ャイロトロンを発振源としたマイクロ波発振器を用いて
用いてステンレス製の焼成炉筐体中で焼成した。なお、
焼成温度は成形体に熱電対を接触させ温度を測定しなが
らマイクロ波出力を1KW〜5KWで変化させて温度制
御を行った。
Then, the laminated molded body was subjected to a degreasing treatment for 5 hours in a reducing atmosphere at 500 ° C. and then fired. For firing, tunnel furnace as heater resistance heating furnace (RH),
A batch furnace is used, and in the configuration shown in FIG. 1 as a high frequency heating furnace, a microwave oscillator using a gyrotron of 28 GHz and a maximum output of 10 KW as an oscillation source is used in a stainless steel baking furnace housing. Baked. In addition,
The firing temperature was controlled by bringing the thermocouple into contact with the compact and measuring the temperature while changing the microwave output from 1 KW to 5 KW.

【0028】焼成時の焼成温度までの昇温速度、焼成温
度、焼成時間、焼成雰囲気は、表1、表2に示した。な
お、焼成は、いずれも常圧で行った。焼成後、セラミッ
クスの密度をアルキメデス法により測定し相対密度を算
出した。メタライズ層における電気特性の抵抗値からメ
タライズの焼結性を評価し、抵抗値が3Ωcm以下のも
のを○とし、これを越えるものを×とした。また、焼結
体の外観検査からメタライズ層の溶融の有無や寸法精
度、反り、静電容量等をチェックした。
Tables 1 and 2 show the temperature rising rate up to the firing temperature, firing temperature, firing time, and firing atmosphere during firing. The firing was carried out under normal pressure. After firing, the density of the ceramic was measured by the Archimedes method to calculate the relative density. The sinterability of the metallization was evaluated from the resistance value of the electrical characteristics of the metallized layer, and those having a resistance value of 3 Ωcm or less were evaluated as ◯, and those exceeding this value were evaluated as x. Further, the presence or absence of melting of the metallized layer, dimensional accuracy, warpage, capacitance, etc. were checked from the appearance inspection of the sintered body.

【0029】また、メタライズ層に金属ピンをロー付け
して金属ピンを垂直に引っ張り、メタライズ層が剥がれ
る時の荷重をメタライズ強度として評価した。結果は表
1、表2に示した。
Further, a metal pin was brazed to the metallized layer and the metal pin was pulled vertically, and the load when the metallized layer was peeled off was evaluated as the metallized strength. The results are shown in Tables 1 and 2.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】表1、表2の結果から明らかなように、従
来の抵抗加熱法に比較してマイクロ波加熱法によれば、
焼成温度が50〜100℃低い温度で緻密化することが
できることがわかる。しかも焼成温度までの昇温速度が
25℃/min以上と抵抗加熱法に比較して非常に早く
できるため焼成時間が短縮され、焼成温度での保持時間
も抵抗加熱法に比較して0.15〜1時間程度まで格段
に短縮できた。
As is clear from the results of Tables 1 and 2, according to the microwave heating method as compared with the conventional resistance heating method,
It can be seen that densification can be achieved at a firing temperature lower by 50 to 100 ° C. Moreover, the heating rate up to the firing temperature is 25 ° C./min or more, which is much faster than that by the resistance heating method, so that the firing time is shortened, and the holding time at the firing temperature is 0.15 as compared with the resistance heating method. I was able to reduce it to about 1 hour.

【0033】また、抵抗加熱法に比較してマイクロ波加
熱法では、メタライズ強度がいずれも向上していた。
Further, in the microwave heating method, the metallization strength was improved as compared with the resistance heating method.

【0034】なお、アルミナに対してNiメタライズを
施した試料No.5〜7によれば、抵抗加熱法ではアルミ
ナを焼結させるためには1450℃以上に加熱する必要
があるが1450℃ではNiが溶融しメタライズ層を形
成することができなかったが、マイクロ波加熱法では1
400℃でアルミナを緻密化することができたため、N
iも溶融することなく良好なメタライズ層を形成でき
た。
According to Sample Nos. 5 to 7 in which Ni metallized alumina, according to the resistance heating method, it was necessary to heat the alumina to 1450 ° C. or higher in order to sinter the alumina. Was melted and the metallized layer could not be formed.
Since the alumina could be densified at 400 ° C., N
A good metallized layer could be formed without melting i.

【0035】また、窒化アルミニウムに対してPtメタ
ライズ層を形成した試料No.13〜15においてもマイ
クロ波加熱法では1600℃でも窒化アルミニウムの緻
密化でき良好なPtメタライズ層を形成することができ
た。
Further, in Samples Nos. 13 to 15 in which a Pt metallized layer was formed on aluminum nitride, the microwave heating method was able to densify aluminum nitride even at 1600 ° C. and form a good Pt metallized layer. .

【0036】さらに、窒化ケイ素にWやMoのメタライ
ズを施す場合(試料No.16〜18)、あるいは炭化ケ
イ素にWメタライズを施す場合(試料No.19〜2
1)、抵抗加熱法では、窒化ケイ素や炭化ケイ素が緻密
化する温度域では窒化ケイ素や炭化ケイ素とWやMoが
反応しメタライズ層の導電性が大きく低下したが、マイ
クロ波加熱法では、低温での緻密化が可能となり、Wや
Moとの反応がなく良好なメタライズ層を形成すること
ができた。
Further, when W or Mo metallization is applied to silicon nitride (Samples No. 16 to 18), or when W metallization is applied to silicon carbide (Samples No. 19 to 2).
1) In the resistance heating method, silicon nitride or silicon carbide reacts with W or Mo in the temperature range where silicon nitride or silicon carbide is densified, and the conductivity of the metallized layer is greatly reduced. It became possible to densify, and it was possible to form a good metallized layer without reaction with W or Mo.

【0037】またさらに、ガラスセラミックスによれ
ば、大気中での焼成において、抵抗加熱法ではガラスセ
ラミックスが緻密化する900℃ではCuが酸化してし
まうが、マイクロ波加熱法では、850℃での緻密化が
可能となりCuの酸化も生じず良好なメタライズ層を形
成することができた。
Furthermore, according to the glass ceramics, Cu is oxidized at 900 ° C. at which the glass ceramics are densified by the resistance heating method during firing in the air, whereas by the microwave heating method, Cu is oxidized at 850 ° C. Densification was possible and Cu was not oxidized, and a good metallized layer could be formed.

【0038】[0038]

【発明の効果】以上詳述した通り、本発明によれば、高
周波加熱法を採用することにより、従来の抵抗加熱法に
比較してセラミックスやメタライズ層の特性を変化させ
ることなく、低温で且つ短時間で同時焼成することが可
能となり、しかもメタライズ層の選択種を拡大するとと
もに密着強度も高めることができる。これにより、セラ
ミック基板の製造におけるコストを大きく低減すること
ができる。
As described above in detail, according to the present invention, by adopting the high frequency heating method, the characteristics of the ceramics and the metallized layer are not changed as compared with the conventional resistance heating method. Simultaneous firing can be carried out in a short time, and moreover, selective species of the metallized layer can be expanded and the adhesion strength can be enhanced. As a result, the cost for manufacturing the ceramic substrate can be greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における高周波加熱炉の概略図である。FIG. 1 is a schematic view of a high-frequency heating furnace according to the present invention.

【符号の説明】[Explanation of symbols]

1 焼成炉筐体 2 支持台 3 成形体 4 断熱材 5 ガス導入路 6 マイクロ波発振器 7 出力窓 8 導波管 9 導入窓 10 熱電対 DESCRIPTION OF SYMBOLS 1 Baking furnace housing 2 Support stand 3 Forming body 4 Heat insulating material 5 Gas introduction path 6 Microwave oscillator 7 Output window 8 Waveguide 9 Introduction window 10 Thermocouple

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 哲也 鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuya Kimura 1-4 Yamashita-cho, Kokubun-shi, Kagoshima Kyocera Stock Company Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】セラミック成形体の表面にメタライズペー
ストを塗布した後、該成形体に高周波を照射して加熱し
て前記成形体とメタライズとを同時に焼成することを特
徴とするセラミック基板の製造方法。
1. A method of manufacturing a ceramic substrate, comprising applying a metallizing paste to the surface of a ceramic molded body, and then irradiating the molded body with a high frequency wave to heat the molded body and the metallization at the same time. .
【請求項2】メタライズペーストが、W、Mo、Ni、
CuおよびPtの群から選ばれた少なくとも1種を主成
分とする請求項1記載のセラミック基板の製造方法。
2. A metallizing paste comprising W, Mo, Ni,
The method for producing a ceramic substrate according to claim 1, wherein at least one selected from the group consisting of Cu and Pt is contained as a main component.
【請求項3】セラミック成形体が、アルミナ、窒化アル
ミニウム、窒化ケイ素、炭化ケイ素、ムライトおよびガ
ラスセラミックスの群から選ばれる少なくとも1種を主
成分とする請求項1記載のセラミック基板の製造方法。
3. The method for producing a ceramic substrate according to claim 1, wherein the ceramic molded body contains at least one selected from the group consisting of alumina, aluminum nitride, silicon nitride, silicon carbide, mullite and glass ceramics as a main component.
JP28208295A 1995-10-30 1995-10-30 Manufacturing method of ceramic substrate Expired - Fee Related JP3792283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28208295A JP3792283B2 (en) 1995-10-30 1995-10-30 Manufacturing method of ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28208295A JP3792283B2 (en) 1995-10-30 1995-10-30 Manufacturing method of ceramic substrate

Publications (2)

Publication Number Publication Date
JPH09124382A true JPH09124382A (en) 1997-05-13
JP3792283B2 JP3792283B2 (en) 2006-07-05

Family

ID=17647897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28208295A Expired - Fee Related JP3792283B2 (en) 1995-10-30 1995-10-30 Manufacturing method of ceramic substrate

Country Status (1)

Country Link
JP (1) JP3792283B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510747A (en) * 2005-09-28 2009-03-12 スティッチング ダッチ ポリマー インスティテュート Method for generating metal surface structure and apparatus therefor
JP2011246295A (en) * 2010-05-24 2011-12-08 National Institute For Materials Science Low-temperature sintering method of silicon carbide powder
WO2015076005A1 (en) * 2013-11-20 2015-05-28 株式会社村田製作所 Method for sintering ceramics and method for producing multilayer ceramic electronic component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510747A (en) * 2005-09-28 2009-03-12 スティッチング ダッチ ポリマー インスティテュート Method for generating metal surface structure and apparatus therefor
JP2011246295A (en) * 2010-05-24 2011-12-08 National Institute For Materials Science Low-temperature sintering method of silicon carbide powder
WO2015076005A1 (en) * 2013-11-20 2015-05-28 株式会社村田製作所 Method for sintering ceramics and method for producing multilayer ceramic electronic component
JPWO2015076005A1 (en) * 2013-11-20 2017-03-16 株式会社村田製作所 Ceramic firing method and multilayer ceramic electronic component manufacturing method

Also Published As

Publication number Publication date
JP3792283B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
CN104774005B (en) Low-temperature sintered lead-free microwave dielectric ceramic and preparation method thereof
US5145540A (en) Ceramic composition of matter and its use
JP4632534B2 (en) Dielectric porcelain and manufacturing method thereof
US6121173A (en) Ceramic sintered body and a process for its production
JP3792283B2 (en) Manufacturing method of ceramic substrate
JP2001278657A (en) Low temperature-burned ceramic composition and wiring board using it
JP2002265267A (en) Low temperature burnt porcelain and electronic parts
JP3741556B2 (en) Low-temperature fired porcelain and electronic component equipped with the same
JP3550270B2 (en) Low temperature fired porcelain composition and method for producing low temperature fired porcelain
CN101255546A (en) High density ceramic and cermet sputtering targets by microwave sintering
US6602623B1 (en) Low-temperature firing ceramic composition, process for producing same and wiring substrate prepared by using same
JP2002173367A (en) Low temperature firing porcelain composition, manufacturing method thereof and printed wiring board using the same
JP2004140593A (en) Delay circuit
JP3754798B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP2002348172A (en) High frequency wire board
JPH10189828A (en) Low-temperature baked ceramic composition and manufacturing method of low-temperature baked ceramic
JP3917770B2 (en) Low-temperature fired porcelain and electronic component equipped with the same
KR950002232B1 (en) Glass-ceramics for low firing temperature substrate
JP2003252678A (en) Glass composition and dielectric, method for producing the same, and wiring board using the same
JPH1045472A (en) Dielectric ceramic product for high frequency and its manufacture
JPH09237957A (en) Alumina circuit board and manufacture thereof
JP2000063182A (en) Production of ceramic raw material capable of being sintered at low temperature
JP2606155B2 (en) Multilayer wiring board, method for manufacturing the same, and method for manufacturing sintered silica used therefor
JP2003137657A (en) Glass ceramics and method of manufacturing the same and wiring board
JP3628146B2 (en) Low temperature fired ceramic composition and low temperature fired ceramic

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees