WO2015075798A1 - 元素の分離方法及び分離システム - Google Patents

元素の分離方法及び分離システム Download PDF

Info

Publication number
WO2015075798A1
WO2015075798A1 PCT/JP2013/081387 JP2013081387W WO2015075798A1 WO 2015075798 A1 WO2015075798 A1 WO 2015075798A1 JP 2013081387 W JP2013081387 W JP 2013081387W WO 2015075798 A1 WO2015075798 A1 WO 2015075798A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical species
polarity
target element
solution
ion
Prior art date
Application number
PCT/JP2013/081387
Other languages
English (en)
French (fr)
Inventor
亜由美 幡野
山本 浩貴
広 中野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP13897770.7A priority Critical patent/EP3072593A1/en
Priority to PCT/JP2013/081387 priority patent/WO2015075798A1/ja
Priority to JP2015548921A priority patent/JPWO2015075798A1/ja
Publication of WO2015075798A1 publication Critical patent/WO2015075798A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/32Obtaining chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/42Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/22Obtaining vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • C22B47/0018Treating ocean floor nodules
    • C22B47/0045Treating ocean floor nodules by wet processes
    • C22B47/0081Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0252Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries
    • C22B60/0265Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries extraction by solid resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to an element separation method and an element separation system using an ion adsorbent.
  • Separation and recovery methods using ion adsorbers are widely used in precious metal recovery, nuclear fuel recovery and wastewater treatment.
  • ion adsorbers inorganic adsorbers such as inorganic adsorptive zeolite, porous silica and porous carbon, negative ion exchange resins, positive ion exchange resins, chelate resins, chelates, aggregates and the like are known.
  • ions containing a target element which is an element to be recovered from the solution, are adsorbed to the adsorbent and separated. At this time, if an impurity element is contained in the solution in addition to the target element, the impurity element is adsorbed onto the ion adsorbent in the same manner as the target element, and the separation performance is lowered.
  • Patent Document 1 in order to separate the platinum group element which is the target element and other impurity ions, the platinum group element is changed by changing the oxidation-reduction potential of the chloride solution containing the platinum group element and containing the impurity element. It is selectively adsorbed to the ion exchange resin.
  • the redox potential of a chloride solution containing a platinum group element is changed by the addition of an oxidizing agent. The redox potential of the solution renders all the platinum group elements tetravalent which is easy to be chloro complexed. Since the chloro complex has high adsorption selectivity to the ion exchange resin, the platinum group element can be selectively adsorbed.
  • Patent Document 2 a solution containing uranium, which is a target element, and other impurity elements is reduced, and uranium is brought into contact with a negative ion exchanger as a negative ion nitrate complex.
  • Patent Document 1 the valence number of the target element is changed to promote formation of a complex ion containing the target element.
  • the polarity of the charge of the complex ion containing the target element is the same before and after changing the valence of the target element. Therefore, even if there is a difference in adsorption selectivity, ions having the same polarity are adsorbed to the ion adsorbent. Therefore, when the concentration of the impurity element is high, there is a concern that the separation performance of the target element may be reduced, and the amount of medicine and drainage may be increased.
  • the present invention provides an element separation method and an element separation system capable of reducing the amount of drainage while maintaining the separation performance of the target element.
  • the element separation method of the present invention comprises: (1) adjusting the redox potential of the solution containing the target element to a potential capable of converting the polarity of only the chemical species containing the target element; And (2) introducing the solution after the adjustment of the redox potential into the ion adsorbent, and only one of the chemical species containing the target element whose polarity has been converted and the chemical species of the impurity element in the solution. And D. a second step of selectively adsorbing the ion adsorber to the ion adsorbent, and separating the target element from the solution.
  • the element separation system of the present invention (1) introduces a solution containing a target element, and adjusts a redox potential of the solution so as to convert the polarity of only the chemical species containing the target element. And (2) introducing a solution containing a chemical species containing the target element after polarity conversion, and selectively selecting only one of the chemical species containing the target element whose polarity has been converted and impurities in the solution. And an ion adsorbing device for adsorbing the ions.
  • an element separation method and an element separation system capable of reducing the amount of drainage while maintaining the separation performance of the target element.
  • FIG. 1 It is a whole schematic block diagram of the element separation system which concerns on one Embodiment of this invention. It is a figure which shows the process flow by the element separation system shown in FIG. It is a block diagram of the oxidation reduction potential adjustment apparatus shown in FIG. It is another block diagram of the oxidation reduction potential adjustment apparatus shown in FIG. It is a figure which shows the change of the absorption spectrum at the time of the redox potential adjustment which concerns on Example 1 of this invention. It is a figure which shows the change of the adsorption selectivity in the Example of this invention, and a comparative example. It is a figure which shows the model compound of the ion exchange resin used in Example 2 of this invention. It is a figure which shows the simulation result of the adsorption selectivity of each chemical species with respect to the model compound shown in FIG.
  • FIG. 1 shows an overall schematic configuration of an element separation system according to an embodiment of the present invention.
  • the element separation system includes a pH adjustment tank 100, an oxidation reduction potential adjustment device 101, an ion exchange resin tower 102 functioning as an ion adsorber, a target element recovery device 103 for recovering a target element, and an eluent supplied to the ion exchange resin tower 102.
  • an impurity element recovery tank 105 for recovering the impurity element by recovering the eluent containing the impurity element flowing out of the ion exchange resin column 102 by the supplied eluent.
  • the element separation system of the present invention has various uses such as phosphorus (P) contained in domestic wastewater, uranium (U) contained in spent nuclear fuel, and catalyst material vanadium (V) contained in spent catalyst. It is applicable to the system which separates the target element from the processing object according to The present invention can be applied to separation of a target element and an impurity element which is another element, such as in the case of removing a specific element from an object to be treated or in the case of separating and recovering a specific element from an object of treatment.
  • the target element is described as M A and the impurity element is described as M B.
  • the pH adjustment tank 100 is provided in order to change the polarity of a part of the chemical species of the transition metal or semimetal element contained in the object to be treated together with the redox potential adjustment device 101 described later.
  • Redox potential control device as shown in FIG. 3, the redox potential adjustment device 101, negative electrode chamber 11 for introducing the aqueous solution of the desired element containing M A and impurity element M B than the injection port 7, noted,
  • the target element M A is vanadium (V)
  • the impurity element M B is tungsten (W).
  • the injection port 8 for example, between the positive electrode chamber 12 for introducing sodium chloride (NaCl) solution, the negative electrode chamber 11 and the positive electrode chamber, the mesh electrode 14 on the negative electrode chamber 11 side and the positive electrode chamber 12 side
  • the plate-like electrodes 15 are disposed on the same, and these are fixed by a fixing tool such as a bolt 19.
  • a magnet-type stirring element 16 is provided in the negative electrode chamber 11 and a magnet-type stirring element 17 is provided in the positive electrode chamber 12, and the negative electrode is driven to rotate at a desired rotational speed by the stirrer 18.
  • the aqueous solution and the sodium chloride solution containing the target element M A and the impurity element M B introduced into the chamber 11 and the positive electrode chamber 12 are stirred.
  • the adjusted redox potential is adjusted such that the polarity of the chemical species containing the target element M A is converted, and the polarity of the chemical species containing the impurity element M B is not converted. That is, in the oxidation-reduction potential regulator 101 functions to convert only the polarity of the chemical species containing the target element M A.
  • conversion of polarity of chemical species means change of positive / negative polarity, change from zero valent to positive charge or change from zero valent to negative charge.
  • the ion exchange resin column 102 includes a column packed with an ion exchange resin inside, and the solution after adjustment by the redox potential adjusting device 101 flows from the upper or lower part thereof, whereby ions present in the solution are detected. Among them, desired ions are selectively adsorbed to the ion exchange resin.
  • the ion exchange resin one having a characteristic of releasing its own positive ion and adsorbing the positive ion present in the solution at an adsorption site (positive ion exchanger), releasing its own negative ion Those that have the property of adsorbing negative ions present in solution (negative ion exchangers), those that selectively adsorb specific ions by coordination bond, positive ion adsorption sites and negative ion adsorption sites, and neutral salts The thing which adsorbs, etc. are used.
  • ions are selectively adsorbed by coordination bonds
  • electrons are given to orbitals present in the ions to which unpaired electrons of elements at the adsorption site are adsorbed to form bonds.
  • the ion exchange resin a positive ion exchange resin, a negative ion exchange resin, a chelate resin, a chelate, an aggregating material and the like are used.
  • the ion-exchange resin tower 102 is introduced a solution polarity of only species has been changed, including the desired element M A by a redox potential control device 101 as described above, a chemical containing an impurity element M B polarity is not changed Only species are adsorbed to the ion exchange resin.
  • Object element recovery device 103 recovers the target element M A by recovering the solution where the chemical species dissolved containing the target element M A polarity flowing out of the ion exchange resin column 102 is changed.
  • Eluent tank 104 the chemical species containing the impurity element M B which is selectively adsorbed to the ion exchange resin of the ion exchange resin tower 102, stores the eluent to separate from the ion exchange resin.
  • Impurity element collection tank 105 the eluent supplied to the ion-exchange resin tower 102 from the eluent reservoir 104, a chemical species containing an impurity element M B which is selectively adsorbed to the ion exchange resin is separated from the ion-exchange resin by recovering the effluent to the eluent, to recover the impurity element M B.
  • the eluent for storing the eluent liquid tank 104 by the structure and has a property to elute from the ion exchange resin chemical species containing the desired element M A, supplying an eluent to the ion-exchange resin tower 102, the purpose The element M A is recovered.
  • the chemical species containing the target element M A has a negative polarity charge
  • the chemical species containing the impurity element M B has a negative charge.
  • the voltage applied to the mesh electrode 14 disposed on the negative electrode chamber 11 side and the plate electrode 15 disposed on the positive electrode chamber 12 in the oxidation potential adjustment device 101 shown in FIG. 3 is adjusted.
  • the chemical species M AOx ⁇ containing the target element M A is converted to a chemical species M ARED + in a reduced state having a positive polarity charge.
  • the polarity of the chemical species containing tungsten as the impurity element is not converted as it is the oxo anion WO 4 2- . Thus, only the polarity of the chemical species containing the target element M A is converted.
  • the polarity of the chemical species containing the target element M A is configured to adjust the oxidation-reduction potential so as not to be converted May be
  • Non-Patent Document 1 it is assumed that polarity is converted from negative to positive.
  • H 2 VO 4 - to VO + , MnO 4 2- to MnOH + , CrO 4 2- to CrO + and the like are shown.
  • the species likewise polarity is converted, for example, H 7 O 13 U 3 - from UO 2 +, TcO 4 - from TcO (OH) 2 0, HSe from H 2 SeO 3 0 -, H 2 AsO 4 - to HAsO 2 and the like can be mentioned.
  • the purpose element M A vanadium (V), manganese (Mn), chromium (Cr), in case of separating the uranium (U) is the conversion of the polarity redox potential adjusted from negative to positive Be done.
  • the purpose element M A technetium (Tc), when the separation of selenium (Se), arsenic (As), the conversion of the polarity is converted by a redox potential adjusted to zero valence from a negative charge.
  • the conversion of polarity of chemical species in the present invention is defined as the change of positive / negative polarity, the change from zero valent to the positive charge or the change from zero valent to the negative charge.
  • uranium Not only (U), but also long-lived fission products (FP: Fission Product) technetium (Tc) or iodine (I), and further, long-lived radioactive elements Neptunium (Np), americium (Am), curium Minor actinides (MA) such as (Cm) can be selectively adsorbed and separated.
  • the impurity element M B is species M BOX - are kept in.
  • the ion exchange membrane 13 is disposed between the mesh electrode 14 and the plate electrode 15 in the redox potential adjusting device 101 shown in FIG.
  • a semipermeable membrane may be provided instead of the ion exchange membrane 13 between the mesh electrode 14 and the plate electrode 15.
  • the redox potential adjusted in the step 2 is obtained, the chemical species M BOX species M ared + and impurity elements that are not polarity conversion object element polarity is converted - Ion exchange resin tower 102 of a solution containing To introduce.
  • an ion-exchange resin of the ion exchange resin tower 102 for example, by using a negative ion exchanger, species M BOX including the impurity element from a solution flowing through the ion-exchange resin tower 102 - only adsorbed purpose
  • the chemical species M ARED + containing an element flows out of the ion exchange resin column 102 without being adsorbed to the ion exchange resin.
  • R represents an ion exchange resin.
  • the polarity of the chemical species is oxoanion H 3 V 2 O 7 in the oxidation-reduction potential adjustment step.
  • - species containing vanadium is an object element that is converted into oxo cations VO + from the flowing out of the ion exchange resin column 102 without being adsorbed to the ion exchange resin.
  • chemical species containing tungsten which is an impurity element whose polarity of chemical species is not converted as it is the oxo anion WO 4 2- , is adsorbed to the ion exchange resin which is a negative ion exchanger.
  • a positive ion exchanger is used as an ion exchange resin
  • chemical species containing vanadium which is a target element converted to oxo cation VO + can be adsorbed to the ion exchange resin.
  • chemical species containing tungsten, which is an impurity element which is not converted as it is the oxo anion WO 4 2- flows out from the ion exchange resin column 102 without being adsorbed to the ion exchange resin.
  • the eluent stored in the eluent tank 104 is supplied to the ion exchange resin column 102 by a pump (not shown), and the chemical species M BOX containing the impurity element adsorbed on the ion exchange resin - it is eluted is collected in the impurity elements collection tank 105.
  • the target element M A is vanadium (V) and the impurity element M B is tungsten (W)
  • an aqueous solution of ammonium chloride (NH 4 CL) may be used as an eluent.
  • the ammonium chloride aqueous solution is supplied to the ion exchange resin column 102 from a pump (not shown) to elute the oxoanion WO 4 2- adsorbed on the in-exchange resin from the ion exchange resin, and tungsten is added as a solid salt by drug addition. It can be recovered.
  • FIG. 4 shows another configuration example of the redox potential adjusting device shown in FIG.
  • the same components as in FIG. 3 are assigned the same reference numerals.
  • the redox potential adjusting device 101 shown in FIG. 4 differs from the redox potential adjusting device shown in FIG. 3 in that the ion exchange resin 10 is filled in the negative electrode chamber 11.
  • the target element from the injection port 7 is an aqueous solution containing M A and impurity element M B is introduced into the negative electrode chamber 11.
  • the target element M A is vanadium (V) and the impurity element M B is tungsten (W), as described above, the oxoanion H 3 V 2 O 7 ⁇ which is a chemical species containing vanadium, tungsten
  • An aqueous solution in which the oxoanion WO 4 2- which is a chemical species to be dissolved is introduced into the negative electrode chamber 11.
  • the sodium chloride aqueous solution introduced into the positive electrode chamber 12 from the injection port 8 is stirred by the stirrer 17 at a predetermined stirring speed as in FIG.
  • stirrer 16 shown in FIG. 3 is not provided in the negative electrode chamber 11, chemical species of the target element and the impurity element in the negative electrode chamber 11 through the mesh electrode 14 and the plate electrode 15 respectively.
  • a potential is applied to the aqueous solution containing sodium chloride and the aqueous sodium chloride solution in the positive electrode chamber 12, and the potential is adjusted.
  • an ion exchange resin 10 which is a negative ion exchanger, is filled.
  • the ion exchange resin 10 releases its own negative ions into the solution in the negative electrode chamber 11, and adsorbs the negative ions present in the solution. That is, the oxo anion WO 4 2- in the aqueous solution is adsorbed to the ion exchange resin 10, and the oxo cation VO + of the chemical species containing vanadium is dissolved in the solution without being adsorbed to the ion exchange resin 10.
  • the conversion of the polarity of the chemical species containing vanadium and the adsorption of the chemical species containing tungsten on the ion exchange resin 10 are performed in the negative electrode chamber 11.
  • the ion exchange resin tower 102 can be eliminated.
  • the species M BOX including an impurity element which polarity is not converted - but only has a structure for adsorbing the ion exchange resin is not limited to this, the polarity conversion It may be configured to adsorb only the designated species M ARED + .
  • a positive ion exchanger may be used as the ion exchange resin in the ion exchange resin column 102.
  • the oxidation-reduction potential adjusting step 2 a case has been described of adjusting the redox potential to convert the polarity of the chemical species containing the target element M A as an example, not limited to this, the chemical containing an impurity element M B It may be configured to convert the polarity of the species.
  • the target element M A is vanadium (V) and the impurity element M B is tungsten (W) will be described as an example.
  • a vanadium (V) -tungsten (W) mixture was prepared, and the pH of the mixture was adjusted to 7.
  • an aqueous sodium chloride solution introduced into the positive electrode chamber 12 via the injection port 8 is 10 wt. % Mixed solution is adjusted to pH 7 and introduced into the negative electrode chamber 11 through the injection port 7 and the redox potential of the solution is changed by the mesh electrode 14 and the plate electrode 15 in the mixed solution
  • the vanadium containing species was changed from the oxo anion H 3 V 2 O 7 ⁇ to the oxo cation VO + .
  • the experimental conditions and results are described below.
  • Nafion registered trademark of DuPont
  • the rotary stirring by the stirrers 16 and 17 and the stirrer 18 which were installed in. The voltage was applied at 1 V for 30 minutes.
  • the vanadium-tungsten mixed solution after 0 minutes, 15 minutes, and 30 minutes of voltage application was taken out from the negative electrode chamber 11, diluted 10-fold with water, and the absorbance was measured.
  • the measured absorbance spectrum is shown in FIG.
  • the very gradual absorption peak seen at a wavelength of 800 nm increased with time, indicating that some species of vanadium in the mixture had changed.
  • the ICP-AES apparatus used SPS3500DD made by SII Nanotechnology.
  • FIG. 6 shows the concentrations of vanadium and tungsten in the solution after separation of the ion exchange resin in the case of adsorption treatment after voltage application as the present example and in the case of adsorption without voltage application as the comparative example.
  • the concentration of vanadium in the mixture is 4800 ppm, and the concentration of tungsten is 4600 ppm.
  • the concentration of vanadium contained in the solution subjected to adsorption treatment after voltage application which is the present example, was 1400 ppm
  • the concentration of tungsten was 560 ppm
  • the concentration of vanadium in the comparative example was 450 ppm
  • the concentration of tungsten was 310 ppm. Therefore, in the comparative example, the adsorption rate of tungsten is 91%
  • the adsorption rate of vanadium is 93%
  • the adsorption rates of vanadium and tungsten are both about 90%, and the adsorption selectivity is not observed.
  • the adsorption rate of vanadium is 71%
  • the adsorption rate of tungsten is 88%
  • only the adsorption rate of vanadium shows a low value, and it has been confirmed to have an adsorption selectivity. Therefore, it was proved that it is possible to reduce the adsorption rate of vanadium by applying a voltage.
  • the polarity of the chemical species containing vanadium, which is the target element is converted from the oxoanion H 3 V 2 O 7 - to the oxo cation VO + by adjusting the redox potential, and the polarity of the chemical species containing tungsten as the impurity element
  • the adsorption selectivity in the ion adsorption step was confirmed by not converting the oxo anion WO 4 2- as it is.
  • the target element M A is vanadium (V), chromium (Cr), arsenic (As), manganese (M n), and ion application when the chemical species M A of these target elements is changed by voltage application.
  • the change of adsorption selectivity for adsorbent was calculated by simulation. The simulation was performed using MOPAC (Molecular Orbital PAC kage, ver. 9.03 CS).
  • the structure shown in FIG. 6 is adopted as a model compound, adopted as a model compound 21 of each ion adsorber, and the enthalpy change of formation before and after each ion adsorption. And the entropy change was calculated.
  • M x is a chemical species containing the target element M A , for example, an oxo anion H 3 V 2 O 7 ⁇ which is a chemical species containing vanadium, and an oxo cation VO + which is a chemical species containing vanadium.
  • oxo cations CrO is a chemical species containing chromium +
  • oxo anions CrO is a chemical species containing chromium 4 2-
  • oxyanions H 2 AsO 4 is a chemical species containing arsenic -
  • HAsO 2 is a chemical species containing arsenic
  • the oxo anion MnO 4 2 ⁇ which is a chemical species containing manganese
  • the oxo cation MnOH + which is a chemical species containing manganese.
  • PM Metalization Model 6 capable of calculating transition metal complexes was used. Since this reaction is a reaction that occurs in an aqueous solution, the energy was calculated after optimizing the structure in a state where six pieces of water are arranged so as to surround the model compound 21.
  • the state at the lower left in FIG. 7 shows the model compound 22 before ion adsorption, and the state at the lower right in FIG. 7 shows the model compound 23 after ion adsorption.
  • the enthalpy change ⁇ Hf, the entropy change ⁇ S, and the Gibbs free energy ⁇ G calculated from these values before and after each ion adsorption are shown in FIG.
  • the reaction proceeds spontaneously if the Gibbs free energy ⁇ G is a negative value, and the reaction with the ion exchange resin is more dominant as the negative is larger.
  • oxoanion H 3 V 2 O 7 ⁇ which is a chemical species containing vanadium
  • oxoanion CrO 4 2 ⁇ which is a chemical species containing chromium
  • oxoanion which is a chemical species containing arsenic H 2 AsO 4 ⁇
  • HAsO 2 which is a chemical species containing arsenic
  • oxoanion MnO 4 2 ⁇ which is a chemical species containing manganese
  • the present invention is not limited to the embodiments described above, but includes various modifications.
  • the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ocean & Marine Engineering (AREA)
  • Oceanography (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

 目的元素の分離性能を維持しつつ排液量を低減することが可能な元素分離方法及び元素分離システムを提供する。本発明の元素分離方法は、(1)目的元素を含む溶液の酸化還元電位を、前記目的元素を含む化学種のみの極性を変換し得る電位に調整する第一の工程2と、(2)前記酸化還元電位調整後の溶液をイオン吸着体に導入し、前記極性が変換された目的元素を含む化学種及び前記溶液中の不純物元素の化学種のうち何れか一方のみを前記イオン吸着体に選択的に吸着させる第二の工程3と、を備え、前記溶液から目的元素を分離する。

Description

元素の分離方法及び分離システム
 本発明は、イオン吸着体を用いた元素の分離方法及び元素の分離システムに関する。
 イオン交換樹脂をはじめとしたイオン吸着体による分離回収法は、貴金属回収、核燃料の回収及び排水処理など多岐にわたって利用されている。イオン吸着体としては、無機吸着ゼオライト、多孔質シリカ及び多孔質カーボン等の無機吸着体、負イオン交換樹脂、正イオン交換樹脂、キレート樹脂、キレート、凝集材等が知られている。イオン吸着体による分離回収法では、一般に、溶液中から回収すべき元素である目的元素を含むイオンをイン吸着体に吸着し分離する。この際、溶液中に目的元素以外に不純物元素が含まれていると、不純物元素は目的元素と同様にイオン吸着体に吸着され、分離性能が低下する。
 そこで特許文献1では、目的元素である白金族元素とその他の不純物イオンを分離するため、白金族元素を含み、かつ不純物元素を含む塩化物溶液の酸化還元電位を変化させることにより白金族元素をイオン交換樹脂に選択的に吸着させている。特許文献1では、白金族元素を含む塩化物溶液の酸化還元電位を酸化剤の添加により変化させる。溶液の酸化還元電位により、白金族元素をすべてクロロ錯体化しやすい4価にする。クロロ錯体はイオン交換樹脂に対する吸着選択性が高いため、白金族元素を選択的に吸着可能としている。
 特許文献2では、目的元素であるウランとその他の不純物元素とが含まれる溶液を還元し、ウランを負イオン硝酸錯体として負イオン交換体に接触させる。ウランを還元により4価とすることで、負イオン交換体に対して選択性の高い硝酸錯体への変化を促進し、負イオン交換体への吸着選択性を高めている。
特開2004-131745号公報 特開2002-236195号公報
Marcel Pourbaix著,「Atlas of Electrochemical Equilibria in Aqueous Solutions」,National Association of Corrosion Engineers出版,1974年発行,第234頁から第241頁,第275頁,第282頁
 特許文献1及び特許文献2では、いずれも目的元素の価数を変化させて、目的元素を含む錯イオンの形成を促進するものである。しかしながら、目的元素を含む錯イオンの電荷の極性は、目的元素の価数を変化させた前後で一致している。そのため、仮に吸着選択性に差があったとしても、極性が一致しているイオンは、イオン吸着体に吸着される。そのため、不純物元素の濃度が高い場合には、目的元素の分離性能の低下や、薬剤および排液量の増大が懸念される。
 本発明は、目的元素の分離性能を維持しつつ排液量を低減することが可能な元素分離方法及び元素分離システムを提供する。
 上記課題を解決するため、本発明の元素分離方法は、(1)目的元素を含む溶液の酸化還元電位を、前記目的元素を含む化学種のみの極性を変換し得る電位に調整する第一の工程と、(2)前記酸化還元電位調整後の溶液をイオン吸着体に導入し、前記極性が変換された目的元素を含む化学種及び前記溶液中の不純物元素の化学種のうち何れか一方のみを前記イオン吸着体に選択的に吸着させる第二の工程と、を備え、前記溶液から目的元素を分離することを特徴とする。
 また、本発明の元素分離システムは、(1)目的元素を含む溶液を導入し、前記目的元素を含む化学種のみの極性を変換するよう前記溶液の酸化還元電位を調整する酸化還元電位調整装置と、(2)極性変換後の前記目的元素を含む化学種を含む溶液を導入し、前記極性が変換された目的元素を含む化学種及び前記溶液中の不純物のうち何れか一方のみを選択的に吸着するイオン吸着装置と、を備えたことを特徴とする。
 本発明によれば、目的元素の分離性能を維持しつつ排液量を低減することが可能な元素分離方法及び元素分離システムを提供することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施形態に係る元素分離システムの全体概略構成図である 図1に示す元素分離システムによる工程フローを示す図である。 図1に示す酸化還元電位調整装置の構成図である。 図1に示す酸化還元電位調整装置の他の構成図である。 本発明の実施例1に係る酸化還元電位調整時の吸収スペクトルの変化を示す図である。 本発明の実施例と比較例での吸着選択性の変化を示す図である。 本発明の実施例2で用いるイオン交換樹脂のモデル化合物を示す図である。 図7に示すモデル化合物に対する各化学種の吸着選択性のシミュレーション結果を示す図である。
 図1に、本発明の一実施形態に係る元素分離システムの全体概略構成を示す。元素分離システムは、pH調整槽100、酸化還元電位調整装置101、イオン吸着体として機能するイオン交換樹脂塔102、目的元素を回収する目的元素回収装置103、イオン交換樹脂塔102へ供給する溶離液を貯留する溶離液タンク104、供給される溶離液によりイオン交換樹脂塔102から流出する不純物元素を含む溶離液を回収し不純物元素を回収する不純物元素回収槽105から構成される。
 本発明の元素分離システムは、例えば、生活排水等に含まれるリン(P)、使用済み核燃料に含まれるウラン(U)、あるいは使用済み触媒に含まれる触媒材料バナジウム(V)等、様々な用途に応じて処理対象から目的元素を分離するシステムに適用できる。処理対象から特定の元素を除去する場合及び処理対象から特定の元素を分離回収する場合等、目的元素とその他の元素である不純物元素を分離するものに適用できる。以下、本明細書において、便宜上、目的元素をM、不純物元素をMとして説明する。
 pH調整槽100は、処理対象に含まれる遷移金属あるいは半金属元素の一部の化学種の極性を、後述する酸化還元電位調整装置101と共に変化させるために設けられている。
 酸化還元電位調整装置は、図3に示されるように、酸化還元電位調整装置101は、目的元素をM及び不純物元素Mを含有する水溶液を注入ポート7より導入する負極室11、なお、ここで、例えば処理対象を使用済み触媒とする場合、目的元素Mはバナジウム(V)、不純物元素をMはタングステン(W)となる。注入ポート8より、例えば、塩化ナトリウム(NaCl)溶液を導入する正極室12、負極室11及び正極室の間に、正イオン交換膜13を挟み負極室11側にメッシュ電極14、正極室12側に板状電極15が配置され、これらをボルト19等の固定具にて固定され構成されている。負極室11内にはマグネット式の攪拌子16、正極室12内にはマグネット式の攪拌子17がそれぞれ設けられており、スターラ18により所望の回転数にて回転駆動されることにより、それぞれ負極室11内及び正極室12内に導入された目的元素M及び不純物元素Mを含む水溶液及び塩化ナトリウム溶液が攪拌される。
 このとき、調整される酸化還元電位は、目的元素Mを含む化学種の極性を変換し、不純物元素Mを含む化学種の極性を変換することの無いよう調整される。すなわち、酸化還元電位調整装置101では、目的元素Mを含む化学種の極性のみを変換するよう機能する。なお、本発明において、化学種の極性の変換は、正負の極性の変更、0価から正の電荷への変更または0価から負の電荷への変更をさす。
 イオン交換樹脂塔102は、内部にイオン交換樹脂が充填されたカラムを備え、その上部または下部より酸化還元電位調整装置101による調整後の溶液を通流することで、溶液中に存在するイオンのうち、所望のイオンを選択的にイオン交換樹脂に吸着するものである。ここで、イオン交換樹脂には、吸着部位において、自身の正イオンを放出して溶液中に存在する正イオンを吸着する特性を有するもの(正イオン交換体)、自身の負イオンを放出して溶液中に存在する負イオンを吸着する特性を有するもの(負イオン交換体)、配位結合により特定のイオンを選択的に吸着するもの、正イオン吸着部位と負イオン吸着部位を備え中性塩を吸着するものなどが用いられる。このうち、配位結合によりイオンを選択的に吸着するものでは、吸着部位における元素の不対電子が吸着されるイオンに存在する軌道に電子を与えて結合を形成する。このように、イオン交換樹脂として、正イオン交換樹脂、負イオン交換樹脂、キレート樹脂、キレート、凝集材等が用いられる。
 イオン交換樹脂塔102には、上述のように酸化還元電位調整装置101により目的元素Mを含む化学種のみの極性が変化された溶液が導入され、極性が変化されない不純物元素Mを含む化学種のみをイオン交換樹脂に吸着する。
 目的元素回収装置103は、イオン交換樹脂塔102から流出する極性が変化された目的元素Mを含む化学種が溶存する溶液を回収することで目的元素Mを回収する。
 溶離液タンク104は、イオン交換樹脂塔102内のイオン交換樹脂に選択的に吸着された不純物元素Mを含む化学種を、イオン交換樹脂より分離するための溶離液を貯留する。
 不純物元素回収槽105は、溶離液タンク104よりイオン交換樹脂塔102に供給された溶離液により、イオン交換樹脂に選択的に吸着された不純物元素Mを含む化学種がイオン交換樹脂より分離され、流出す溶離液を回収することで、不純物元素Mを回収する。
 なお、本実施形態においては、イオン交換樹脂塔102内のイオン交換樹脂に酸化還元電位調整装置101により極性が変化することなく溶液中に溶存する不純物元素Mを含む化学種のみを選択的に吸着する構成としたがこれに限られない。すなわち、酸化還元電位調整装置101により極性が変換された目的元素Mを含む化学種のみを選択的にイオン交換樹脂に吸着する構成としてもよい。この場合、溶離液タンク104に貯留する溶離液は、目的元素Mを含む化学種をイオン交換樹脂より溶離する性質を有するものとし、溶離液をイオン交換樹脂塔102に供給することで、目的元素Mを回収する。
 次に、元素分離システムにより処理対象のより目的元素と不純物元素を分離し回収する工程フローを説明する。
 pH調整工程1では、後段の処理工程であるイオン吸着工程3にて、イオン交換樹脂塔102に目的元素M及び不純物元素Mが溶存する溶液を通水する際に適したpHとなるよう、例えば酸を添加することにより、目的元素M及び不純物元素Mが溶存する溶液のpH調整を行う。pH調整後の溶液には、例えば、目的元素Mを含む化学種が負の極性の電荷を持つ酸化状態の化学種MAOx 、不純物元素Mを含む化学種が負の極性の電荷を持つ酸化状態の化学種MBOx として溶存する状態を想定する。
 酸化還元電位調整工程2では、図3に示す酸化電位調整装置101内の負極室11側に配置されたメッシュ電極14及び正極室12側に配置された板状電極15への印加電圧を調整することで、目的元素Mを含む化学種MAOx を正の極性の電荷を持つ還元状態の化学種MARED へ変換する。他方、不純物元素Mを含む化学種は負の極性の電荷を持つ酸化状態の化学種MBOx のまま溶液中に溶存する。すなわち、目的元素Mを含む化学種の極性のみが負から正へと変換される。ここで、例えば目的元素Mをバナジウム(V)、不純物元素Mをタングステン(W)とした場合、酸化還元電位調整工程により、バナジウムを含む化学種であるオキソアニオンH はバナジウムを含む化学種であるオキソカチオンVOに変換される。また、不純物元素であるタングステンを含む化学種の極性はオキソアニオンWO4 2-のまま変換されない。よって、目的元素Mを含む化学種の極性のみが変換される。
 なお、酸化還元電位調整工程2において、不純物元素Mを含む化学種の極性をのみを変換し、目的元素Mを含む化学種の極性は変換されぬよう酸化還元電位を調整するよう構成してもよい。
 pH調整あるいは酸化還元電位調整による化学種の極性の変換につては、既に多くの検証がなされており、例えば、非特許文献1によれば、極性が負から正へと変換されるものとして、HVO からVO、MnO 2―からMnOH、CrO 2-からCrO等が示されている。また、同様に極性が変換される化学種としては、例えば、H13 からUO 、TcO からTcO(OH) 、HSeO からHSe、HAsO からHAsO等が挙げられる。
 このように、目的元素Mとして、バナジウム(V)、マンガン(Mn)、クロム(Cr)、ウラン(U)を分離する場合には、極性の変換は負から正へ酸化還元電位調整により変換される。また、目的元素Mとして、テクネチウム(Tc)、セレン(Se)、ヒ素(As)を分離する場合には、極性の変換は負の電荷から0価へ酸化還元電位調整により変換される。上述のとおり、本発明における化学種の極性の変換は、正負の極性の変更、0価から正の電荷への変更または0価から負の電荷への変更として定義される。
上述の元素を含め化学種の電荷の極性が変換される元素としては、ベリリウム(Be)、ホウ素(B)、炭素(C)、窒素(N)、フッ素(F)、アルミニウム(Al)、ケイ素(Si)、リン(P)、硫黄(S)、スカンジウム(Sc)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ゲルマニウム(Ge)、ヒ素(As)、セレン(Se)、臭素(Br)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、テクネチウム(Tc)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、カドミウム(Cd)、インジウム(In)、スズ(Sn)、アンチモン(Sb)、テレル(Te)、ヨウ素(I)、ランタン(La)、セシウム(Ce)、プラセオジウム(Pr)、ネオジウム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、シスプロシウム(Dy)、ホルミニウム(Ho)、エルピウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、ハフニウム(Hf)、タンタル(Ta)、レニウム(Re)、オスニウム(Os)、イリジウム(Ir)、白金(Pt)、金(Au)、水銀(Hg)、タリウム(Tl)、鉛(Pb)、ビスマス(Bi)、ポロニウム(Po)、アクチニウム(Ac)、プロトアクチニウム(Pa)、ウラン(U)、ネプツニウム(Np)、プルトニウム(Pu)、アメリシウム(Am)、キュリウム(Cm)、アインスタニウム(Es)、フェルミニウム(Fm)、メンデレビウム(Md)、ノーベリウム(No)、ローレンシウム(Lr)が挙げられる。
 よって、本発明の酸化還元電位調整装置101により、目的元素Mを含む化学種の極性を変換することで、分離可能なものとして、上述の使用済み核燃料に含まれる元素の場合には、ウラン(U)のみならず、長寿命の核分裂生成物(FP:Fission Product)であるテクネチウム(Tc)あるいはヨウ素(I)、更には、寿命放射性元素であるネプツニウム(Np)、アメリシウム(Am)、キュリウム(Cm)等のマイナーアクチニド(MA:Minor Actinide)を選択的に吸着分離することができる。
 上述のとおり酸化還元電位調整工程2において、不純物元素Mは化学種MBOX のまま保持される。なお、ここで、メッシュ電極14及び板状電極15へ電圧印加時には、極性が変換された目的元素を含む化学種MARED が、再び極性が変化される前の状態MAOX へともどることを防ぐため、図3に示す酸化還元電位調整装置101内に、メッシュ電極14と板状電極15の間にイオン交換膜13を配する構成としている。なお、メッシュ電極14と板状電極15との間にイオン交換膜13に代えて半透膜を設ける構成としてもよい。
 イオン吸着工程3では、酸化還元電位調整工程2により得られる、極性が変換された目的元素の化学種MARED 及び極性変換されない不純物元素の化学種MBOX を含む溶液をイオン交換樹脂塔102に導入する。イオン交換樹脂塔102内のイオン交換樹脂として、例えば、負イオン交換体を用いることにより、イオン交換樹脂塔102内を通流する溶液から不純物元素を含む化学種MBOX のみを吸着し、目的元素を含む化学種MARED はイオン交換樹脂に吸着されることなくイオン交換樹脂塔102より流出する。図2において、Rはイオン交換樹脂を表している。ここで、ここで、例えば目的元素Mをバナジウム(V)、不純物元素Mをタングステン(W)とした場合、酸化還元電位調整工程により、化学種の極性がオキソアニオンH からオキソカチオンVOに変換された目的元素であるバナジウムを含む化学種は、イオン交換樹脂に吸着されることなくイオン交換樹脂塔102より流出する。一方、化学種の極性がオキソアニオンWO4 2-のまま変換されない不純物元素であるタングステンを含む化学種は、負イオン交換体であるイオン交換樹脂に吸着される。
 なお、イオン交換樹脂として、正イオン交換体を用いれば、オキソカチオンVOに変換された目的元素であるバナジウムを含む化学種をイオン交換樹脂に吸着させることができる。また、このとき、オキソアニオンWO4 2-のまま変換されない不純物元素であるタングステンを含む化学種はイオン交換樹脂に吸着されることなくイオン交換樹脂塔102より流出する。
 目的元素回収工程4では、イオン吸着体であるイオン交換樹脂に吸着されることなく流出する目的元素を含む化学種MARED を含む溶液を、目的元素回収装置103に導入し、固体の塩等としてMを回収する。
 また、不純物元素回収工程4’では、溶離液タンク104に貯留された溶離液が、図示しないポンプによりイオン交換樹脂塔102へ供給され、イオン交換樹脂に吸着された不純物元素を含む化学種MBOX は溶離し、不純物元素回収槽105に回収される。ここで、例えば、例えば目的元素Mをバナジウム(V)、不純物元素Mをタングステン(W)とした場合、溶離液として、例えば塩化アンモニウム(NHCL)水溶液を用いればよい。図示しないポンプより、塩化アンモニウム水溶液をイオン交換樹脂塔102へ供給することで、イン交換樹脂に吸着されたオキソアニオンWO4 2-をイオン交換樹脂より溶離し、薬剤添加により固体の塩としてタングステンを回収できる。
 図4に、図1に示す酸化還元電位調整装置の他の構成例を示す。図3と同一の構成要素には同一の符号を付している。図4に示す酸化還元電位調整装置101は、負極室内11内にイオン交換樹脂10を充填した点が図3に示した酸化還元電位調整装置と異なる。
 図4に示す酸化還元電位調整装置101では、注入ポート7より目的元素をM及び不純物元素Mを含有する水溶液が負極室11に導入される。ここで、目的元素Mはバナジウム(V)、不純物元素をMはタングステン(W)とした場合、上述のとおり、バナジウムを含む化学種であるオキソアニオンH327 、タングステンを含む化学種であるオキソアニオンWO4 2-が溶存する水溶液が負極室11へ導入される。また、正極室12に注入ポート8より導入される塩化ナトリウム水溶液は、図3と同様に攪拌子17により所定の攪拌速度にて攪拌される。ここで、負極室11には、図3に示した攪拌子16が備えられていないものの、メッシュ電極14及び板状電極15を介してそれぞれ負極室11内の上記目的元素及び不純元素の化学種を含む水溶液、正極室12内の塩化ナトリウム水溶液に電位が付加され、その電位が調整される。
 電位調整により、負極室11内では、バナジウムを含む化学種であるオキソアニオンHH327 は、オキソカチオンVOへと化学種の極性が変換され、タングステンを含む化学種であるオキソアニオンWO4 2-の極性は変換されることなく溶存する。
 また、負極室11内には負イオン交換体であるイオン交換樹脂10が充填されている。これにより、イオン交換樹脂10は、自身の負イオンを負極室11内の溶液中に放出し、溶液中に存在する負イオンを吸着する。すなわち、水溶液中のオキソアニオンWO4 2-はイオン交換樹脂10に吸着され、バナジウムを含む化学種のオキソカチオンVOはイオン交換樹脂10に吸着されることなく溶液中に溶存する。
 よって、図4に示す酸化還元電位調整装置101では、バナジウムを含む化学種の極性の変換と、タングステンを含む化学種のイオン交換樹脂10への吸着が負極室11内で行われる。図4に示す酸化還元電位調整装置101を用いれば、イオン交換樹脂塔102を不要とできる。
 本実施形態においては、上述のとおり、イオン吸着工程3において、極性が変換されない不純物元素を含む化学種MBOX のみをイオン交換樹脂に吸着させる構成としたが、これに限られず、極性が変換された化学種MARED のみを吸着させるよう構成してもよい。この場合、イオン交換樹脂塔102内のイオン交換樹脂として正イオン交換体を用いればよい。
 また、酸化還元電位調整工程2において、目的元素Mを含む化学種の極性を変換するよう酸化還元電位を調整する場合を例に説明したが、これに限られず、不純物元素Mを含む化学種の極性を変換するよう構成してもよい。
 以下、本発明の実施例について図面を用いて説明する。
 本実施例においては、目的元素Mをバナジウム(V)、不純物元素Mをタングステン(W)とした場合を例に説明する。
 バナジウム(V)―タングステン(W)混合液を用意し、混合液のpHを7に調整した。酸化還元電位調整装置101として、上述の図3の構成を用い、正極室12に注入ポート8を介して導入する塩化ナトリウム水溶液を10wt.%NaCl溶液とし、pH7に調整後のバナジウムータングステン混合液を注入ポート7を介して負極室11に導入し、メッシュ電極14及び板状電極15により溶液の酸化還元電位を変化させ、混合液中のバナジウムを含む化学種をオキソアニオンH からオキソカチオンVOへ変化させた。 以下、実験条件および結果について説明する。
 先ず、10wt.%水酸化ナトリウム溶液200gに対して、模擬触媒粉末3.4g秤量して混合し、2時間撹拌した。なお、模擬触媒粉末中にはバナジウム(V)およびタングステン(W)がそれぞれ1.1g含まれている。これをアルミナ製蒸発皿に移して80℃~100℃で15時間乾燥させた。十分乾燥させた後、らいかい機等を用いて混合水酸化アルカリと触媒成分を均一に混合し、粉末を250℃―5時間大気中で加熱処理を行なった。加熱処理後、水20Lを投入して3時間撹拌し、模擬触媒粉末中のバナジウム、タングステンをオキソアニオンとして、それぞれ、H327 -、WO4 2-が溶存する混合液を得た。このとき混合液のpHは14であった。これに37wt.%塩酸溶液を加え、pH7に調整した。
 その後、図3に示す酸化還元電位調整装置101を用いてバナジウムを含む化学種とタングステンを含む化学種を変化させた。正極室12に10%のNaCl溶液を注入ポート8より15ml導入し、負極室11にpH=7に調整したバナジウム-タングステン混合液を注入ポート7より導入した。正極室12と負極室11の間に配置される正イオン交換膜13としてNafion(デュポン社登録商標)を用い、メッシュ電極14及び板状電極15へ電圧印加中は正極室12、負極室11それぞれに設置した攪拌子16、17とスターラ18による回転撹拌を行なった。電圧の印加は1Vで30分間行なった。
 電圧印加0分、15分、30分後のバナジウム-タングステン混合液を負極室11から取り出し、水で10倍希釈して吸光度を測定した。測定した吸光度スペクトルを図5に示す。波長800nmに見られる非常に緩やかな吸収ピークが時間と共に増大し、混合液中バナジウムの一部の化学種が変化していることが示された。
 電圧印加後30分のバナジウム-タングステン混合液5mlを負極室11から取り出し、イオン交換樹脂5ml(SA-10、三菱化学社)と混合して緩やかに15分間撹拌し、イオン交換樹脂にバナジウム、タングステンを吸着させた。比較として、電圧印加後のpHと同じpHに調整した混合液を5ml分取し、イオン交換樹脂5mlと混合して緩やかに15分間攪拌したものも作成した。なお、イオン交換樹脂には強塩基性負イオン交換樹脂を一例として用いたが、イオン交換樹脂の種類はこれに限らない。
 タングステンおよびバナジウムを吸着後、イオン交換樹脂を分離し、混合液中のバナジウム、タングステン濃度をICP-AES装置により測定した。本実験ではICP-AES装置は、SIIナノテクノロジー社製のSPS3500DDを使用した。
 図6に、本実施例として電圧印加後に吸着処理した場合と、比較例として電圧印加せずに吸着した場合の、イオン交換樹脂を分離した後の溶液中のバナジウム、タングステン濃度を示す。混合液におけるバナジウムの濃度は4800ppm、タングステンの濃度は4600ppmとしている。
 本実施例である電圧印加後に吸着処理した液に含まれるバナジウムの濃度は1400ppm、タングステンの濃度は560ppm、比較例でのバナジウムの濃度は450ppm、タングステンの濃度は310ppmであった。よって、比較例における、タングステンの吸着率は91%、バナジウムの吸着率は93%が確認され、バナジウ及びタングステンの吸着率は共に約90%と吸着選択性は見られない。
 これに対し本実施例におけるバナジウムの吸着率が71%、タングステンの吸着率が88%と、バナジウムの吸着率のみが低い値を示し、吸着選択性を有することが確認された。よって、電圧を印加することにより、バナジウムの吸着率を低減することが可能であることが実証された。
 すなわち、目的元素であるバナジウムを含む化学種の極性みを、酸化還元電位調整によりオキソアニオンH からオキソカチオンVOへ変換し、不純物元素であるタングステンを含む化学種の極性はオキソアニオンWO4 2-のまま変換しないことにより、イオン吸着工程での吸着選択性が確認された。
 本実施例では、目的元素Mを、バナジウム(V)、クロム(Cr)、ヒ素(As)、マンガン(Mn)とし、電圧印加によりこれら目的元素の化学種Mが変化した場合の、イオン吸着体に対する吸着選択性の変化をシミュレーションにより計算した。シミュレーションは、MOPAC(Molecular Orbital PACkage,ver.9.03CS)を用いて行なった。
 負イオン交換樹脂のイオン交換に寄与する末端基の構造より、図6に示した構造をモデル化合物として採用し、各イオン吸着体のモデル化合物21として採用し、各イオン吸着前後での生成エンタルピー変化およびエントロピー変化を計算した。
 図7において、Mは、目的元素Mを含む化学種であり、例えば、バナジウムを含む化学種であるオキソアニオンH 、バナジウムを含む化学種であるオキソカチオンVO、クロムを含む化学種であるオキソカチオンCrO、クロムを含む化学種であるオキソアニオンCrO 2-、ヒ素を含む化学種であるオキソアニオンHAsO 、ヒ素を含む化学種であるHAsO、マンガンを含む化学種であるオキソアニオンMnO 2-、マンガンを含む化学種であるオキソカチオンMnOHである。
 計算モデルには遷移金属錯体の計算が可能なPM(Parameterization Model)6を用いた。なお、本反応は水溶液中で起こる反応であることから、モデル化合物21を取り囲むように水を6個配置した状態で構造を最適化した後、エネルギー計算を行なった。図7における下段左側の状態は、イオン吸着前のモデル化合物22を示し、下段右側の状態は、イオン吸着後のモデル化合物23を示している。
 各イオン吸着前後での生成エンタルピー変化ΔHf、エントロピー変化ΔSおよびこれらの数値から算出したギブス自由エネルギーΔGを図8に示す。ギブス自由エネルギーΔGが負の値であれば反応は自発的に進行し、負に大きいほど、イオン交換樹脂との反応が優位である。
 図8に示すギブス自由エネルギーΔGより、バナジウムを含む化学種であるオキソアニオンH 、クロムを含む化学種であるオキソアニオンCrO 2-、ヒ素を含む化学種であるオキソアニオンHAsO 、ヒ素を含む化学種であるHAsO、マンガンを含む化学種であるオキソアニオンMnO 2-は、負イオン交換樹脂に吸着される。
 しかし、バナジウムを含む化学種がオキソアニオンH からオキソカチオンVOへと化学種の極性が変換されると、著しくイオン交換樹脂に対する結合力が低下する。また、同様に、クロムを含む化学種がオキソアニオンCrO 2-からオキソカチオンCrOへと化学種の極性が変換されると、イオン交換樹脂に対する結合力は著しく低下する。マンガンを含む化学種がオキソアニオンMnO 2-からオキソカチオンMnOHへと化学種の極性が変換される場合も同様である。
 また、ヒ素を含む化学種であるオキソアニオンHAsO がヒ素を含む化学種である0価のHAsOへ変換された場合、ギブス自由エネルギーΔGは負の値を示すものの、その値は5%まで低減されていることがわかる。
 これより、目的元素Mを含む化学種の極性が、正負で逆転すると、イオン交換樹脂との反応が自発的に進行せず、イオン交換樹脂へ吸着されない。また、目的元素Mをヒ素とした場合の化学種の変化、HAsO がHAsOへ変換される場合のように、化学種の極性が正負で逆転することなく、負の電荷から0価に変化する場合は、イオン吸着体への吸着性の有無は変化しないが、選択性の強さは大きく変化する。これは、ギブス自由エネルギーΔGが約5%に低減されることによる。
 以上から、目的元素Mを含む化学種の電荷の極性を変化させることにより、イオン吸着体への吸着選択性を大きく変化させることが可能であることが示された。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。
1…pH調整工程,2…酸化還元電位調整工程,3…イオン吸着工程,4…目的元素回収工程,4’…不純物元素回収工程,7,8…注入ポート,11…負極室,12…正極室,13…イオン交換膜,14…メッシュ電極,15…板状電極,16,17…攪拌子,18…スターラ,100…pH調整槽,101…酸化還元電位調整装置,102…イオン交換樹脂塔,104…溶離液タンク,103…目的元素回収装置,105…不純物元素回収槽

Claims (9)

  1.  目的元素を含む溶液の酸化還元電位を、前記目的元素を含む化学種のみの極性を変換し得る電位に調整する第一の工程と、
     前記酸化還元電位調整後の溶液をイオン吸着体に導入し、前記極性が変換された目的元素を含む化学種及び前記溶液中の不純物元素の化学種のうち何れか一方のみを前記イオン吸着体に選択的に吸着させる第二の工程と、
     を備え、前記溶液から目的元素を分離することを特徴とする元素分離方法。
  2.  目的元素を含む溶液の酸化還元電位を、前記溶液に含まれる不純物元素を含む化学種のみの極性を変換し得る電位に調整する第一の工程と、
     前記酸化還元電位調整後の溶液をイオン吸着体に導入し、前記極性が変換された不純物元素を含む化学種及び前記目的元素を含む化学種のうち何れか一方のみを前記イオン吸着体に選択的に吸着させる第二の工程と、
     を備え、前記溶液から目的元素を分離することを特徴とする元素分離方法。
  3.  請求項1または請求項2に記載の元素分離方法において、
     前記第一の工程における前記化学種の極性の変換は、正負の極性の変更、0価から正の電荷への変更または0価から負の電荷への変更であることを特徴とする元素分離方法。
  4.  請求項3に記載の元素分離方法において、
     前記目的元素を含む化学種または前記極性が変換された目的元素を含む化学種が前記イオン吸着体に吸着されているとき、溶離液を通流し前記イオン吸着体に吸着された前記目的元素を含む化学種または前記極性が変換された目的元素を含む化学種を分離し回収する工程を備えたことを特徴とする元素分離方法。
  5.  請求項3に記載の元素分離方法において、
     前記第一の工程の前に、前記目的元素を含む溶液のpHを測定し、測定結果に基づき所定のpHに調整する工程を有することを特徴とする元素分離方法。
  6.  目的元素を含む溶液を導入し、前記目的元素を含む化学種のみの極性を変換するよう前記溶液の酸化還元電位を調整する酸化還元電位調整装置と、
     極性変換後の前記目的元素を含む化学種を含む溶液を導入し、前記極性が変換された目的元素を含む化学種及び前記溶液中の不純物のうち何れか一方のみを選択的に吸着するイオン吸着装置と、
     を備えたことを特徴とする元素分離システム。
  7.  請求項6に記載の元素分離システムにおいて、
     前記目的元素を含む化学種の極性の変換は、正負の極性の変更、0価から正の電荷への変更または0価から負の電荷への変更であることを特徴とする元素分離装置。
  8.  請求項7に記載の元素分離システムにおいて、
     前記イオン吸着装置は、内部に正イオンまたは負イオンを吸着するイオン吸着樹脂が充填されたインオン吸着塔であることを特徴とする元素分離システム。
  9.  請求項7に記載の元素分離システムにおいて、
     前記イオン吸着部に溶離液を通流し、前記イオン吸着部に吸着された前記極性変換後の前記目的元素を含む化学種を分離し回収する目的元素回収部を備えたことを特徴とする元素分離システム。
PCT/JP2013/081387 2013-11-21 2013-11-21 元素の分離方法及び分離システム WO2015075798A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13897770.7A EP3072593A1 (en) 2013-11-21 2013-11-21 Method for separating elements, and separation system
PCT/JP2013/081387 WO2015075798A1 (ja) 2013-11-21 2013-11-21 元素の分離方法及び分離システム
JP2015548921A JPWO2015075798A1 (ja) 2013-11-21 2013-11-21 元素の分離方法及び分離システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/081387 WO2015075798A1 (ja) 2013-11-21 2013-11-21 元素の分離方法及び分離システム

Publications (1)

Publication Number Publication Date
WO2015075798A1 true WO2015075798A1 (ja) 2015-05-28

Family

ID=53179105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081387 WO2015075798A1 (ja) 2013-11-21 2013-11-21 元素の分離方法及び分離システム

Country Status (3)

Country Link
EP (1) EP3072593A1 (ja)
JP (1) JPWO2015075798A1 (ja)
WO (1) WO2015075798A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170275733A1 (en) * 2015-10-26 2017-09-28 Techemet, Llc Method for platinum recovery from materials containing rhenium and platinum metals
JP2018192417A (ja) * 2017-05-17 2018-12-06 株式会社Kri 金属オキソアニオン複合吸着材および吸着方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321223A (ja) * 1986-07-11 1988-01-28 Shinko Kagaku Kogyo Kk クロムとバナジウムを含む廃液よりクロムとバナジウムを分離する方法
JP2000157984A (ja) * 1998-11-24 2000-06-13 Kawasaki Kasei Chem Ltd パラジウムの回収方法およびパラジウムの回収装置
JP2002236195A (ja) 2001-02-07 2002-08-23 Inst Of Research & Innovation ウランの分離回収方法
JP2003063826A (ja) * 2001-08-24 2003-03-05 Kurita Water Ind Ltd クロム酸又は重クロム酸の回収方法
JP2004107780A (ja) * 2002-09-20 2004-04-08 Nippon Steel Corp 金属含有排水中の有価金属の回収方法および利用方法
JP2004131745A (ja) 2002-10-08 2004-04-30 Sumitomo Metal Mining Co Ltd 白金族元素の分離回収方法
JP2004233156A (ja) * 2003-01-29 2004-08-19 Toshiba Corp 廃液の処理方法および装置
JP2011106010A (ja) * 2009-11-20 2011-06-02 Mitsubishi Materials Corp 有機溶媒を用いたインジウムとスズの分離方法等

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150798A (en) * 1976-06-11 1977-12-14 Nakamura Minoru Method of recovering chromic acid from chromium hydroxide sludge
JP2726375B2 (ja) * 1993-08-13 1998-03-11 動力炉・核燃料開発事業団 PuおよびNp含有硝酸溶液からのPuとNpの分離回収方法
JP3849925B2 (ja) * 2000-12-21 2006-11-22 株式会社東芝 化学除染方法
JP2007332006A (ja) * 2006-06-19 2007-12-27 Sharp Corp インジウムおよび/または錫を含有する塩化鉄溶液の再生処理方法および再生処理装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321223A (ja) * 1986-07-11 1988-01-28 Shinko Kagaku Kogyo Kk クロムとバナジウムを含む廃液よりクロムとバナジウムを分離する方法
JP2000157984A (ja) * 1998-11-24 2000-06-13 Kawasaki Kasei Chem Ltd パラジウムの回収方法およびパラジウムの回収装置
JP2002236195A (ja) 2001-02-07 2002-08-23 Inst Of Research & Innovation ウランの分離回収方法
JP2003063826A (ja) * 2001-08-24 2003-03-05 Kurita Water Ind Ltd クロム酸又は重クロム酸の回収方法
JP2004107780A (ja) * 2002-09-20 2004-04-08 Nippon Steel Corp 金属含有排水中の有価金属の回収方法および利用方法
JP2004131745A (ja) 2002-10-08 2004-04-30 Sumitomo Metal Mining Co Ltd 白金族元素の分離回収方法
JP2004233156A (ja) * 2003-01-29 2004-08-19 Toshiba Corp 廃液の処理方法および装置
JP2011106010A (ja) * 2009-11-20 2011-06-02 Mitsubishi Materials Corp 有機溶媒を用いたインジウムとスズの分離方法等

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARCEL POURBAIX: "Atlas of Electrochemical Equilibria in Aqueous Solutions", 1974, NATIONAL ASSOCIATION OF CORROSION ENGINEERS, pages: 234 - 241,275,

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170275733A1 (en) * 2015-10-26 2017-09-28 Techemet, Llc Method for platinum recovery from materials containing rhenium and platinum metals
JP2018192417A (ja) * 2017-05-17 2018-12-06 株式会社Kri 金属オキソアニオン複合吸着材および吸着方法

Also Published As

Publication number Publication date
EP3072593A1 (en) 2016-09-28
JPWO2015075798A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
Zhang et al. Effective, rapid and selective adsorption of radioactive Sr2+ from aqueous solution by a novel metal sulfide adsorbent
Wang et al. Enhanced photoreduction of U (VI) on C3N4 by Cr (VI) and bisphenol A: ESR, XPS, and EXAFS investigation
Qi et al. A two-dimensionally microporous thiostannate with superior Cs+ and Sr 2+ ion-exchange property
Ambashta et al. Membrane purification in radioactive waste management: a short review
Swain et al. Separation and recovery of ruthenium: a review
Li et al. Enhanced iodide removal from water by nano-silver modified anion exchanger
Nishad et al. Nano-titania-crosslinked chitosan composite as a superior sorbent for antimony (III) and (V)
Wu et al. Synergistic adsorption behavior of a silica-based adsorbent toward palladium, molybdenum, and zirconium from simulated high-level liquid waste
Metwally et al. Impact of surface modification of chabazite on the sorption of iodine and molybdenum radioisotopes from liquid phase
JP5922193B2 (ja) 新規吸着剤、その製造方法およびその使用
Al-Attar et al. Purification of nuclear wastes by novel inorganic ion exchangers
Zeng et al. Ultrafast and selective uptake of Eu3+ from aqueous solutions by two layered sulfides
Taylor-Pashow et al. Advances in inorganic and hybrid ion exchangers
Jiang et al. Cesium removal from wastewater: High-efficient and reusable adsorbent K1. 93Ti0. 22Sn3S6. 43
Guo et al. Co-sorption of Sr2+ and SeO42− as the surrogate of radionuclide by alginate-encapsulated graphene oxide-layered double hydroxide beads
Hu et al. Highly selective removal of Technetium-99 using imidazolium-based macroporous anion exchange resins
WO2015075798A1 (ja) 元素の分離方法及び分離システム
Ma et al. The uptake of hazardous metal ions into a high-nuclearity cluster-based compound with structural transformation and proton conduction
JP2014055931A (ja) セシウム吸着材の後処理法
Zeng et al. Ultra-fast 137 Cs sequestration via a layered inorganic indium thioantimonate
US11213799B2 (en) Adsorbent for radioactive antimony, radioactive iodine and radioactive ruthenium, and treatment method of radioactive waste water using the adsorbent
Zhao et al. Exploring Ion-Selective Electrode Materials for Enhanced Capacitive Deionization
Suorsa et al. Anion exchange on hydrous zirconium oxide materials: application for selective iodate removal
Seliman Affinity and removal of radionuclides mixture from low-level liquid waste by synthetic ferrierites
Asmussen et al. Iodine removal from carbonate-containing alkaline liquids using strong base resins, hybrid resins, and silver precipitation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015548921

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013897770

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013897770

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE