WO2015074652A1 - Hydraulischer ventiltrieb eines verbrennungsmotors - Google Patents

Hydraulischer ventiltrieb eines verbrennungsmotors Download PDF

Info

Publication number
WO2015074652A1
WO2015074652A1 PCT/DE2014/200539 DE2014200539W WO2015074652A1 WO 2015074652 A1 WO2015074652 A1 WO 2015074652A1 DE 2014200539 W DE2014200539 W DE 2014200539W WO 2015074652 A1 WO2015074652 A1 WO 2015074652A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
piston
housing
pressure chamber
hydraulic
Prior art date
Application number
PCT/DE2014/200539
Other languages
English (en)
French (fr)
Inventor
Steve Beier
Arno BÄCHSTÄDT
Hendrik THOMANN
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to CN201480063970.4A priority Critical patent/CN105765181B/zh
Priority to EP14793777.5A priority patent/EP3071805B1/de
Priority to US15/035,905 priority patent/US9957856B2/en
Publication of WO2015074652A1 publication Critical patent/WO2015074652A1/de
Priority to US15/933,920 priority patent/US10247061B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/14Tappets; Push rods
    • F01L1/16Silencing impact; Reducing wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/20Adjusting or compensating clearance
    • F01L1/205Adjusting or compensating clearance by means of shims or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • F01L9/11Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column
    • F01L9/12Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem
    • F01L9/14Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem the volume of the chamber being variable, e.g. for varying the lift or the timing of a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • F01L9/11Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column
    • F01L9/12Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem

Definitions

  • the invention relates to a hydraulic valve brake for a hydraulically variable valve train of an internal combustion engine.
  • the hydraulic valve brake comprises a housing having a housing wall and a housing bottom, a piston extending axially in the housing, whose one end side bounds a hydraulic pressure chamber with the housing wall and the housing bottom and whose other end actuates a gas exchange valve, wherein the housing wall in the region of the pressure chamber of a or several overflow openings is interspersed, the opening cross-sections are controlled by a pressure chamber side end limiting the control edge of the piston.
  • the invention also relates to an internal combustion engine with a hydraulic valve train having such a hydraulic valve brake.
  • Hydraulic valve trains which operate according to the lost-motion principle and in which between the drive side, usually the cam of a camshaft, and the output side, ie the gas exchange valve, a so-called hydraulic linkage with variable Ab Kunststoffbarem hydraulic volume, is a hydraulic valve brake that controls the touchdown speed of the closing gas exchange valve independently of the cam position and limits it to preset values that are acoustically and mechanically acceptable.
  • Hydraulic valve trains each with a generic hydraulic valve brake, are known, for example, from US Pat. No. 6,550,433 B2 and from EP 0 507 521 A1.
  • the pressure chamber which decreases with closing gas exchange valve, is relieved of pressure via one or more overflow openings which run laterally in the housing wall and increasingly reduce their opening cross-sections from a pressure chamber-side control edge of the piston entering the housing become. Since the components of the hydraulic valve brake can not be economically produced with arbitrarily high precision, component tolerances remain, which result in different brake characteristics even within a single production lot.
  • the change of charge with gas exchange valves which close at the same operating point with mutually different Hubverierin to different crank angles with respect to the Kolbentot is, but affects the performance and emissions behavior of the internal combustion engine.
  • This object is achieved in that the axial distance of the control edge of the retracted completely in the housing piston is adjusted to the housing bottom by means of a spacer of predetermined thickness.
  • This setting significantly reduces and ideally eliminates the effects of component tolerances that significantly affect the brake characteristics of the valve brake. Because shortly before the placing of the gas exchange valve whose delay curve at constant hydraulic fluid viscosity is highly dependent on the course of coverage of the controlled by the piston control edge opening cross-sections in the housing wall.
  • Valve brakes set in accordance with the invention are suitable not only for valve trains with (automatic) hydraulic valve clearance compensation, but also for valve drives with (manual) mechanical valve clearance compensation, in which case large motors with hydraulically variable valve train are in focus in the latter case.
  • the overlap profile of the piston control edge and opening cross-section (s) merely has an offset around the (uniformly set) valve clearance. Because in this case, the piston and the decisive for the axial distance housing bottom are spaced around the valve clearance when the gas exchange valve closes.
  • the adjustment of the axial distance between the piston control edge and the housing bottom can be done in various ways.
  • an adjustment is provided in discrete thickness graduations of the spacer, wherein the respective thickness is predetermined as a result of a previous test or measurement of the delay course of the unadjusted valve brake and accordingly removed the spacer of a group sorting and paired with the valve brake.
  • the spacer can then be joined either firmly to the housing or fixed to the piston.
  • the spacer causes in the path-time course of the retracting into the valve brake piston, that the cross sections of the overflow openings are covered only at a larger piston travel of the piston control edge.
  • spacer is not necessarily limited to a single part, but may also include a group of two or more parts, which are then summed up as stacks of the predetermined thickness. Due to the variety of possible combinations, the group sorting can be limited to a few individual thicknesses and, in the limiting case, to a single thickness in this case.
  • the spacer may be integrally formed as a non-separate part as a projection of the piston on the pressure chamber side end face or as a projection of the housing on the housing bottom.
  • the axial distance can then be adjusted by machining the projection thickness.
  • Figure 1 is a schematic representation of a hydraulically variable valve drive according to the prior art
  • Figure 2 is a schematic representation of a hydraulic valve train with mechanical valve clearance compensation and inventive valve brake
  • Figure 4 is a schematic diagram for the dimensional predetermination and assignment of a spacer
  • FIG. 5 shows the valve brake according to Figures 2 and 3 in an enlarged view
  • FIG. 6 shows a simplified diagram for the check of the set valve brake
  • FIG. 7 is a longitudinal sectional view of the assembled valve brake in a constructive embodiment; tion;
  • Figure 8 shows the housing according to Figure 7 as a single part in longitudinal section; 9 shows the detail Z according to FIG. 7
  • Figure 1 shows the basic structure of a known hydraulic valve drive for variable-stroke actuation of a valve spring 1 in the closing direction kraftbeaufschlagten gas exchange valve 2 in the cylinder head 3 of an internal combustion engine.
  • the following components are shown:
  • a non-return valve 1 1 opening in the direction of the medium-pressure space, via which the medium-pressure space is connected to the lubricant circuit of the internal combustion engine
  • the variability of the valve lift is generated by the fact that the high-pressure space 8 between the master piston 5 and the slave piston 6 'acts as a so-called hydraulic linkage, the hydraulic volume displaced by the master piston proportional to the stroke of the cam 4, neglecting leaks, depending on the Opening time and the opening duration of the hydraulic valve 7 in a first, the slave piston acting on sub-volume and in a second, in the medium-pressure chamber 9 including piston accumulator 10 and in the low-pressure chamber 12 outflowing partial volume is split.
  • the slave piston 6 ' is equipped with a hydraulic valve brake 14', which reduces the contact speed of the closing gas exchange valve 2 decoupled from the movement of the cam 4 to a mechanically and acoustically acceptable level.
  • the valve brake is a throttle gap, which is formed during the final closing phase of the gas exchange valve by the overlap of a cylindrical projection 15 on the pressure chamber side end face of the slave piston with an overflow 16 which extends concentrically to the slave piston housing wall 17 ' ,
  • Figure 2 shows the slave side of a hydraulically variable valve train of a large engine, the gas exchange valves 2 are actuated via rocker arm 18 with mechanical valve clearance compensation.
  • the highly schematic representation is with respect to the valve train on the hydraulic valve brake 14 with housing 19 and slave piston, hereinafter referred to as piston 6, reduced.
  • the hollow-cylindrical housing with a housing wall 17 and a housing bottom 20 serves to guide the piston traveling axially therein, one end of which with the housing wall and the housing bottom defining a hydraulic pressure chamber 21.
  • the other end of the piston actuates the gas exchange valve 2 by means of the mechanical valve clearance compensation device in the form of a valve clearance adjustment screw 22 in the rocker arm.
  • overflow openings 23 and 24 via which the pressure chamber 21 communicates with the sensor-side hydraulic system (not shown here) run (see FIG. 1).
  • the overflow opening 23 serves with a relatively large opening cross-section as the main flow opening, via which, when the piston 6 moves in and out, the lowest possible volume flow reaches and leaves the pressure chamber.
  • the overflow opening 24 forms with a relatively small opening A cross section of the flow restrictor, over which the pressure chamber in the final closing phase of the gas exchange valve 2 can relieve only under significant delay of the retracting piston.
  • the control of the opening cross-sections via a control edge 25 of the piston, which is formed in the simplified representation by the peripheral edge between the outer surface of the piston and the pressure chamber side end face.
  • the illustration shows the piston 6 in fully retracted in the housing 19 position in which the piston during the valve clearance adjustment on the between see the adjusting screw 22 and the valve-side end face of the piston measured valve clearance L is.
  • the valve clearance is largely or completely shifted to the pressure chamber side end side.
  • the axial distance between the piston control edge 25 and the housing bottom 20 is adjusted according to the invention by means of a spacer 26, which influences the deceleration curve of the retracting into the housing piston so that all valve brakes of the internal combustion engine have substantially the same braking characteristics and that accordingly all gas exchange valves 2 of the internal combustion engine close with about the same stroke course.
  • FIGS. 3a-c show the (still) unadjusted hydraulic valve brake 14 with three different retraction positions of the piston 6 during the basic measurement of the course of movement s (t).
  • the temporal stroke course of the piston acted upon by a defined force is detected until it reaches the housing bottom 20.
  • the measurement result is shown very simplified in Figure 4 based on the curve with thick line width.
  • the upper branch of the curve with a large gradient, ie with a comparatively high closing speed of the gas exchange valve 2 3a corresponds to the piston position in Figure 3a until the pressure chamber 21 can still largely unrestricted over the main flow opening 23 relieve.
  • the subsequent branch of the curve with medium gradient, ie with a comparatively average closing speed corresponds to the piston position in Figure 3b, wherein the piston control edge 25, the main flow opening already completely covered and the pressure relief mainly only via the throttle flow opening 24 takes place.
  • the lower curve branch with a small gradient, ie with low closing speed corresponds to the piston position in Figure 3c, wherein the piston control edge completely covers both the main flow opening and the throttle flow opening and the pressure relief only via leakage gaps and ggfls. Further, not shown here Drosselstromöffnun- conditions in the housing bottom 20 is carried out.
  • the measured curve of a relatively “slow” valve brake is more in line with one of the right reference curves, so that this valve brake is assigned a spacer with a greater thickness than a relatively “fast” valve brake, which more closely matches one of the left reference curves and their course of motion already closer to the default setting.
  • Figure 5 shows the valve brake 14 with the thus sorted and mounted spacer 26, by means of which the axial distance h between the piston control edge 25 and the housing bottom 20 is set offset by the predetermined thickness d with respect to the unconfined valve brake.
  • FIGS. 7 to 9 show various views of an engineered example of a hydraulic valve brake 14 according to the invention, which actuates a gas exchange valve 2 of a large engine with a mechanical valve clearance adjustment by means of a rocker arm 18 in accordance with FIG.
  • the screwed by means of an external thread 27 in the cylinder head 3 of the engine housing 19 of the valve brake comprises a tubular housing wall 17 and a side of the pressure chamber 21 joined housing bottom 20 which is formed by a valve seat 28 with a check valve 29 inserted therein.
  • the axially displaced in the housing and secured for transport purposes by means of a snap ring 30 against complete extension piston 6 is hollow cylindrical with a gas exchange valve side end face forming piston crown 31.
  • the pressure chamber-side end face of the piston is provided with a recess 32 in the form of a countersink, in which a serving as a spacer 26 shim with a predetermined thickness d is fixed by means of a longitudinal compression bandage.
  • a bore 33 passing through the piston crown serves as a vent and - in the case of a leak-prone longitudinal compression bandage - as pressure relief of the piston interior.
  • the housing wall 17 is penetrated in each case by four main flow openings 23 and throttle flow openings 24 in the form of bores via which the pressure space 21 communicates with the sensor-side hydraulic system (not illustrated here), as explained above.
  • the main flow openings extend in a first transverse plane and the significantly smaller flow restrictor openings extend in a second transverse plane, which is offset from the first transverse plane in the retraction direction of the piston 6.
  • the valve receptacle 28 comprises an outer annular collar 34 which is inserted in a pressure-reducing means 35 of the housing wall 17 and clamped by means of the screw 27 against a shoulder 36 in the cylinder head 3, and a relative to the annular collar in the direction of the recess 32 projecting hollow cylinder portion 37.
  • the non-return valve 29 comprises a valve carrier 38 likewise inserted in the valve receptacle 28 and having a valve ball 40 spring-loaded therein against a valve seat 39. This opens in the direction of the pressure chamber 21 and controls a further overflow opening 41, via which the pressure chamber also communicates the encoder-side hydraulic system communicates to initialize the extension of the piston 6 when opening the gas exchange valve 2.
  • shim 26 of the hydraulic medium is transferred into the pressure chamber initially via beads 42 on the annular end face 43 of the hollow cylinder portion.
  • the opening cross-sections of the main and throttle flow openings 23 and 24 are controlled by the control edge 25 of the piston 6 passing over it and are all in the illustrated, completely retracted piston position as well as in the piston position extended by the set valve clearance L according to FIG locked.
  • the annular collar 34 is penetrated by a permanently open, further throttle flow opening 44 whose hydraulic resistance ultimately determines the touchdown speed of the gas exchange valve 2.
  • the unadjusted valve brake 14 is provided with a dummy shim (not shown) of known thickness, so that in the above-described basic measurement (see Figures 3a-c) of the piston with the dummy shim on the ring front side and not on the Ring collar of the valve seat touches down.
  • the dummy shim to be disassembled according to the basic measurement may, if necessary, be provided with a circumferential O-ring which, on the one hand, holds the dummy shim easily removable in the recess 32 and, on the other hand, seals the pressure chamber 21 with respect to the bleed bore 33.
  • the axial distance h is then adjusted by the thickness d of the adjusting disk 26 such that all hydraulic valve brakes 14 of the internal combustion engine have substantially the same braking characteristics and accordingly all the gas exchange valves 2 are largely uniform within a very small one Close the crank angle range.
  • shims 26 are provided with five different thicknesses in each case 0.1 mm gradation in the embodiment shown here.
  • the spacer 26 is pressed against its outer casing 45 in the inner casing 46 of the recess 32 of the piston 6.
  • alternative fasteners may be provided.
  • the spacer may be provided with a central bore, which is pressed on the one hand on a pin-like projection of the then solid piston or through the other a pin or screw is guided, which adds the spacer with the piston.
  • Ring face of the valve seat further throttle flow opening Outer jacket of the spacer Inner jacket of the recess

Abstract

Vorgeschlagen ist eine hydraulische Ventilbremse (14) für einen hydraulischen Ventiltrieb eines Verbrennungsmotors. Die Ventilbremse umfasst ein Gehäuse (19) mit einer Gehäusewand (17) und einem Gehäuseboden (20), einen axial im Gehäuse verfahrenden Kolben (6), dessen eine Stirnseite mit der Gehäusewand und dem Gehäuseboden einen hydraulischen Druckraum (21) begrenzt und dessen andere Stirnseite ein Gaswechselventil (2) betätigt. Die Gehäusewand ist im Bereich des Druckraums (21) von einer oder mehreren Überströmöffnungen (24, 25) durchsetzt, deren Öffnungsquerschnitte von einer die druckraumseitige Stirnseite begrenzenden Steuerkante (25) des Kolbens gesteuert werden. Dabei soll der Axialabstand (h) der Steuerkante des vollständig im Gehäuse eingefahrenen Kolbens zum Gehäuseboden mittels eines Distanzstücks (26) vorbestimmter Dicke (d) eingestellt sein.

Description

Hydraulischer Ventiltrieb eines Verbrennungsmotors
Die Erfindung betrifft eine hydraulische Ventilbremse für einen hydraulisch variablen Ventiltrieb eines Verbrennungsmotors. Die hydraulische Ventilbremse umfasst ein Gehäuse mit einer Gehäusewand und einem Gehäuseboden, einen axial im Gehäuse verfahrenden Kolben, dessen eine Stirnseite mit der Gehäusewand und dem Gehäuseboden einen hydraulischen Druckraum begrenzt und dessen andere Stirnseite ein Gaswechselventil betätigt, wobei die Gehäusewand im Bereich des Druckraums von einer oder mehreren Überströmöffnungen durchsetzt ist, deren Öffnungsquerschnitte von einer die druckraumseitige Stirnseite begrenzenden Steuerkante des Kolbens gesteuert werden.
Die Erfindung betrifft außerdem einen Verbrennungsmotor mit einem hydraulischen Ventiltrieb, der eine derartige hydraulische Ventilbremse aufweist.
Hintergrund der Erfindung
Ein wesentlicher Bestandteil von hydraulisch variablen Ventiltrieben, die nach dem Lost-Motion-Prinzip arbeiten und bei denen zwischen der Antriebseite, in der Regel dem Nocken einer Nockenwelle, und der Abtriebseite, d.h. dem Gaswechselventil, ein sogenanntes hydraulisches Gestänge mit variabel absteuerbarem Hydraulikvolumen verläuft, ist eine hydraulische Ventilbremse, die die Aufsetzgeschwindigkeit des schließenden Gaswechselventils unabhängig von der Nockenstellung kontrolliert und auf vorgegebene Werte beschränkt, die akustisch und mechanisch akzeptabel sind. Hydraulische Ventiltriebe mit jeweils gattungsgemäßer hydraulischer Ventilbremse sind beispielsweise aus der US 6,550,433 B2 und aus der EP 0 507 521 A1 bekannt. Bei einer derartigen Ventilbremse wird der sich mit schließendem Gaswechselventil verkleinernde Druckraum über eine oder mehrere Überströmöffnungen druckentlastet, die seitlich des Kolbens in der Ge- häusewand verlaufen und deren Öffnungsquerschnitte von einer druckraumseiti- gen Steuerkante des in das Gehäuse einfahrenden Kolbens zunehmend reduziert und gegebenenfalls vollständig verschlossen werden. Da die Bauteile der hydraulischen Ventilbremse wirtschaftlich nicht mit beliebig hoher Präzision herstellbar sind, verbleiben Bauteiltoleranzen, die unterschiedliche Bremscharakteristiken sogar innerhalb eines einzigen Fertigungsloses zur Folge haben. Der Ladungswechsel mit Gaswechselventilen, die in demselben Betriebspunkt mit voneinander verschiedenen Hubverläufen zu unterschiedlichen Kurbelwinkeln bezüglich der Kolbentotpunkte schließen, beeinträchtigt jedoch das Leistungs- und Emissionsverhalten des Verbrennungsmotors.
Aufgabe der Erfindung
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, mit einfachen konstruktiven Mitteln Vorraussetzungen für ein verbessertes Betriebsverhalten eines Verbrennungsmotors mit hydraulischem Ventiltrieb und einer hydraulischen Ventilbremse der eingangs genannten Art zu schaffen.
Zusammenfassung der Erfindung
Diese Aufgabe wird dadurch gelöst, dass der Axialabstand der Steuerkante des vollständig im Gehäuse eingefahrenen Kolbens zum Gehäuseboden mittels eines Distanzstücks vorbestimmter Dicke eingestellt ist. Durch diese Einstellung werden die Auswirkungen der Bauteiltoleranzen, die die Bremscharakteristik der Ventilbremse maßgeblich beeinflussen, deutlich reduziert und idealerweise eliminiert. Denn kurz vor dem Aufsetzen des Gaswechselventils ist dessen Verzögerungsverlauf bei konstanter Hydraulikmittelviskosität in hohem Maße vom Verlauf der Überdeckung der durch die Kolbensteuerkante gesteuerten Öffnungsquerschnitte in der Gehäusewand abhängig. Der in einem Referenzpunkt, d.h. bei vollständig im Gehäuse eingefahrenem Kolben eingestellte Axialabstand zwischen der Kolbensteuerkante und dem Gehäuseboden (oder einem relativ zum Gehäuseboden festen Gehäuseteil) bewirkt nun eine der vorbestimmten Dicke des Distanzstücks entsprechende Verlagerung des Überdeckungsverlaufs dahingehend, dass die hydraulischen Ventilbremsen sämtlich oder in Chargen den gleichen oder einen ausreichend ähnlichen Verzögerungsverlauf aufweisen. Erfindungsgemäß eingestellte Ventilbremsen eignen sich nicht nur für Ventiltriebe mit (automatisch) hydraulischem Ventilspielausgleich, sondern auch für Ventiltriebe mit (manuell) mechanischem Ventilspielausgleich, wobei in letzterem Fall insbesondere Großmotore mit hydraulisch variablem Ventiltrieb im Fokus stehen. Bei der mechanischen Ventilspieleinstellung hat der Überdeckungsverlauf von Kolbensteuerkante und Öffnungsquerschnitt(en) lediglich einen Offset um das (gleichmäßig eingestellte) Ventilspiel. Denn in diesem Fall sind der Kolben und der für den Axialabstand maßgebliche Gehäuseboden um das Ventilspiel beabstandet, wenn das Gaswechselventil schließt.
Die Einstellung des Axialabstands zwischen der Kolbensteuerkante und dem Gehäuseboden kann auf diverse Arten erfolgen. Insbesondere ist eine Einstellung in diskreten Dickenabstufungen des Distanzstücks vorgesehen, wobei die jeweilige Dicke als Ergebnis einer vorangegangenen Prüfung oder Messung des Verzöge- rungsverlaufs der uneingestellten Ventilbremse vorbestimmt wird und dementsprechend das Distanzstück einer Gruppensortierung entnommen und mit der Ventilbremse gepaart wird. Das Distanzstück kann dann entweder fest mit dem Gehäuse oder fest mit dem Kolben gefügt werden. Das Distanzstück bewirkt im Weg-Zeit-Verlauf des in die Ventilbremse einfahrenden Kolbens, dass die Querschnitte der Überströmöffnungen erst bei größerem Kolbenweg von der Kolbensteuerkante überdeckt werden. Hierdurch wird die Ventilbremse sozusagen „schneller". Der Begriff„das Distanzstück" ist nicht notwendigerweise auf ein einziges Teil beschränkt, sondern kann auch eine Gruppe von zwei oder mehr Teilen umfassen, die dann als Stapel mit der vorbestimmten Dicke aufsummiert sind. Aufgrund der vielfältigen Kombinationsmöglichkeiten kann in diesem Fall die Gruppensortierung auf wenige Einzeldicken und im Grenzfall auf eine einzige Dicke beschränkt werden.
In einer alternativen Ausführung kann das Distanzstück auch als nicht-separates Teil einstückig als Vorsprung des Kolbens an dessen druckraumseitiger Stirnseite oder als Vorsprung des Gehäuses an dessen Gehäuseboden ausgebildet sein. Der Axialabstand kann dann durch Bearbeitung der Vorsprungdicke eingestellt werden. Gegenüber dem vorgenannten Ausführungsbeispiel mit gefügtem Dis- tanzstück bewirkt eine Verkürzung des Vorsprungs um die vorbestimmte Dicke, dass im Weg-Zeit-Verlauf die Öffnungsquerschnitte bereits bei kleinerem Kolbenweg von der Kolbensteuerkante überdeckt werden und dass dementsprechend die Ventilbremse sozusagen„langsamer" wird.
Kurze Beschreibung der Zeichnungen
Weitere Merkmale der Erfindung ergeben sich aus der nachfolgenden Beschreibung und aus den Zeichnungen, in denen die Erfindung grundsätzlich und an- hand einer beispielhaft ausgeführten Ventilbremse erläutert ist. Soweit nicht anders erwähnt, sind dabei gleiche oder funktionsgleiche Merkmale oder Bauteile mit gleichen Bezugszahlen versehen. Es zeigen:
Figur 1 eine schematische Darstellung eines hydraulisch variablen Ventil- triebs gemäß Stand der Technik;
Figur 2 eine schematische Darstellung eines hydraulischen Ventiltriebs mit mechanischem Ventilspielausgleich und erfindungsgemäßer Ventilbremse;
Figuren 3 die uneingestellte Ventilbremse gemäß Figur 2 in verschiedenen
Kolbenpositionen bei der Basisvermessung der Bremscharakteristik;
Figur 4 eine Prinzipschema für die maßliche Vorbestimmung und Zuordnung eines Distanzstücks;
Figur 5 die Ventilbremse gemäß den Figuren 2 und 3 in vergrößerter Darstellung; Figur 6 ein vereinfachtes Schema für die Prüfung der eingestellten Ventilbremse;
Figur 7 im Längsschnitt die montierte Ventilbremse in konstruktiver Ausfüh- rung;
Figur 8 das Gehäuse gemäß Figur 7 als Einzelteil im Längsschnitt; Figur 9 das Detail Z gemäß Figur 7
Ausführliche Beschreibung der Zeichnungen
Figur 1 zeigt den prinzipiellen Aufbau eines bekannten hydraulischen Ventiltriebs zur hubvariablen Betätigung eines von einer Ventilfeder 1 in Schließrichtung kraftbeaufschlagten Gaswechselventils 2 im Zylinderkopf 3 eines Verbrennungsmotors. Dargestellt sind folgende Komponenten:
- ein vom Nocken 4 einer Nockenwelle angetriebener Geberkolben 5,
- ein das Gaswechselventil betätigender Nehmerkolben 6',
- ein elektromagnetisches 2-2-Wege-Hydraulikventil 7,
- ein vom Geberkolben und vom Nehmerkolben begrenzter Hochdruckraum 8, aus dem bei geöffnetem Hydraulikventil Hydraulikmittel in einen Mitteldruckraum 9 abströmen kann,
- ein an den Mitteldruckraum angeschlossener Kolbendruckspeicher 10,
- ein in Richtung des Mitteldruckraums öffnendes Rückschlagventil 1 1 , über das der Mitteldruckraum an den Schmiermittelkreislauf des Verbrennungsmotors angeschlossen ist,
- und ein als Hydraulikmittelreservoir dienender Niederdruckraum 12, der über eine Drossel 13 mit dem Mitteldruckraum verbunden ist und dessen Inhalt beim Startvorgang des Verbrennungsmotors sofort verfügbar ist.
Die Variabilität des Ventilhubs wird dadurch erzeugt, dass der Hochdruckraum 8 zwischen dem Geberkolben 5 und dem Nehmerkolben 6' als sogenanntes hydraulisches Gestänge wirkt, wobei das - bei Vernachlässigung von Leckagen - propor- tional zum Hub des Nockens 4 vom Geberkolben verdrängte Hydraulikvolumen in Abhängigkeit des Öffnungszeitpunkts und der Öffnungsdauer des Hydraulikventils 7 in ein erstes, den Nehmerkolben beaufschlagendes Teilvolumen und in ein zweites, in den Mitteldruckraum 9 einschließlich Kolbendruckspeicher 10 und in den Niederdruckraum 12 abströmendes Teilvolumen aufgesplittet wird. Durch die so entkoppelte Bewegung des Gaswechselventils 2 von der Bewegung des Nockens sind die Hubübertragung des Geberkolbens auf den Nehmerkolben und mithin nicht nur die Steuerzeiten, sondern auch die Hubhöhe des Gaswechsel- ventils innerhalb der Erhebung des Nockens vollvariabel einstellbar.
Der Nehmerkolben 6' ist mir einer hydraulischen Ventilbremse 14' ausgestattet, die die von der Bewegung des Nockens 4 entkoppelte Aufsetzgeschwindigkeit des schließenden Gaswechselventils 2 auf ein mechanisch und akustisch akzep- tables Niveau reduziert. In der dargestellten Prinzipausführung ist die Ventilbremse ein Drosselspalt, der während der finalen Schließphase des Gaswechselventils durch die Überdeckung eines zylindrischen Vorsprungs 15 an der druckraumseiti- gen Stirnseite des Nehmerkolbens mit einer Überströmöffnung 16 gebildet wird, die konzentrisch zu der den Nehmerkolben lagernden Gehäusewand 17' verläuft.
Figur 2 zeigt die Nehmerseite eines hydraulisch variablen Ventiltriebs eines Großmotors, dessen Gaswechselventile 2 über Kipphebel 18 mit mechanischem Ventilspielausgleich betätigt werden. Die stark schematisierte Darstellung ist bezüglich des Ventiltriebs auf die hydraulische Ventilbremse 14 mit Gehäuse 19 und Nehmerkolben, nachfolgend kurz als Kolben 6 bezeichnet, reduziert. Das mit einer Gehäusewand 17 und einem Gehäuseboden 20 hohlzylindrische Gehäuse dient zur Führung des darin axial verfahrenden Kolbens, dessen eine Stirnseite mit der Gehäusewand und dem Gehäuseboden einen hydraulischen Druckraum 21 begrenzt. Die andere Stirnseite des Kolbens betätigt das Gaswechselventil 2 mittels der mechanischen Ventilspielausgleichsvorrichtung in Form einer Ventilspieleinstellschraube 22 im Kipphebel.
In der Gehäusewand 17 verlaufen Überströmöffnungen 23 und 24, über die der Druckraum 21 mit dem hier nicht dargestellten geberseitigen Hydrauliksystem kommuniziert (siehe Figur 1 ). Die Überströmöffnung 23 dient mit einem relativ großen Öffnungsquerschnitt als Hauptstromöffnung, über die bei aus- und einfahrendem Kolben 6 ein möglichst drosselarmer Volumenstrom in den bzw. aus dem Druckraum gelangt. Die Überströmöffnung 24 bildet mit einem relativ kleinen Öff- nungsquerschnitt eine Drosselstromoffnung, über die sich der Druckraum in der finalen Schließphase des Gaswechselventils 2 nur unter signifikanter Verzögerung des einfahrenden Kolbens entlasten kann. Die Steuerung der Öffnungsquerschnitte erfolgt über eine Steuerkante 25 des Kolbens, die in der vereinfachten Darstellung durch die Umlaufkante zwischen dem Außenmantel des Kolbens und dessen druckraumseitiger Stirnseite gebildet ist.
Die Darstellung zeigt den Kolben 6 in vollständig im Gehäuse 19 eingefahrener Position, in der sich der Kolben während der Ventilspieleinstellung auf das zwi- sehen der Einstellschraube 22 und der ventilseitigen Stirnseite des Kolbens gemessene Ventilspiel L befindet. Im Betriebszustand des Verbrennungsmotors hingegen ist das Ventilspiel größtenteils oder vollständig zur druckraumseitigen Stirnseite hin verlagert. Der Axialabstand zwischen der Kolbensteuerkante 25 und dem Gehäuseboden 20 ist erfindungsgemäß mittels eines Distanzstücks 26 ein- gestellt, das den Verzögerungsverlauf des in das Gehäuse einfahrenden Kolbens so beeinflusst, dass sämtliche Ventilbremsen des Verbrennungsmotors im wesentlichen dieselbe Bremscharakteristik aufweisen und dass dementsprechend sämtliche Gaswechselventile 2 des Verbrennungsmotors mit etwa dem gleichen Hubverlauf schließen.
Die für den einzustellenden Axialabstand h erforderliche Bestimmung der Distanzstückdicke d erfolgt wie nachfolgend anhand der schematischen Figuren 3 bis 6 erläutert. Die Figuren 3a-c zeigen die (noch) uneingestellte hydraulische Ventilbremse 14 mit drei unterschiedlichen Einfahrpositionen des Kolbens 6 während der Basisvermessung des Bewegungsverlaufs s(t). Bei dieser unter Öl erfolgenden Messung wird der zeitliche Hubverlauf des mit einer definierten Kraft beaufschlagten Kolbens bis zum Erreichen des Gehäusebodens 20 erfasst. Die Messung beginnt beim Hub s=m und endet bei s=0, wenn der Kolben auf dem Gehäuseboden aufsetzt.
Das Messergebnis ist in Figur 4 anhand der Kurve mit dicker Strichstärke sehr vereinfacht dargestellt. Der obere Zweig der Kurve mit großem Gradienten, d.h. mit vergleichsweise hoher Schließgeschwindigkeit des Gaswechselventils 2 kor- respondiert mit der Kolbenstellung in Figur 3a soweit, bis sich der Druckraum 21 noch weitgehend ungedrosselt über die Hauptstromöffnung 23 entlasten kann. Der nachfolgende Zweig der Kurve mit mittlerem Gradienten, d.h. mit vergleichsweise mittlerer Schließgeschwindigkeit korrespondiert mit der Kolbenstellung in Figur 3b, wobei die Kolbensteuerkante 25 die Hauptstromöffnung bereits vollständig überdeckt und die Druckentlastung hauptsächlich nur noch über die Drossel stromöffnung 24 erfolgt. Der untere Kurvenzweig mit kleinem Gradienten, d.h. mit niedriger Schließgeschwindigkeit korrespondiert mit der Kolbenstellung in Figur 3c, wobei die Kolbensteuerkante sowohl die Hauptstromöffnung als auch die Drosselstromöffnung vollständig überdeckt und die Druckentlastung nur noch über Leckspalte und ggfls. weitere, hier nicht eingezeichnete Drosselstromöffnun- gen im Gehäuseboden 20 erfolgt.
Die Vorbestimmung der Distanzstückdicke d, die in der schematischen Darstel- lung gemäß Figur 5 mit dem Axialabstand h identisch ist, erfolgt nun mittels der in Figur 4 mit dünner Strichstärke eingezeichneten Referenzkurven. Diese repräsentieren unterschiedlich „schnelle" Ventilbremsen, die in der Figur von links nach rechts für den Messweg s=m zunehmend mehr Zeit benötigen und in dieser Richtung folglich„langsamer" werden. Jeder Referenzkurve ist ein Distanzstück 26 mit individueller Dicke d zugeordnet, wobei die Referenzkurven von links nach rechts zunehmenden Dicken entsprechen. Diejenige Referenzkurve mit der größten Übereinstimmung mit dem zuvor gemessenen Bewegungsverlauf der Ventilbremse 14 (Kurve mit dicker Strichstärke) bestimmt die individuelle Dicke bei dieser Ventilbremse und somit die Auswahl eines damit zu paarenden Distanzstücks mit dieser Dicke aus einer Gruppensortierung. Dabei stimmt die Messkurve einer relativ „langsamen" Ventilbremse eher mit einer der rechten Referenzkurven überein, so dass dieser Ventilbremse ein Distanzstück mit einer größeren Dicke zugeordnet wird als einer relativ„schnellen" Ventilbremse, die eher mit einer der linken Referenzkurven übereinstimmt und deren Bewegungsverlauf bereits näher an der Solleinstellung liegt.
Figur 5 zeigt die Ventilbremse 14 mit dem so zusortierten und montierten Distanzstück 26, mittels dem der Axialabstand h zwischen der Kolbensteuerkante 25 und dem Gehäuseboden 20 um die vorbestimmte Dicke d gegenüber der uneingestellten Ventilbremse versetzt eingestellt ist. In einer erneuten Weg-Zeit-Messung kann bei unverändertem Messweg s=m überprüft werden, ob gemäß Figur 6 die Einstellung der Bremscharakteristik (Kurve mit dicker Strichstärke) innerhalb ei- nes Soll-Bewegungsverlaufs liegt, wie er durch eine„langsame" Grenzkurve (Kurve mit dünner Strichstärke rechts) und eine „schnelle" Grenzkurve (Kurve mit dünner Strichstärke links) vorgegeben ist.
Die Figuren 7 bis 9 zeigen verschiedene Ansichten eines auskonstruierten Bei- spiels einer erfindungsgemäßen hydraulischen Ventilbremse 14, die entsprechend Figur 2 mittels eines Kipphebels 18 ein Gaswechselventil 2 eines Großmotors mit mechanischer Ventilspieleinstellung betätigt. Das mittels eines Außengewindes 27 im Zylinderkopf 3 des Verbrennungsmotors eingeschraubte Gehäuse 19 der Ventilbremse umfasst eine rohrförmige Gehäusewand 17 und einen damit seitens des Druckraums 21 gefügten Gehäuseboden 20, der durch eine Ventilaufnahme 28 mit einem darin eingesetzten Rückschlagventil 29 gebildet ist. Der axial im Gehäuse verfahrende und zu Transportzwecken mittels eines Sprengrings 30 gegen vollständiges Ausfahren gesicherte Kolben 6 ist mit einem die gaswechselventilseitige Stirnseite bildenden Kolbenboden 31 hohlzylindrisch. Die druckraumseitige Stirnseite des Kolbens ist mit einer Ausnehmung 32 in Form einer Ansenkung versehen, in der eine als Distanzstück 26 dienende Einstellscheibe mit vorbestimmter Dicke d mittels eines Längspressverbands befestigt ist. Eine den Kolbenboden durchsetzende Bohrung 33 dient als Entlüftung und - im Falle eines leckagebehafteten Längspressverbands - als Druckentlastung des Kolbeninneren.
Die Gehäusewand 17 ist von jeweils vier Hauptstromöffnungen 23 und Drosselstromöffnungen 24 in Form von Bohrungen durchsetzt, über die der Druckraum 21 - wie oben erläutert - mit dem hier nicht dargestellten geberseitigen Hydrauliksys- tem kommuniziert. Die Hauptstromöffnungen verlaufen in einer ersten Querebene und die deutlich kleineren Drosselstromöffnungen verlaufen in einer zweiten Querebene, die zur ersten Querebene in Einfahrrichtung des Kolbens 6 versetzt ist. Die Ventilaufnahme 28 umfasst einen äußeren Ringkragen 34, der in einer An- senkung 35 der Gehäusewand 17 druckmitteldicht eingesetzt und mittels der Ver- schraubung 27 gegen eine Schulter 36 im Zylinderkopf 3 verspannt ist, und einen gegenüber dem Ringkragen in Richtung der Ausnehmung 32 vorspringenden Hohlzylinderabschnitt 37. Das Rückschlagventil 29 umfasst einen ebenfalls druckmitteldicht in der Ventilaufnahme 28 eingesetzten Ventilträger 38 und eine darin gegen einen Ventilsitz 39 federbelastet aufgenommene Ventilkugel 40. Diese öffnet in Richtung des Druckraums 21 und steuert eine weitere Überströmöff- nung 41 , über die der Druckraum ebenfalls mit dem geberseitigen Hydrauliksystem kommuniziert, um das Ausfahren des Kolbens 6 beim Öffnen des Gaswechselventils 2 zu initialisieren. Bei vollständig auf der Ventilaufnahme aufliegender Einstellscheibe 26 erfolgt der Hydraulikmittelübertritt in den Druckraum initial über Sicken 42 auf der Ringstirnseite 43 des Hohlzylinderabschnitts.
Die Öffnungsquerschnitte der Haupt- und Drosselstromöffnungen 23 bzw. 24 werden von der Steuerkante 25 des darüber hinweg verfahrenden Kolbens 6 gesteuert und sind sowohl in der dargestellten, vollständig eingefahrenen Kolbenposition als auch in der um das eingestellte Ventilspiel L gemäß Figur 2 ausgefah- renen Kolbenposition sämtlich verschlossen. Um die finale Einfahrbewegung des Kolbens nicht zu stark zu verzögern, ist der Ringkragen 34 von einer permanent offenen, weiteren Drosselstromöffnung 44 durchsetzt, deren hydraulischer Widerstand letztendlich die Aufsetzgeschwindigkeit des Gaswechselventils 2 bestimmt. Da bei vollständig im Gehäuse 19 eingefahrenem Kolben 6 die Einstellscheibe 26 auf der Ringstirnseite 43 aufliegt, ist in diesem Fall der für den eingestellten Axialabstand h zwischen der Steuerkante 25 des vollständig im Gehäuse 19 eingefahrenen Kolbens 6 und dem Gehäuseboden 20 maßgebliche Bezug nicht der Ringkragen 34, sondern die Ringstirnseite, die wie der Ringkragen fester Teil der Ventilaufnahme 28 ist. Dementsprechend wird die uneingestellte Ventilbremse 14 mit einer - nicht dargestellten - Dummy-Einstellscheibe bekannter Dicke versehen, so dass bei der oben erläuterten Basisvermessung (siehe Figuren 3a-c) der Kolben mit der Dummy-Einstellscheibe auf der Ringstirnseite und nicht auf dem Ringkragen der Ventilaufnahme aufsetzt. Die nach der Basisvermessung zu demontierende Dummy-Einstellscheibe kann erforderlichenfalls mit einem umfänglichen O-Ring versehen sein, der einerseits die Dummy-Einstellscheibe leicht demontierbar in der Ausnehmung 32 haltert und andererseits den Druckraum 21 gegenüber der Entlüftungsbohrung 33 abdichtet.
In Analogie zu den Figuren 3 bis 6 wird anschließend der Axialabstand h durch die Dicke d der Einstellscheibe 26 so eingestellt, dass sämtliche hydraulische Ventilbremsen 14 des Verbrennungsmotors im wesentlichen die gleiche Brems- Charakteristik besitzen und dass dementsprechend sämtliche Gaswechselventile 2 weitestgehend gleichmäßig innerhalb eines sehr kleinen Kurbelwinkelbereichs schließen. Anders als in Figur 4 mit acht Referenzkurven sind in dem hier dargestellten Ausführungsbeispiel Einstellscheiben 26 mit fünf verschiedenen Dicken in jeweils 0,1 mm Abstufung vorgesehen.
In den Figuren 7 und 9 ist das Distanzstück 26 an dessen Außenmantel 45 im Innenmantel 46 der Ausnehmung 32 des Kolbens 6 eingepresst. Um das Risiko einer damit einhergehenden, unzulässigen Aufdehnung des in der Gehäusewand 17 eng geführten Kolbens 6 zu vermeiden, können (nicht dargestellte) Alternativ- befestigungen vorgesehen sein. Beispielsweise kann das Distanzstück mit einer zentralen Bohrung versehen sein, die zum einen auf einem zapfenartigen Vorsprung des dann massiven Kolbens aufgepresst ist oder durch die zum anderen ein Stift oder eine Schraube geführt ist, der bzw. die das Distanzstück mit dem Kolben fügt.
Liste der Bezugszahlen
1 Ventilfeder
2 Gaswechselventil
3 Zylinderkopf
4 Nocken
5 Geberkolben
6 Nehmerkolben / Kolben 7 Hydraulikventil
8 Hochdruckraum
9 Mitteldruckraum
10 Kolbendruckspeicher
1 1 Rückschlagventil
12 Niederdruckraum
13 Drossel
14 hydraulische Ventilbremse
15 zylindrischer Vorsprung
16 Überströmöffnung
17 Gehäusewand
18 Kipphebel
19 Gehäuse
20 Gehäuseboden
21 Druckraum
22 Ventilspieleinstellschraube / mechanische Ventilspieleinstellvorrichtung
23 Überströmöffnung / Hauptstromöffnung
24 Überströmöffnung / Drosselstromöffnung
25 Kolbensteuerkante
26 Distanzstück / Einstellscheibe
27 Außengewinde / Verschraubung
28 Ventilaufnahme
29 Rückschlagventil
30 Sprengring
31 Kolbenboden
32 Ausnehmung im Kolben
33 Entlüftungsbohrung
34 Ringkragen
35 Ansenkung in Gehäusewand
36 Schulter im Zylinderkopf
37 Hohlzylinderabschnitt
38 Ventilträger
39 Ventilsitz Ventilkugel
weitere Überströmöffnung
Sicke auf Ventilaufnahnne
Ringstirnseite der Ventilaufnahnne weitere Drosselstromöffnung Außenmantel des Distanzstücks Innenmantel der Ausnehmung

Claims

Patentansprüche
Hydraulische Ventilbremse (14) für einen hydraulisch variablen Ventiltrieb eines Verbrennungsmotors, umfassend ein Gehäuse (19) mit einer Gehäusewand (17) und einem Gehäuseboden (20), einen axial im Gehäuse (19) verfahrenden Kolben (6), dessen eine Stirnseite mit der Gehäusewand (17) und dem Gehäuseboden (20) einen hydraulischen Druckraum (21 ) begrenzt und dessen andere Stirnseite ein Gaswechselventil (2) betätigt, wobei die Gehäusewand (17) im Bereich des Druckraums (21 ) von einer oder mehreren Überströmöffnungen (23, 24) durchsetzt ist, deren Öffnungsquerschnitte von einer die druckraumseitige Stirnseite begrenzenden Steuerkante (25) des Kolbens (6) gesteuert werden, dadurch gekennzeichnet, dass der Axialabstand (h) der Steuerkante (25) des vollständig im Gehäuse (19) eingefahrenen Kolbens (6) zum Gehäuseboden (20) mittels eines Distanzstücks (26) vorbestimmter Dicke (d) eingestellt ist.
Hydraulische Ventilbremse nach Anspruch 1 , dadurch gekennzeichnet, dass der Kolben (6) an der druckraumseitigen Stirnseite mit einer hohlzylindrischen Ausnehmung (32) versehen ist und dass das Distanzstück (26) eine darin befestigte Einstellscheibe ist, mittels deren Scheibendicke (d) der Axialabstand (h) eingestellt ist.
Hydraulische Ventilbremse nach Anspruch 2, dadurch gekennzeichnet, dass die Einstellscheibe (26) in der Ausnehmung (32) des Kolbens (6) eingepresst ist.
Hydraulische Ventilbremse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Gehäuseboden (20) durch eine in der Gehäusewand (17) druckmitteldicht eingesetzte Ventilaufnahme (28) mit einer weiteren Überströmöffnung (41 ) und durch ein zum Druckraum (21 ) hin öffnendes Rückschlagventil (29) gebildet ist, das die weitere Überströmöffnung (41 ) steuert. Hydraulische Ventilbremse nach Anspruch 4, soweit auf Anspruch 2 rückbezogen, dadurch gekennzeichnet, dass die Ventilaufnahme (28) mit einem Ringkragen (34) in einer Ansenkung (35) der Gehäusewand (17) eingesetzt ist und einen gegenüber dem Ringkragen (34) in Richtung der Ausnehmung (32) des Kolbens (6) vorspringenden Hohlzylinderabschnitt (37) aufweist, wobei der Axialabstand (h) der Kolbensteuerkante (25) zur Ringstirnseite (43) des Hohlzylinderabschnitts (37) eingestellt ist.
Verbrennungsmotor umfassend einen hydraulischen Ventiltrieb, dadurch gekennzeichnet, dass der Ventiltrieb mit einer hydraulischen Ventilbremse (14) nach einem der vorgenannten Ansprüche und mit einer mechanischen Einsteilvorrichtung (22) des Ventilspiels (L) zwischen der ventilseitigen Stirnfläche des Kolbens (6) und dem Gaswechselventil (2) versehen ist.
PCT/DE2014/200539 2013-11-22 2014-10-08 Hydraulischer ventiltrieb eines verbrennungsmotors WO2015074652A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480063970.4A CN105765181B (zh) 2013-11-22 2014-10-08 内燃机的液压的气门驱动机构
EP14793777.5A EP3071805B1 (de) 2013-11-22 2014-10-08 Hydraulischer ventiltrieb eines verbrennungsmotors
US15/035,905 US9957856B2 (en) 2013-11-22 2014-10-08 Hydraulic valve drive of an internal combustion engine
US15/933,920 US10247061B2 (en) 2013-11-22 2018-03-23 Hydraulic valve drive of an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013223926.2A DE102013223926B4 (de) 2013-11-22 2013-11-22 Hydraulische Ventilbremse für einen hydraulisch variablen Ventiltrieb und Verfahren zur Einstellung der hydraulischen Ventilbremse
DE102013223926.2 2013-11-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/035,905 A-371-Of-International US9957856B2 (en) 2013-11-22 2014-10-08 Hydraulic valve drive of an internal combustion engine
US15/933,920 Continuation US10247061B2 (en) 2013-11-22 2018-03-23 Hydraulic valve drive of an internal combustion engine

Publications (1)

Publication Number Publication Date
WO2015074652A1 true WO2015074652A1 (de) 2015-05-28

Family

ID=51865962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2014/200539 WO2015074652A1 (de) 2013-11-22 2014-10-08 Hydraulischer ventiltrieb eines verbrennungsmotors

Country Status (5)

Country Link
US (2) US9957856B2 (de)
EP (1) EP3071805B1 (de)
CN (1) CN105765181B (de)
DE (1) DE102013223926B4 (de)
WO (1) WO2015074652A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3156619B1 (de) * 2015-10-13 2018-06-06 C.R.F. Società Consortile per Azioni System und verfahren zur variablen betätigung eines ventils einer brennkraftmaschine mit einer vorrichtung zur dämpfung von druckschwingungen
DE102016218918B4 (de) * 2016-09-29 2018-09-13 Schaeffler Technologies AG & Co. KG Brennkraftmaschine mit hydraulisch variablem Gaswechselventiltrieb
DE102019128826B4 (de) * 2019-10-25 2022-09-29 Schaeffler Technologies AG & Co. KG Hydraulikeinheit einer elektrohydraulischen Gaswechselventilsteuerung

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0507521A1 (de) 1991-04-04 1992-10-07 Ford Motor Company Limited Vorrichtung zur hydraulischen Steuerung von Hubventilen in einer Brennkraftmaschine
DE4235620A1 (de) * 1992-10-22 1994-04-28 Hydraulik Ring Gmbh Ventilhubverstelleinrichtung für Brennkraftmaschinen und Kompressoren, vorzugsweise in Kraftfahrzeugen
DE19941367A1 (de) * 1998-09-14 2000-03-16 Honda Motor Co Ltd Ventilvorrichtung mit Abschaltmechanismus für einen Verbrennungsmotor
US6550433B2 (en) 1997-08-28 2003-04-22 Diesel Engine Retarders, Inc. Engine valve actuator with valve seating control
US20050034691A1 (en) * 2003-08-15 2005-02-17 Chang David Yu-Zhang Engine valve actuation system
DE102005053607A1 (de) * 2005-11-10 2007-05-16 Schaeffler Kg Ventiltrieb einer Brennkraftmaschine
WO2010012864A1 (en) * 2008-07-31 2010-02-04 Wärtsilä Finland Oy A control arrangement in a piston engine
DE102009043659A1 (de) * 2009-09-29 2011-03-31 Schaeffler Technologies Gmbh & Co. Kg Hydraulischer Ventiltrieb einer Brennkraftmaschine
DE102011004403A1 (de) * 2011-02-18 2012-08-23 Schaeffler Technologies Gmbh & Co. Kg Hydraulischer Ventiltrieb einer Brennkraftmaschine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396607A (ja) * 1989-09-08 1991-04-22 Nissan Motor Co Ltd エンジンの弁作動装置
JP4596643B2 (ja) * 1997-11-21 2010-12-08 ジェイコブス ビークル システムズ、インコーポレイテッド 制限式ロストモーション・タペットの弁着座速度制限装置
WO2000011336A1 (en) * 1998-08-19 2000-03-02 Diesel Engine Retarders, Inc. Hydraulically-actuated fail-safe stroke-limiting piston
WO2003038246A2 (de) * 2001-10-19 2003-05-08 Robert Bosch Gmbh Hydraulischer aktor für ein gaswechselventil
ITTO20020234A1 (it) * 2002-03-15 2003-09-15 Fiat Ricerche Motore pluricilindrico a combustione interna con dispositivo idraulico a controllo elettronico per l'azionamento variabile delle valvole e d
US6957634B2 (en) * 2002-10-04 2005-10-25 Caterpillar Inc. Engine valve actuator
US7823553B2 (en) 2007-03-16 2010-11-02 Jacobs Vehicle Systems, Inc. Engine brake having an articulated rocker arm and a rocker shaft mounted housing
DE102010020755A1 (de) * 2010-05-17 2011-11-17 Schaeffler Technologies Gmbh & Co. Kg Verfahren sowie Steuereinrichtung zur Ermittlung einer Viskositäts-Kenngröße eines Motoröls

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0507521A1 (de) 1991-04-04 1992-10-07 Ford Motor Company Limited Vorrichtung zur hydraulischen Steuerung von Hubventilen in einer Brennkraftmaschine
DE4235620A1 (de) * 1992-10-22 1994-04-28 Hydraulik Ring Gmbh Ventilhubverstelleinrichtung für Brennkraftmaschinen und Kompressoren, vorzugsweise in Kraftfahrzeugen
US6550433B2 (en) 1997-08-28 2003-04-22 Diesel Engine Retarders, Inc. Engine valve actuator with valve seating control
DE19941367A1 (de) * 1998-09-14 2000-03-16 Honda Motor Co Ltd Ventilvorrichtung mit Abschaltmechanismus für einen Verbrennungsmotor
US20050034691A1 (en) * 2003-08-15 2005-02-17 Chang David Yu-Zhang Engine valve actuation system
DE102005053607A1 (de) * 2005-11-10 2007-05-16 Schaeffler Kg Ventiltrieb einer Brennkraftmaschine
WO2010012864A1 (en) * 2008-07-31 2010-02-04 Wärtsilä Finland Oy A control arrangement in a piston engine
DE102009043659A1 (de) * 2009-09-29 2011-03-31 Schaeffler Technologies Gmbh & Co. Kg Hydraulischer Ventiltrieb einer Brennkraftmaschine
DE102011004403A1 (de) * 2011-02-18 2012-08-23 Schaeffler Technologies Gmbh & Co. Kg Hydraulischer Ventiltrieb einer Brennkraftmaschine

Also Published As

Publication number Publication date
US9957856B2 (en) 2018-05-01
DE102013223926B4 (de) 2018-02-08
CN105765181B (zh) 2018-11-13
US20160273420A1 (en) 2016-09-22
CN105765181A (zh) 2016-07-13
US10247061B2 (en) 2019-04-02
EP3071805B1 (de) 2017-12-13
EP3071805A1 (de) 2016-09-28
US20180230868A1 (en) 2018-08-16
DE102013223926A1 (de) 2015-05-28

Similar Documents

Publication Publication Date Title
DE60218628T2 (de) Multizylinderbrennkraftmaschine mit variabler Ventilsteuerung und Ventilbremsvorrichtung
EP1807609B1 (de) Ventiltrieb einer brennkraftmaschine
DE102010037567B4 (de) Elektrohydraulische variable Ventilhub-Vorrichtung
DE102010011454A1 (de) Hubkolbenbrennkraftmaschine mit Dekompressionsmotorbremse
DE112009000172T5 (de) Kraftstoffinjektor und Montageverfahren dafür
DE102016106885A1 (de) Externe Ölnut auf einer hydraulischen Spieleinstellvorrichtung
DE102012113144A1 (de) System zum detektieren einer fehlfunktion einer variabler-ventilhub-vorrichtung und verfahren für dasselbe
WO2012152456A1 (de) Hubkolbenbrennkraftmaschine mit nockenwellenverstelleinrichtung
DE102007014248A1 (de) Hubkolbenbrennkraftmaschine mit Motorbremseinrichtung
DE602004003936T2 (de) Brennkraftmaschine mit variabel angesteuerten Ventilen, welche jeweils mit einem hydraulischen Stößel außerhalb des jeweiligen Aktors versehen sind
EP3071805B1 (de) Hydraulischer ventiltrieb eines verbrennungsmotors
DE102011004403A1 (de) Hydraulischer Ventiltrieb einer Brennkraftmaschine
DE102005040649A1 (de) Variabler Ventiltrieb einer Brennkraftmaschine
DE102017104391A1 (de) Umschalteinrichtung zur Steuerung einer Verstellvorrichtung und Pleuel für eine Hubkolbenbrennkraftmaschine mit einer derartigen Umschalteinrichtung
DE102010060968A1 (de) Elektro-Hydraulische Variabler-Ventilhub-Vorrichtung
EP3418513B1 (de) Kraftübertragungsvorrichtung
EP1662098B1 (de) Variabler Ventiltrieb einer Brennkraftmaschine
DE3939002A1 (de) Hydraulische ventilsteuervorrichtung fuer eine mehrzylinder-brennkraftmaschine
DE102016120950A1 (de) Pleuelstange mit gekapselter Baugruppe zur Längenverstellung
DE602004006121T2 (de) Brennkraftmaschine mit variabler und hydraulischer Ventilsteuerung durch Kipphebel
DE102012105482A1 (de) Elektrohydraulisch variables Ventilhub-System
DE69533682T2 (de) Stösseleinrichtung zur Einspritzzeitpunktregelung für Brennkraftmaschinen
DE102004048071A1 (de) Ventiltrieb für ein nockenbetätigtes Hubventil
EP1831507B1 (de) Variabler ventiltrieb einer brennkraftmaschine
DE102014220174A1 (de) Selbsttätige hydraulische Ventilspielausgleichseinrichtung für einen Ventiltrieb einer Hubkolbenbrennkraftmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14793777

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15035905

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014793777

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014793777

Country of ref document: EP