WO2015074162A1 - Variantes de enzima fenilacetona monooxigenasa (pamo) capaces de catalizar conversión de ciclohexanona a caprolactona. - Google Patents

Variantes de enzima fenilacetona monooxigenasa (pamo) capaces de catalizar conversión de ciclohexanona a caprolactona. Download PDF

Info

Publication number
WO2015074162A1
WO2015074162A1 PCT/CL2014/000062 CL2014000062W WO2015074162A1 WO 2015074162 A1 WO2015074162 A1 WO 2015074162A1 CL 2014000062 W CL2014000062 W CL 2014000062W WO 2015074162 A1 WO2015074162 A1 WO 2015074162A1
Authority
WO
WIPO (PCT)
Prior art keywords
substitution
variant
sequence seq
mutant
corresponds
Prior art date
Application number
PCT/CL2014/000062
Other languages
English (en)
French (fr)
Inventor
Loreto Paulina PARRA ATALA
Juan Pablo ACEVEDO COX
Original Assignee
Pontificia Universidad Catolica De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pontificia Universidad Catolica De Chile filed Critical Pontificia Universidad Catolica De Chile
Publication of WO2015074162A1 publication Critical patent/WO2015074162A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/13Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
    • C12Y114/13092Phenylacetone monooxygenase (1.14.13.92)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/08Oxygen as only ring hetero atoms containing a hetero ring of at least seven ring members, e.g. zearalenone, macrolide aglycons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters

Definitions

  • the present invention relates to mutants of the gene encoding the enzyme phenylacetone monooxygenase (PAMO), which was isolated from the bacterium of scientific name Thermofibida fusca or Thermomonospora fusca with substitutions at positions 93, 94 and 440 (N, D and F, respectively) of the original amino acid sequence, and combinations of specific substitutions at positions 441, 442, 443 and / or 444 (G or D, P or E, T, V, I or W and Q, respectively), which show both high performance and catalysts in the conversion of cyclohexanone to ⁇ -caprolactone, as well as high thermal stability.
  • the invention includes the DNA coding for said enzymes and the encoded amino acid sequences, which are proposed as biocatalysts for a more efficient conversion process and with less generation of toxic waste compared to the existing industrial processes of ⁇ -caprolactone production.
  • Epsilon-caprolactone is a cyclic lactone widely used in industrial applications. Its applications include protective and industrial covers, polyurethanes, grafted elastomers, adhesives, dyes, pharmaceuticals, among others.
  • epsilon-caprolactone is manufactured by chemical catalysis using the type of oxidizing agents or reagents mentioned in the following paragraphs. Enzymes are capable of replacing these chemical catalysts by providing a biodegradable, more efficient and renewable alternative. Natural enzymes that can oxidize cyclohexanone in epsilon-caprolactone are not efficient or stable enough for use in industry.
  • BVMOs Baeyer-Viliiger monooxygenases
  • CHMO Acinebacter calcoaceticus monooxygenase
  • NCIMB 9871 a useful reagent for asymmetric curves, Vilmetric Curve Org. Chem., 1998, 2: 195-216.
  • PAMO phenylacetone monooxygenase isolated from thermophilic actinomycete Thermobifida fusca
  • the range of substrates that this BVMO can accept is very limited and is not able to use cyclohexanone for conversion to epsilon-caprolactone (Fraw Mw, Wu J, Heuts DPHM, van Haliemond EW, Spelberg JHL, Janssen DB, Discovery of a Thermostable Baewyer-Villiger monooxygenase by genome mining, Appl. Microbiol. Biotechnol.
  • biocatalysts in industrial processes is an alternative to traditional processes from paracetic acid and m-chloroperbenzoic acid, and also an alternative to the use of transition metal catalysts.
  • Enzymes prevent the use of harmful compounds and reduce the accumulation of toxic waste. Additionally, unlike chemical catalysts, enzymes can carry out catalysis continuously, since their activity is not extinguished and renewed after conversion, making the process more efficient, less expensive and fast.
  • thermostable Baeyer-Villiger monooxygenase capable of catalyzing the production of epsilon-caprolactone from cyclohexanone under industrial conditions (usually high temperatures) would be the pillar for a bioproduction with less toxic waste and more efficient of this demanded product.
  • PAMO phenylacetone monooxygenase
  • WO2012038848 discloses a process for preparing very pure 1,6-heaxanediol and ⁇ -caprolactone from dicarboxylic acid (DCS). This request includes the esterification of DCS with alcohols, partial catalytic hydrogenation of the esters, removal by distillation of 1,6-hexanediol and as low-boiling composite products, and delation of the 6-hydroxycaproic ester present in the lower fractions in the presence of boiling alcohol greater than the boiling point of caprolactone.
  • DCS dicarboxylic acid
  • No. 5,068,361 discloses a 6-hydroxycaproic ester in the form of steam that passes along with an inert carrier of 150 to 450 ° C over a fixed bed or fluidized bed oxidic catalyst.
  • WO2004 / 076395 discloses the reaction of a dicarboxylic acid solution in the presence of at least one catalyst.
  • the invention also relates to the use of a solution of dicarboxylic acid to synthesize cyclopentanone and caprolactone.
  • US20010018399 comprises the use of antimony and silica trifluoride, a method for the preparation of said composition and use of said composition as a catalyst in a process for the oxidation of cyclohexanone to ⁇ -caprolactone.
  • EP 2 582 677 obtains monoammonium adipate (MAA) and / or adipic acid (AA) from fermentation containing clarified diamonium adipate broth or fermentation broth containing monoammonium adipate.
  • MAA monoammonium adipate
  • AA adipic acid
  • JP2008247889 describes the reaction of a cyclohexanone compound represented with magnesium monoperoxyphthalate at 0-50 ° C in the absence of an inorganic base.
  • WO20 2060185 uses hydrogen peroxide in the Baeyer-Villiger oxidation reaction where a metal borate is used as catalyst.
  • WO2002016346 obtains ⁇ -caprolactone from hydroxy acids, for example, 6-hydroxycaproic acid. The reaction is conducted on a suitable catalyst in the presence of water.
  • WO2013067432 describes naturally occurring microbial organisms that contain caprolactone pathways that have at least one exogenous nucleic acid that encodes a butadiene pathway enzyme expressed in an amount sufficient to produce caprolactone. Additionally, it provides methods of using such Microbial organisms that contain caprolactone pathways as described herein under conditions and for a sufficient period of time to produce caprolactone.
  • US20030113886 comprises the oxidation of a cyclohexanone derivative using a monooxygenase brevibacteria cyclohexanone.
  • EP 1,516,046 describes genes isolated from a variety of bacteria encoding Baeyer-Villiger monooxygenase activity. Genes and their products are useful for the conversion of ketones to the corresponding esters or lactones. A series of parts, common to all genes, has been identified by diagnosis as genes encoding proteins of this activity.
  • W09512668, WO9600281, WO9910481, USNo.6.995.005, CN102260634, CN102260655, USNo.2012142171 and CN102443578 reveal mutants that include DNA from Thermobifida fusca but none of them are related to the production of ⁇ -caprolactone.
  • JPS6474983 discloses a cyclohexanone oxygenase having an N-terminal amino acid sequence of the formula Thr-Ala-Glu-Asn-Thr-Phe-Gln-Thr-Val-Asp-Ala-Val-Val-lle-Gly-Ala -Gly-Phe-Gly-Gly-lle-Tyr-Ala-Val-His-Lys-Leu-His-Asn-Glu-GIn-Gly- Leu-Thr-Val, molecular weight of 60,000 ⁇ 2,000 that allows the formation of caprolactone from cyclohexanone and oxygen using NADPH as coenzyme; optimum pH range of 7.5-7.0 and active pH range of 4.0-10.5; optimum temperature in the range of 30-40 ° C, active temperature of 5-45 ° C; pH isoelectric point of 5.4 ⁇ 0.2, useful as a catalyst in the conversion of cyclohexanone to caprolactone.
  • the oxygenase is prepared from Arthrobacter oxydans AK65-6 (FERM-9430) which is grown in a medium containing cyclohexanol and cyclohexanone as carbon sources, additionally a source of nitrogen and inorganic salts and the cells are broken to subsequently isolate and purify
  • the enzyme is prepared from Arthrobacter oxydans AK65-6 (FERM-9430) which is grown in a medium containing cyclohexanol and cyclohexanone as carbon sources, additionally a source of nitrogen and inorganic salts and the cells are broken to subsequently isolate and purify The enzyme
  • the present invention is a biocatalyst capable of converting highly available cyclohexanone to epsilon-caprolactone without catalyst consumption. This bio-reaction is done under environmental safety conditions, reduced production of toxic waste or no harmful materials, reduced cost and more efficient.
  • the biocatalysts of the present invention are the first variants of thermostable enzymes capable of catalyzing the aforementioned reaction and allows them to be the most efficient enzymes known for this reaction. The thermostability allows it to be adapted to biotechnological conditions and have ultimate catalytic activity for long periods of time, making the entire process more cost efficient.
  • the variants of the present invention are not only more efficient for epsilon-caprolactone production but also thermostable.
  • the present invention consists of twelve evolved thermostable PAMO variants or mutants that present a combination of amino acid mutations or substitutions located at positions 93, 94, 440, 441, 442, 443 and 444 of SEQ ID No.:1, all necessary, and that in some cases the position retains the original amino acid of SEQ ID No.:1., and that are capable of efficiently catalyzing the conversion of cyclohexanone into epsilon-caprolactone.
  • PAMO variants of the present invention are all variants of the variant with low activity (Q93N / P94D / P440F) of sequence ID No.:5 which includes a substitution N at position 93, a D substitution at position 94 and an F substitution at position 440 of the phenylacetone monooxygenase (PAMO) enzyme isolated from the bacterium Thermofibida fusca:
  • Q93N / P94D / P440F sequence ID No.:5 which includes a substitution N at position 93, a D substitution at position 94 and an F substitution at position 440 of the phenylacetone monooxygenase (PAMO) enzyme isolated from the bacterium Thermofibida fusca:
  • - PV variant Q93N / P94D / P440F / A442P / L443V of sequence SEQ ID No.:6, which has a P substitution at position 442 and a V substitution at position 443.
  • - GPTQ variant Q93N / P94D / P440F / S441G / A442P / L443T / S444Q of sequence SEQ ID No.:7, which has a substitution G at position 441, a substitution P at position 442, a substitution T at the position 443 and a substitution Q at position 444.
  • No.:8 which has a substitution P at position 442, a substitution T at position 443 and a substitution Q at position 444.
  • VQ (Q93N / P94D / P440F / L443V / S444Q) of sequence SEQ ID No.:11, which has a V substitution at position 443 and a Q substitution at position 444.
  • No .: 15 which has a substitution P in position 442, a substitution V in position 443 and a substitution Q in position 444.
  • - GATQ variant (Q93N / P94D / P440F / S441G / L443T / S444Q) of sequence SEQ ID No.:16, which has a substitution G at position 441, a substitution T at position 443 and a substitution Q at position 444 .
  • - Variant PW (Q93N / P94D / P440F / A442P / L443W) of sequence SEQ ID No.:17, which has a P substitution at position 442 and a W substitution at position 443.
  • Coding mutant for variant P (Q93N / P94D / P440F / A442P) of sequence SEQ ID No.:22.
  • Coding mutant for PWQ variant (Q93N / P94D / P440F / A442P / L443W / S444Q) of sequence SEQ ID No.:24.
  • Coding mutant for variant PVQ (Q93N / P94D / P440F / A442P / L443V / S444Q) of sequence SEQ ID No.:27.
  • Coding mutant for variant PW (Q93N / P94D / P440F / A442P / L443W) of sequence SEQ ID No.:29.
  • the present biocatalyst can replace the current and more harmful process for the Caprolactone production environment by a green and reduced process in toxic waste production.
  • One of the properties of the present invention is high efficiency using cyclohexanone.
  • Other cyclohexanone derivatives would be much more easily catalyzed due to the rearrangement caused by extra chemical groups in the molecule.
  • additional lactone monomers can be obtained. These monomers, after ring opening polymerization of these cyclic lactones could be part of an additional polymer formulation that creates special mechanical and physical properties.
  • the present invention is additionally an opportunity to explore an additional efficient route to reach different lactone monomers to be part of formulations of materials or polymers with additional interesting properties.
  • FIG. 1 Scheme of iterative saturation mutagenesis (ISM) defined for the directed evolution method of the invention.
  • Figure 3 Bar graph for the conversion of cyclohexanone (2 mM) to ⁇ -caprolactone in 1 hour at 30 ° C using 5 ⁇ of PAMO WT enzyme (0%) and variants (between 55 and 88% conversion).
  • the present invention corresponds to an effort in protein engineering that includes a rational design and a directed evolution that has improved the limited range of substrate acceptance of the PAMO enzyme.
  • ISM Reetz MT, Carballeira JD. Iterative Saturation Mutagenesis (ISM) for Rapid Directed Evolution of Functional Enzymes. Nat. Protoc. 2007.2: 891-903
  • WT PAMO of its acronym in English, Phenylacetone Monooxygenase Wild Type. In Spanish, phenylacetone monooxygenase wild type.
  • the structure of the PAMO protein presents an additional bulk in the domain loops that bind FAD (of its acronym in English, Flavin adenine dinucleotide.
  • FAD of its acronym in English, Flavin adenine dinucleotide.
  • flavin-adenine dinucleotide that is not present in the protein structure CHMO and which is spatially located near the catalytic arginine, see Figure 1 (Bocola M, Schutz F, Leca F., Vogel A, Fraaje Mw, Reetz MT. Converting Phenylacetone Monooxygenase into Phenylcyclohexanone Monooxygenase by Rational Design: Towards Practical Baeyer-Villiger Monooxygenases, Adv. Synth. Catal., 2005, 347: 979-86).
  • the PAMO loop 441-444 was subjected to protein engineering starting from a triple mutant as a result of the combination of mutations previously reported in two separate publications (a substitution F at position 440 of the enzyme; Reetz MT, Wu S. Laboratory Evolution of Robust and Enantioselective Baeyer-Villiger Monooxygenases for Asymmetric Catalysis. J. Am. Chem. Soc. 2009. 131: 15424-32 and a substitution N in position 93 and a substitution D in position 94; Wu S, Acevedo JP, Reetz MT.
  • the resting cells are induced cells for the expression of the PAMO enzyme, which are then washed and resuspended in a buffer containing glucose as a carbon source and the cyclohexanone substrate. Since the cells are still metabolically active, they are capable of regenerating NADP + to NADPH allowing the oxidation of cyclohexanone to epsilon-caprolactone through the PAMO enzyme variant.
  • the reaction was carried out at 30 ° C and for 6 hours obtaining a 90% conversion to caprolactone.
  • thermostability of PAMO mutants lost their thermostability due to mutations
  • Tm values were measured using the ThermoFAD method (Fomeris F, Orru R, Bonivento D, Chiarelli LR, Mattevi A, ThermoFAD, a Thermofluor-adapted flavin ad hoc system for protein folding and ligand binding FEBS J, 2009. 276: 2833-40). But despite the mutations, the thermostability of the best mutants essentially remained, see figure 5.
  • PAMO mutants are excellent catalysts for large-scale industrial biocatalysis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

La presente invención se refiere a mutantes del gen que codifica para la enzima fenilacetona monooxigenasa (PAMO, de sus siglas en inglés Phenylacetone Monooxygenase) que fue aislada a partir de la bacteria de nombre científico Thermofibida fusca o Thermomonospora fusca con sustituciones en las posiciones 93, 94 y 440 (N, D y F, respectivamente) de la secuencia original de amino ácidos, y combinaciones de sustituciones específicas de las posiciones 441, 442, 443 y/o 444 (G o D, P o E, T, V, I o W y Q, respectivamente), las que muestran tanto un alto rendimiento como catalizadores en la conversión de ciclohexanona a epsilon- caprolactona, como también alta estabilidad térmica. La invención incluye el ADN codificante para dichas enzimas y las secuencias amino acídicas codificadas, las cuales se proponen como biocatalizadores para un proceso de conversión más eficiente y con menor generación de residuos tóxicos comparado con los procesos industriales existentes de producción de epsilon-caprolactona.

Description

VARIANTES DE ENZIMA FENILACETONA MONOOXIGENASA (PAMO) CAPACES DE CATALIZAR CONVERSIÓN DE CICLOHEXANONA A CAPROLACTONA
La presente invención se refiere a mutantes del gen que codifica para la enzima fenilacetona monooxigenasa (PAMO, de sus siglas en inglés Phenylacetone Monooxygenase) que fue aislada a partir de la bacteria de nombre científico Thermofibida fusca o Thermomonospora fusca con sustituciones en las posiciones 93, 94 y 440 (N, D y F, respectivamente) de la secuencia original de amino ácidos, y combinaciones de sustituciones específicas de las posiciones 441 , 442, 443 y/o 444 (G o D, P o E, T, V, I o W y Q, respectivamente), las que muestran tanto un alto rendimiento como catalizadores en la conversión de ciclohexanona a ε-caprolactona, como también alta estabilidad térmica. La invención incluye el ADN codificante para dichas enzimas y las secuencias amino acídicas codificadas, las cuales se proponen como biocatalizadores para un proceso de conversión más eficiente y con menor generación de residuos tóxicos comparado con los procesos industriales existentes de producción de ε-caprolactona.
ARTE PREVIO
Épsilon-caprolactona es una lactona cíclica ampliamente usada en aplicaciones industriales. Entre sus aplicaciones se cuentan cubiertas protectoras e industriales, poliuretanos, elastómeros injertados, adhesivos, colorantes, farmacéuticos, entre otras.
La demanda del mercado por épsilon-caprolactona se ha ido incrementando significativamente los últimos 10 años, especialmente debido a sus varias aplicaciones en la manufactura. La eficiencia catalítica real y residuos tóxicos derivados de la producción de épsilon-caprolactona es aún más problemática.
Compañías tales como Solvay, BASF, Perstorp, entre otras, se han propuesto dentro de sus planes estratégicos duplicar la capacidad de producción de épsilon- caprolactona debido a que la demanda mundial se incrementa estimativamente, en un 12% cada año.
Hoy en día, épsilon-caprolactona se manufactura por catálisis química usando el tipo de agentes oxidantes o reactivos mencionados en los siguientes párrafos. Las enzimas son capaces de reemplazar estos catalizadores químicos proporcionando una alternativa biodegradable, más eficiente y renovable. Las enzimas naturales que pueden oxidar ciclohexanona en épsilon-caprolactona no son eficientes o suficientemente estables para su uso en la industria.
Una de las monooxigenasas Baeyer-Viliiger (BVMOs) más caracterizada que convierte ciclohexanona a ε-caprolactona es la monooxigenasa ciclohexanona (CHMO) de Acinebacter calcoaceticus, NCIMB 9871 (Stewart JD Cyclohexanone monooxygenase: a useful reagent for asymmetric Baeyer-Viliiger Reactions, Curr. Org. Chem., 1998, 2:195-216).
Figure imgf000004_0001
Ciclohexanona Épsilon-Caprolactona
La monoxigenasa Baeyer-Viliiger, monooxigenasa fenilacetona (PAMO) aislada desde el actinomiceto termofílico Thermobifida fusca, tiene la más alta termoestabilidad según se ha reportado en la literatura. Sin embargo, el rango de sustratos que esta BVMO puede aceptar es muy limitada y no es capaz de utilizar ciclohexanona para la conversión a épsilon-caprolactona (Fraaje Mw, Wu J, Heuts DPHM, van Halíemond EW, Spelberg JHL, Janssen DB, Discovery of a Thermostable Baewyer-Villiger monooxygenase by genome mining, Appl. Microbiol. Biotechnol. 2005, 86:393-400). Los reactivos más comunes para la producción industrial de épsilon-caprolactona incluyen ácido paracético y ácido m-cloroperbenzóico, que son caros y conducen a diversos problemas de seguridad. Para resolver algunos de estos problemas, algunas compañías han reemplazado estos reactivos por peróxido de hidrógeno, que es menos tóxico, pero que deben incluir además metales de transición como catalizadores. Así, la reacción química tradicional y las alternativas integradas no han sido capaces de resolver el impacto ambiental de los residuos producidos y la alta energía requerida en los procesos tradicionales.
La incorporación de biocatalizadores en los procesos industriales es una alternativa a los procesos tradicionales a partir de ácido paracético y ácido m-cloroperbenzoico, y también una alternativa al uso de catalizadores de metales de transición.
Las enzimas evitan ei uso de compuestos nocivos y reduce la acumulación de residuos tóxicos. Adicionalmente, a diferencia de los catalizadores químicos, las enzimas pueden realizar la catálisis en forma continua, ya que su actividad no se extingue y se renueva luego de realizada la conversión, haciendo el proceso más eficiente, menos costoso y rápido.
Una monooxigenasa Baeyer-Villiger termoestable capaz de catalizar la producción de épsilon-caprolactona a partir de ciclohexanona bajo condiciones industriales (usualmente altas temperaturas) sería el pilar para una bioproducción con menos residuos tóxicos y más eficiente de este demandado producto.
La monooxigenasa ciclohexanona como único biocatalizador Baeyer-Villiger capaz de realizar esta reacción pierde la atención científica e industrial al ser una enzima muy inestable y no altamente eficiente.
La única enzima natural y estable capaz de realizar la oxidación Baeyer-Villiger es la monooxigenasa fenilacetona (PAMO), ver figura 1. Desafortunadamente, esta enzima no puede aceptar un gran número de cetonas cíclicas tales como ciclohexanona y derivados.
Entre las patentes que se pueden señalar como relacionadas a la producción de épsilon-caprolactona, se encuentran:
WO2012038848 divulga un proceso para preparar 1 ,6-heaxanodiol y ε-caprolactona muy pura a partir de ácido dicarboxílico (DCS). Esta solicitud comprende la esterificación de DCS con alcoholes, la hidrogenación catalítica parcial de los esteres, la remoción por destilación de 1 ,6-hexanodiol y como productos compuestos de bajo punto de ebullición, y la delación del éster 6-hidroxicaproico presente en las fracciones inferiores en presencia de alcohol con punto de ebullición mayor al punto de ebullición de caprolactona.
USNo.5.068.361 revela un éster 6-hidroxicaproico en forma de vapor que pasa junto con un portador inerte de 150 a 450°C sobre un catalizador oxídico de lecho fijo o lecho fluidizado.
WO2004/076395 divulga la reacción de una solución de ácido dicarboxílico en presencia de al menos un catalizador. La invención también se refiere al uso de una solución de ácido dicarboxílico para sintetizar ciclopentanona y caprolactona.
US20010018399 comprende la utilización de trifluoruro de antimonio y sílice, un método para la preparación de dicha composición y uso de dicha composición como catalizador en un proceso para la oxidación de ciclohexanona a ε-caprolactona.
EP 2 582 677 obtiene adipato de monoamonio (MAA) y/o ácido adípico (AA) de la fermentación que contiene caldo de adipato de diamonio clarificado o caldo de fermentación que contiene adipato de monoamonio.
JP2008247889 describe la reacción de un compuesto de ciclohexanona representada con monoperoxiftalato de magnesio a 0-50°C en ausencia de una base inorgánica. WO20 2060185 usa peróxido de hidrógeno en la reacción de oxidación Baeyer-Villiger donde se usa como catalizador un borato metálico.
WO2002016346 obtiene ε-caprolactona de ácidos hidroxi, por ejemplo, ácido 6- hidroxicaproico. La reacción es conducida sobre un catalizador adecuado en presencia de agua.
Entre las patentes que se pueden señalar como relacionadas a la producción de épsilon-caprolactona usando rutas biológicas, genes y otros BVMO, se encuentran: WO2013067432 describe organismos microbianos que no ocurren naturalmente que contienen rutas de caprolactona que tienen al menos un ácido nucleico exógeno que codifica una enzima de ruta de butadieno expresada en una cantidad suficiente para producir caprolactona. Adicionalmente, proporciona métodos de uso de tales organismos microbianos que contienen rutas de caprolactona como se describe aquí bajo condiciones y por un período suficiente de tiempo para producir caprolactona. US20030113886 comprende la oxidación de un derivado de ciclohexanona usando una brevibacteria monooxigenasa ciclohexanona.
EP 1 516 046 describe genes aislados de una variedad de bacterias que codifican la actividad de monooxigenasa Baeyer-Villiger. Los genes y sus productos son útiles para la conversión de cetonas a los esteres o lactonas correspondientes. Una serie de partes, común a todos los genes, ha sido identificada según diagnóstico como genes que codifican proteínas de esta actividad.
Por otra parte, W09512668, WO9600281 , WO9910481 , USNo.6.995.005, CN102260634, CN102260655, USNo.2012142171 y CN102443578 revelan mutantes que incluyen ADN proveniente de Thermobifida fusca pero ninguna de ellas se relaciona con la producción de ε-caprolactona.
JPS6474983 divulga una oxigenasa de ciclohexanona que tiene una secuencia de amino ácido N-terminal de la formula Thr-Ala-Glu-Asn-Thr-Phe-Gln-Thr-Val-Asp-Ala- Val-Val-lle-Gly-Ala-Gly-Phe-Gly-Gly-lle-Tyr-Ala-Val-His-Lys-Leu-His-Asn-Glu-GIn-Gly- Leu-Thr-Val, peso molecular de 60.000 ± 2.000 que permite la formación de caprolactona desde ciclohexanona y oxígeno usando NADPH como coenzima; rango de pH óptimo de 7,5-7,0 y rango de pH activo de 4,0-10,5; temperatura óptima en el rango de 30-40°C, temperatura activa de 5-45°C; punto isoeléctrico de pH de 5,4 ± 0,2, útil como catalizador en la conversión de ciclohexanona a caprolactona. La oxigenasa se prepara de Arthrobacter oxydans AK65-6 (FERM-9430) que se cultiva en un medio que contiene ciclohexanol y ciclohexanona como fuentes de carbono, adicionalmente una fuente de nitrógeno y sales inorgánicas y las células se rompen para posteriormente, aislar y purificar la enzima.
De los documentos es posible concluir que se conocen variantes de proteínas o enzimas de Thermobifida fusca o Thermomonospora fusca y secuencia de ácidos nucleicos que codifican tales variantes. Pero ninguno de los documentos revisados anticipa las 12 mutantes mencionadas más adelante en esta descripción, ni a sus correspondientes secuencias nucleotídicas. Así, en el arte previo, no se encuentran mutantes conocidas del gen codificante para la enzima monooxigenasa fenilacetona de Thermobifida fusca o Thermomonospora fusca y que codifican para variantes del mismo con las sustituciones propuestas que se señalan más adelante en este documento. Tampoco se encuentran, moléculas de ácidos nucleicos, con las secuencias propuestas más adelante en este documento, que codifican a las mutantes antes mencionadas.
El arte previo, tampoco enseña mutantes del genoma de Thermobifida fusca o Thermomonospora fusca con aplicación en la conversión de ciclohexanona a ε- caprolactona.
BREVE DESCRPCION DE LA INVENCION
La presente invención es un biocatalizador capaz de realizar la conversión de ciclohexanona altamente disponible a épsilon-caprolactona sin consumo de catalizador. Esta bio-reacción es hecha bajo condiciones ambientales de seguridad, reducida producción de residuos tóxicos o sin materiales nocivos, reducida en costo y más eficiente. Los biocatalizadores del presente invento son las primeras variantes de enzimas termoestables capaces de catalizar la reacción antes mencionada y les permite ser las enzimas más eficiente conocidas, para esta reacción. La termoestabilidad le permite poder ser adaptada a condiciones biotecnologicas y tener actividad catalítica última por largos períodos de tiempo, haciendo el proceso completo más eficiente en costos.
Las variantes de la presente invención no solo son más eficiente para producción de épsilon-caprolactona sino también termoestable.
La presente invención consiste en doce variantes o mutantes de PAMO termoestable evolucionadas que presentan combinación de mutaciones o sustituciones de amino ácidos localizados en las posiciones 93, 94, 440, 441 , 442, 443 y 444 de la SEQ ID No.:1 , todas necesarias, y que en algunos de los casos la posición conserva el amino ácido original de la SEQ ID No.:1., y que son capaces de catalizar eficientemente la conversión de ciclohexanona en épsilon-caprolactona.
Para los efectos de la presente descripción, se ha utilizado el siguiente código de una letra para los amino ácidos, como una alternativa a aquel código usualmente usado de tres letras:
Figure imgf000009_0001
Las variantes de PAMO de la presente invención, según se indica a continuación, todas ellas son variantes de la variante con baja actividad (Q93N/P94D/P440F) de secuencia ID No.:5 que incluye una sustitución N en la posición 93, una sustitución D en la posición 94 y una sustitución F en la posición 440 de la enzima fenilacetona monooxigenasa (PAMO) aislada a partir de la bacteria Thermofibida fusca:
- Variante PV (Q93N/P94D/P440F/A442P/L443V) de secuencia SEQ ID No.:6, que tiene una sustitución P en la posición 442 y una sustitución V en la posición 443. - Variante GPTQ (Q93N/P94D/P440F/S441G/A442P/L443T/S444Q) de secuencia SEQ ID No.:7, que tiene una sustitución G en la posición 441 , una sustitución P en la posición 442, una sustitución T en la posición 443 y una sustitución Q en la posición 444.
- Variante PTQ (Q93N/P94D/P440F/A442P/L443T/S444Q) de secuencia SEQ ID
No.:8, que tiene una sustitución P en la posición 442, una sustitución T en la posición 443 y una sustitución Q en la posición 444.
- Variante DE (Q93N/P94D/P440F/S441 D/A442E) de secuencia SEQ ID No.:9, que tiene una sustitución D en la posición 441 y una sustitución E en la posición 442.
- Variante P (Q93N/P94D/P440F/A442P) de secuencia SEQ ID No.:10, que tiene una sustitución P en la posición 442.
- Variante VQ (Q93N/P94D/P440F/L443V/S444Q) de secuencia SEQ ID No.:11 , que tiene una sustitución V en la posición 443 y una sustitución Q en la posición 444.
- Variante PWQ (Q93N/P94D/P440F/A442P/L443W/S444Q) de secuencia SEQ ID No.:121 , que tiene una sustitución P en la posición 442, una sustitución W en la posición 443 y una sustitución Q en la posición 444.
- Variante PLQ (Q93N/P94D/P440F/A442P/S444Q) de secuencia SEQ ID No.: 13, que tiene una sustitución P en la posición 442 y una sustitución Q en la posición 444.
- Variante PIQ (Q93N/P94D/P440F/A442P/L443I/S444Q) de secuencia SEQ ID NO.:14, que tiene una sustitución P en la posición 442, una sustitución I en la posición 443 y una sustitución Q en la posición 444.
- Variante PVQ (Q93N/P94D/P440F/A442P/L443V/S444Q) de secuencia SEQ ID
No.: 15, que tiene una sustitución P en la posición 442, una sustitución V en la posición 443 y una sustitución Q en la posición 444.
- Variante GATQ (Q93N/P94D/P440F/S441G/L443T/S444Q) de secuencia SEQ ID No.:16, que tiene una sustitución G en la posición 441 , una sustitución T en la posición 443 y una sustitución Q en la posición 444. - Variante PW (Q93N/P94D/P440F/A442P/L443W) de secuencia SEQ ID No.:17, que tiene una sustitución P en la posición 442 y una sustitución W en la posición 443.
Los ADNs de la presente invención codificantes de las variantes de PAMO antes indicadas, se indican a continuación:
Mutante codificante para variante PV (Q93N/P94D/P440F/A442P/L443V) de secuencia SEQ ID No.:18.
Mutante codificante para variante GPTQ (Q93N/P94D/P440F/S441G/A442P/L443T/S444Q) de secuencia SEQ ID No.: 19.
- Mutante codificante para variante PTQ
(Q93N/P94D/P440F/A442P/L443T/S444Q) de secuencia SEQ ID No.:20.
Mutante codificante para variante DE (Q93N/P94D/P440F/S441 D/A442E) de secuencia SEQ ID No.:21.
Mutante codificante para variante P (Q93N/P94D/P440F/A442P) de secuencia SEQ ID No.:22.
Mutante codificante para variante VQ (Q93N/P94D/P440F/L443V/S444Q) de secuencia SEQ ID No.:23.
Mutante codificante para variante PWQ (Q93N/P94D/P440F/A442P/L443W/S444Q) de secuencia SEQ ID No.:24.
- Mutante codificante para variante PLQ
(Q93N/P94D/P440F/A442P/S444Q) de secuencia SEQ ID No.:25.
Mutante codificante para variante PIQ
(Q93N/P94D/P440F/A442P/L443I/S444Q) de secuencia SEQ ID No.:26.
Mutante codificante para variante PVQ (Q93N/P94D/P440F/A442P/L443V/S444Q) de secuencia SEQ ID No.:27.
Mutante codificante para variante GATQ (Q93N/P94D/P440F/S441G/L443T/S444Q) de secuencia SEQ ID No.:28.
Mutante codificante para variante PW (Q93N/P94D/P440F/A442P/L443W) de secuencia SEQ ID No.:29.
El presente biocatalizador puede reemplazar el proceso actual y más nocivo para el medio ambiente de la producción de caprolactona por un proceso verde y reducido en producción de residuos tóxicos.
La mayor eficiencia en términos de costos y producción junto con un proceso adaptado para la salud humana y medioambiental incrementa el valor de producto para el sector de la industria y la sociedad.
Una de las propiedades de la presente invención es la alta eficiencia usando ciclohexanona. Otros derivados de ciclohexanona serían mucho más fácilmente catalizados debido al reordenamiento causado por los grupos químicos extra en la molécula. Usando otras cetonas cíclicas o derivados de ciclohexanona, se pueden obtener monómeros de lactona adicionales. Estos monómeros, después de polimerización por apertura del anillo de estas lactonas cíclicas podrían ser parte de una formulación de polímeros adicional que crea propiedades mecánicas y físicas especiales. En este sentido, la presente invención es adicionalmente una oportunidad para explorar una ruta eficiente adicional para llegar a diferentes monómeros de lactona a formar parte de formulaciones de materiales o polímeros con propiedades interesantes adicionales
Sumado a lo anterior, mejoras adicionales al usar evolución de laboratorio o diseño racional, se pueden realizar para ampliar el alcance del sustrato. La aplicación puede ser variada, por ejemplo, en farmacia, materiales o biocatalizadores, en general.
BREVE RESUMEN DE LAS FIGURAS
Figura 1 Estructuras Moleculares PAMO versus CHMO.
Figura 2 Esquema de mutagénesis de saturación iterativa (ISM) definida para el método de evolución dirigida de la invención.
Figura 3 Gráfico de barras para la conversión de ciclohexanona (2 mM) a ε- caprolactona en 1 hora a 30°C utilizando 5 μΜ de enzima PAMO WT (0%)y variantes (entre 55 y 88% de conversión).
Figura 4 Esquema de escalamiento de células en estado de reposo.
Figura 5 Gráfico de mediciones de termoestabilidad para WT (Temperatura de desplegamiento (Tm) = 62°C), variante PV (Tm = 55°C) y variante GPTQ (Tm = 58°C); Figura 6 Gráfico de conversión de ciclohexanona usando células enteras o en reposo utilizando las variantes PV y GPTQ en 6 horas (sin proporcionar NADPH a la reacción, de 50% a 80% para células en reposo y levemente sobre 0% para células enteras);
DESCRIPCION DETALLADA DE LA INVENCION
La alta actividad térmica de la monooxigenasa Baeyer-Villiger, monooxigensa de fenilacetona (PAMO), la hace una candidata prometedora para biocatálisis de oxidaciones Baeyer-Villiger en la industria química.
La presente invención corresponde a un esfuerzo en la ingeniería de proteínas que incluye un diseño racional y una evolución dirigida que ha mejorado el rango limitado de aceptación de sustrato de la enzima PAMO.
ISM (Reetz MT, Carballeira JD. Iterative Saturation Mutagenesis (ISM) for Rapid Directed Evolution of Functional Enzymes. Nat. Protoc. 2007.2:891-903) fue usado para la evolución dirigida de PAMO, y así, inducir la aceptación de ciciohexanona, que no es aceptada por WT PAMO (de sus sigla en idioma inglés, Phenylacetone Monooxygenase Wild Type. En idioma español, fenilacetona monooxigenasa tipo silvestre).
La ISM (Mutagénesis por Saturación Iterativa) de PAMO condujo a obtener varias mutantes o variantes de PAMO capaces de convertir ciciohexanona en ε-caprolactona con un rendimiento y eficiencia alta.
La estructura de la proteína PAMO presenta un bulto adicional en los bucles de dominio que unen FAD (de sus sigla en idioma inglés, Flavin adenine dinucleotide. En idioma español, dinucleótido de flavina-adenina) que no está presente en la estructura de la proteína CHMO y que está espacialmente ubicada cerca de la arginina catalítica, ver Figura 1 (Bocola M, Schutz F, Leca F., Vogel A, Fraaje Mw, Reetz MT. Converting Phenylacetone Monooxygenase into Phenylcyclohexanone Monooxygenase by Rational Design: Towards Practical Baeyer-Villiger Monooxygenases. Adv. Synth. Catal., 2005, 347:979-86). Para obtener una BVMO estable que acepte ciciohexanona, el bucle 441-444 de PAMO fue sometido a ingeniería de proteína partiendo de una triple mutante como resultado de la combinación de mutaciones previamente reportadas en dos publicaciones separadas (una sustitución F en la posición 440 de la enzima; Reetz MT, Wu S. Laboratory Evolution of Robust and Enantioselective Baeyer-Villiger Monooxygenases for Asymmetric Catalysis. J. Am. Chem. Soc. 2009. 131 :15424-32 y una sustitución N en la posición 93 y una sustitución D en la posición 94; Wu S, Acevedo JP, Reetz MT. Induced Allostery in the Directed Evolution of an Enantioselective Baeyer-Villiger Monooxygenase. Proc. Nati. Acad. Sci. U. S. A. 2010. 107:2775-80). Es importante mencionar que esta triple mutante es exclusivamente necesaria para la generación de las mutantes mediante el proceso de descrito a continuación.
Para lograr las mutantes de la invención, se llevó a cabo un proceso de evolución racional en el laboratorio donde la posición, identidad y combinación de las mutaciones o sustituciones en la SEQ ID No.:1 (12 variantes o mutantes de PAMO, cada una teniendo una combinación de mutaciones diferentes) son todas específicas y todas necesarias para alcanzar las diferentes variantes o mutantes presentadas en la invención.
Una variación en ubicación de las mutantes en la secuencia e identidad de éstas, hace disminuir radicalmente la actividad de esta enzima para el sustrato ciclohexanona. 3 (Q93N/P94D/P440F) de las 7 mutaciones fueron publicadas (Reetz MT, Wu S. Laboratory Evolution of Robust and Enantioselective Baeyer-Villiger Monooxygenases for Asymmetric Catalysis. J. Am. Chem. Soc. 2009. 131 :15424-32 y Wu S, Acevedo JP, Reetz MT. Induced Allostery in the Directed Evolution of an Enantioselective Baeyer-Villiger Monooxygenase. Proc. Nati. Acad. Sci. U. S. A. 2010. 107:2775-80.) recientemente por los inventores, sin embargo, para otras aplicaciones. Estas tres mutaciones no son capaces de transformar ciclohexanona en épsilon-caprolactona. Particularmente, un grupo de 4 amino ácidos presente en el bucle que interactúa con arginina próximo al sitio activo fue aleatorizado. Tres librerías fueron creadas saturando dos amino ácidos en cada una (Librería A: S441-A442, Librería B: A442- L443 y Librería C: L443-S444) y se realizaron de 3 rondas de ISM, ver Figura 2.
Para reducir el esfuerzo de evaluación debido a una redundancia de codón, se usó para la mutagenesis de saturación, una mezcla especial de partidores que crean una degeneración de 22 codones únicos que codifican para los 20 amino ácidos canónicos (Kille S, Acevedo-Rocha CG, Parra LP, Zhang ZG, Reetz MT, Acevedo JP, Reducing Codon Redundancy and Screening Effort of Combinational Protein Libraries Created by Saturation Mutagenesis, ACS Synth. Biol., 2013, 2 (2), pp 83-92).
Después de la selección de 10 librerías, se encontró que varias mutantes producían ε- caprolactona con diferentes tasas, ver figura 3. Se realizó escalamiento en la conversión de ciclohexanona a épsilon-caprolactona usando las 2 mejores mutantes (Variante PV (Q93N/P94D/P440F/A442P/L443V) y variante GPTQ (Q93N/P94D/P440F/S441G/A442P/L443T/S444Q) y células enteras o células en estado de reposo, ver figura 4. La biocatalisis de células en estado de reposo permitió más de un 95% de conversión de ciclohexanona a épsilon-caprolactona después de 7 horas de reacción a 30°C, ver figura 6.
Cuando se usan células enteras o en reposo para la biocatalisis, no es necesario proporcionar NADPH en la reacción, lo que resuelve el problema de costos (Kragl U, Kruse W, Hummel W, Wandrey C. Enzyme Engineering Aspects of Biocatalysis. Cofactor Regeneraron as Example. Biotechnol. Bioeng. 1996. 52:309-19). La necesidad de suministrar NADPH con un sistema de regeneración a la reacción se resolvió por biocatalisis de células en reposo. Bajo condiciones sin crecimiento. Se alcanzó casi un 100% de conversión después de 6 horas de reacción.
Las células en reposo son células inducidas para la expresión de la enzima PAMO, las que luego se lavan y se resuspenden en una buffer que contiene glucosa como fuente de carbono y el sustrato ciclohexanona. Como las células aún son metabólicamente activas éstas son capaces de regenerar el NADP+ a NADPH permitiendo la oxidación de la ciclohexanona a épsilon-caprolactona mediante la variante de la enzima PAMO. La reacción se realizó a 30°C y por 6 horas obteniendo un 90% de conversión a caprolactona.
Todo lo cual se ilustra en las figuras 4 y 6.
Propiedades Cinéticas
Figure imgf000015_0001
Cuando se usaron enzimas puras, se alcanzó un 50% de conversión por las 12 mutantes después de 1 hora de reacción, y el 100% de conversión se completó después de solo 3 horas. A pesar de las mutaciones, la termoestabilidad de las mejores mutantes fue esencialmente mantenida, valores Tm (de sus siglas en inglés, Melting Temperature. En idioma español, temperatura de fusión) sobre 57°C fueron observados.
Para estudiar si las mutantes PAMO perdían su termoestabilidad debido a las mutaciones, se midieron valores Tm usando el método ThermoFAD (Fomeris F, Orru R, Bonivento D, Chiarelli LR, Mattevi A, ThermoFAD, a Thermofluor-adapted flavin ad hoc system for protein folding and ligand binding. FEBS J, 2009. 276:2833-40). Pero a pesar de las mutaciones, la termoestabilidad de las mejores mutantes esencialmente se mantuvo, ver figura 5.
Así, estas mutantes PAMO son excelentes catalizadores para la biocatálisis industrial a gran escala.

Claims

REIVINDICACIONES
1. Variante de la enzima fenilacetona monooxigenasa (PAMO) aislada de Thermofibida fusca o Thermomonospora fusca que tiene tanto alto rendimiento como catalizador en la conversión de ciclohexanona a ε-caprolactona como una alta estabilidad térmica, que tiene sustituciones N, D y F, en las posiciones 93, 94 y 440, respectivamente (variante Q93N/P94D/P440F), en la secuencia SEQ No.1 , o corresponde a la secuencia SEQ ID No:5, que además tiene al menos una sustitución en las posiciones 441 , 442, 443 y/o 444 o en combinaciones de dichas posiciones.
2. La variante de la reivindicación 1 , que tiene una sustitución P en la posición 442 y una sustitución V en la posición 443 o corresponde a la secuencia SEQ ID No.:6 (variante PV (Q93N/P94D/P440F/A442P/L443V)).
3. La variante de la reivindicación 1 , que tiene una sustitución G en la posición 441 , una sustitución P en la posición 442, una sustitución T en la posición 443 y una sustitución Q en la posición 444 o corresponde a la secuencia SEQ ID No.:7 (variante GPTQ (Q93N/P94D/P440F/S441G/A442P/L443T/S444Q)).
4. La variante de la reivindicación 1 , que tiene una sustitución P en la posición 442, una sustitución T en la posición 443 y una sustitución Q en la posición 444 o corresponde a la secuencia SEQ ID No.:8 (variante PTQ (Q93N/P94D/P440F/A442P/L443T/S444Q)).
5. La variante de la reivindicación 1 , que tiene una sustitución D en la posición 441 y una sustitución E en la posición 442 o corresponde a la secuencia SEQ ID No.:9 (variante DE (Q93N/P94D/P440F/S44 D/A442E)).
6. La variante de la reivindicación 1 , que tiene una sustitución P en la posición 442 o corresponde a la secuencia SEQ ID No.:10 (variante P
(Q93N/P94D/P440F/A442P)).
7. La variante de la reivindicación 1 , que tiene una sustitución V en la posición 443 y una sustitución Q en la posición 444 o corresponde a la secuencia SEQ ID No.:11 (variante VQ (Q93N/P94D/P440F/L443V/S444Q)).
8. La variante de la reivindicación 1 , que una sustitución P en la posición 442, una sustitución W en la posición 443 y una sustitución Q en la posición 444 o corresponde a la secuencia SEQ ID No.:12 (variante PWQ (Q93N/P94D/P440F/A442P/L443W/S444Q)).
9. La variante de la reivindicación 1 , que tiene una P en la posición 442 y una sustitución Q en la posición 444 o corresponde a la secuencia SEQ ID No.:13
(variante PLQ (Q93N/P94D/P440F/A442P/S444Q)).
10. La variante de la reivindicación 1 , que tiene una sustitución P en la posición 442, una sustitución I en la posición 443 y una sustitución Q en la posición 444 o corresponde a la secuencia SEQ ID No.:14 (variante PIQ (Q93N/P94D/P440F/A442P/L443I/S444Q)).
11. La variante de la reivindicación 1 , que tiene una sustitución P en la posición 442, una sustitución V en la posición 443 y una sustitución Q en la posición 444 o corresponde a la secuencia SEQ ID No.:15 (variante PVQ (Q93N/P94D/P440F/A442P/L443V/S444Q)).
12. La variante de la reivindicación 1 , que tiene una sustitución G en la posición 441 , una sustitución T en la posición 443 y una sustitución Q en la posición 444 o corresponde a la secuencia SEQ ID No.:16 (variante GATQ (Q93N/P94D/P440F/S441G/L443T/S444Q)).
13. La variante de la reivindicación 1 , que tiene una sustitución P en la posición 442 y una sustitución W en la posición 443 o corresponde a la secuencia SEQ
ID No.:17 (Variante PW (Q93N/P94D/P440F/A442P/L443W)).
14. Muíante que codifica la variante según la reivindicación 1.
15. La muíante de la reivindicación 14 que corresponde a una mutante codificante para variante PV (Q93N/P94D/P440F/A442P/L443V) que tiene sustituciones N, D y F, en las posiciones 93, 94 y 440, respectivamente, y además tiene una sustitución P en la posición 442 y una sustitución V en la posición 443 o corresponde a la secuencia SEQ ID No.:6 como se reivindica en la reivindicación 2, donde dicha mutante tiene secuencia SEQ ID No.:18.
16. La mutante de la reivindicación 14 que corresponde a una mutante codificante para variante GPTQ (Q93N/P94D/P440F/S441G/A442P/L443T/S444Q) que tiene sustituciones N, D y F, en las posiciones 93, 94 y 440, respectivamente, y además tiene una sustitución G en la posición 441, una sustitución P en la posición 442, una sustitución T en la posición 443 y una sustitución Q en la posición 444 o corresponde a la secuencia SEQ ID No.:7 como se reivindica en la reivindicación 3, donde dicha muíante tiene secuencia SEQ ID No.:19.
17. La muíante de la reivindicación 14 que corresponde a una mutaníe codificanle para varianíe PTQ (Q93N/P94D/P440F/S441G/A442P/L443T/S444Q) que íiene susíiíuciones N, D y F, en las posiciones 93, 94 y 440, respecíivameníe, y además íiene una sustitución P en la posición 442, una sustilución T en la posición 443 y una suslilución Q en la posición 444 o corresponde a la secuencia SEQ ID No.:8 como se reivindica en la reivindicación 4, y donde dicha mulaníe íiene secuencia SEQ ID No.:20.
18. La muíaníe de la reivindicación 14 que corresponde a una muíante codificante para variante DE (Q93N/P94D/P440F/S441 D/A442E) que íiene sustituciones N, D y F, en las posiciones 93, 94 y 440, respectivamente, y además íiene una susíiíución D en la posición 441 y una suslilución E en la posición 442 o corresponde a la secuencia SEQ ID No.:9 como se reivindica en la reivindicación 5, y donde dicha mutante íiene secuencia SEQ ID No.:21.
19. La muíanle de la reivindicación 14 que corresponde a una mulante codificante para variante P (Q93N/P94D/P440F/A442P) que tiene susíiíuciones N, D y
F, en las posiciones 93, 94 y 440, respecíivameníe, y además íiene una suslilución P en la posición 442 o corresponde a la secuencia SEQ ID No.:10 como se reivindica en la reivindicación 6, y donde dicha mutante tiene secuencia SEQ ID No.:22.
20. La mutante de la reivindicación 14 que corresponde a una mutante codificante para variante VQ (Q93N/P94D/P440F/L443V/S444Q) que tiene sustituciones N, D y F, en las posiciones 93, 94 y 440, respectivamente, y además tiene una sustilución V en la posición 443 y una suslitución Q en la posición 444 o corresponde a la secuencia SEQ ID No.:11 como se reivindica en la reivindicación 7, y donde dicha mutante tiene secuencia SEQ ID No.:23.
21. La mulante de la reivindicación 14 que corresponde a una mutante codificante para variante PWQ (Q93N/P94D/P440F/A442P/L443W/S444Q) que tiene sustituciones N, D y F, en las posiciones 93, 94 y 440, respectivamente, y además tiene una sustitución P en la posición 442, una sustitución W en la posición 443 y una sustitución Q en la posición 444 o corresponde a la secuencia SEQ ID No.:12 como se reivindica en la reivindicación 8, y donde dicha muíante tiene secuencia SEQ ID No.:24.
22. La muíante de la reivindicación 14 que corresponde a una mutaníe codificaníe para variante PLQ (Q93N/P94D/P440F/A442P/S444Q) que íiene susíiluciones N, D y F, en las posiciones 93, 94 y 440, respectivamente, y además tiene una P en la posición 442 y una sustitución Q en la posición 444 o corresponde a la secuencia SEQ ID No.:13 como se reivindica en la reivindicación 9, y donde dicha muíante tiene secuencia SEQ ID No.:25.
23. La muíante de la reivindicación 14 que corresponde a una mulante codificaníe para variante PIQ (Q93N/P94D/P440F/A442P/L443I/S444Q) que tiene susíiluciones N, D y F, en las posiciones 93, 94 y 440, respeclivamente, y además tiene una sustitución P en la posición 442, una sustilución I en la posición 443 y una suslilución Q en la posición 444 o corresponde a la secuencia SEQ ID No.:14 como se reivindica en la reivindicación 10, y donde dicha mulante tiene secuencia SEQ ID No.:26.
24. La muíante de la reivindicación 14 que corresponde a una muíante codificante para variante PVQ (Q93N/P94D/P440F/A442P/L443V/S444Q) que tiene susíiluciones N, D y F, en las posiciones 93, 94 y 440, respectivamente, y además tiene una sustitución P en la posición 442, una sustitución V en la posición 443 y una sustitución Q en la posición 444 o corresponde a la secuencia SEQ ID No.:15 como se reivindica en la reivindicación 11 , y donde dicha muíanle tiene secuencia SEQ ID No.:27.
25. La muíante de la reivindicación 14 que corresponde a una muíanle codificante para variante GATQ (Q93N/P94D/P440F/S441 G/L443T/S444Q) que tiene sustiíuciones N, D y F, en las posiciones 93, 94 y 440, respeclivamente, y además íiene una suslitución G en la posición 441 , una sustitución T en la posición 443 y una sustitución Q en la posición 444 o corresponde a la secuencia SEQ ID No.:16 como se reivindica en la reivindicación 12, donde dicha muíante tiene secuencia SEQ ID No.:28.
26. La mutante de la reivindicación 14 que corresponde a una muíante codificante para variante PW (Q93N/P94D/P440F/A442P/L443W) que tiene sustituciones N, D y F, en las posiciones 93, 94 y 440, respectivamente, y además tiene una sustitución P en la posición 442 y una sustitución W en la posición 443 o corresponde a la secuencia SEQ ID No.:17 como se reivindica en la reivindicación 13, y donde dicha mutante tiene secuencia SEQ ID No.:29.
PCT/CL2014/000062 2013-11-22 2014-11-19 Variantes de enzima fenilacetona monooxigenasa (pamo) capaces de catalizar conversión de ciclohexanona a caprolactona. WO2015074162A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2013003356A CL2013003356A1 (es) 2013-11-22 2013-11-22 Mutantes del gen que codifica la enzina fenilacetona monooxigenasa (pamo) aislada de termofibida fusca o thermononospora fusca con sustitucines en las posiciones 93,94,y 440 (n,d y f, respectivamente) y combinaciones especificas de las posiciones 441,442,443 y/o 444(g o d,p o e,t,v,i o w y q respectivamente ) con alto rendimiento como catalizadores en la conversion de ciclohexanona a epailon-caprolactona y alta estabilidad termica , adn condificante y secuencias amino acidicas codificadas.
CL3356-2013 2013-11-22

Publications (1)

Publication Number Publication Date
WO2015074162A1 true WO2015074162A1 (es) 2015-05-28

Family

ID=53178765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2014/000062 WO2015074162A1 (es) 2013-11-22 2014-11-19 Variantes de enzima fenilacetona monooxigenasa (pamo) capaces de catalizar conversión de ciclohexanona a caprolactona.

Country Status (3)

Country Link
AR (1) AR098490A1 (es)
CL (1) CL2013003356A1 (es)
WO (1) WO2015074162A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113430216A (zh) * 2021-07-26 2021-09-24 福州大学 一种苯丙酮单加氧酶及在拉唑类药物制备中的应用
CN115927220A (zh) * 2022-08-30 2023-04-07 凯莱英医药集团(天津)股份有限公司 单加氧酶突变体及其应用

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995012668A1 (en) 1993-11-05 1995-05-11 Cornell Research Foundation, Inc. Thermostable xylanase from a thermomonospora fusca gene
WO1996000281A1 (en) 1994-06-24 1996-01-04 Cornell Research Foundation, Inc. Thermostable cellulase from a thermomonospora gene
WO1999010481A2 (en) 1997-08-26 1999-03-04 Genencor International, Inc. Mutant thermomonospora spp. cellulase
US20010018399A1 (en) 2000-01-31 2001-08-30 Rocca Michael C. Composition comprising antimony trifluoride and silica
WO2002016346A1 (en) 2000-08-24 2002-02-28 Union Carbide Chemicals & Plastics Technology Corporation Processes for the manufacture of lactones
US20030113886A1 (en) 1999-02-19 2003-06-19 Brzostowicz Patricia C. Oxidation of a cyclohexanone derivative using a brevibacterium cyclohexanone monooxygenase
WO2004076395A1 (de) 2003-02-26 2004-09-10 Basf Aktiengesellschaft Verfahren zur herstellung von cyclopentanon und caprolacton aus dicarbonsäure-lösun
EP1516046A2 (en) 2001-08-29 2005-03-23 E.I. du Pont de Nemours and Company Genes encoding baeyer-villiger monooxygenases
US6995005B1 (en) 1999-09-30 2006-02-07 Gesellschaft Fuer Biotechnologische Forschung Mbh (Gbf) Enzyme which cleaves ester groups and which is derived from Thermononospora fusca
JP2008247889A (ja) 2007-03-05 2008-10-16 Sumitomo Chemical Co Ltd ε−カプロラクトン化合物の製造方法
CN102260655A (zh) 2009-12-18 2011-11-30 江南大学 一种角质酶的突变体及其制备方法
CN102260634A (zh) 2010-05-28 2011-11-30 中国科学院成都生物研究所 一株高效甲醛降解菌及其用途和使用方法
WO2012038848A1 (en) 2010-09-08 2012-03-29 Basf Se PROCESS FOR PREPARING ε- EPSILON-CAPROLACTONE AND 1,6- HEXANEDIOL
CN102443578A (zh) 2011-12-08 2012-05-09 江南大学 一种葡萄糖异构酶突变体及其应用
WO2012060185A1 (ja) 2010-11-02 2012-05-10 国立大学法人名古屋大学 エステルの製法
US20120142171A1 (en) 2007-09-21 2012-06-07 Marreiro David D Method of forming a high capacitance diode
EP2582677A1 (en) 2010-06-16 2013-04-24 BioAmber S.A.S. Processes for the production of hydrogenated products and derivatives thereof
WO2013067432A1 (en) 2011-11-02 2013-05-10 Genomatica, Inc. Microorganisms and methods for the production of caprolactone

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995012668A1 (en) 1993-11-05 1995-05-11 Cornell Research Foundation, Inc. Thermostable xylanase from a thermomonospora fusca gene
WO1996000281A1 (en) 1994-06-24 1996-01-04 Cornell Research Foundation, Inc. Thermostable cellulase from a thermomonospora gene
WO1999010481A2 (en) 1997-08-26 1999-03-04 Genencor International, Inc. Mutant thermomonospora spp. cellulase
US20030113886A1 (en) 1999-02-19 2003-06-19 Brzostowicz Patricia C. Oxidation of a cyclohexanone derivative using a brevibacterium cyclohexanone monooxygenase
US6995005B1 (en) 1999-09-30 2006-02-07 Gesellschaft Fuer Biotechnologische Forschung Mbh (Gbf) Enzyme which cleaves ester groups and which is derived from Thermononospora fusca
US20010018399A1 (en) 2000-01-31 2001-08-30 Rocca Michael C. Composition comprising antimony trifluoride and silica
WO2002016346A1 (en) 2000-08-24 2002-02-28 Union Carbide Chemicals & Plastics Technology Corporation Processes for the manufacture of lactones
EP1516046A2 (en) 2001-08-29 2005-03-23 E.I. du Pont de Nemours and Company Genes encoding baeyer-villiger monooxygenases
WO2004076395A1 (de) 2003-02-26 2004-09-10 Basf Aktiengesellschaft Verfahren zur herstellung von cyclopentanon und caprolacton aus dicarbonsäure-lösun
JP2008247889A (ja) 2007-03-05 2008-10-16 Sumitomo Chemical Co Ltd ε−カプロラクトン化合物の製造方法
US20120142171A1 (en) 2007-09-21 2012-06-07 Marreiro David D Method of forming a high capacitance diode
CN102260655A (zh) 2009-12-18 2011-11-30 江南大学 一种角质酶的突变体及其制备方法
CN102260634A (zh) 2010-05-28 2011-11-30 中国科学院成都生物研究所 一株高效甲醛降解菌及其用途和使用方法
EP2582677A1 (en) 2010-06-16 2013-04-24 BioAmber S.A.S. Processes for the production of hydrogenated products and derivatives thereof
WO2012038848A1 (en) 2010-09-08 2012-03-29 Basf Se PROCESS FOR PREPARING ε- EPSILON-CAPROLACTONE AND 1,6- HEXANEDIOL
WO2012060185A1 (ja) 2010-11-02 2012-05-10 国立大学法人名古屋大学 エステルの製法
WO2013067432A1 (en) 2011-11-02 2013-05-10 Genomatica, Inc. Microorganisms and methods for the production of caprolactone
CN102443578A (zh) 2011-12-08 2012-05-09 江南大学 一种葡萄糖异构酶突变体及其应用

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
BOCOLA M; SCHUTZ F; LECA F.; VOGEL A; FRAAJE MW; REETZ MT: "Converting Phenylacetone Monooxygenase into Phenylcyclohexanone Monooxygenase by Rational Design : Towards Practical Baeyer-Villiger Monooxygenases", ADV. SYNTH. CATAL., vol. 347, 2005, pages 979 - 86
BOCOLA, M. ET AL.: "Converting Phenylacetone Monooxygenase into Phenylcyclohexanone Monooxygenase by Rational Design: Towards Practical Baeyer--Villiger Monooxygenases.", ADV. SYNTH. CATAL., vol. 347, 2005, pages 979 - 986, XP055345620 *
FRAAJE MW; WU J; HEUTS DPHM; VAN HALLEMOND EW; SPELBERG JHL; JANSSEN DB: "Discovery of a Thermostable Baewyer-Villiger monooxygenase by genome mining", APPL. MICROBIOL. BIOTECHNOL, vol. 86, 2005, pages 393 - 400
JD STEWART: "Cyclohexanone monooxygenase: a useful reagent for asymmetric Baeyer-Villiger Reactions", CURR. ORG. CHEM, vol. 2, 1998, pages 195 - 216
KILLE S; ACEVEDO-ROCHA CG; PARRA LP; ZHANG ZG; REETZ MT; ACEVEDO JP: "Reducing Codon Redundancy and Screening Effort of Combinational Protein Libraries Created by Saturation Mutagenesis", ACS SYNTH. BIOL., vol. 2, no. 2, 2013, pages 83 - 92
KRAGL U; KRUSE W; HUMMEL W; WANDREY C.: "Enzyme Engineering Aspects of Biocatalysis. Cofactor regenerated as Example", BIOTECHNOL. BIOENG., vol. 52, 1996, pages 309 - 19
PARRA, L. P. ET AL.: "Directed Evolution by Using Iterative Saturation Mutagenesis Based on Multiresidue Sites.", CHEMBIOCHEM, vol. 14, no. 17, 2013, pages 2301 - 2309, XP055345617 *
REETZ MT; CARBALLEIRA JD.: "Iterative Saturation Mutagenesis (ISM) for Rapid Directed Evolution of Functional Enzymes", NAT. PROTOC., vol. 2, 2007, pages 891 - 903
REETZ MT; WU S.: "Laboratory Evolution of Robust and Enantioselective Baeyer-Villiger Monooxygenases for Asymmetric Catalysis", J. AM. CHEM. SOC., vol. 131, 2009, pages 15424 - 32
REETZ, M. T. ET AL.: "Laboratory Evolution of Robust and Enantioselective Baeyer-Villiger Monooxygenases for Asymmetric Catalysis.", J. AM. CHEM. SOC., vol. 131, 2009, pages 15424 - 15432, XP055345609 *
WU S; ACEVEDO JP; REETZ MT.: "Induced Allostery in the Directed Evolution of an Enantioselective Baeyer-Villiger Monooxygenase", PROC. NATL. ACAD. SCI. U.S.A, vol. 107, 2010, pages 2775 - 80
WU, S. ET AL.: "Induced allostery in the directed evolution of an enantioselective Baeyer-Villiger monooxygenase.", PNAS, vol. 107, no. 7, 16 February 2010 (2010-02-16), pages 2775 - 2780, XP055345608 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113430216A (zh) * 2021-07-26 2021-09-24 福州大学 一种苯丙酮单加氧酶及在拉唑类药物制备中的应用
CN115927220A (zh) * 2022-08-30 2023-04-07 凯莱英医药集团(天津)股份有限公司 单加氧酶突变体及其应用

Also Published As

Publication number Publication date
AR098490A1 (es) 2016-06-01
CL2013003356A1 (es) 2014-08-08

Similar Documents

Publication Publication Date Title
Heinisch et al. Design strategies for the creation of artificial metalloenzymes
Nie et al. Novel anti-Prelog stereospecific carbonyl reductases from Candida parapsilosis for asymmetric reduction of prochiral ketones
Reetz et al. Laboratory evolution of robust and enantioselective Baeyer− Villiger monooxygenases for asymmetric catalysis
Lauterbach et al. H2‐driven cofactor regeneration with NAD (P)+‐reducing hydrogenases
ES2367847T3 (es) Método para la preparación enzimática de citronelal.
CN107686850A (zh) 一种利用共表达重组菌株转化生产α‑酮戊二酸的方法
Vornholt et al. The quest for xenobiotic enzymes: from new enzymes for chemistry to a novel chemistry of life
Liu et al. Amine dehydrogenases: Current status and potential value for chiral amine synthesis
WO2015074162A1 (es) Variantes de enzima fenilacetona monooxigenasa (pamo) capaces de catalizar conversión de ciclohexanona a caprolactona.
US7943356B2 (en) Alcohol dehydrogenase for the stereoselective production of hydroxy compounds
US20150167032A1 (en) Stereospecific carbonyl reductases
Yum et al. Harnessing DNA as a Designable Scaffold for Asymmetric Catalysis: Recent Advances and Future Perspectives
Wada et al. Cloning and overexpression of the Exiguobacterium sp. F42 gene encoding a new short chain dehydrogenase, which catalyzes the stereoselective reduction of ethyl 3-oxo-3-(2-thienyl) propanoate to ethyl (S)-3-hydroxy-3-(2-thienyl) propanoate
Chadha et al. Microbial alcohol dehydrogenases: recent developments and applications in asymmetric synthesis
CN114908129B (zh) 用于制备(r)-4-氯-3-羟基丁酸乙酯的脱氢酶
CN103820506B (zh) 一种基因重组菌发酵生产辅酶q10的方法
Xu et al. Identification of key residues in Debaryomyces hansenii carbonyl reductase for highly productive preparation of (S)-aryl halohydrins
WO2010050231A1 (ja) シロ-イノシトール産生細胞および当該細胞を用いたシロ-イノシトール製造方法
Ordu et al. Protein engineering applications on industrially important enzymes: Candida methylica FDH as a case study
Booth et al. Artificial imine reductases: Developments and future directions
Wang et al. Stereoselective synthesis of chiral δ-lactones via an engineered carbonyl reductase
CN115704045A (zh) 一种生产单细胞蛋白的方法及碳固定系统
JP5103616B2 (ja) (r)−2−クロロマンデル酸メチルエステルの製造方法
CN105062986B (zh) 羰基还原酶基因的应用、含该基因的工程菌及其催化还原反应的方法
CN110669743A (zh) 来源于抗辐射奇异球菌p450单加氧酶突变体及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864735

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014864735

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014864735

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE