WO2015072694A1 - 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막 및 그 제조방법 - Google Patents

가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막 및 그 제조방법 Download PDF

Info

Publication number
WO2015072694A1
WO2015072694A1 PCT/KR2014/010537 KR2014010537W WO2015072694A1 WO 2015072694 A1 WO2015072694 A1 WO 2015072694A1 KR 2014010537 W KR2014010537 W KR 2014010537W WO 2015072694 A1 WO2015072694 A1 WO 2015072694A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
benzoxazole
imide
formula
membrane
Prior art date
Application number
PCT/KR2014/010537
Other languages
English (en)
French (fr)
Inventor
이영무
칼레마리올라
조혜진
이종명
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130139396A external-priority patent/KR101557326B1/ko
Priority claimed from KR1020130139217A external-priority patent/KR101572512B1/ko
Priority claimed from KR1020130139389A external-priority patent/KR101557363B1/ko
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to EP14861736.8A priority Critical patent/EP3069784B1/en
Priority to CN201480062703.5A priority patent/CN105848768B/zh
Priority to CA2930848A priority patent/CA2930848C/en
Priority to US15/036,727 priority patent/US10040034B2/en
Publication of WO2015072694A1 publication Critical patent/WO2015072694A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/247Heating methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0022Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/18Service support devices; Network management devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a flue gas separation membrane comprising a heat-converting poly (benzoxazole-imide) copolymer having a crosslinked structure and a method for preparing the same, and more particularly to ortho-hydroxy having a carboxylic acid.
  • microporous organic polymers polymers with high levels of free volume, known as microporous organic polymers, have emerged as one of the strongest candidates in the separation process because of their ability to adsorb on small gas molecules as well as their enhanced diffusion capacity. Therefore, organic polymers that can be applied as gas separation membranes, noting that inherent microporous polymers based on rigid ladder-type structures with twisted regions that prevent efficient packing of polymer chain spaces exhibit relatively high gas permeability and selectivity. Various studies are underway to develop the system.
  • Non-Patent Document 1 It has been reported that the transmittance of 10 to 100 times higher, the selectivity of carbon dioxide / methane (CO 2 / CH 4 ) is still equivalent to the conventional commercialized cellulose acetate membrane, there is room for improvement (Non-Patent Document 1 ).
  • the present inventors reported a result of increasing the stiffness of the polymer chain by thermally converting the hydroxy polyimide copolymer membrane to introduce benzoxazole groups, thereby improving gas separation performance by the contribution of free volume elements. If more than 80% of the benzoxazole groups are introduced into the polymer chain, they are too hard to break easily, and mechanical shrinkage or shrinkage of the membrane area occurs due to the release of large amounts of CO 2 during the thermal conversion process. In the area
  • a polybenzoxazole membrane was prepared by thermally converting a blend membrane of polyimide having a hydroxy group at the ortho position with poly (styrene sulfonic acid) at 300 to 650 ° C. to prepare a polybenzoxazole membrane. It has been reported that the selectivity of carbon dioxide / methane (CO 2 / CH 4 ) is improved by up to 95% compared to polybenzoxazole membrane prepared by thermal conversion from hydroxypolyimide containing no sulfonic acid. However, the method for synthesizing polyimide, which is ultimately a precursor for preparing polybenzoxazole membranes, has not been disclosed in detail.
  • the properties of the thermally converted polybenzoxazole are increased by various methods such as solution phase thermal imidization, solid phase thermal imidization, and chemical imidization based on the fact that the properties of the aromatic polybenzoxazole are affected by the synthesis method of the aromatic polyimide.
  • solution phase thermal imidization solid phase thermal imidization
  • chemical imidization based on the fact that the properties of the aromatic polybenzoxazole are affected by the synthesis method of the aromatic polyimide.
  • a polyimide having a hydroxy group at the ortho position is synthesized by chemical imidization method, and thermally converted to obtain a polybenzoxazole film, and finally irradiated with ultraviolet (UV) light to form a polybenzoxazole having a crosslinked structure.
  • UV ultraviolet
  • the polyimide membrane is thermally imidized because the polyimide is manufactured by chemical imidization, and thus the polybenzoxazole membrane thermally converted from the polybenzoxazole membrane has a crosslinked structure.
  • Patent Document 3 there is a disadvantage in the process of using an ultraviolet irradiation device in order to form a crosslinked structure.
  • thermally-converted polybenzoxazole membranes can be regarded as precursors of polyimide, the content of benzoxazole groups in polymer chains, and crosslinking of polymer chains.
  • a polyimide membrane having a hydroxyl group and a carboxylic acid in a polyimide repeating unit is synthesized by a solution-phase thermal imidization method, and then only heat treated to have a cross-linked structure and a polybenzoxazole by thermal conversion. It was found that a membrane was obtained.
  • a solution phase thermal imidization method synthesizes a copolymer having a hydroxyl group and a carboxylic acid in a polyimide repeat unit and having a hydroxy polyimide content of less than 80% in the copolymer polymer chain, and then chemically crosslinking and subsequent thermal conversion.
  • the polybenzoxazole membrane having a crosslinked structure having a benzoxazole group content of less than 80% in the copolymer polymer chain is formed by thermal conversion at the same time as thermal crosslinking or direct thermal crosslinking, the mechanical properties and thermal properties are excellent and the separation performance as a gas separation membrane Knowing this remarkable improvement, it came to complete this invention.
  • Patent Document 1 Korean Laid-Open Patent Publication No. 10-2012-0100920
  • Patent Document 2 United States Patent Application Publication US 2012/0305484
  • Patent Document 3 Japanese Patent Application Publication No. 2012-521871
  • Non-Patent Document 1 Y.M. Lee et al., Science 318, 254-258 (2007)
  • Non Patent Literature 2 Y.M. Lee et al., J. Membr. Science 350, 301-309 (2010)
  • the present invention has been made in view of the above problems, and an object of the present invention is to separate the flue gas comprising a heat conversion poly (benzoxazole-imide) copolymer having a crosslinked structure having excellent gas permeability and selectivity at the same time. It is to provide a membrane and a method of manufacturing the same.
  • Another object of the present invention is that the benzoxazole group content in the copolymer polymer chain with excellent mechanical properties and thermal properties, low shrinkage of the membrane area, and high gas permeability and selectivity at the same time is less than 80%. It is an object of the present invention to provide a flue gas separation membrane comprising a thermally converting poly (benzoxazole-imide) copolymer having a crosslinked structure and a method of manufacturing the same.
  • the present invention for achieving the object as described above, i) by reacting 3, 5-diaminobenzoic acid as an acid dianhydride, ortho-hydroxy diamine and a comonomer to obtain a polyamic acid solution, the azeotropic thermal imidization method Synthesizing an ortho-hydroxy polyimide copolymer having a carboxylic acid;
  • step ii) dissolving the ortho-hydroxy polyimide copolymer having the carboxylic acid synthesized in step i) in an organic solvent and casting the film;
  • the method provides a method for preparing a thermally converting poly (benzoxazole-imide) membrane having a crosslinked structure for flue gas separation.
  • the acid dianhydride of step i) is characterized in that represented by the following formula (1).
  • Ar is an aromatic ring group selected from a substituted or unsubstituted tetravalent C6-C24 arylene group and a substituted or unsubstituted tetravalent C4-C24 heterocyclic group, the aromatic ring group Present alone or two or more form a condensed ring with each other; two or more single bonds, O, S, CO, SO 2 , Si (CH 3 ) 2 , (CH 2 ) p (1 ⁇ P ⁇ 10 ), (CF 2 ) q (1 ⁇ q ⁇ 10), C (CH 3 ) 2 , C (CF 3 ) 2 or CO-NH)
  • Ortho-hydroxy diamine of step i) is characterized in that represented by the following formula (2).
  • Q is a single bond; O, S, CO, SO 2 , Si (CH 3 ) 2 , (CH 2 ) p (1 ⁇ P ⁇ 10), (CF 2 ) q (1 ⁇ q ⁇ 10), C (CH 3 ) 2 , C (CF 3 ) 2 , CO-NH, C (CH 3 ) (CF 3 ), or a substituted or unsubstituted phenylene group)
  • the azeotropic thermal imidization method of step i) is characterized in that toluene or xylene is added to the polyamic acid solution and stirred to perform an imidization reaction at 180 to 200 ° C. for 6 to 12 hours.
  • Heat treatment of step iii) is carried out by increasing the temperature to 350 ⁇ 450 °C at a temperature rising rate of 1 ⁇ 20 °C / min in a high purity inert gas atmosphere and is maintained by isothermal for 0.1 to 3 hours.
  • the present invention also provides a heat conversion poly (benzoxazole-imide) membrane having a crosslinked structure for flue gas separation prepared by the above method.
  • the membrane is characterized by having a repeating unit represented by the following formula (1).
  • Ar is an aromatic ring group selected from a substituted or unsubstituted tetravalent C6-C24 arylene group and a substituted or unsubstituted tetravalent C4-C24 heterocyclic group, the aromatic ring group alone Two or more form a condensed ring with each other; two or more single bonds, O, S, CO, SO 2 , Si (CH 3 ) 2 , (CH 2 ) p (1 ⁇ P ⁇ 10) , (CF 2 ) q (1 ⁇ q ⁇ 10), C (CH 3 ) 2 , C (CF 3 ) 2 or CO-NH,
  • Q is a single bond; O, S, CO, SO 2 , Si (CH 3 ) 2 , (CH 2 ) p (1 ⁇ P ⁇ 10), (CF 2 ) q (1 ⁇ q ⁇ 10), C (CH 3 ) 2 , C (CF 3 ) 2 , CO-NH, C (CH 3 ) (CF 3 ), or a substituted or unsubstituted phenylene group,
  • the film is characterized in that the interplanar distance ( d- spacing) is 0.62 ⁇ 0.67 nm.
  • the membrane is characterized in that the density is 1.38 ⁇ 1.43 g / cm 3 .
  • the membrane is characterized in that the d 3 average pore diameter is 4.0 mm 3 , and the d 4 average pore diameter is 8.6 mm 3.
  • the present invention provides a flue gas separation membrane comprising a cross-linked heat conversion poly (benzoxazole-imide) copolymer having a repeating unit represented by the following formula (2).
  • Ar 1 is an aromatic ring group selected from a substituted or unsubstituted tetravalent C6-C24 arylene group and a substituted or unsubstituted tetravalent C4-C24 heterocyclic group, the aromatic ring group Present alone or two or more form a condensed ring with each other; two or more single bonds, O, S, CO, SO 2 , Si (CH 3 ) 2 , (CH 2 ) p (1 ⁇ P ⁇ 10 ), (CF 2 ) q (1 ⁇ q ⁇ 10), C (CH 3 ) 2 , C (CF 3 ) 2 or CO-NH,
  • Q is a single bond; O, S, CO, SO 2 , Si (CH 3 ) 2 , (CH 2 ) p (1 ⁇ P ⁇ 10), (CF 2 ) q (1 ⁇ q ⁇ 10), C (CH 3 ) 2 , C (CF 3 ) 2 , CO-NH, C (CH 3 ) (CF 3 ), or a substituted or unsubstituted phenylene group,
  • Ar 2 is an aromatic ring group selected from a substituted or unsubstituted divalent C6-C24 arylene group and a substituted or unsubstituted divalent C4-C24 heterocyclic group, said aromatic ring group being present alone; Two or more of each other form a condensed ring; At least two single bonds, O, S, CO, SO 2 , Si (CH 3 ) 2 , (CH 2 ) p (1 ⁇ P ⁇ 10), (CF 2 ) q (1 ⁇ q ⁇ 10), C (CH 3 ) 2 , C (CF 3 ) 2 or CO-NH,
  • the flue gas separation membrane comprising the cross-linked heat conversion poly (benzoxazole-imide) copolymer is characterized in that the inter-planar distance ( d- spacing) is 6.67 ⁇ 6.69 kPa.
  • Flue gas separation membrane comprising the cross-linked heat conversion poly (benzoxazole-imide) copolymer is characterized in that the density is 1.38 ⁇ 1.43 g / cm 3 .
  • the present invention provides a polyamic acid solution by reacting an aromatic diamine, 3, 5-diaminobenzoic acid as I) an acid dianhydride, an ortho-hydroxy diamine and a comonomer, followed by carboxyl by azeotropic thermal imidization. Synthesizing an ortho-hydroxy polyimide copolymer having an acid;
  • step II reacting the polyimide copolymer of step I) with a diol to synthesize a monoesterified ortho-hydroxy polyimide copolymer;
  • step III) The monoesterified ortho-hydroxy polyimide copolymer of step II) is cast to form a polymer solution dissolved in an organic solvent, followed by transesterification crosslinking reaction to form ortho-hydroxy poly Synthesizing a mid copolymer membrane;
  • Acid dianhydride of step I) is characterized in that represented by the general formula (3).
  • Ar 1 is an aromatic ring group selected from a substituted or unsubstituted tetravalent C6-C24 arylene group and a substituted or unsubstituted tetravalent C4-C24 heterocyclic group, and the aromatic ring
  • the groups are present alone; at least two form a condensed ring with each other; at least two are single bonds, O, S, CO, SO 2 , Si (CH 3 ) 2 , (CH 2 ) p (1 ⁇ P ⁇ 10), (CF 2 ) q (1 ⁇ q ⁇ 10), C (CH 3 ) 2 , C (CF 3 ) 2 or CO-NH)
  • Ortho-hydroxy diamine of step I) is characterized in that represented by the general formula (2).
  • the aromatic diamine of step I) is characterized in that represented by the general formula (4).
  • Ar 2 is an aromatic ring group selected from a substituted or unsubstituted divalent C6-C24 arylene group and a substituted or unsubstituted divalent C4-C24 heterocyclic group, the aromatic ring
  • the groups are present alone; at least two form a condensed ring with each other; at least two are single bonds, O, S, CO, SO 2 , Si (CH 3 ) 2 , (CH 2 ) p (1 ⁇ P ⁇ 10), (CF 2 ) q (1 ⁇ q ⁇ 10), C (CH 3 ) 2 , C (CF 3 ) 2 or CO-NH)
  • the azeotropic thermal imidization method of step I) is characterized in that toluene or xylene is added to the polyamic acid solution and stirred to perform an imidization reaction at 180 to 200 ° C. for 6 to 12 hours.
  • the diol of step II) is any one selected from the group consisting of ethylene glycol, propylene glycol, 1,4-butylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, and benzenedimethanol It is characterized by one.
  • step III) The monoesterification of step III) is carried out for 18-24 hours at 140-160 ° C. with an excess of diol corresponding to at least 50 times the carboxylic acid equivalent contained in the copolymer of step I) under a para-toluenesulfonic acid catalyst. It is characterized by.
  • Transesterification crosslinking reaction of step III) is characterized in that carried out by heat treatment under vacuum at 200 ⁇ 250 °C, 18 ⁇ 24 hours.
  • step IV The thermal conversion of step IV) is performed by increasing the temperature to 350-450 ° C. at a temperature rising rate of 1-20 ° C./min in a high purity inert gas atmosphere, and then maintaining the isothermal state for 0.1-3 hours.
  • the present invention is a) acid dianhydride, ortho-hydroxy diamine and a comonomer to react with aromatic diamine, 3, 5-diaminobenzoic acid to obtain a polyamic acid solution, and then azeotropic thermal imidization Synthesizing an ortho-hydroxy polyimide copolymer having a;
  • step b) forming an ortho-hydroxy polyimide copolymer having a carboxylic acid synthesized in step a) in an organic solvent and casting the film;
  • the acid dianhydride of step a) is characterized in that represented by the general formula (3).
  • the ortho-hydroxy diamine of step a) is characterized in that represented by the general formula (2).
  • the aromatic diamine of step a) is characterized in that represented by the general formula (4).
  • step a toluene or xylene is added to the polyamic acid solution, followed by stirring to perform an imidization reaction at 180 to 200 ° C. for 6 to 12 hours.
  • step c) The heat treatment of step c) is carried out by increasing the temperature to 350 ⁇ 450 °C at an elevated temperature rate of 1 ⁇ 20 °C / min in a high purity inert gas atmosphere, characterized in that it is carried out by maintaining an isothermal state for 0.1 to 3 hours.
  • Flue gas separation membrane comprising a cross-linked heat conversion poly (benzoxazole-imide) copolymer of the cross-linked structure represented by the formula (2) prepared by the step a) to c) is the inter-planar distance ( d- spacing) is It is characterized in that the 6.39 ⁇ 6.57 ⁇ .
  • Flue gas separation membrane comprising a heat conversion poly (benzoxazole-imide) copolymer of the cross-linked structure represented by the formula (2) prepared by including a) to c) has a density of 1.38 ⁇ 1.41 g / cm It is characterized by three .
  • a heat conversion poly (benzoxazole-imide) copolymer membrane having a crosslinked structure for flue gas separation is prepared by only heat treatment without undergoing a chemical process for forming a crosslinked structure and a complicated process such as UV irradiation.
  • the flue gas separation membrane produced thereby is not only excellent in permeability and selectivity, but also simple in the manufacturing process, and commercialized by mass production.
  • the flue gas separation membrane comprising a thermally converting poly (benzoxazole-imide) copolymer having a novel crosslinking structure having a content of benzoxazole group in the copolymer polymer chain of less than 80% according to the present invention is a polymer chain. This less packed, more spaced structure has enough room for small molecules to permeate and diffuse.
  • the mechanical properties and thermal properties are excellent, the shrinkage of the membrane area is reduced, the gas permeability and selectivity are high at the same time, the gas separation performance is excellent.
  • FIG. 3 is an ATR-FTIR spectrum of a thermally converting poly (benzoxazole-imide) copolymer membrane having a crosslinked structure prepared according to Examples 2 to 6.
  • FIG. 3 is an ATR-FTIR spectrum of a thermally converting poly (benzoxazole-imide) copolymer membrane having a crosslinked structure prepared according to Examples 2 to 6.
  • thermogravimetric-mass spectrometry (TG-MS) graph showing the thermogravimetric reduction characteristics of the HPIDABA-25 membrane obtained in Preparation Example 6.
  • HPIDABA-5 and HPIDABA-25 obtained according to Film Production Examples 2 and 6, HPI formed according to Reference Example 1, and HPIMPD-5 formed according to Reference Example 2, respectively.
  • FIG. 7 is a graph showing the permeability and selectivity of CO 2 from a CO 2 / CH 4 mixed gas using poly (benzoxazole-imide) copolymer membrane prepared according to Examples 7 to 11 and Comparative Examples 2 and 3 .
  • FIG 9 is a graph showing the permeability and selectivity of CO 2 from a CO 2 / CH 4 mixed gas using poly (benzoxazole-imide) copolymer membrane prepared according to Examples 12 to 16 and Comparative Examples 2 and 3 .
  • FIG 10 is a graph showing the permeability and selectivity of CO 2 from a CO 2 / N 2 mixed gas using poly (benzoxazole-imide) copolymer membrane prepared according to Examples 12 to 16 and Comparative Examples 2 and 3 .
  • Flue gas means a gas emitted from a partial or complete combustion of a hydrocarbon fuel, and mainly contains carbon dioxide, water vapor and nitrogen, in some cases, with one or more hydrogen, oxygen, carbon monoxide changes in the environment of the earth It is defined as a trace amount of pollutants containing nitrogen oxides, sulfur oxides and fine particle materials which have a potential to affect, and the present invention is to provide such a flue gas separation membrane and a method for producing the same.
  • the heat conversion poly (benzoxazole-imide) copolymer membrane having a crosslinked structure for flue gas separation is based on the synthesis of polyimide prepared by imidizing a polyamic acid obtained by reacting an acid dianhydride with a diamine. It is done. Furthermore, in order to have a crosslinked structure between polymer chains only by heat treatment, a repeating unit must have a functional group such as carboxylic acid. In addition, the structure is converted from polyimide to polybenzoxazole during the heat treatment process, so that a functional group such as a hydroxy group in the ortho-position of the aromatic imide linkage attacks the carbonyl group of the imide ring to form a carboxy-benzoxazole structure.
  • a heat conversion poly (benzoxazole-) having a cross-linked structure for flue gas separation through a simple process as follows. Imide) copolymer membrane.
  • an acid dianhydride, an ortho-hydroxy diamine, and a comonomer are reacted with 3, 5-diaminobenzoic acid to obtain a polyamic acid solution, followed by azeotropic thermal imidization, Synthesizing a so-hydroxy polyimide copolymer;
  • step ii) dissolving the ortho-hydroxy polyimide copolymer having the carboxylic acid synthesized in step i) in an organic solvent and casting the film;
  • the method provides a method for preparing a thermally converting poly (benzoxazole-imide) copolymer membrane having a crosslinked structure for flue gas separation.
  • an acid dianhydride in order to synthesize polyimide, first, an acid dianhydride must be reacted with a diamine to obtain a polyamic acid.
  • a compound represented by the following general formula (1) is used as the acid dianhydride.
  • Ar is an aromatic ring group selected from a substituted or unsubstituted tetravalent C6-C24 arylene group and a substituted or unsubstituted tetravalent C4-C24 heterocyclic group, the aromatic ring group Present alone or two or more form a condensed ring with each other; two or more single bonds, O, S, CO, SO 2 , Si (CH 3 ) 2 , (CH 2 ) p (1 ⁇ P ⁇ 10 ), (CF 2 ) q (1 ⁇ q ⁇ 10), C (CH 3 ) 2 , C (CF 3 ) 2 or CO-NH)
  • any acid dianhydride may be used without limitation as long as it is defined in Formula 1, but considering the fact that the thermal and chemical properties of the synthesized polyimide can be further improved. It is preferable to use 4,4'-hexafluoroisopropylidene phthalic anhydride (6FDA) which has.
  • 6FDA 4,4'-hexafluoroisopropylidene phthalic anhydride
  • the ortho-hydroxy polyimide in order to have a poly (benzoxazole-imide) copolymer structure, can be introduced by thermal conversion of ortho-hydroxy polyimide.
  • the compound represented by following General formula (2) is used as an ortho-hydroxy diamine.
  • Q is a single bond; O, S, CO, SO 2 , Si (CH 3 ) 2 , (CH 2 ) p (1 ⁇ P ⁇ 10), (CF 2 ) q (1 ⁇ q ⁇ 10), C (CH 3 ) 2 , C (CF 3 ) 2 , CO-NH, C (CH 3 ) (CF 3 ), or a substituted or unsubstituted phenylene group)
  • any one as defined in the general formula (2) can be used without limitation, but in view of being able to further improve the thermal and chemical properties of the polyimide to be synthesized 2, More preferably, 2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (bisAPAF) is used.
  • bisAPAF 2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane
  • ortho-hydroxy polyimide copolymers having carboxylic acids can be synthesized by reacting 5-acid aminoanhydride of Formula 1 with ortho-hydroxy diamine of Formula 2 using 5-diaminobenzoic acid. .
  • step i) the acid dianhydride of Formula 1, ortho-hydroxy diamine of Formula 2 and 3, 5-diaminobenzoic acid are dissolved in an organic solvent such as N-methylpyrrolidone (NMP) and After stirring to obtain a polyamic acid solution, an ortho-hydroxy polyimide copolymer having a carboxylic acid represented by the following structural formula 1 is synthesized by azeotropic thermal imidization.
  • NMP N-methylpyrrolidone
  • the azeotropic thermal imidization method adds toluene or xylene to the polyamic acid solution and stirs it to perform an imidization reaction at 180 to 200 ° C. for 6 to 12 hours, during which the water released while the imide ring is generated. Is separated as an azeotrope of toluene or xylene.
  • step ii) a polymer solution obtained by dissolving an ortho-hydroxy polyimide copolymer having the carboxylic acid of step i) represented by Formula 1 in an organic solvent such as N-methylpyrrolidone (NMP) By casting on a glass plate to form a film, an ortho-hydroxy polyimide copolymer film having a carboxylic acid is obtained.
  • NMP N-methylpyrrolidone
  • a heat conversion poly (benzoxazole-imide) copolymer membrane having a crosslinked structure for flue gas separation having a repeating unit represented by the following formula (1) as a final target is prepared by only heat treating the membrane obtained in step ii).
  • Ar is an aromatic ring group selected from a substituted or unsubstituted tetravalent C6-C24 arylene group and a substituted or unsubstituted tetravalent C4-C24 heterocyclic group, the aromatic ring group alone Two or more form a condensed ring with each other; two or more single bonds, O, S, CO, SO 2 , Si (CH 3 ) 2 , (CH 2 ) p (1 ⁇ P ⁇ 10) , (CF 2 ) q (1 ⁇ q ⁇ 10), C (CH 3 ) 2 , C (CF 3 ) 2 or CO-NH,
  • Q is a single bond; O, S, CO, SO 2 , Si (CH 3 ) 2 , (CH 2 ) p (1 ⁇ P ⁇ 10), (CF 2 ) q (1 ⁇ q ⁇ 10), C (CH 3 ) 2 , C (CF 3 ) 2 , CO-NH, C (CH 3 ) (CF 3 ), or a substituted or unsubstituted phenylene group,
  • the heat treatment is completed by increasing the temperature up to 350 ⁇ 450 °C at a temperature rising rate of 1 ⁇ 20 °C / min in a high-purity inert gas atmosphere, and then isothermally maintained for 0.1 to 3 hours.
  • the present invention provides a flue gas separation membrane comprising a cross-linked heat conversion poly (benzoxazole-imide) copolymer having a repeating unit represented by the following formula (2).
  • Ar 1 is an aromatic ring group selected from a substituted or unsubstituted tetravalent C6-C24 arylene group and a substituted or unsubstituted tetravalent C4-C24 heterocyclic group, the aromatic ring group Present alone or two or more form a condensed ring with each other; two or more single bonds, O, S, CO, SO 2 , Si (CH 3 ) 2 , (CH 2 ) p (1 ⁇ P ⁇ 10 ), (CF 2 ) q (1 ⁇ q ⁇ 10), C (CH 3 ) 2 , C (CF 3 ) 2 or CO-NH,
  • Q is a single bond; O, S, CO, SO 2 , Si (CH 3 ) 2 , (CH 2 ) p (1 ⁇ P ⁇ 10), (CF 2 ) q (1 ⁇ q ⁇ 10), C (CH 3 ) 2 , C (CF 3 ) 2 , CO-NH, C (CH 3 ) (CF 3 ), or a substituted or unsubstituted phenylene group,
  • Ar 2 is an aromatic ring group selected from a substituted or unsubstituted divalent C6-C24 arylene group and a substituted or unsubstituted divalent C4-C24 heterocyclic group, said aromatic ring group being present alone; Two or more of each other form a condensed ring; At least two single bonds, O, S, CO, SO 2 , Si (CH 3 ) 2 , (CH 2 ) p (1 ⁇ P ⁇ 10), (CF 2 ) q (1 ⁇ q ⁇ 10), C (CH 3 ) 2 , C (CF 3 ) 2 or CO-NH,
  • the structure of the poly (benzoxazole-imide) copolymer represented by the formula (2) is based on the synthesis of a polyimide prepared by imidizing a polyamic acid obtained by reacting an acid dianhydride with a diamine. Furthermore, in order to have a crosslinked structure in a chemically covalently bonded state, as shown in the z-side structural unit of Chemical Formula 2, it must have a structure of a polyimide copolymer derived from a diamine compound having a functional group such as carboxylic acid.
  • the thermally converting polybenzoxazole has a functional group such as a hydroxyl group at the ortho-position of the aromatic imide linkage attacking the carbonyl group of the imide ring to form an intermediate of the carboxy-benzoxazole structure. It is synthesize
  • the heat conversion poly (benzoxazole-imide) copolymer synthesized in this way is too hard to be broken when manufactured into a membrane when the content of the benzoxazole group in the copolymer polymer chain is 80% or more, and mechanical properties The amount of CO 2 is released during the heat conversion process, or the shrinkage of the membrane area may occur, and thus the gas permeability and selectivity of the large-area membrane may be reduced. Therefore, the present invention provides benzoxazole in the copolymer polymer chain. Another technical feature is to lower the content of groups to less than 80%, more preferably to less than 50%.
  • cross-linked heat conversion poly (benzox) having a repeating unit represented by the formula (2) having a content of the benzoxazole group in the copolymer polymer chain is less than 80% through a multi-step synthetic route as follows To prepare a flue gas separation membrane comprising a sol-imide) copolymer.
  • step II reacting the polyimide copolymer of step I) with a diol to synthesize a monoesterified ortho-hydroxy polyimide copolymer;
  • step III) The monoesterified ortho-hydroxy polyimide copolymer of step II) is cast to form a polymer solution dissolved in an organic solvent, followed by transesterification crosslinking reaction to form ortho-hydroxy poly Synthesizing a mid copolymer membrane;
  • Ar 1 is an aromatic ring group selected from a substituted or unsubstituted tetravalent C6-C24 arylene group and a substituted or unsubstituted tetravalent C4-C24 heterocyclic group, and the aromatic ring
  • the groups are present alone; at least two form a condensed ring with each other; at least two are single bonds, O, S, CO, SO 2 , Si (CH 3 ) 2 , (CH 2 ) p (1 ⁇ P ⁇ 10), (CF 2 ) q (1 ⁇ q ⁇ 10), C (CH 3 ) 2 , C (CF 3 ) 2 or CO-NH)
  • any acid dianhydride may be used without limitation as long as it is defined in Formula 3, but considering the fact that the thermal and chemical properties of the synthesized polyimide can be further improved. It is preferable to use 4,4'-hexafluoroisopropylidene phthalic anhydride (6FDA) which has.
  • 6FDA 4,4'-hexafluoroisopropylidene phthalic anhydride
  • the ortho-hydroxy polyimide in order to have a poly (benzoxazole-imide) copolymer structure, can be introduced by thermal conversion of ortho-hydroxy polyimide.
  • the compound represented by General formula (2) is used as an ortho-hydroxy diamine.
  • Q is a single bond; O, S, CO, SO 2 , Si (CH 3 ) 2 , (CH 2 ) p (1 ⁇ P ⁇ 10), (CF 2 ) q (1 ⁇ q ⁇ 10), C (CH 3 ) 2 , C (CF 3 ) 2 , CO-NH, C (CH 3 ) (CF 3 ), or a substituted or unsubstituted phenylene group)
  • any one can be used without limitation as long as it is defined in Formula 2, but it is more preferable to use 3,3-dihydroxybenzidine (HAB) which is easy to react.
  • HAB 3,3-dihydroxybenzidine
  • a polyimide structural unit is introduced into the copolymer by reacting with the acid dianhydride of the general formula (3).
  • Ar 2 is an aromatic ring group selected from a substituted or unsubstituted divalent C6-C24 arylene group and a substituted or unsubstituted divalent C4-C24 heterocyclic group, the aromatic ring
  • the groups are present alone; at least two form a condensed ring with each other; at least two are single bonds, O, S, CO, SO 2 , Si (CH 3 ) 2 , (CH 2 ) p (1 ⁇ P ⁇ 10), (CF 2 ) q (1 ⁇ q ⁇ 10), C (CH 3 ) 2 , C (CF 3 ) 2 or CO-NH)
  • aromatic diamine any one as defined in the general formula (4) can be used without limitation, but the lower the cost, the lower the cost of the entire process during mass production is preferred, 2,4,6-trimethyl-phenylenediamine (DAM ) Can be used more preferably.
  • DAM 2,4,6-trimethyl-phenylenediamine
  • step I) the acid dianhydride of Formula 3, ortho-hydroxy diamine of Formula 2, and the aromatic diamine of Formula 4 and 3, 5-diaminobenzoic acid (DABA) react together together as a comonomer
  • Terpolymers having repeating units consisting of -hydroxy polyimide structural units-polyimide structural units-carboxylic acid-containing polyimide structural units can be synthesized and thus thermally converted to polybenzoxazoles by a later heat treatment process
  • the content of ortho-hydroxy polyimide structural units can be controlled to less than 80%.
  • step I) the acid dianhydride of Formula 3, ortho-hydroxy diamine of Formula 2, aromatic diamine of Formula 4, and 3, 5-diaminobenzoic acid (DABA) are N-methylpyrrolidone
  • organic solvent such as (NMP)
  • ortho-hydroxy polyimide aerial having a carboxylic acid represented by the following structural formula 2 by azeotropic thermal imidization Synthesize the coalesce.
  • the azeotropic thermal imidization method adds toluene or xylene to the polyamic acid solution and stirs it to perform an imidization reaction at 180 to 200 ° C. for 6 to 12 hours, during which the water released while the imide ring is generated. Is separated as an azeotrope of toluene or xylene.
  • step I) the polyimide copolymer of step I) and the diol are reacted to synthesize a monoesterified ortho-hydroxy polyimide copolymer represented by Structural Formula 3 below.
  • the diol is any one selected from the group consisting of ethylene glycol, propylene glycol, 1,4-butylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, and benzenedimethanol 1,4-butylene glycol is more preferred, but is not limited thereto.
  • step II is carried out at a temperature of 18 to 140-160 °C an excess of diol corresponding to at least 50 times the carboxylic acid equivalent contained in the polyimide copolymer represented by the formula (2) under a para-toluenesulfonic acid catalyst Reaction for ⁇ 24 hours.
  • heat treatment is performed under vacuum at 200 to 250 ° C. for 18 to 24 hours.
  • the heat conversion poly (benzoxazole) of the cross-linked structure represented by the formula (2) as a final target by thermally converting the ortho-hydroxy polyimide copolymer membrane having the cross-linked structure of step III) represented by the formula (4) -Imide) to produce a flue gas separation membrane comprising a copolymer.
  • the thermal conversion is completed by raising the temperature up to 350 ⁇ 450 °C at a temperature rising rate of 1 ⁇ 20 °C / min in a high-purity inert gas atmosphere and then maintained isothermal for 0.1 to 3 hours.
  • the present invention for the separation of flue gas comprising a heat conversion poly (benzoxazole-imide) copolymer of the cross-linked structure represented by the formula (2) only by heat treatment without undergoing a complicated process such as chemical methods or UV irradiation
  • a heat conversion poly (benzoxazole-imide) copolymer of the cross-linked structure represented by the formula (2) only by heat treatment without undergoing a complicated process such as chemical methods or UV irradiation
  • an acid dianhydride, an ortho-hydroxy diamine and a comonomer are reacted with an aromatic diamine, 3, 5-diaminobenzoic acid to obtain a polyamic acid solution, followed by azeotropic thermal imidization.
  • step b) forming an ortho-hydroxy polyimide copolymer having a carboxylic acid synthesized in step a) in an organic solvent and casting the film;
  • Ar 1 is an aromatic ring group selected from a substituted or unsubstituted tetravalent C6-C24 arylene group and a substituted or unsubstituted tetravalent C4-C24 heterocyclic group, and the aromatic ring
  • the groups are present alone; at least two form a condensed ring with each other; at least two are single bonds, O, S, CO, SO 2 , Si (CH 3 ) 2 , (CH 2 ) p (1 ⁇ P ⁇ 10), (CF 2 ) q (1 ⁇ q ⁇ 10), C (CH 3 ) 2 , C (CF 3 ) 2 or CO-NH)
  • any acid dianhydride may be used without limitation as long as it is defined in Formula 3, but considering the fact that the thermal and chemical properties of the synthesized polyimide can be further improved. It is preferable to use 4,4'-hexafluoroisopropylidene phthalic anhydride (6FDA) which has.
  • 6FDA 4,4'-hexafluoroisopropylidene phthalic anhydride
  • the ortho-hydroxy polyimide in order to have a poly (benzoxazole-imide) copolymer structure, can be introduced by thermal conversion of ortho-hydroxy polyimide.
  • the compound represented by following General formula (2) is used as an ortho-hydroxy diamine.
  • Q is a single bond; O, S, CO, SO 2 , Si (CH 3 ) 2 , (CH 2 ) p (1 ⁇ P ⁇ 10), (CF 2 ) q (1 ⁇ q ⁇ 10), C (CH 3 ) 2 , C (CF 3 ) 2 , CO-NH, C (CH 3 ) (CF 3 ), or a substituted or unsubstituted phenylene group)
  • any one can be used without limitation as long as it is defined in Formula 2, but it is more preferable to use 3,3-dihydroxybenzidine (HAB) which is easy to react.
  • HAB 3,3-dihydroxybenzidine
  • a polyimide structural unit is introduced into the copolymer by reacting with the acid dianhydride of the general formula (3).
  • Ar 2 is an aromatic ring group selected from a substituted or unsubstituted divalent C6-C24 arylene group and a substituted or unsubstituted divalent C4-C24 heterocyclic group, the aromatic ring
  • the groups are present alone; at least two form a condensed ring with each other; at least two are single bonds, O, S, CO, SO 2 , Si (CH 3 ) 2 , (CH 2 ) p (1 ⁇ P ⁇ 10), (CF 2 ) q (1 ⁇ q ⁇ 10), C (CH 3 ) 2 , C (CF 3 ) 2 or CO-NH)
  • aromatic diamine any one as defined in the general formula (4) can be used without limitation, but the lower the cost, the lower the cost of the entire process during mass production is preferred, 2,4,6-trimethyl-phenylenediamine (DAM ) Can be used more preferably.
  • DAM 2,4,6-trimethyl-phenylenediamine
  • a functional group such as carboxylic acid in the repeating unit in order to have a crosslinked structure between the polymer chains by only a simple heat treatment step without undergoing a complicated process such as chemical crosslinking or UV irradiation, and as another comonomer
  • DABA 3, 5-diaminobenzoic acid
  • another polyimide structural unit having a carboxylic acid in the copolymer is introduced by reacting with the acid dianhydride of the general formula (3).
  • step a) the acid dianhydride of formula 3, ortho-hydroxy diamine of formula 2, and the aromatic diamine of formula 4 and 3, 5-diaminobenzoic acid (DABA) react together together as a comonomer
  • DABA 5-diaminobenzoic acid
  • Terpolymers having repeating units consisting of -hydroxy polyimide structural units-polyimide structural units-carboxylic acid-containing polyimide structural units can be synthesized and thus thermally converted to polybenzoxazoles by a later heat treatment process
  • the content of ortho-hydroxy polyimide structural units can be controlled to less than 80%.
  • step a) the acid dianhydride of Formula 3, ortho-hydroxy diamine of Formula 2, aromatic diamine of Formula 4, and 3, 5-diaminobenzoic acid (DABA) are N-methylpyrrolidone
  • an organic solvent such as (NMP)
  • ortho-hydroxy polyimide aerial having a carboxylic acid represented by the following structural formula 2 by azeotropic thermal imidization Synthesize the coalesce.
  • the azeotropic thermal imidization method adds toluene or xylene to the polyamic acid solution and stirs it to perform an imidization reaction at 180 to 200 ° C. for 6 to 12 hours, during which the water released while the imide ring is generated. Is separated as an azeotrope of toluene or xylene.
  • step b) the polymer solution obtained by dissolving the ortho-hydroxy polyimide copolymer having the carboxylic acid of step a) represented by Formula 2 in an organic solvent such as N-methylpyrrolidone (NMP)
  • NMP N-methylpyrrolidone
  • a membrane for flue gas separation comprising a heat-converting poly (benzoxazole-imide) copolymer having a crosslinked structure represented by Chemical Formula 2 as a final object is prepared by only heat treating the membrane obtained in step b).
  • the heat treatment is completed by increasing the temperature up to 350 ⁇ 450 °C at a temperature rising rate of 1 ⁇ 20 °C / min in a high-purity inert gas atmosphere, and then isothermally maintained for 0.1 to 3 hours.
  • the heat conversion poly (benzoxazole-imide) copolymer membrane having a crosslinked structure for flue gas separation according to the present invention, the content of the benzoxazole group in the copolymer polymer chain is represented by the formula (2) of less than 80%
  • An embodiment for producing a flue gas separation membrane comprising a cross-linked heat conversion poly (benzoxazole-imide) copolymer will be described in detail with reference to the drawings.
  • the defect-free films obtained from the film forming examples 1 to 6 were cut into 3 cm x 3 cm sizes and placed between quartz plates to prevent deformation of the film due to temperature rise in muffle.
  • the sample was heated up to 450 ° C. at an elevated temperature rate of 5 ° C./min in a high purity argon gas atmosphere, and then kept isothermal for 1 hour.
  • HPIMPD-5 obtained from Reference Example 2 was heat-treated in the same manner as in Example 1 to prepare a thermally converting poly (benzoxazole-imide) copolymer membrane having no crosslinked structure, which was named PBOMPD-5.
  • the obtained copolymer solution was cooled to room temperature, immersed in a distillation shoe, washed several times to remove unreacted 1,4-butylene glycol, and dried in a vacuum oven at 70 ° C. for 24 hours.
  • mono-esterified ortho-hydroxy polyimide copolymer represented by the formula (6) was synthesized.
  • the monoesterified ortho-hydroxy polyimide copolymer obtained from Synthesis Examples 12 to 16 was dissolved in NMP to prepare a 15 wt% solution and then cast on a glass plate. It was placed in a vacuum oven and slowly heated up to 250 ° C. while maintaining at 100 ° C., 150 ° C., 200 ° C. and 250 ° C. for one hour to evaporate NMP. Subsequently, a transesterification crosslinking reaction was performed by heat-treating the copolymer film at 250 ° C. for 24 hours in a vacuum atmosphere to synthesize an ortho-hydroxy polyimide copolymer membrane having a crosslinked structure represented by the following formula (7).
  • the defect-free films obtained from Synthesis Examples 17 to 21 were cut into 3 cm x 3 cm size and placed between quartz plates to prevent deformation of the film due to temperature rise in muffle.
  • the sample was heated up to 450 ° C. at an elevated temperature rate of 5 ° C./min in a high purity argon gas atmosphere, and then kept isothermal for 1 hour. After the heat treatment, the muffle was slowly cooled to room temperature at a cooling rate of less than 10 ° C./min to prepare a thermally converting poly (benzoxazole-imide) copolymer membrane having a crosslinked structure represented by Formula 8.
  • An ortho-hydroxy polyimide copolymer having a carboxylic acid synthesized from Synthesis Examples 7 to 11 was dissolved in NMP to prepare a 15 wt% solution and then cast on a glass plate. It was placed in a vacuum oven and kept at 100 ° C., 150 ° C., 200 ° C. and 250 ° C. for 1 hour while evaporating and drying the residual NMP to obtain an ortho-hydroxy polyimide copolymer membrane with carboxylic acid.
  • the heat conversion poly (benzoxazole-imide) copolymer membrane which has a crosslinked structure was manufactured by heat processing by the method similar to Examples 7-11.
  • FIG. 1 shows 1 H- of an ortho-hydroxy polyimide copolymer having a carboxylic acid synthesized from Synthesis Example 4 among the synthesis examples of the ortho-hydroxy polyimide copolymer having a carboxylic acid according to the present invention. NMR spectrum is shown. It can be seen from the characteristic peaks of hydrogen in the repeating unit that can be confirmed from the 1 H-NMR spectrum of FIG. 1 that an ortho-hydroxy polyimide copolymer having a carboxylic acid was synthesized.
  • FIG. 2 shows ATR-FTIR spectra of HPIDABA-15, HPIDABA-20 and HPIDABA-25 obtained according to Film Formation Examples 4 to 6 among the film forming examples of the ortho-hydroxy polyimide copolymer film having a carboxylic acid according to the present invention. Indicated. As shown in FIG.
  • FIG. 3 shows a crosslinked structure by only heat treatment according to the preparation method of Examples 2 to 6 of the present invention, and a heat-converted poly (benzoxazole-imide) copolymer membrane and a conventional polybenzoxazole membrane ( PBO) shows the ATR-FTIR spectrum.
  • the absorption band inherent in the imide group was also found, and the thermal stability of the aromatic imide linkage was confirmed even at the heat treatment temperature of 450 ° C.
  • Table 2 shows the density and the interplanar spacing ( d- spacing) of the samples prepared according to Example 1 to 6, Examples 1 to 6, Reference Example 2 and Comparative Example 1, Examples 1 to 6
  • the interplanar distance of the thermally converted poly (benzoxazole-imide) copolymer film having a crosslinking structure according to the present invention is 0.62 to 0.67 nm, and the interplanar distance of the hydroxy polyimide copolymer film before thermal conversion according to film forming examples 1 to 6 0.54 to 0.57 nm), the interplanar distance (0.53 nm) of the hydroxy polyimide copolymer membrane before thermal conversion without DABA according to Reference Example 2, and the heat-converted poly (benz) having no crosslinking structure according to Comparative Example 1 Longer than the interplanar distance (0.59 nm) of the oxazole-imide) copolymer membrane, it can be easily seen that the average interchain distance was significantly increased, which is a function of the heat-converted poly (benzoxazo
  • the crosslinked heat conversion poly (benzoxazole-imide) copolymer membrane prepared according to the present invention has a structure in which the polymer chain is less packed and has more space, so that small molecules can permeate and diffuse. There is enough room to be used as a membrane for flue gas separation.
  • PBODABA-5, PBODABA-10, PBODABA-15, PBODABA- in a thermally converting poly (benzoxazole-imide) copolymer membrane PBODABA-Y having a crosslinked structure prepared according to Examples 1 to 6 of the present invention.
  • the analyzer (PALS: positron annihilation lifetime spectroscopy) was used and the results are shown in Table 4.
  • the thermally converting poly (benzoxazole-imide) copolymer membrane PBODABA-Y having a crosslinked structure prepared according to an embodiment of the present invention has two o-Ps components, ⁇ 3 and ⁇ 4 , which means that there are two kinds of pores in the membrane.
  • Permeability and selectivity of the thermally converting poly (benzoxazole-imide) copolymer membrane PBODABA-Y having a crosslinked structure prepared according to Examples 1 to 6 of the present invention from Tables 5 and 6 were prepared according to Comparative Example 1. It can be seen that the overall permeability and selectivity of the thermally converting poly (benzoxazole-imide) copolymer membrane PBOMPD-5 having no crosslinked structure. It is generally known that the gas permeation properties of glassy polymers depend on the distribution and size of the free volume element, which demonstrates that the permeability coefficients of the PBODABA-Y membranes are greater than the permeability coefficients of the PBOMPD-5 membranes. This is consistent with the result with pores of size.
  • the PBODABA-Y membrane of the present invention was excellent in permeability and selectivity at the same time to overcome the trade-off relationship of general permeability-selectivity.
  • the CO 2 / CH 4 mixed gas maintains a high selectivity even though the permeability of CO 2 reaches 615 barrer.
  • the crosslinked structure for flue gas separation by merely heat-treating the hydroxy polyimide copolymer membrane having a carboxylic acid without undergoing a chemical process for forming a crosslinked structure and a complicated process such as UV irradiation. It is possible to prepare a thermal conversion poly (benzoxazole-imide) copolymer membrane having a, the flue gas separation membrane prepared according to the excellent permeability and selectivity as well as the simple manufacturing process is commercialized by mass production It is possible.
  • FIG. 6 shows the ATR-FTIR spectrum of the poly (benzoxazole-imide) membrane obtained by thermally converting the copolymer membrane obtained from Synthesis Example 17 according to various heat treatment temperatures. As shown in FIG. 6, as the heat treatment temperature is increased from 375 ° C. to 450 ° C., a wide range of stretching vibration peaks due to OH of hydroxypolyimide gradually disappears from 3580 cm ⁇ 1 to polybenzoxazole. It can be seen that the heat conversion process proceeds.
  • the heat treatment process for the heat conversion from hydroxy polyimide to polybenzoxazole according to the present invention is preferably carried out at 350 ⁇ 450 °C, preferably at 375 ⁇ 450 °C.
  • Table 7 shows the interplanar distance ( d- spacing) and the density of the samples prepared according to Examples 7 to 16 and Comparative Examples 2 and 3.
  • Example 7 6.67 1.38
  • Example 8 6.74 1.40
  • Example 9 6.79 1.40
  • Example 10 6.70 1.42
  • Example 11 6.72 1.43
  • Example 12 6.52 1.40
  • Example 13 6.57 1.41
  • Example 14 6.39 1.39
  • Example 15 6.53 1.38
  • Example 16 6.55 1.40 Comparative Example 2 6.37 1.41 Comparative Example 3 6.20 1.43
  • the interplanar distances of the thermally converted poly (benzoxazole-imide) copolymer membranes having a crosslinked structure according to Examples 7 to 11 and Examples 12 to 16 were 6.67-6.67 kPa and 6.39-6.67 mm, respectively.
  • the density of the heat-converted poly (benzoxazole-imide) copolymer membrane having a crosslinked structure according to 12 to 16 is 1.38 to 1.43 g / cm 3 and 1.38 to 1.41 g / cm 3 , respectively, according to Comparative Examples 2 and 3 Of thermally converted poly (benzoxazole-imide) copolymer membrane
  • the crosslinked heat conversion poly (benzoxazole-imide) copolymer membrane prepared according to the present invention has a structure in which the polymer chain is less packed and has more space, so that small molecules can permeate and diffuse. There is enough room to be used as a membrane for flue gas separation.
  • Table 8 shows the mechanical properties and thermal properties of the samples prepared according to Examples 7 to 16 and Comparative Examples 2 and 3 and the shrinkage of the film area in the heat conversion process.
  • the samples prepared according to Examples 7 to 16 of the present invention are more than four times higher in tensile strength and four times higher in mechanical properties than the samples prepared according to Comparative Examples 2 and 3. It can be seen that excellent.
  • the shrinkage ratio of the film area involved in the heat conversion step is also expected to reduce the Examples 7 to 16 compared to Comparative Examples 2 and 3, it is expected that the large-area film can be produced.
  • the heat conversion poly (benzoxazole-imide) copolymer membrane having a crosslinked structure for flue gas separation produced according to the present invention is an ortho-hydroxy polyimide structural unit-polyimide structural unit-carboxylic acid-containing polyimide.
  • Table 9 shows the results of measuring the permeability of various gases in order to confirm the gas separation performance of the samples prepared according to Examples 7 to 16 of the present invention and the samples prepared according to Comparative Examples 2 and 3.
  • the gas permeability of the heat-converting poly (benzoxazole-imide) copolymer membrane having a crosslinked structure prepared according to Examples 7 to 11 of the present invention from Table 9 is shown in the heat-converting poly (benz) prepared according to Comparative Examples 2 and 3. Compared to the gas permeability of the oxazole-imide) copolymer membrane, it can be seen that the value is high in almost all gases.
  • the flue gas separation membrane comprising a thermally converting poly (benzoxazole-imide) copolymer having a novel crosslinked structure having a content of benzoxazole group in the copolymer polymer chain is less than 80% has a mechanical property. And excellent thermal properties, the shrinkage of the membrane area is reduced, the gas permeability and selectivity is high at the same time excellent gas separation performance.
  • thermal conversion poly (benzoxazole) having a novel crosslinked structure having a content of benzoxazole groups in the copolymer polymer chain of less than 80% by only heat treatment without undergoing complicated processes such as chemical methods and UV irradiation for forming a crosslinked structure. Since the membrane for flue gas separation containing an imide) copolymer can be produced, the manufacturing process is simple and economical, and commercialization by mass production is possible.

Abstract

본 발명은 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체로부터 제조된 막을 단지 열처리함으로써 직접적인 열가교와 동시에 열전환에 의하여 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 막을 제조하거나, 또는 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체와 디올계 화합물의 트랜스에스테르화 가교반응 및 후속 열전환에 의하여 공중합체 고분자 사슬 내 벤즈옥사졸 그룹의 함량이 80% 미만인 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막 및 그 제조방법에 관한 것이다.

Description

가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막 및 그 제조방법
본 발명은 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막 및 그 제조방법에 관한 것으로, 보다 상세하게는 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체로부터 제조된 막을 단지 열처리함으로써 직접적인 열가교와 동시에 열전환에 의하여 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 막을 제조하거나, 또는 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체와 디올계 화합물의 트랜스에스테르화 가교반응 및 후속 열전환에 의하여 공중합체 고분자 사슬 내 벤즈옥사졸 그룹의 함량이 80% 미만인 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막 및 그 제조방법에 관한 것이다.
최근 막(membrane)에 기초한 기체분리는 그 중요성에 부응하여 급속도로 성장하는 분리기술로 각광받고 있다. 이러한 막을 이용한 기체분리는 전통적인 분리공정에 비하여 에너지 소비와 운전비용이 낮으면서도 높은 수준으로 공정상의 유용성을 제공하는 등 여러 가지 장점을 갖는다. 특히, 1980년대 이래로 유기고분자 막을 이용한 기초 연구가 많이 수행되었지만, 전통적인 고분자는 미세기공이 거의 없이 고분자 사슬 공간에 효율적인 패킹을 부여하는 일반적인 속성에 기인하여 상대적으로 낮은 물질 수송률을 보인다.
반면, 미세다공성 유기고분자로 알려진 높은 수준의 자유 부피를 갖는 고분자는 작은 기체분자에 대한 흡착능과 더불어 향상된 확산능 때문에 분리공정에서 가강 유력한 후보 중의 하나로 떠오르고 있다. 따라서 고분자 사슬 공간의 효율적인 패킹을 저지하는 비틀린 영역을 갖는 단단한 사다리 형태의 구조에 기초한 고유의 미세다공성 고분자가 상대적으로 높은 기체 투과도와 선택도를 나타낸다는 사실에 주목하여 기체분리막으로 응용할 수 있는 유기고분자를 개발하기 위한 다양한 연구가 진행되고 있다.
이러한 연구들 중에서 열적, 기계적, 화학적 특성이 우수한 폴리벤즈옥사졸, 폴리벤즈이미다졸 또는 폴리벤즈티아졸 등 강성의 유리상 전방향족 유기고분자들을 기체분리막으로 응용하고자 하는 시도가 활발히 전개되고 있으나, 이 유기고분자들은 대부분 일반적인 유기용매에 난용성이어서 간단하고 실용적인 용매 캐스팅법에 의하여 막을 제조하는데 어려움이 있었다. 그러므로 최근에, 본 발명자들은 이러한 어려움을 극복하고자 오르쏘 위치에 히드록시기를 갖는 폴리이미드를 열전환하는 방법으로 폴리벤즈옥사졸 막을 제조함으로써 용매 캐스팅법에 의하여 제조되는 종래 폴리벤즈옥사졸 막에 비하여 이산화탄소의 투과도가 10~100배 더 높은 결과를 보고한바 있는데, 이산화탄소/메탄(CO2/CH4)의 선택도는 여전히 종래 상업화된 셀룰로오스아세테이트 막과 동등한 수준이어서 개선의 여지가 있다(비특허문헌 1).
아울러 본 발명자들은 히드록시 폴리이미드 공중합체 막을 열전환하여 벤즈옥사졸 그룹을 도입함으로써 고분자 사슬의 강성이 증가되고, 이에 따른 자유 부피 요소의 기여에 의하여 기체 분리 성능이 향상되는 결과를 보고한바 있으나, 고분자 사슬에 80% 이상의 벤조옥사졸 그룹이 도입된 경우에는 너무 딱딱하여 쉽게 부서질 수 있고, 기계적 물성이 떨어지거나, 열전환 과정 중에 많은 양의 CO2가 방출됨으로 인하여 막 면적의 수축이 일어나 대면적의 막에 있어서는 기체 투과도와 선택도가 떨어질 수 있는 단점이 있다(비특허문헌 2).
또한, 폴리벤즈옥사졸 막의 선택도를 개선하고자 오르쏘 위치에 히드록시기를 갖는 폴리이미드와 폴리(스티렌 술폰산)의 블렌드 막을 300~650℃에서 열전환하여 폴리벤즈옥사졸 막을 제조함으로써, 폴리(스테렌 술폰산을) 함유하지 않은 히드록시폴리이미드로부터 열전환하여 제조된 폴리벤즈옥사졸 막에 비하여 이산화탄소/메탄(CO2/CH4)의 선택도가 최대 95% 정도 향상된 결과도 보고된 바 있다. 그러나 궁극적으로 폴리벤즈옥사졸 막을 제조하기 위한 전구체라 할 수 있는 폴리이미드의 합성방법에 대해서는 구체적으로 개시된 바 없어, 히드록시폴리이미드의 이미드화 방법, 즉 용액상 열 이미드화법(solution thermal imidization) 또는 공비 열 이미드화법(azeotropic thermal imidization), 고체상 열 이미드화법(solid state thermal imidization) 및 화학 이미드화법(chemical imidization)에 따라 그로부터 열전환된 폴리벤즈옥사졸 막의 자유 부피 요소와 기체 분리 성능이 달라질 수 있는 점이 전혀 고려되지 아니한 문제점이 있다(특허문헌 1).
이에 따라, 열전환 폴리벤즈옥사졸의 특성은 방향족 폴리이미드의 합성방법에 의하여 영향을 받는다는 점에 근거하여 용액상 열 이미드화법, 고체상 열 이미드화법 및 화학 이미드화법 등의 다양한 방법으로 오르쏘 위치에 히드록시기를 갖는 폴리이미드를 합성한 후, 이를 열전환하여 폴리벤즈옥사졸 막을 제조한 사례도 보고되었으나, 이는 열전환에 의하여 특이한 다공성 구조를 가짐으로써 우수한 분리 특성을 나타내어 주로 에탄올 또는 기타 유기용매로부터 물을 제거하기 위한 분리막에 적용되는 것이지 기체분리막으로서의 성능에 관하여 개시된 바는 없다(특허문헌 2).
또한, 화학 이미드화법에 의하여 오르쏘 위치에 히드록시기를 갖는 폴리이미드를 합성하고, 이를 열전환하여 폴리벤즈옥사졸 막을 얻은 후, 최종적으로 자외선(UV)을 조사하여 가교구조를 갖는 폴리벤즈옥사졸 막을 제조함으로써 막의 선택도를 향상시킨 결과가 보고된 바도 있으나, 화학 이미드화법으로 폴리이미드를 제조하기 때문에 열 이미드화(thermal imidization) 과정이 생략되어 그로부터 열전환된 폴리벤즈옥사졸 막이 가교구조를 갖더라도 여전히 이산화탄소의 투과도가 상대적으로 낮고, 가교구조를 형성하기 위해서는 자외선 조사 장치를 사용하여야 하는 공정상의 단점이 있다(특허문헌 3).
따라서 본 발명자들은, 열전환 폴리벤즈옥사졸 막의 기계적 물성, 막 면적의 수축률 및 기체 수송 거동은 전구체라 할 수 있는 폴리이미드의 이미드화 방법, 고분자 사슬 내 벤즈옥사졸 그룹의 함량 및 고분자 사슬의 가교구조에 기인함에 주목하여, 용액상 열 이미드화법으로 폴리이미드 반복단위 내에 히드록시기 및 카르복실산을 갖는 폴리이미드 막을 합성한 후, 단지 열처리하면 가교구조를 가짐과 동시에 열전환에 의하여 폴리벤즈옥사졸 막이 얻어짐을 알았다.
또한, 용액상 열 이미드화법으로 폴리이미드 반복단위 내에 히드록시기 및 카르복실산을 가지면서 공중합체 고분자 사슬 내 히드록시 폴리이미드 함량이 80% 미만인 공중합체를 합성한 후, 이를 화학적 가교 및 후속 열전환하거나, 또는 직접적인 열가교와 동시에 열전환함으로써 공중합체 고분자 사슬 내 벤즈옥사졸 그룹의 함량이 80% 미만인 가교구조를 갖는 폴리벤즈옥사졸 막이 형성되면 기계적 물성 및 열적 특성이 우수하며 기체분리막으로서의 분리성능이 현저히 향상됨을 알고 본 발명을 완성하기에 이르렀다.
<선행기술문헌>
<특허문헌>
특허문헌 1 한국공개특허공보 제10-2012-0100920호
특허문헌 2 미국공개특허공보 US 2012/0305484
특허문헌 3 일본공표특허공보 특표2012-521871
<비특허문헌>
비특허문헌 1 Y.M. Lee et al., Science 318, 254-258 (2007)
비특허문헌 2 Y.M. Lee et al., J. Membr. Science 350, 301-309 (2010)
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 기체 투과도 및 선택도가 동시에 우수한 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막 및 그 제조방법을 제공하고자 하는 것이다.
또한, 본 발명의 또 다른 목적은 기계적 물성 및 열적 특성이 우수하고, 막 면적의 수축률이 저하되며, 기체 투과도 및 선택도가 동시에 높은 공중합체 고분자 사슬 내 벤즈옥사졸 그룹의 함량이 80% 미만인 신규한 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막 및 그 제조방법을 제공하고자 하는 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명은, i) 산이무수물, 오르쏘-히드록시 디아민 및 공단량체로서 3, 5-디아미노벤조산을 반응시켜 폴리아믹산 용액을 얻은 후, 공비 열 이미드화법에 의하여 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체를 합성하는 단계;
ii) 상기 i) 단계에서 합성한 카르복실산을 갖는 오르쏘-히드록시 폴리이미드공중합체를 유기용매에 녹이고 캐스팅하여 제막하는 단계; 및
iii) 상기 ii) 단계에서 얻어진 막을 열처리하는 단계;를 포함하는 배연가스 분리용 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 막의 제조방법을 제공한다.
상기 i) 단계의 산이무수물은 하기 일반식 1로 표시되는 것임을 특징으로 한다.
<일반식 1>
Figure PCTKR2014010537-appb-I000001
(상기 일반식 1에서, Ar은 치환 또는 비치환된 4가의 탄소수 6 내지 24의 아릴렌기 및 치환 또는 비치환된 4가의 탄소수 4 내지 24의 복소환기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있다)
상기 i) 단계의 오르쏘-히드록시 디아민은 하기 일반식 2로 표시되는 것임을 특징으로 한다.
<일반식 2>
Figure PCTKR2014010537-appb-I000002
(상기 일반식 2에서, Q는 단일결합이거나; O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2, CO-NH, C(CH3)(CF3), 또는 치환 또는 비치환된 페닐렌기이다)
상기 i) 단계의 공비 열 이미드화법은 폴리아믹산 용액에 톨루엔 또는 자일렌을 첨가하고 교반하여 180~200℃에서 6~12시간 동안 이미드화 반응을 수행하는 것을 특징으로 한다.
상기 iii) 단계의 열처리는 고순도의 불활성 가스 분위기에서 1~20℃/min의 승온 속도로 350~450℃까지 승온한 후 0.1~3시간 동안 등온 상태를 유지함으로써 수행되는 것을 특징으로 한다.
또한, 본 발명은 상기 제조방법에 의하여 제조된 배연가스 분리용 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 막을 제공한다.
상기 막은 하기 화학식 1로 표시되는 반복단위를 갖는 것을 특징으로 한다.
<화학식 1>
Figure PCTKR2014010537-appb-I000003
(상기 화학식 1에서, Ar은 치환 또는 비치환된 4가의 탄소수 6 내지 24의 아릴렌기 및 치환 또는 비치환된 4가의 탄소수 4 내지 24의 복소환기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있고,
Q는 단일결합이거나; O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2, CO-NH, C(CH3)(CF3), 또는 치환 또는 비치환된 페닐렌기이며,
x, y는 각각 반복단위 내 몰분율로서 0.75≤x≤0.975, 0.025≤y≤0.25 이고, x+y=1 이다)
상기 막은 면간 거리(d-spacing)가 0.62~0.67 nm인 것을 특징으로 한다.
상기 막은 밀도가 1.38~1.43 g/cm3인 것을 특징으로 한다.
상기 막은 d3 평균 기공 직경이 4.0 Å이고, d4 평균 기공 직경이 8.6 Å인 것을 특징으로 한다.
또한, 본 발명은 하기 화학식 2로 표시되는 반복단위를 갖는, 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막을 제공한다.
<화학식 2>
Figure PCTKR2014010537-appb-I000004
(상기 화학식 2에서, Ar1은 치환 또는 비치환된 4가의 탄소수 6 내지 24의 아릴렌기 및 치환 또는 비치환된 4가의 탄소수 4 내지 24의 복소환기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있고,
Q는 단일결합이거나; O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2, CO-NH, C(CH3)(CF3), 또는 치환 또는 비치환된 페닐렌기이며,
Ar2는 치환 또는 비치환된 2가의 탄소수 6 내지 24의 아릴렌기 및 치환 또는 비치환된 2가의 탄소수 4 내지 24의 복소환기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있고,
x, y, z는 각각 반복단위 내 몰분율로서 x<0.8 이고, x+y+z=1 이며, x, y 또는 z=0 인 경우는 없다)
상기 가교구조의 열전환 폴리(벤즈옥사졸-이미드)공중합체를 포함하는 배연가스 분리용 막은 면간 거리(d-spacing)가 6.67~6.79 Å인 것을 특징으로 한다.
상기 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막은 밀도가 1.38~1.43 g/cm3인 것을 특징으로 한다.
또한, 본 발명은, I) 산이무수물, 오르쏘-히드록시 디아민 및 공단량체로서 방향족 디아민, 3, 5-디아미노벤조산을 반응시켜 폴리아믹산 용액을 얻은 후, 공비 열 이미드화법에 의하여 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체를 합성하는 단계;
II) 상기 I) 단계의 폴리이미드 공중합체와 디올을 반응시켜 모노에스테르화 오르쏘-히드록시 폴리이미드 공중합체를 합성하는 단계;
III) 상기 II) 단계의 모노에스테르화 오르쏘-히드록시 폴리이미드 공중합체를 유기용매에 녹인 고분자용액을 캐스팅하여 제막한 후, 트랜스에스테르화 가교반응에 의하여 가교구조를 갖는 오르쏘-히드록시 폴리이미드 공중합체 막을 합성하는 단계; 및
IV) 상기 III) 단계의 가교구조를 갖는 오르쏘-히드록시 폴리이미드 공중합체막을 열전환 하는 단계;를 포함하는 상기 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막의 제조방법을 제공한다.
상기 I) 단계의 산이무수물은 하기 일반식 3으로 표시되는 것을 특징으로 한다.
<일반식 3>
Figure PCTKR2014010537-appb-I000005
(상기 일반식 3에서, Ar1은 치환 또는 비치환된 4가의 탄소수 6 내지 24의 아릴렌기 및 치환 또는 비치환된 4가의 탄소수 4 내지 24의 복소환기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있다)
상기 I) 단계의 오르쏘-히드록시 디아민은 상기 일반식 2로 표시되는 것을 특징으로 한다.
상기 I) 단계의 방향족 디아민은 하기 일반식 4로 표시되는 것을 특징으로 한다.
<일반식 4>
Figure PCTKR2014010537-appb-I000006
(상기 일반식 4에서, Ar2는 치환 또는 비치환된 2가의 탄소수 6 내지 24의 아릴렌기 및 치환 또는 비치환된 2가의 탄소수 4 내지 24의 복소환기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있다)
상기 I) 단계의 공비 열 이미드화법은 폴리아믹산 용액에 톨루엔 또는 자일렌을 첨가하고 교반하여 180~200℃에서 6~12시간 동안 이미드화 반응을 수행하는 것을 특징으로 한다.
상기 II) 단계의 디올은 에틸렌글리콜, 프로필렌글리콜, 1,4-부틸렌글리콜, 1,3-프로판디올, 1,2-부탄디올, 1,3-부탄디올, 및 벤젠디메탄올로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.
상기 III) 단계의 모노에스테르화는 파라-톨루엔술폰산 촉매하에서 I) 단계의 공중합체에 함유된 카르복실산 당량의 50배 이상에 해당하는 과량의 디올을 140~160℃에서 18~24시간 동안 반응시키는 것을 특징으로 한다.
상기 III) 단계의 트랜스에스테르화 가교반응은 진공하에서 200~250℃, 18~24 시간 열처리함으로써 수행되는 것을 특징으로 한다.
상기 IV) 단계의 열전환은 고순도의 불활성 가스 분위기에서 1~20℃/min의 승온 속도로 350~450℃까지 승온한 후 0.1~3시간 동안 등온 상태를 유지함으로써 수행되는 것을 특징으로 한다.
또한, 본 발명은 a) 산이무수물, 오르쏘-히드록시 디아민 및 공단량체로서 방향족 디아민, 3, 5-디아미노벤조산을 반응시켜 폴리아믹산 용액을 얻은 후, 공비 열 이미드화법에 의하여 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체를 합성하는 단계;
b) 상기 a) 단계에서 합성한 카르복실산을 갖는 오르쏘-히드록시 폴리이미드공중합체를 유기용매에 녹이고 캐스팅하여 제막하는 단계; 및
c) 상기 b) 단계에서 얻어진 막을 열처리하는 단계;를 포함하는 상기 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막의 제조방법을 제공한다.
상기 a) 단계의 산이무수물은 상기 일반식 3으로 표시되는 것을 특징으로 한다.
상기 a) 단계의 오르쏘-히드록시 디아민은 상기 일반식 2로 표시되는 것을 특징으로 한다.
상기 a) 단계의 방향족 디아민은 상기 일반식 4로 표시되는 것을 특징으로 한다.
상기 a) 단계의 공비 열 이미드화법은 폴리아믹산 용액에 톨루엔 또는 자일렌을 첨가하고 교반하여 180~200℃에서 6~12시간 동안 이미드화 반응을 수행하는 것을 특징으로 한다.
상기 c) 단계의 열처리는 고순도의 불활성 가스 분위기에서 1~20℃/min의 승온 속도로 350~450℃까지 승온한 후 0.1~3시간 동안 등온 상태를 유지함으로써 수행되는 것을 특징으로 한다.
상기 a) 내지 c) 단계를 포함하여 제조되는 상기 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막은 면간 거리(d-spacing)가 6.39~6.57 Å인 것을 특징으로 한다.
상기 a) 내지 c) 단계를 포함하여 제조되는 상기 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막은 밀도가 1.38~1.41 g/cm3인 것을 특징으로 한다.
본 발명에 따르면, 가교구조를 형성하기 위한 화학적 방법 및 UV 조사 등의 복잡한 공정을 거치지 않고서도 단지 열처리만으로 배연가스 분리용 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막을 제조할 수 있으며, 그에 의하여 제조되는 배연가스 분리용 막은 투과도 및 선택도가 우수할 뿐만 아니라 제조공정이 간단하여 대량생산에 의한 상업화가 가능하다.
또한, 본 발명에 따른 공중합체 고분자 사슬 내 벤즈옥사졸 그룹의 함량이 80% 미만인 신규한 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드)공중합체를 포함하는 배연가스 분리용 막은 고분자 사슬이 덜 패킹되고, 더 많은 공간을 갖는 구조를 가지므로 작은 분자들이 투과 및 확산될 수 있는 여지가 충분하다. 게다가 기계적 물성 및 열적 특성이 우수하고, 막 면적의 수축률이 저하되며, 기체투과도 및 선택도가 동시에 높아 기체분리 성능이 뛰어나다.
도 1은 합성예 4에 따라 합성된 HPIDABA-15의 1H-NMR 스펙트럼.
도 2는 제막예 4 내지 6에 따라 얻어진 HPIDABA-15, HPIDABA-20 및 HPIDABA-25 막의 ATR-FTIR 스펙트럼.
도 3은 실시예 2 내지 6에 따라 제조된 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막의 ATR-FTIR 스펙트럼
도 4는 제막예 6에 따라 얻어진 HPIDABA-25 막의 열중량 감소 특성을 나타낸 열중량분석-질량분석(TG-MS) 그래프.
도 5는 각각 제막예 2 및 6에 따라 얻어진 HPIDABA-5 및 HPIDABA-25, 참고예 1에 따라 제막된 HPI, 참고예 2에 따라 제막된 HPIMPD-5의 TGA 및 DTG 그래프.
도 6은 합성예 17로부터 얻어진 공중합체를 다양한 열처리 온도에 따라 열전환 시킨 폴리(벤즈옥사졸-이미드) 공중합체의 ATR-FTIR 스펙트럼
도 7은 실시예 7 내지 11 및 비교예 2, 3에 따라 제조된 폴리(벤즈옥사졸-이미드) 공중합체 막을 이용하여 CO2/CH4 혼합기체로부터 CO2의 투과도 및 선택도를 나타낸 그래프.
도 8은 실시예 7 내지 11 및 비교예 2, 3에 따라 제조된 폴리(벤즈옥사졸-이미드) 공중합체 막을 이용하여 CO2/N2 혼합기체로부터 CO2의 투과도 및 선택도를 나타낸 그래프.
도 9는 실시예 12 내지 16 및 비교예 2, 3에 따라 제조된 폴리(벤즈옥사졸-이미드) 공중합체 막을 이용하여 CO2/CH4 혼합기체로부터 CO2의 투과도 및 선택도를 나타낸 그래프.
도 10은 실시예 12 내지 16 및 비교예 2, 3에 따라 제조된 폴리(벤즈옥사졸-이미드) 공중합체 막을 이용하여 CO2/N2 혼합기체로부터 CO2의 투과도 및 선택도를 나타낸 그래프.
본 발명에 따른 배연가스는 탄화수소연료의 부분 또는 완전 연소로부터 배출되는 기체를 의미하는 것으로서, 주로 이산화탄소, 수증기 및 질소를 포함하고, 일부의 경우에 있어서는 하나 이상의 수소, 산소, 일산화탄소와 더불어 지구의 환경변화에 영향을 끼칠 여지가 있는 질소산화물, 황산화물 및 미세입자 물질을 함유하는 미량의 오염물질로 정의되며, 본 발명에서는 이러한 배연가스 분리용 막 및 그 제조방법을 제공하는 것이다.
본 발명에 따라 제조되는 배연가스 분리용 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막은 산이무수물과 디아민을 반응시켜 얻은 폴리아믹산을 이미드화 시킴으로써 제조되는 폴리이미드의 합성을 기본으로 한다. 게다가 단지 열처리만으로 고분자 사슬 간에 가교구조를 갖기 위해서는 반복단위 내에 카르복실산과 같은 작용기를 가져야 한다. 또한, 이러한 열처리 과정에서 폴리이미드로부터 폴리벤즈옥사졸로 그 구조가 전환되는 것은 방향족 이미드 연결고리의 오르쏘-위치에 있는 히드록시기와 같은 작용기가 이미드 고리의 카르보닐기를 공격하여 카르복시-벤즈옥사졸 구조의 중간체를 형성한 후, 이어지는 열전환에 의하여 탈카르복시화(decarboxylation)함으로써 합성되는 것인바, 본 발명에서는 하기와 같은 간단한 공정을 거쳐 배연가스 분리용 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막을 제조한다.
즉, 본 발명에서는 i) 산이무수물, 오르쏘-히드록시 디아민 및 공단량체로서 3, 5-디아미노벤조산을 반응시켜 폴리아믹산 용액을 얻은 후, 공비 열 이미드화법에 의하여 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체를 합성하는 단계;
ii) 상기 i) 단계에서 합성한 카르복실산을 갖는 오르쏘-히드록시 폴리이미드공중합체를 유기용매에 녹이고 캐스팅하여 제막하는 단계; 및
iii) 상기 ii) 단계에서 얻어진 막을 열처리하는 단계;를 포함하는 배연가스 분리용 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막의 제조방법을 제공한다.
통상 폴리이미드를 합성하기 위해서는 먼저 산이무수물과 디아민을 반응시켜 폴리아믹산을 얻어야 하는바, 본 발명에서도 산이무수물로서 하기 일반식 1로 표시되는 화합물을 사용한다.
<일반식 1>
Figure PCTKR2014010537-appb-I000007
(상기 일반식 1에서, Ar은 치환 또는 비치환된 4가의 탄소수 6 내지 24의 아릴렌기 및 치환 또는 비치환된 4가의 탄소수 4 내지 24의 복소환기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있다)
폴리이미드를 합성하기 위한 단량체로서 산이무수물은 상기 일반식 1에서 정의한 바와 같은 것이라면 어느 것이든지 제한 없이 사용할 수 있으나, 합성되는 폴리이미드의 열적, 화학적 특성을 더욱 향상시킬 수 있는 점을 고려하여 불소기를 갖고 있는 4,4'-헥사플루오로이소프로필리덴프탈산이무수물(6FDA)을 사용하는 것이 바람직하다.
또한, 본 발명에서는 폴리(벤즈옥사졸-이미드) 공중합체 구조를 갖기 위하여, 오르쏘-히드록시 폴리이미드를 열전환하면 폴리벤즈옥사졸 단위를 도입할 수 있음에 착안하여 오르쏘-히드록시 폴리이미드를 합성하고자 오르쏘-히드록시 디아민으로서는 하기 일반식 2로 표시되는 화합물을 사용한다.
<일반식 2>
Figure PCTKR2014010537-appb-I000008
(상기 일반식 2에서, Q는 단일결합이거나; O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2, CO-NH, C(CH3)(CF3), 또는 치환 또는 비치환된 페닐렌기이다)
오르쏘-히드록시 디아민으로서는 상기 일반식 2에서 정의한 바와 같은 것이라면 어느 것이든지 제한 없이 사용할 수 있으나, 합성되는 폴리이미드의 열적, 화학적 특성을 더욱 향상시킬 수 있는 점을 고려하여 불소기를 갖고 있는 2,2-비스(3-아미노-4-히드록시페닐)헥사플루오로프로판(bisAPAF)을 사용하는 것이 더욱 바람직하다.
아울러 본 발명에서는, 화학적 가교 또는 UV 조사 등의 복잡한 공정을 거치지 않고서도, 단지 간단한 열처리 공정만으로 고분자 사슬 간에 가교구조를 갖기 위해서는 반복단위 내에 카르복실산과 같은 작용기를 가져야 가능하므로, 공단량체로서 3, 5-디아미노벤조산을 사용하여 상기 일반식 1의 산이무수물 및 일반식 2의 오르쏘-히드록시 다아민과 함께 반응시킴으로써 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체를 합성할 수 있다.
즉, 상기 i) 단계에서는 일반식 1의 산이무수물, 일반식 2의 오르쏘-히드록시 다아민 및 3, 5-디아미노벤조산을 N-메틸피롤리돈(NMP)과 같은 유기용매에 용해 및 교반하여 폴리아믹산 용액을 얻은 후, 공비 열 이미드화법(azeotropic thermal imidization)에 의하여 하기 구조식 1로 표시되는 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체를 합성한다.
<구조식 1>
Figure PCTKR2014010537-appb-I000009
(상기 구조식 1에서, Ar, Q는 각각 일반식 1 및 2에서 정의한 바와 같고, x, y는 각각 반복단위 내 몰분율로서 0.75≤x≤0.975, 0.025≤y≤0.25 이고, x+y=1 이다)
이때, 공비 열 이미드화법은 폴리아믹산 용액에 톨루엔 또는 자일렌을 첨가하고 교반하여 180~200℃에서 6~12시간 동안 이미드화 반응을 수행하게 되는데, 이 동안에 이미드 고리가 생성되면서 방출된 물은 톨루엔 또는 자일렌의 공비혼합물로서 분리된다.
이어서 ii) 단계로서, 상기 구조식 1로 표시되는 상기 i) 단계의 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체를 N-메틸피롤리돈(NMP)과 같은 유기용매에 녹인 고분자용액을 유리판에 캐스팅하여 제막함으로써, 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체 막을 얻는다.
마지막으로, 상기 ii) 단계에서 얻어진 막을 단지 열처리함으로써 최종 목적물인 하기 화학식 1로 표시되는 반복단위를 갖는 배연가스 분리용 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막을 제조한다.
<화학식 1>
Figure PCTKR2014010537-appb-I000010
(상기 화학식 1에서, Ar은 치환 또는 비치환된 4가의 탄소수 6 내지 24의 아릴렌기 및 치환 또는 비치환된 4가의 탄소수 4 내지 24의 복소환기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있고,
Q는 단일결합이거나; O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2, CO-NH, C(CH3)(CF3), 또는 치환 또는 비치환된 페닐렌기이며,
x, y는 각각 반복단위 내 몰분율로서 0.75≤x≤0.975, 0.025≤y≤0.25 이고, x+y=1 이다)
상기 열처리는 고순도의 불활성 가스 분위기에서 1~20℃/min의 승온 속도로 350~450℃까지 승온한 후 0.1~3시간 동안 등온 상태를 유지함으로써 완성된다.
또한, 본 발명에서는 하기 화학식 2로 표시되는 반복단위를 갖는, 가교구조의 열전환 폴리(벤즈옥사졸-이미드)공중합체를 포함하는 배연가스 분리용 막을 제공한다.
<화학식 2>
Figure PCTKR2014010537-appb-I000011
(상기 화학식 2에서, Ar1은 치환 또는 비치환된 4가의 탄소수 6 내지 24의 아릴렌기 및 치환 또는 비치환된 4가의 탄소수 4 내지 24의 복소환기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있고,
Q는 단일결합이거나; O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2, CO-NH, C(CH3)(CF3), 또는 치환 또는 비치환된 페닐렌기이며,
Ar2는 치환 또는 비치환된 2가의 탄소수 6 내지 24의 아릴렌기 및 치환 또는 비치환된 2가의 탄소수 4 내지 24의 복소환기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있고,
x, y, z는 각각 반복단위 내 몰분율로서 x<0.8 이고, x+y+z=1 이며, x, y 또는 z=0 인 경우는 없다)
상기 화학식 2로 표시되는 폴리(벤즈옥사졸-이미드) 공중합체의 구조는, 산이무수물과 디아민을 반응시켜 얻은 폴리아믹산을 이미드화 시킴으로써 제조되는 폴리이미드의 합성을 기본으로 한다. 게다가 상기 화학식 2의 z측 구조단위에서 보는 것처럼 화학적으로 공유결합된 상태의 가교구조를 갖기 위해서는 카르복실산과 같은 작용기를 갖는 디아민 화합물로부터 유래한 폴리이미드 공중합체의 구조를 가져야 한다. 또한, 열전환 폴리벤즈옥사졸은 방향족 이미드 연결고리의 오르쏘-위치에 있는 히드록시기와 같은 작용기가 이미드 고리의 카르보닐기를 공격하여 카르복시-벤즈옥사졸 구조의 중간체를 형성한 후, 이어지는 열처리에 의하여 탈카르복시화(decarboxylation)함으로써 합성되는 것이다.
그런데 이렇게 합성되는 열전환 폴리(벤즈옥사졸-이미드) 공중합체는 공중합체 고분자 사슬 내 벤즈옥사졸 그룹의 함량이 80% 이상이면, 막으로 제조시 너무 딱딱하여 쉽게 부서질 수 있고, 기계적 물성이 떨어지거나, 열전환 과정 중에 많은 양의 CO2가 방출됨으로 인하여 막 면적의 수축이 일어나 대면적의 막에 있어서는 기체 투과도와 선택도가 떨어질 수 있으므로, 본 발명은 공중합체 고분자 사슬 내 벤즈옥사졸 그룹의 함량을 80% 미만으로, 더욱 바람직하게는 50% 이하로 낮추는데 또 하나의 기술적 특징이 있다.
따라서 본 발명에서는 열전환 폴리(벤즈옥사졸-이미드) 공중합체의 전구체라 할 수 있는 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체를 합성함에 있어서, 공단량체로서 저가의 방향족 디아민을 사용하여 공중합체 사슬 내에 새로운 폴리이미드 구조단위를 도입한 삼원공중합체 형태의 전구체를 합성함으로써 목적물인 열전환 폴리(벤즈옥사졸-이미드) 공중합체 고분자 사슬 내 벤즈옥사졸 그룹의 함량을 80% 미만으로 조절하는바, 하기와 같은 다단계의 합성경로를 거쳐 공중합체 고분자 사슬 내 벤즈옥사졸 그룹의 함량이 80% 미만인 상기 화학식 2로 표시되는 반복단위를 갖는, 가교구조의 열전환 폴리(벤즈옥사졸-이미드)공중합체를 포함하는 배연가스 분리용 막을 제조한다.
즉, 본 발명에서는 I) 산이무수물, 오르쏘-히드록시 디아민 및 공단량체로서 방향족 디아민, 3, 5-디아미노벤조산을 반응시켜 폴리아믹산 용액을 얻은 후, 공비 열 이미드화법에 의하여 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체를 합성하는 단계;
II) 상기 I) 단계의 폴리이미드 공중합체와 디올을 반응시켜 모노에스테르화 오르쏘-히드록시 폴리이미드 공중합체를 합성하는 단계;
III) 상기 II) 단계의 모노에스테르화 오르쏘-히드록시 폴리이미드 공중합체를 유기용매에 녹인 고분자용액을 캐스팅하여 제막한 후, 트랜스에스테르화 가교반응에 의하여 가교구조를 갖는 오르쏘-히드록시 폴리이미드 공중합체 막을 합성하는 단계; 및
IV) 상기 III) 단계의 가교구조를 갖는 오르쏘-히드록시 폴리이미드 공중합체막을 열전환 하는 단계;를 포함하는 상기 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막의 제조방법을 제공한다.
통상 폴리이미드를 합성하기 위해서는 먼저 산이무수물과 디아민을 반응시켜 폴리아믹산을 얻어야 하는바, 본 발명에서도 산이무수물로서 하기 일반식 3으로 표시되는 화합물을 사용한다.
<일반식 3>
Figure PCTKR2014010537-appb-I000012
(상기 일반식 3에서, Ar1은 치환 또는 비치환된 4가의 탄소수 6 내지 24의 아릴렌기 및 치환 또는 비치환된 4가의 탄소수 4 내지 24의 복소환기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있다)
폴리이미드를 합성하기 위한 단량체로서 산이무수물은 상기 일반식 3에서 정의한 바와 같은 것이라면 어느 것이든지 제한 없이 사용할 수 있으나, 합성되는 폴리이미드의 열적, 화학적 특성을 더욱 향상시킬 수 있는 점을 고려하여 불소기를 갖고 있는 4,4'-헥사플루오로이소프로필리덴프탈산이무수물(6FDA)을 사용하는 것이 바람직하다.
또한, 본 발명에서는 폴리(벤즈옥사졸-이미드) 공중합체 구조를 갖기 위하여, 오르쏘-히드록시 폴리이미드를 열전환하면 폴리벤즈옥사졸 단위를 도입할 수 있음에 착안하여 오르쏘-히드록시 폴리이미드를 합성하고자 오르쏘-히드록시 디아민으로서는 일반식 2로 표시되는 화합물을 사용한다.
<일반식 2>
Figure PCTKR2014010537-appb-I000013
(상기 일반식 2에서, Q는 단일결합이거나; O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2, CO-NH, C(CH3)(CF3), 또는 치환 또는 비치환된 페닐렌기이다)
오르쏘-히드록시 디아민으로서는 상기 일반식 2에서 정의한 바와 같은 것이라면 어느 것이든지 제한 없이 사용할 수 있으나, 반응이 용이한 3,3-디히드록시벤지딘(HAB)을 사용하는 것이 더욱 바람직하다.
또한, 본 발명에서는 공단량체로서 하기 일반식 4로 표시되는 방향족 디아민을 사용함으로써 상기 일반식 3의 산이무수물과 반응하여 공중합체 내에 폴리이미드 구조단위가 도입된다.
<일반식 4>
Figure PCTKR2014010537-appb-I000014
(상기 일반식 4에서, Ar2는 치환 또는 비치환된 2가의 탄소수 6 내지 24의 아릴렌기 및 치환 또는 비치환된 2가의 탄소수 4 내지 24의 복소환기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있다)
방향족 디아민으로서는 상기 일반식 4에서 정의한 바와 같은 것이라면 어느 것이든지 제한 없이 사용할 수 있으나, 저가의 것일수록 대량생산시 전체 공정의 비용이 줄어들어 바람직하며, 2,4,6-트리메틸-페닐렌디아민(DAM)을 더욱 바람직하게 사용할 수 있다.
아울러 본 발명에서는, 화학적으로 공유결합된 상태의 가교구조를 갖기 위해서 반복단위 내에 카르복실산과 같은 작용기를 가져야 가능하므로, 또 다른 공단량체로서 3, 5-디아미노벤조산(DABA)을 사용함으로써 상기 일반식 3의 산이무수물과 반응하여 공중합체 내에 카르복실산을 갖는 또 다른 폴리이미드 구조단위가 도입된다.
그러므로 상기 I) 단계 동안에 일반식 3의 산이무수물과 일반식 2의 오르쏘-히드록시 디아민 및 공단량체로서 일반식 4의 방향족 디아민과 3, 5-디아미노벤조산(DABA)이 함께 반응하여 오르쏘-히드록시 폴리이미드 구조단위-폴리이미드 구조단위-카르복실산 함유 폴리이미드 구조단위로 이루어진 반복단위를 갖는 삼원공중합체를 합성할 수 있고, 그에 따라 추후 열처리 공정에 의하여 폴리벤즈옥사졸로 열전환되는 오르쏘-히드록시 폴리이미드 구조단위의 함량을 80% 미만으로 조절할 수 있다.
즉, 상기 I) 단계에서는 일반식 3의 산이무수물, 일반식 2의 오르쏘-히드록시 다아민, 일반식 4의 방향족 디아민 및 3, 5-디아미노벤조산(DABA)을 N-메틸피롤리돈(NMP)과 같은 유기용매에 용해 및 교반하여 폴리아믹산 용액을 얻은 후, 공비 열 이미드화법(azeotropic thermal imidization)에 의하여 하기 구조식 2로 표시되는 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체를 합성한다.
<구조식 2>
Figure PCTKR2014010537-appb-I000015
(상기 구조식 2에서, Ar1, Ar2 및 Q는 각각 일반식 3, 4 및 2에서 정의한 바와 같고, x, y, z는 각각 반복단위 내 몰분율로서 x<0.8 이고, x+y+z=1 이며, x, y 또는 z=0 인 경우는 없다)
이때, 공비 열 이미드화법은 폴리아믹산 용액에 톨루엔 또는 자일렌을 첨가하고 교반하여 180~200℃에서 6~12시간 동안 이미드화 반응을 수행하게 되는데, 이 동안에 이미드 고리가 생성되면서 방출된 물은 톨루엔 또는 자일렌의 공비혼합물로서 분리된다.
다음으로, 상기 I) 단계의 폴리이미드 공중합체와 디올을 반응시켜 하기 구조식 3으로 표시되는 모노에스테르화 오르쏘-히드록시 폴리이미드 공중합체를 합성한다.
<구조식 3>
Figure PCTKR2014010537-appb-I000016
(상기 구조식 3에서 Ar1, Q, Ar2, x, y 및 z는 상기 화학식 2에서 정의된 바와 같다)
이때, 디올로서는 에틸렌글리콜, 프로필렌글리콜, 1,4-부틸렌글리콜, 1,3-프로판디올, 1,2-부탄디올, 1,3-부탄디올, 및 벤젠디메탄올로 이루어진 군으로부터 선택된 어느 하나의 것을 사용할 수 있으며, 1,4-부틸렌글리콜이 더욱 바람직하지만 이에 한정되는 것은 아니다.
그리고 상기 II) 단계의 모노에스테르화는 파라-톨루엔술폰산 촉매하에서 상기 구조식 2로 표시되는 폴리이미드 공중합체에 함유된 카르복실산 당량의 50배 이상에 해당하는 과량의 디올을 140~160℃에서 18~24시간 동안 반응시킨다.
이어서 상기 구조식 3으로 표시되는 상기 II) 단계의 모노에스테르화 오르쏘-히드록시 폴리이미드 공중합체를 N-메틸피롤리돈(NMP)과 같은 유기용매에 녹인 고분자용액을 캐스팅하여 제막한 후, 트랜스에스테르화 가교반응에 의하여 하기 구조식 4로 표시되는 가교구조를 갖는 오르쏘-히드록시 폴리이미드 공중합체 막을 합성한다.
<구조식 4>
Figure PCTKR2014010537-appb-I000017
(상기 구조식 4에서 Ar1, Q, Ar2, x, y 및 z는 상기 화학식 2에서 정의된 바와 같다)
상기 트랜스에스테르화 가교반응을 수행하기 위하여 진공하에서 200~250℃, 18~24 시간 열처리한다.
마지막으로, 상기 구조식 4로 표시되는 상기 III) 단계의 가교구조를 갖는 오르쏘-히드록시 폴리이미드 공중합체 막을 열전환 함으로써 최종 목적물인 상기 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막을 제조한다.
상기 열전환은 고순도의 불활성 가스 분위기에서 1~20℃/min의 승온 속도로 350~450℃까지 승온한 후 0.1~3시간 동안 등온 상태를 유지함으로써 완성된다.
또한, 본 발명은 화학적 방법 또는 UV 조사 등의 복잡한 공정을 거치지 않고서도 단지 열처리만으로 상기 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막을 제조하는 방법을 또 하나의 기술적 특징으로 한다.
즉, 본 발명에서는 a) 산이무수물, 오르쏘-히드록시 디아민 및 공단량체로서 방향족 디아민, 3, 5-디아미노벤조산을 반응시켜 폴리아믹산 용액을 얻은 후, 공비 열 이미드화법에 의하여 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체를 합성하는 단계;
b) 상기 a) 단계에서 합성한 카르복실산을 갖는 오르쏘-히드록시 폴리이미드공중합체를 유기용매에 녹이고 캐스팅하여 제막하는 단계; 및
c) 상기 b) 단계에서 얻어진 막을 열처리하는 단계;를 포함하는 상기 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막의 제조방법을 제공한다.
통상 폴리이미드를 합성하기 위해서는 먼저 산이무수물과 디아민을 반응시켜 폴리아믹산을 얻어야 하는바, 본 발명에서도 산이무수물로서 하기 일반식 3으로 표시되는 화합물을 사용한다.
<일반식 3>
Figure PCTKR2014010537-appb-I000018
(상기 일반식 3에서, Ar1은 치환 또는 비치환된 4가의 탄소수 6 내지 24의 아릴렌기 및 치환 또는 비치환된 4가의 탄소수 4 내지 24의 복소환기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있다)
폴리이미드를 합성하기 위한 단량체로서 산이무수물은 상기 일반식 3에서 정의한 바와 같은 것이라면 어느 것이든지 제한 없이 사용할 수 있으나, 합성되는 폴리이미드의 열적, 화학적 특성을 더욱 향상시킬 수 있는 점을 고려하여 불소기를 갖고 있는 4,4'-헥사플루오로이소프로필리덴프탈산이무수물(6FDA)을 사용하는 것이 바람직하다.
또한, 본 발명에서는 폴리(벤즈옥사졸-이미드) 공중합체 구조를 갖기 위하여, 오르쏘-히드록시 폴리이미드를 열전환하면 폴리벤즈옥사졸 단위를 도입할 수 있음에 착안하여 오르쏘-히드록시 폴리이미드를 합성하고자 오르쏘-히드록시 디아민으로서는 하기 일반식 2로 표시되는 화합물을 사용한다.
<일반식 2>
Figure PCTKR2014010537-appb-I000019
(상기 일반식 2에서, Q는 단일결합이거나; O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2, CO-NH, C(CH3)(CF3), 또는 치환 또는 비치환된 페닐렌기이다)
오르쏘-히드록시 디아민으로서는 상기 일반식 2에서 정의한 바와 같은 것이라면 어느 것이든지 제한 없이 사용할 수 있으나, 반응이 용이한 3,3-디히드록시벤지딘(HAB)을 사용하는 것이 더욱 바람직하다.
또한, 본 발명에서는 공단량체로서 하기 일반식 4로 표시되는 방향족 디아민을 사용함으로써 상기 일반식 3의 산이무수물과 반응하여 공중합체 내에 폴리이미드 구조단위가 도입된다.
<일반식 4>
(상기 일반식 4에서, Ar2는 치환 또는 비치환된 2가의 탄소수 6 내지 24의 아릴렌기 및 치환 또는 비치환된 2가의 탄소수 4 내지 24의 복소환기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있다)
방향족 디아민으로서는 상기 일반식 4에서 정의한 바와 같은 것이라면 어느 것이든지 제한 없이 사용할 수 있으나, 저가의 것일수록 대량생산시 전체 공정의 비용이 줄어들어 바람직하며, 2,4,6-트리메틸-페닐렌디아민(DAM)을 더욱 바람직하게 사용할 수 있다.
아울러 본 발명에서는, 화학적 가교 또는 UV 조사 등의 복잡한 공정을 거치지 않고서도, 단지 간단한 열처리 공정만으로 고분자 사슬 간에 가교구조를 갖기 위해서는 반복단위 내에 카르복실산과 같은 작용기를 가져야 가능하므로, 또 다른 공단량체로서 3, 5-디아미노벤조산(DABA)을 사용함으로써 상기 일반식 3의 산이무수물과 반응하여 공중합체 내에 카르복실산을 갖는 또 다른 폴리이미드 구조단위가 도입된다.
그러므로 상기 a) 단계 동안에 일반식 3의 산이무수물과 일반식 2의 오르쏘-히드록시 디아민 및 공단량체로서 일반식 4의 방향족 디아민과 3, 5-디아미노벤조산(DABA)이 함께 반응하여 오르쏘-히드록시 폴리이미드 구조단위-폴리이미드 구조단위-카르복실산 함유 폴리이미드 구조단위로 이루어진 반복단위를 갖는 삼원공중합체를 합성할 수 있고, 그에 따라 추후 열처리 공정에 의하여 폴리벤즈옥사졸로 열전환되는 오르쏘-히드록시 폴리이미드 구조단위의 함량을 80% 미만으로 조절할 수 있다.
즉, 상기 a) 단계에서는 일반식 3의 산이무수물, 일반식 2의 오르쏘-히드록시 다아민, 일반식 4의 방향족 디아민 및 3, 5-디아미노벤조산(DABA)을 N-메틸피롤리돈(NMP)과 같은 유기용매에 용해 및 교반하여 폴리아믹산 용액을 얻은 후, 공비 열 이미드화법(azeotropic thermal imidization)에 의하여 하기 구조식 2로 표시되는 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체를 합성한다.
<구조식 2>
Figure PCTKR2014010537-appb-I000021
(상기 구조식 2에서, Ar1, Ar2 및 Q는 각각 일반식 3, 4 및 2에서에서 정의한 바와 같고, x, y, z는 각각 반복단위 내 몰분율로서 x<0.8 이고, x+y+z=1 이며, x, y 또는 z=0 인 경우는 없다)
이때, 공비 열 이미드화법은 폴리아믹산 용액에 톨루엔 또는 자일렌을 첨가하고 교반하여 180~200℃에서 6~12시간 동안 이미드화 반응을 수행하게 되는데, 이 동안에 이미드 고리가 생성되면서 방출된 물은 톨루엔 또는 자일렌의 공비혼합물로서 분리된다.
이어서 b) 단계로서, 상기 구조식 2로 표시되는 상기 a) 단계의 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체를 N-메틸피롤리돈(NMP)과 같은 유기용매에 녹인 고분자용액을 유리판에 캐스팅하여 제막함으로써, 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체 막을 얻는다.
마지막으로, 상기 b) 단계에서 얻어진 막을 단지 열처리함으로써 최종 목적물인 상기 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막을 제조한다.
상기 열처리는 고순도의 불활성 가스 분위기에서 1~20℃/min의 승온 속도로 350~450℃까지 승온한 후 0.1~3시간 동안 등온 상태를 유지함으로써 완성된다.
이하에서는 본 발명에 따른 배연가스 분리용 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막, 공중합체 고분자 사슬 내 벤즈옥사졸 그룹의 함량이 80% 미만인 상기 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막을 제조하기 위한 실시예를 도면과 함께 구체적으로 설명한다.
[합성예 1] 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체의 합성
2,2-비스(3-아미노-4-히드록시페닐)헥사플루오로프로판(bisAPAF) 9.75 mmol 및 3,5-디아미노벤조산(DABA) 0.25 mmol을 무수 NMP 10ml에 용해시켜 0℃로 냉각하고, 여기에 무수 NMP 10ml에 용해시킨 4,4'-헥사플루오로이소프로필리덴프탈산이무수물(6FDA) 10 mmol을 첨가하였다. 이 반응 혼합물을 0℃에서 15분 교반한 다음 상온으로 승온하여 밤새 방치한 후, 폴리아믹산 점성 용액을 얻었다. 이어서 폴리아믹산 용액에 오르쏘-자일렌 20ml를 첨가한 후 강력하게 교반 및 가열하여 180℃에서 6시간 이미드화를 수행하였다. 이 과정에서 이미드 고리의 생성에 의해 방출된 물은 자일렌 공비혼합물로서 분리되었다. 이렇게 얻어진 갈색 용액을 상온으로 냉각, 증류슈에 침적, 온수로 수회 세척 및 120℃의 컨벡션 오븐에서 12시간 건조하는 일련의 과정을 거쳐 하기 화학식 3으로 표시되는 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체를 합성하였고, 이를 HPIDABA-2.5라고 명명하였다.
<화학식 3>
Figure PCTKR2014010537-appb-I000022
상기 화학식 3에서 x, y는 반복단위 내 몰분율로서 x=0.975, y=0.025이다.
상기 합성예 1로부터 화학식 3으로 표시되는 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체가 합성되었음을 다음과 같이 1H-NMR 및 FT-IR 데이터로 확인하였다. 1H-NMR(300 MHz, DMSO-d 6 , ppm): 13.50 (s,-COOH), 10.41 (s, -OH), 8.10 (d, Har, J=8.0Hz), 7.92 (d, Har, J=8.0Hz), 7.85 (s, Har), 7.80 (s, Har), 7.71 (s, Har), 7.47 (s, Har), 7.20 (d, Har, J=8.3Hz), 7.04 (d, Har, J=8.3Hz). FT-IR (film) : ν(O-H) at 3400 cm-1, ν(C=O) at 1786 and 1716 cm-1, Ar (C-C) at 1619, 1519 cm-1, imide ν(C-N) at 1377 cm-1, (C-F) at 1299-1135 cm-1, imide (C-N-C) at 1102 and 720 cm-1.
[합성예 2 내지 6] 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체의 합성
또한, 상기 합성예 1의 반응물인 bisAPAF를 각각 9.5 mmol, 9.0 mmol, 8.5 mmol, 8.0 mmol, 7.5 mmol 및 DABA를 각각 0.5 mmol, 1.0 mmol, 1.5 mmol, 2.0 mmol, 2.5 mmol을 사용하여 반복단위 내 x, y의 몰분율이 다양한 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체를 합성하였고, 이를 합성예 1과 같은 방식[HPIDABA-Y(Y는 반복단위 내에 도입된 DABA 디아민의 몰분율(percent), Y=5, 10, 15, 20, 25)]으로 명명하였다.
[제막예 1 내지 6] 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체 막의 제조
합성예 1 내지 6으로부터 합성된 HPIDABA-Y(Y=2.5, 5, 10, 15, 20, 25)를 NMP에 녹여 15 중량%의 용액을 준비한 후 유리판에 캐스팅하였다. 이를 진공 오븐에 넣고 100℃, 150℃, 200℃ 및 250℃에서 각각 한 시간 동안 유지하면서 잔류 NMP를 증발시키고 건조하여 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체 막을 얻었으며, 이를 합성예 1 내지 6과 같은 방식으로 명명하였다.
[실시예 1 내지 6] 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막의 제조
제막예 1 내지 6으로부터 얻어진 결함이 없는 필름을 3 cm x 3 cm 크기로 잘라 머플로에서 온도 상승에 따른 필름의 변형을 방지하기 위하여 석영판 사이에 두었다. 샘플을 고순도의 아르곤 가스 분위기에서 5℃/min의 승온 속도로 450℃까지 승온한 후 1시간 동안 등온 상태를 유지하였다. 열처리 후, 머플로를 10℃/min 미만의 냉각속도로 서서히 상온으로 냉각하여 화학식 4로 표시되는 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막을 제조하였으며, 이를 각각 PBODABA-Y(Y=2.5, 5, 10, 15, 20, 25)라고 명명하였다.
<화학식 4>
Figure PCTKR2014010537-appb-I000023
상기 화학식 4에서 x, y는 각각 x=0.975, 0.95, 0.9, 0.85, 0.8, 0.75 및 y=0.025, 0.05, 0.1, 0.15, 0.2, 0.25이다.
[참고예 1] 카르복실산을 갖지 않는 오르쏘-히드록시 폴리이미드 단일중합체 막의 제조
반응물로서 DABA를 사용하지 않고, bisAPAF 10 mmol 및 6FDA 10 mmol만을 사용한 것을 제외하고는 합성예 1과 동일한 방법으로 카르복실산을 갖지 않는 오르쏘-히드록시 폴리이미드 단일중합체를 합성하였고, 이어서 제막예 1에 따라 막을 얻었으며, 이를 HPI라고 명명하였다.
[참고예 2] 카르복실산을 갖지 않는 오르쏘-히드록시 폴리이미드 공중합체 막의 제조
반응물로서 DABA를 사용하지 않고, bisAPAF 9.5 mmol, 메타-페닐렌디아민 0.5 mmol 및 6FDA 10 mmol만을 사용한 것을 제외하고는 합성예 1과 동일한 방법으로 카르복실산을 갖지 않는 오르쏘-히드록시 폴리이미드 공중합체를 합성하였고, 이어서 제막예 1에 따라 막을 얻었으며, 이를 HPIMPD-5라고 명명하였다.
[비교예 1] 가교구조를 갖지 않는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막의 제조
참고예 2로부터 얻어진 HPIMPD-5를 실시예 1과 동일한 방법으로 열처리하여 가교구조를 갖지 않는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막을 제조하였고, 이를 PBOMPD-5라고 명명하였다.
[합성예 7] 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체의 합성
3,3-디히드록시벤지딘(HAB) 5.0 mmol, 2,4,6-트리메틸-페닐렌디아민(DAM) 4.5 mmol 및 3,5-디아미노벤조산(DABA) 0.5 mmol을 무수 NMP 10ml에 용해시켜 0℃로 냉각하고, 여기에 무수 NMP 10ml에 용해시킨 4,4'-헥사플루오로이소프로필리덴프탈산이무수물(6FDA) 10 mmol을 첨가하였다. 이 반응 혼합물을 0℃에서 15분 교반한 다음 상온으로 승온하여 밤새 방치한 후, 폴리아믹산 점성 용액을 얻었다. 이어서 폴리아믹산 용액에 오르쏘-자일렌 20ml를 첨가한 후 강력하게 교반 및 가열하여 180℃에서 6시간 이미드화를 수행하였다. 이 과정에서 이미드 고리의 생성에 의해 방출된 물은 자일렌 공비혼합물로서 분리되었다. 이렇게 얻어진 갈색 용액을 상온으로 냉각, 증류슈에 침적, 온수로 수회 세척 및 120℃의 컨벡션 오븐에서 12시간 건조하는 일련의 과정을 거쳐 하기 화학식 5로 표시되는 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체를 합성하였다.
<화학식 5>
Figure PCTKR2014010537-appb-I000024
상기 화학식 5에서 x, y, z는 반복단위 내 몰분율로서 x=0.5, y=0.45, z=0.05이다.
상기 합성예 7로부터 화학식 5로 표시되는 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체가 합성되었음을 다음과 같이 FT-IR 데이터로 확인하였다.
ν(O-H) at 3460 cm-1, (C-H) at 2920 and 2980 cm-1, ν(C=O) at 1784 and 1725 cm-1, Ar (C-C) at 1619 and 1573 cm-1, imide ν(C-N) at 1359 cm-1, (C-F) at 1295-1140 cm-1, imide (C-N-C) at 1099 cm-1.
[합성예 8 내지 11] 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체의 합성
합성예 7의 반응물인 HAB, DAM 및 DABA의 양(mmol)을 아래 표 1에 기재한 바와 같이 사용하여 반복단위 내 x, y, z의 몰분율을 다양하게 변화시킨 것을 제외하고는 합성예 7과 동일한 방법으로 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체를 합성하였다.
표 1
합성예 HAB DAM DABA x y z
합성예 8 5.0 4.0 1.0 0.5 0.4 0.1
합성예 9 5.0 3.0 2.0 0.5 0.3 0.2
합성예 10 4.5 5.0 0.5 0.45 0.5 0.05
합성예 11 4.0 5.5 0.5 0.4 0.55 0.05
[합성예 12 내지 16] 모노에스테르화 오르쏘-히드록시 폴리이미드 공중합체의 합성
응축기가 장착된 3구 플라스크에서 계속적으로 질소를 퍼지하면서 상기 합성예 7 내지 11로부터 얻어진 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체 1.0 g을 각각 NMP 10ml에 녹이고, 그 용액에 카르복실산 당량의 50배 이상에 해당하는 과량의 1,4-부틸렌글리콜을 첨가하였다. 이어서 질소 분위기하에서 5 mg의 파라-톨루엔술폰산 촉매를 첨가하고 140℃에서 18시간 동안 모노에스테르화 반응을 수행하였다. 모노에스테르화 반응이 종료된 후, 얻어진 공중합체 용액을 상온으로 냉각, 증류슈에 침적, 미반응 1,4-부틸렌글리콜의 제거를 위하여 수회 세척 및 70℃의 진공 오븐에서 24시간 건조하는 일련의 과정을 거쳐 하기 화학식 6으로 표시되는 모노에스테르화 오르쏘-히드록시 폴리이미드 공중합체를 합성하였다.
<화학식 6>
Figure PCTKR2014010537-appb-I000025
상기 화학식 6에서 x, y, z는 합성예 7 내지 11에서 정의한 바와 같다.
[합성예 17 내지 21] 가교구조를 갖는 오르쏘-히드록시 폴리이미드 공중합체막의 합성
합성예 12 내지 16으로부터 얻어진 모노에스테르화 오르쏘-히드록시 폴리이미드 공중합체를 NMP에 녹여 15 중량%의 용액을 준비한 후 유리판에 캐스팅하였다. 이를 진공 오븐에 넣고 NMP를 증발시키기 위하여 100℃, 150℃, 200℃ 및 250℃에서 각각 한 시간 동안 유지하면서 서서히 250℃로 승온시켰다. 이어서 공중합체 필름을 진공 분위기로 250℃에서 24시간 열처리함으로써 트랜스에스테르화 가교반응을 수행하여 하기 화학식 7로 표시되는 가교구조를 갖는 오르쏘-히드록시 폴리이미드 공중합체 막을 합성하였다.
<화학식 7>
Figure PCTKR2014010537-appb-I000026
상기 화학식 7에서 x, y, z는 화학식 6에서 정의한 바와 같다.
상기 합성예 17 내지 21로부터 화학식 7로 표시되는 가교구조를 갖는 오르쏘-히드록시 폴리이미드 공중합체가 합성되었음을 다음과 같이 FT-IR 데이터로 확인하였다. ν(O-H) at 3465 cm-1, (C-H) at 2950 and 2970 cm-1, ν(C=O) at 1789 and 1712 cm-1, Ar (C-C) at 1619 and 1573 cm-1, imide ν(C-N) at 1362 cm-1, (C-F) at 1295-1140 cm-1, imide (C-N-C) at 1097 cm-1.
[실시예 7 내지 11] 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막의 제조
합성예 17 내지 21로부터 얻어진 결함이 없는 필름을 3 cm x 3 cm 크기로 잘라 머플로에서 온도 상승에 따른 필름의 변형을 방지하기 위하여 석영판 사이에 두었다. 샘플을 고순도의 아르곤 가스 분위기에서 5℃/min의 승온 속도로 450℃까지 승온한 후 1시간 동안 등온 상태를 유지하였다. 열처리 후, 머플로를 10℃/min 미만의 냉각속도로 서서히 상온으로 냉각하여 화학식 8로 표시되는 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막을 제조하였다.
<화학식 8>
Figure PCTKR2014010537-appb-I000027
상기 화학식 8에서 x, y, z는 화학식 6에서 정의한 바와 같다.
상기 실시예 7 내지 11로부터 화학식 8로 표시되는 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체가 제조되었음을 다음과 같이 FT-IR 데이터로 확인하였다. ν(O-H) at 3507 cm-1, (C-H) at 2920 and 2980 cm-1, ν(C=O) at 1784 and 1725 cm-1, Ar (C-C) at 1619 and 1598 cm-1, imide ν(C-N) at 1359 cm-1, (C-F) at 1295-1140 cm-1, imide (C-N-C) at 1099 cm-1, benzoxazole (C=N) at 1550 cm-1, benzoxazole (C-O) at 1062 cm-1.
[실시예 12 내지 16] 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막의 제조
합성예 7 내지 11로부터 합성된 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체를 NMP에 녹여 15 중량%의 용액을 준비한 후 유리판에 캐스팅하였다. 이를 진공 오븐에 넣고 100℃, 150℃, 200℃ 및 250℃에서 각각 한 시간 동안 유지하면서 잔류 NMP를 증발시키고 건조하여 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체 막을 얻은 후, 이를 실시예 7 내지 11과 동일한 방법에 의하여 열처리함으로써 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막을 제조하였다.
[비교예 2] 가교구조를 갖지 않는 열전환 폴리(벤즈옥사졸-이미드) 공중합체막의 제조
공단량체인 DABA를 사용하지 않고, HAB 5 mmol, DAM 5 mmol 및 6FDA 10 mmol을 사용하여 합성예 7, 12 및 17과 동일한 공정을 순차적으로 수행함으로써 하기 화학식 9로 표시되는 가교구조를 갖지 않는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막을 제조하였다.
<화학식 9>
Figure PCTKR2014010537-appb-I000028
상기 화학식 9에서, x=0.5, y=0.5이다.
[비교예 3] 방향족 디아민 유래 폴리이미드 구조단위가 없고 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막의 제조
공단량체인 DAM을 사용하지 않고, 오르쏘-히드록시 디아민으로서 2,2-비스(3-아미노-4-히드록시페닐)헥사플루오로프로판(bisAPAF) 9.5 mmol, DABA 0.5 mmol 및 6FDA 10 mmol을 사용하여 합성예 7, 12 및 17과 동일한 공정을 순차적으로 수행함으로써 하기 화학식 10으로 표시되는 방향족 디아민 유래 폴리이미드 구조단위가 없고 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막을 제조하였다.
<화학식 10>
Figure PCTKR2014010537-appb-I000029
상기 화학식 7에서, x=0.95, y=0.05이다.
도 1에는 본 발명에 따른 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체의 합성예들 중에서 합성예 4로부터 합성된 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체의 1H-NMR 스펙트럼을 나타내었다. 도 1의 1H-NMR 스펙트럼으로부터 확인할 수 있는 반복단위 내 수소의 특성 피크로부터 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체가 합성되었음을 알 수 있다.
도 2에는 본 발명에 따른 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체 막의 제막예들 중에서 제막예 4 내지 6에 따라 얻어진 HPIDABA-15, HPIDABA-20 및 HPIDABA-25의 ATR-FTIR 스펙트럼을 나타내었다. 도 2에서 보는 바와 같이 3400 cm-1 부근에서 O-H에 기인하는 넓은 영역의 스트레칭 바이브레이션 피크, 1786 cm-1 및 1716 cm-1에서의 C=O 스트레칭 바이브레이션 피크, 1619 cm-1 및 1519 cm -1에서의 방향족 C-C 흡수 피크, 1377 cm-1 부근에서 이미드기의 C-N 스트레칭 바이브레이션 피크, 1299-1135 cm-1에서의 C-F 흡수 피크, 1102 cm-1 부근에서 이미드기의 C-N-C 흡수 피크와 같은 특성 피크가 확인되어 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체 막이 얻어졌음을 알 수 있다.
도 3에는 본 발명의 실시예 2 내지 6의 제조방법에 따라 단지 열처리만으로 가교구조를 가짐과 동시에, 열전환된 폴리(벤즈옥사졸-이미드) 공중합체 막과 통상의 폴리벤즈옥사졸 막(PBO)의 ATR-FTIR 스펙트럼을 나타내었다. 3400 cm-1 부근에서 나타나는 O-H 스트레칭 피크가 사라지고, 1476 cm-1 및 1014 cm-1 부근에서 전형적인 벤즈옥사졸 고리에 기인하는 두 개의 뚜렷한 피크가 나타난 것으로 보아 열처리 과정에서 벤즈옥사졸 고리가 형성되었음을 알 수 있었다. 게다가 이미드기 고유의 흡수 밴드도 발견되어 450℃에 이르는 열처리 온도에서도 방향족 이미드 연결고리의 열적 안정성을 확인할 수 있었다.
또한, 하기 표 2에는 제막예 1 내지 6, 실시예 1 내지 6, 참고예 2 및 비교예 1에 따라 제조된 샘플의 밀도와 면간 거리(d-spacing)를 나타내었는바, 실시예 1 내지 6에 따라 가교구조를 갖는 열전환된 폴리(벤즈옥사졸-이미드) 공중합체 막의 면간 거리는 0.62~0.67 nm로서, 제막예 1 내지 6에 따라 열전환되기 전의 히드록시 폴리이미드 공중합체 막의 면간 거리(0.54~0.57 nm), 참고예 2에 따라 DABA를 포함하지 않는 열전환되기 전의 히드록시 폴리이미드 공중합체 막의 면간 거리(0.53 nm) 및 비교예 1에 따라 가교구조를 갖지 않는 열전환된 폴리(벤즈옥사졸-이미드) 공중합체 막의 면간 거리(0.59 nm)에 비하여 더 길어, 평균 사슬간 거리가 현저히 증가하였음을 쉽게 알 수 있고, 이는 열전환된 폴리(벤즈옥사졸-이미드) 공중합체 막의 밀도가 1.38~1.43 g/cm3로서, 열전환되기 전의 히드록시 폴리이미드 공중합체 막의 밀도(1.50~1.52 g/cm3)에 비하여 많이 감소한 사실과도 부합되는 결과이다.
표 2
샘플 밀도(g/cm3) d-spacing(nm)
HPIDABA-2.5 1.51 0.54
HPIDABA-5 1.52 0.55
HPIDABA-10 1.51 0.55
HPIDABA-15 1.51 0.54
HPIDABA-20 1.52 0.57
HPIDABA-25 1.50 0.55
PBODABA-2.5 1.41 0.62
PBODABA-5 1.42 0.62
PBODABA-10 1.40 0.66
PBODABA-15 1.38 0.67
PBODABA-20 1.38 0.66
PBODABA-25 1.43 0.65
HPIMPD-5 1.50 0.53
PBOMPD-5 1.45 0.59
따라서 본 발명에 따라 제조된 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막은 고분자 사슬이 덜 패킹되고, 더 많은 공간을 갖는 구조를 가지므로 작은 분자들이 투과 및 확산될 수 있는 여지가 충분하여 배연가스 분리용 막으로 사용될 수 있는 것이다.
또한, 본 발명의 제막예 2 및 6에 따른 HPIDABA-5 및 HPIDABA-25, 참고예 1 및 2에 따른 HPI 및 HPIMPD-5로부터 열전환 폴리벤즈옥사졸이 제조되는 과정에서의 탈카르복실화(decarboxylation)에 따른 중량 감소를 열중량분석기(TGA)로 시험하여 도 4 및 도 5에 그 결과를 나타내었고, 유리전이온도의 변화를 포함한 기타 열적 특성은 표 3에 나타내었다.
도 4 에서 고분자 사슬의 일반적인 분해온도인 500~600℃ 이전에 370~450℃에서 뚜렷한 중량 감소 피크를 볼 수 있는데, 이러한 최초의 중량 감소 단계 동안에 CO2가 방출되는 것이 질량분석기에 의하여 입증되며, 열전환 공정이 수반되는 것임을 의미한다. 또한, 도 5로부터는 열전환 온도가 가교도에 따른 고분자 사슬의 유동성에 의하여 영향을 받는 것임을 확실히 알 수 있으며, 이는 표 3에 나타낸 바와 같은 유리전이온도의 변화와 PBO로의 최대 열전환율에서의 온도 변화 경향으로부터도 확인된다.
표 3
샘플 Tga(℃) TTR b(℃) DABA CO2 중량감소c(%) 열전환 공정 CO2 중량감소d(%) 전체 CO2 중량감소d(%) 전체 CO2 중량감소e(%)
HPI 300 407 - 11.36 11.36 11.25
HPIDABA-2.5 308 410 0.20 11.08 11.28 11.04
HPIDABA-5 305 417 0.39 10.79 11.18 11.04
HPIDABA-10 313 426 0.78 10.22 11.00 8.98
HPIDABA-15 314 430 1.18 9.66 10.84 8.87
HPIDABA-20 314 423 1.57 9.09 10.66 9.98
HPIDABA-25 300 429 1.96 8.52 10.48 8.80
HPIMPD-5 280 400 - 10.79 10.79 10.78
a 질소분위기하에서 20℃/min의 승온 속도로 DSC 2차 스캔한 흡열 전이의 중간점
b 최대 중량 감소점 또는 PBO로의 최대 열전환율에서의 온도
c DABA 카르복실산의 제거에 상응하는 CO2 중량 감소의 이론값
d 열전환반응에 상응하는 CO2 중량 감소의 이론값
e TGA에 의한 최초 단계에 상응하는 CO2 중량 감소의 실험값
또한, 본 발명의 실시예 1 내지 6에 따라 제조된 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막 PBODABA-Y 중에서 PBODABA-5, PBODABA-10, PBODABA-15, PBODABA-20, PBODABA-25, 및 비교예 1에 따라 제조된 가교구조를 갖지 않는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막 PBOMPD-5의 자유 부피 크기와 분포를 정량분석하기 위하여 양전자 소멸 수명 분석기(PALS : positron annihilation lifetime spectroscopy)를 이용하였고, 그 결과를 표 4에 나타내었다.
표 4
샘플 τ3 (ns) I3 (%) τ4 (ns) I4 (%) 기공직경d3(Å) 기공직경d4(Å)
PBOMPD-5 1.118±0.144 7.223±0.936 3.750±0.046 12.987±0.369 3.69±0.86 8.20±0.11
PBODABA-5 1.097±0.112 7.040±0.813 4.034±0.041 12.316±0.746 3.63±0.68 8.52±0.09
PBODABA-10 1.073±0.054 6.165±0.416 4.146±0.030 10.342±0.097 3.55±0.33 8.64±0.06
PBODABA-15 1.194±0.053 6.655±0.733 4.332±0.011 11.942±0.387 3.91±0.30 8.84±0.02
PBODABA-20 1.155±0.107 6.689±0.770 4.198±0.056 10.919±0.332 3.80±0.62 8.69±0.12
PBODABA-25 1.205±0.121 6.257±0.875 3.987±0.037 11.887±0.375 3.94±0.67 8.47±0.08
표 4에서 알 수 있는 것처럼 본 발명의 실시예에 따라 제조된 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막 PBODABA-Y는 두 가지 o-Ps 성분 즉, τ3 및 τ4를 가지며, 이는 막 내에 두 종류의 기공이 존재함을 의미한다. PALS 분석 결과, d3 평균 기공 직경이 4Å인 것에 상응하는 τ3 ~1.2 ns의 초극세공 및 d4 평균 기공 직경이 8.6 Å인 것에 상응하는 τ4 ~4 ns의 미세공을 확인할 수 있었고, PBODABA-15, PBODABA-20 및 PBODABA-25의 d3 평균 기공 직경과 PBODABA-5, PBODABA-10, PBODABA-15, PBODABA-20 및 PBODABA-25의 d4 평균 기공 직경은 모두 비교예 1에 따라 제조된 PBOMPD-5의 평균 기공 직경보다 더 큼을 알 수 있다.
또한, 본 발명의 실시예 1 내지 6에 따라 제조된 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막 PBODABA-Y와 비교예 1에 따라 제조된 가교구조를 갖지 않는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막 PBOMPD-5의 기체분리 성능을 확인하기 위하여 다양한 기체의 투과도 및 선택도를 측정한 결과를 각각 표 5 및 6에 나타내었다.
표 5
Figure PCTKR2014010537-appb-T000001
a 1 barrer= 10-10 cm3(STP) cm/(s cm2 cmHg)
표 6
Figure PCTKR2014010537-appb-T000002
b 선택도는 두 기체의 투과도의 비
표 5 및 6으로부터 본 발명의 실시예 1 내지 6에 따라 제조된 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막 PBODABA-Y의 투과도 및 선택도는 비교예 1에 따라 제조된 가교구조를 갖지 않는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막 PBOMPD-5의 투과도 및 선택도보다 전반적으로 높은 것을 알 수 있다. 일반적으로 유리상 고분자의 기체 투과 특성은 자유 부피 요소의 분포와 크기에 좌우된다고 알려져 있는바, PBODABA-Y 막의 투과도 계수는 PBOMPD-5 막의 투과도 계수보다 큰 것임을 입증하였고, 이는 PALS에 의해 분석된 더 큰 크기의 기공을 갖는 결과와도 일치한다.
본 발명의 PBODABA-Y 막은 투과도 및 선택도가 동시에 우수하여 일반적인 투과도-선택도의 트레이드-오프 관계를 극복할 수 있었다. 특히, CO2/CH4 혼합가스에 대해서는 CO2의 투과도가 615 barrer에 이를 정도로 매우 높으면서도 선택도를 높은 수준으로 유지하고 있음을 알 수 있다.
따라서 본 발명의 제조방법에 따르면, 가교구조를 형성하기 위한 화학적 방법 및 UV 조사 등의 복잡한 공정을 거치지 않고서도, 카르복실산을 갖는 히드록시 폴리이미드 공중합체 막을 단지 열처리함으로써 배연가스 분리용 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막을 제조할 수 있으며, 그에 따라 제조되는 배연가스 분리용 막은 투과도 및 선택도가 우수할 뿐만 아니라 제조공정이 간단하여 대량생산에 의한 상업화가 가능하다.
또한, 도 6은 합성예 17로부터 얻어진 공중합체 막을 다양한 열처리 온도에 따라 열전환 시킨 폴리(벤즈옥사졸-이미드) 막의 ATR-FTIR 스펙트럼을 나타내었다. 도 6에서 보는 바와 같이 열처리 온도가 375℃에서 450℃로 올라감에 따라 3580 cm-1 부근에서 히드록시폴리이미드의 O-H에 기인하는 넓은 영역의 스트레칭 바이브레이션 피크가 점차적으로 사라지는 것으로부터 폴리벤즈옥사졸로의 열전환 과정이 진행됨을 알 수 있다. 또한, 열처리 온도 300℃에서는 잘 보이지 않던 폴리벤즈옥사졸의 C=N 피크(1550 cm-1), C-O의 특성 피크(1062 cm-1)도 열처리 온도가 375℃에서 450℃로 올라감에 따라 뚜렷하게 발견됨으로써 폴리벤즈옥사졸로 열전환 되었음을 뒷받침하고 있다. 게다가 1784 cm-1 및 1725 cm-1에서 폴리이미드의 C=O 스트레칭 바이브레이션 피크도 발견되어 450℃에 이르는 열처리 온도에서도 방향족 이미드 연결고리의 열적 안정성을 확인할 수 있었다. 그러므로 본 발명에 따른 히드록시 폴리이미드로부터 폴리벤즈옥사졸로의 열전환을 위한 열처리 공정은 350~450℃에서, 바람직하기로는 375~450℃에서 수행하는 것이 좋다.
또한, 하기 표 7에는 실시예 7 내지 16 및 비교예 2, 3에 따라 제조된 샘플의 면간 거리(d-spacing)와 밀도를 나타내었다.
표 7
샘플 d-spacing(Å) 밀도(g/cm3)
실시예 7 6.67 1.38
실시예 8 6.74 1.40
실시예 9 6.79 1.40
실시예 10 6.70 1.42
실시예 11 6.72 1.43
실시예 12 6.52 1.40
실시예 13 6.57 1.41
실시예 14 6.39 1.39
실시예 15 6.53 1.38
실시예 16 6.55 1.40
비교예 2 6.37 1.41
비교예 3 6.20 1.43
표 7에서 보는 바와 같이, 실시예 7 내지 11 및 실시예 12 내지 16에 따라 가교구조를 갖는 열전환된 폴리(벤즈옥사졸-이미드) 공중합체 막의 면간 거리는 각각6.67~6.79 Å 및 6.39~6.57 Å으로서, 비교예 2에 따라 가교구조를 갖지 않는 열전환된 폴리(벤즈옥사졸-이미드) 공중합체 막의 면간 거리(6.37 Å) 및 비교예 3에 따라 방향족 디아민 유래 폴리이미드 구조단위가 없고 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막의 면간 거리(6.20 Å)에 비하여 더 길어, 평균 사슬간 거리가 증가하였음을 쉽게 알 수 있고, 이는 실시예 7 내지 11 및 실시예 12 내지 16에 따른 가교구조를 갖는 열전환된 폴리(벤즈옥사졸-이미드) 공중합체 막의 밀도가 각각 1.38~1.43 g/cm3 및 1.38~1.41 g/cm3로서, 비교예 2, 3에 따른 열전환된 폴리(벤즈옥사졸-이미드) 공중합체 막의 밀도에 비하여 많이 감소한 사실과도 부합되는 결과이다. 따라서 본 발명에 따라 제조된 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막은 고분자 사슬이 덜 패킹되고, 더 많은 공간을 갖는 구조를 가지므로 작은 분자들이 투과 및 확산될 수 있는 여지가 충분하여 배연가스 분리용 막으로 사용될 수 있는 것이다.
또한, 하기 표 8에는 실시예 7 내지 16 및 비교예 2, 3에 따라 제조된 샘플의 기계적 물성 및 열적 특성과 열전환 공정에서 막 면적의 수축률을 나타내었다.
표 8
샘플 인장강도(Mpa) 연신율(%) 수축률(%) TTR a(℃) Tgb(℃)
실시예 7 98 20 13 407 398
실시예 8 106 22 12 426 402
실시예 9 107 22 11 430 405
실시예 10 79 16 12 412 402
실시예 11 98 20 12 415 410
실시예 12 99 24 15 413 398
실시예 13 96 21 12 430 405
실시예 14 90 19 11 435 410
실시예 15 94 20 12 420 390
실시예 16 100 18 12 423 388
비교예 2 38 6 16 445 385
비교예 3 45 5 20 412 305
a 열전환이 일어나는 최대 온도
b 유리전이온도
표 8에서 보는 바와 같이, 본 발명의 실시예 7 내지 16에 따라 제조된 샘플은 비교예 2, 3에 따라 제조된 샘플에 비하여 인장강도가 2배 이상 높으면서도 연신율은 4배 이상 높아 기계적 물성이 우수함을 알 수 있다. 특히, 열전환 공정에서 수반되는 막 면적의 수축률도 실시예 7 내지 16이 비교예 2, 3에 비하여 저하됨으로써 대면적의 막을 양산할 수 있을 것으로 기대된다.
즉, 본 발명에 따라 제조되는 배연가스 분리용 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막은 오르쏘-히드록시 폴리이미드 구조단위-폴리이미드 구조단위-카르복실산 함유 폴리이미드 구조단위로 이루어진 반복단위를 갖는 삼원공중합체로부터 비롯되어 목적물인 배연가스 분리용 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막의 고분자 사슬 내 벤즈옥사졸 그룹의 함량이 80% 미만으로 낮기 때문에, 오르쏘-히드록시 폴리이미드 구조단위-폴리이미드 구조단위로 이루어진 반복단위를 갖는 이원공중합체로부터 비롯된 가교구조를 갖지 않는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막 및 가교구조를 갖더라도 방향족 디아민 유래 폴리이미드 구조단위가 없고 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막의 고분자 사슬 내 벤즈옥사졸 그룹의 함량이 80% 이상으로 높은 공중합체 막에 비하여 기계적 물성이 우수하고, 막 면적의 수축률이 저하되는 것이다.
아울러 표 8에 기재된 열전환이 일어나는 최대 온도 및 유리전이온도로부터는 본 발명의 실시예 7 내지 16에 따라 제조된 샘플이 비교예 2, 3에 따라 제조된 샘플에 비하여 열적 특성이 우수함을 확인할 수 있다.
또한, 본 발명의 실시예 7 내지 16에 따라 제조된 샘플과 비교예 2, 3에 따라 제조된 샘플의 기체분리 성능을 확인하기 위하여 다양한 기체의 투과도를 측정한 결과를 표 9에 나타내었다.
표 9
Figure PCTKR2014010537-appb-T000003
a 1 barrer= 10-10 cm3(STP) cm/(s cm2 cmHg)
표 9로부터 본 발명의 실시예 7 내지 11에 따라 제조된 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막의 기체투과도는 비교예 2, 3에 따라 제조된 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막의 기체투과도와 비교하여 거의 모든 기체에서 높은 값을 나타냄을 확인할 수 있다.
또한, 도 7 및 도 8에는 실시예 7 내지 11에 따른 공중합체 막을 이용하여 CO2/CH4, CO2/N2 혼합기체로부터 기체분리 성능을, 도 9 및 도 10에는 실시예 12 내지 16에 따른 공중합체 막을 이용하여 CO2/CH4, CO2/N2 혼합기체로부터 기체분리 성능을 확인하기 위하여 기체투과도 및 선택도를 상업화된 기체분리막과 비교하여 함께 나타내었는바, CO2의 투과도가 현저히 높으면서도, CH4에 대한 CO2의 선택도 및 N2에 대한 CO2의 선택도가 일부 상업화된 막에 비하여도 떨어지지 않으므로, 본 발명의 실시예 7 내지 16에 따라 제조된 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막은 투과도 및 선택도가 동시에 높아 기체분리 성능이 우수함을 알 수 있다.
따라서 본 발명에 따르면, 공중합체 고분자 사슬 내 벤즈옥사졸 그룹의 함량이 80% 미만인 신규한 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드)공중합체를 포함하는 배연가스 분리용 막은 기계적 물성 및 열적 특성이 우수하고, 막 면적의 수축률이 저하되며, 기체 투과도 및 선택도가 동시에 높아 기체분리 성능이 뛰어나다.
게다가 가교구조를 형성하기 위한 화학적 방법 및 UV 조사 등의 복잡한 공정을 거치지 않고 단지 열처리만으로도 공중합체 고분자 사슬 내 벤즈옥사졸 그룹의 함량이 80% 미만인 신규한 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드)공중합체를 포함하는 배연가스 분리용 막을 제조할 수 있으므로, 제조공정이 간단하고 경제적이어서 대량생산에 의한 상업화가 가능하다.

Claims (30)

  1. i) 산이무수물, 오르쏘-히드록시 디아민 및 공단량체로서 3, 5-디아미노벤조산을 반응시켜 폴리아믹산 용액을 얻은 후, 공비 열 이미드화법에 의하여 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체를 합성하는 단계;
    ii) 상기 i) 단계에서 합성한 카르복실산을 갖는 오르쏘-히드록시 폴리이미드공중합체를 유기용매에 녹이고 캐스팅하여 제막하는 단계; 및
    iii) 상기 ii) 단계에서 얻어진 막을 열처리하는 단계;를 포함하는 배연가스 분리용 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막의 제조방법.
  2. 제1항에 있어서, 상기 i) 단계의 산이무수물은 하기 일반식 1로 표시되는 것을 특징으로 하는 배연가스 분리용 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막의 제조방법.
    <일반식 1>
    Figure PCTKR2014010537-appb-I000030
    (상기 일반식 1에서, Ar은 치환 또는 비치환된 4가의 탄소수 6 내지 24의 아릴렌기 및 치환 또는 비치환된 4가의 탄소수 4 내지 24의 복소환기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있다)
  3. 제1항에 있어서, 상기 i) 단계의 오르쏘-히드록시 디아민은 하기 일반식 2로 표시되는 것을 특징으로 하는 배연가스 분리용 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막의 제조방법.
    <일반식 2>
    Figure PCTKR2014010537-appb-I000031
    (상기 일반식 2에서, Q는 단일결합이거나; O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2, CO-NH, C(CH3)(CF3), 또는 치환 또는 비치환된 페닐렌기이다)
  4. 제1항에 있어서, 상기 i) 단계의 공비 열 이미드화법은 폴리아믹산 용액에 톨루엔 또는 자일렌을 첨가하고 교반하여 180~200℃에서 6~12시간 동안 이미드화 반응을 수행하는 것을 특징으로 하는 배연가스 분리용 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막의 제조방법.
  5. 제1항에 있어서, 상기 iii) 단계의 열처리는 고순도의 불활성 가스 분위기에서 1~20℃/min의 승온 속도로 350~450℃까지 승온한 후 0.1~3시간 동안 등온 상태를 유지함으로써 수행되는 것을 특징으로 하는 배연가스 분리용 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막의 제조방법.
  6. 제1항 내지 제5항 중 어느 한 항의 제조방법에 의하여 제조된 배연가스 분리용 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막.
  7. 제6항에 있어서, 상기 막은 하기 화학식 1로 표시되는 반복단위를 갖는 것을 특징으로 하는 배연가스 분리용 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막.
    <화학식 1>
    Figure PCTKR2014010537-appb-I000032
    (상기 화학식 1에서, Ar은 치환 또는 비치환된 4가의 탄소수 6 내지 24의 아릴렌기 및 치환 또는 비치환된 4가의 탄소수 4 내지 24의 복소환기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있고,
    Q는 단일결합이거나; O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2, CO-NH, C(CH3)(CF3), 또는 치환 또는 비치환된 페닐렌기이며,
    x, y는 각각 반복단위 내 몰분율로서 0.75≤x≤0.975, 0.025≤y≤0.25 이고, x+y=1 이다)
  8. 제7항에 있어서, 상기 막은 면간 거리(d-spacing)가 0.62~0.67 nm인 것을 특징으로 하는 배연가스 분리용 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막.
  9. 제7항에 있어서, 상기 막은 밀도가 1.38~1.43 g/cm3인 것을 특징으로 하는 배연가스 분리용 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막.
  10. 제7항에 있어서, 상기 막은 d3 평균 기공 직경이 4.0 Å이고, d4 평균 기공 직경이 8.6 Å인 것을 특징으로 하는 배연가스 분리용 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체 막.
  11. 하기 화학식 2로 표시되는 반복단위를 갖는, 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막.
    <화학식 2>
    Figure PCTKR2014010537-appb-I000033
    (상기 화학식 2에서, Ar1은 치환 또는 비치환된 4가의 탄소수 6 내지 24의 아릴렌기 및 치환 또는 비치환된 4가의 탄소수 4 내지 24의 복소환기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있고,
    Q는 단일결합이거나; O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2, CO-NH, C(CH3)(CF3), 또는 치환 또는 비치환된 페닐렌기이며,
    Ar2는 치환 또는 비치환된 2가의 탄소수 6 내지 24의 아릴렌기 및 치환 또는 비치환된 2가의 탄소수 4 내지 24의 복소환기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있고,
    x, y, z는 각각 반복단위 내 몰분율로서 x<0.8 이고, x+y+z=1 이며, x, y 또는 z=0 인 경우는 없다)
  12. 제11항에 있어서, 상기 공중합체는 면간 거리(d-spacing)가 6.67~6.79 Å인 것을 특징으로 하는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막.
  13. 제11항에 있어서, 상기 공중합체는 밀도가 1.38~1.43 g/cm3인 것을 특징으로 하는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막.
  14. I) 산이무수물, 오르쏘-히드록시 디아민 및 공단량체로서 방향족 디아민, 3, 5-디아미노벤조산을 반응시켜 폴리아믹산 용액을 얻은 후, 공비 열 이미드화법에 의하여 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체를 합성하는 단계;
    II) 상기 I) 단계의 폴리이미드 공중합체와 디올을 반응시켜 모노에스테르화 오르쏘-히드록시 폴리이미드 공중합체를 합성하는 단계;
    III) 상기 II) 단계의 모노에스테르화 오르쏘-히드록시 폴리이미드 공중합체를 유기용매에 녹인 고분자용액을 캐스팅하여 제막한 후, 트랜스에스테르화 가교반응에 의하여 가교구조를 갖는 오르쏘-히드록시 폴리이미드 공중합체 막을 합성하는 단계; 및
    IV) 상기 III) 단계의 가교구조를 갖는 오르쏘-히드록시 폴리이미드 공중합체막을 열전환 하는 단계;를 포함하는 제11항의 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막의 제조방법.
  15. 제14항에 있어서, 상기 I) 단계의 산이무수물은 하기 일반식 3으로 표시되는 것을 특징으로 하는 제11항의 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막의 제조방법.
    <일반식 3>
    Figure PCTKR2014010537-appb-I000034
    (상기 일반식 3에서, Ar1은 치환 또는 비치환된 4가의 탄소수 6 내지 24의 아릴렌기 및 치환 또는 비치환된 4가의 탄소수 4 내지 24의 복소환기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있다)
  16. 제14항에 있어서, 상기 I) 단계의 오르쏘-히드록시 디아민은 하기 일반식 2로 표시되는 것을 특징으로 하는 제11항의 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막의 제조방법.
    <일반식 2>
    Figure PCTKR2014010537-appb-I000035
    (상기 일반식 2에서, Q는 단일결합이거나; O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2, CO-NH, C(CH3)(CF3), 또는 치환 또는 비치환된 페닐렌기이다)
  17. 제14항에 있어서, 상기 I) 단계의 방향족 디아민은 하기 일반식 4로 표시되는 것을 특징으로 하는 제11항의 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막의 제조방법.
    <일반식 4>
    Figure PCTKR2014010537-appb-I000036
    (상기 일반식 4에서, Ar2는 치환 또는 비치환된 2가의 탄소수 6 내지 24의 아릴렌기 및 치환 또는 비치환된 2가의 탄소수 4 내지 24의 복소환기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있다)
  18. 제14항에 있어서, 상기 I) 단계의 공비 열 이미드화법은 폴리아믹산 용액에 톨루엔 또는 자일렌을 첨가하고 교반하여 180~200℃에서 6~12시간 동안 이미드화 반응을 수행하는 것을 특징으로 하는 제11항의 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막의 제조방법.
  19. 제14항에 있어서, 상기 II) 단계의 디올은 에틸렌글리콜, 프로필렌글리콜, 1,4-부틸렌글리콜, 1,3-프로판디올, 1,2-부탄디올, 1,3-부탄디올, 및 벤젠디메탄올로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 제11항의 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막의 제조방법.
  20. 제14항에 있어서, 상기 II) 단계의 모노에스테르화는 파라-톨루엔술폰산 촉매하에서 I) 단계의 공중합체에 함유된 카르복실산 당량의 50배 이상에 해당하는 과량의 디올을 140~160℃에서 18~24시간 동안 반응시키는 것을 특징으로 하는 제11항의 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막의 제조방법.
  21. 제14항에 있어서, 상기 III) 단계의 트랜스에스테르화 가교반응은 진공하에서 200~250℃, 18~24 시간 열처리함으로써 수행되는 것을 특징으로 하는 제11항의 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막의 제조방법.
  22. 제14항에 있어서, 상기 IV) 단계의 열전환은 고순도의 불활성 가스 분위기에서 1~20℃/min의 승온 속도로 350~450℃까지 승온한 후 0.1~3시간 동안 등온 상태를 유지함으로써 수행되는 것을 특징으로 하는 제11항의 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막의 제조방법.
  23. a) 산이무수물, 오르쏘-히드록시 디아민 및 공단량체로서 방향족 디아민, 3, 5-디아미노벤조산을 반응시켜 폴리아믹산 용액을 얻은 후, 공비 열 이미드화법에 의하여 카르복실산을 갖는 오르쏘-히드록시 폴리이미드 공중합체를 합성하는 단계;
    b) 상기 a) 단계에서 합성한 카르복실산을 갖는 오르쏘-히드록시 폴리이미드공중합체를 유기용매에 녹이고 캐스팅하여 제막하는 단계; 및
    c) 상기 b) 단계에서 얻어진 막을 열처리하는 단계;를 포함하는 제11항의 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막의 제조방법.
  24. 제23항에 있어서, 상기 a) 단계의 산이무수물은 하기 일반식 3으로 표시되는 것을 특징으로 하는 제11항의 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막의 제조방법.
    <일반식 3>
    Figure PCTKR2014010537-appb-I000037
    (상기 일반식 3에서, Ar1은 치환 또는 비치환된 4가의 탄소수 6 내지 24의 아릴렌기 및 치환 또는 비치환된 4가의 탄소수 4 내지 24의 복소환기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있다)
  25. 제23항에 있어서, 상기 a) 단계의 오르쏘-히드록시 디아민은 하기 일반식 2로 표시되는 것을 특징으로 하는 제11항의 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막의 제조방법.
    <일반식 2>
    Figure PCTKR2014010537-appb-I000038
    (상기 일반식 2에서, Q는 단일결합이거나; O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2, CO-NH, C(CH3)(CF3), 또는 치환 또는 비치환된 페닐렌기이다)
  26. 제23항에 있어서, 상기 a) 단계의 방향족 디아민은 하기 일반식 4로 표시되는 것을 특징으로 하는 제11항의 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막의 제조방법.
    <일반식 4>
    Figure PCTKR2014010537-appb-I000039
    (상기 일반식 4에서, Ar2는 치환 또는 비치환된 2가의 탄소수 6 내지 24의 아릴렌기 및 치환 또는 비치환된 2가의 탄소수 4 내지 24의 복소환기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, CO, SO2, Si(CH3)2, (CH2)p (1≤P≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2 또는 CO-NH로 연결되어 있다)
  27. 제23항에 있어서, 상기 a) 단계의 공비 열 이미드화법은 폴리아믹산 용액에 톨루엔 또는 자일렌을 첨가하고 교반하여 180~200℃에서 6~12시간 동안 이미드화 반응을 수행하는 것을 특징으로 하는 제11항의 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막의 제조방법.
  28. 제23항에 있어서, 상기 c) 단계의 열처리는 고순도의 불활성 가스 분위기에서 1~20℃/min의 승온 속도로 350~450℃까지 승온한 후 0.1~3시간 동안 등온 상태를 유지함으로써 수행되는 것을 특징으로 하는 제11항의 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막의 제조방법.
  29. 제23항에 있어서, 상기 배연가스 분리용 막은 면간 거리(d-spacing)가 6.39~6.57 Å인 것을 특징으로 하는 제11항의 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막의 제조방법.
  30. 제23항에 있어서, 상기 배연가스 분리용 막은 밀도가 1.38~1.41 g/cm3인 것을 특징으로 하는 제11항의 화학식 2로 표시되는 가교구조의 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막의 제조방법.
PCT/KR2014/010537 2013-11-15 2014-11-05 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막 및 그 제조방법 WO2015072694A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14861736.8A EP3069784B1 (en) 2013-11-15 2014-11-05 Flue gas separation membrane comprising thermally rearranged poly(benzoxazole-imide) copolymer having cross-linked structure, and preparation method therefor
CN201480062703.5A CN105848768B (zh) 2013-11-15 2014-11-05 包含经交联、热重排的聚(苯并*唑-共-酰亚胺)的用于烟道气分离的膜以及其制备方法
CA2930848A CA2930848C (en) 2013-11-15 2014-11-05 Membranes for flue gas separation comprising crosslinked, thermally rearranged poly(benzoxazole-co-imide) and preparation method thereof
US15/036,727 US10040034B2 (en) 2013-11-15 2014-11-05 Membranes for flue gas separation comprising crosslinked, thermally rearranged poly(benzoxazole-co-imide) and preparation method thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020130139396A KR101557326B1 (ko) 2013-11-15 2013-11-15 배연가스 분리용 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 막의 제조방법 및 그에 의하여 제조된 배연가스 분리용 막
KR10-2013-0139217 2013-11-15
KR1020130139217A KR101572512B1 (ko) 2013-11-15 2013-11-15 배연가스 분리용 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 막의 제조방법 및 그에 의하여 제조된 배연가스 분리용 막
KR1020130139389A KR101557363B1 (ko) 2013-11-15 2013-11-15 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막 및 그 제조방법
KR10-2013-0139396 2013-11-15
KR10-2013-0139389 2013-11-15

Publications (1)

Publication Number Publication Date
WO2015072694A1 true WO2015072694A1 (ko) 2015-05-21

Family

ID=53057589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010537 WO2015072694A1 (ko) 2013-11-15 2014-11-05 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막 및 그 제조방법

Country Status (5)

Country Link
US (1) US10040034B2 (ko)
EP (1) EP3069784B1 (ko)
CN (1) CN105848768B (ko)
CA (1) CA2930848C (ko)
WO (1) WO2015072694A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072692A1 (ko) * 2013-11-15 2015-05-21 한양대학교 산학협력단 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체, 이를 포함하는 기체분리막 및 그 제조방법
CN113996193A (zh) * 2021-11-15 2022-02-01 南京工业大学 一种共聚酰亚胺膜、制备方法以及其在提纯氦气中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231875A (ja) * 2003-01-31 2004-08-19 Toyobo Co Ltd ポリベンゾオキサゾールフィルムおよびその製造方法
KR20090093029A (ko) * 2008-02-28 2009-09-02 한양대학교 산학협력단 폴리이미드-폴리벤조옥사졸 공중합체, 이의 제조방법, 및이를 포함하는 기체 분리막
KR20110130503A (ko) * 2009-03-27 2011-12-05 유오피 엘엘씨 고성능의 가교된 폴리벤족사졸 및 폴리벤조티아졸 고분자 막
KR20120100920A (ko) 2009-09-25 2012-09-12 유오피 엘엘씨 폴리벤족사졸 막의 선택성을 개선하는 방법
US20120305484A1 (en) 2011-06-03 2012-12-06 Board Of Regents, The University Of Texas System Thermally Rearranged (TR) Polymers as Membranes for Ethanol Dehydration

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4087409A (en) * 1966-11-07 1978-05-02 Monsanto Company Ordered heterocyclic copolymers
US20030126990A1 (en) * 2001-12-20 2003-07-10 Koros William J. Crosslinked and crosslinkable hollow fiber membrane and method of making same
CA2640545A1 (en) * 2008-05-19 2009-11-19 Industry-University Cooperation Foundation, Hanyang University Polyimides dope composition, preparation method of hollow fiber using the same and hollow fiber prepared therefrom
US8127937B2 (en) 2009-03-27 2012-03-06 Uop Llc High performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes
US8132677B2 (en) * 2009-03-27 2012-03-13 Uop Llc Polymer membranes prepared from aromatic polyimide membranes by thermal treating and UV crosslinking
WO2011024908A1 (ja) * 2009-08-26 2011-03-03 イビデン株式会社 気体分離膜
KR101466918B1 (ko) * 2013-07-01 2014-12-04 한양대학교 산학협력단 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막 및 그 제조방법
US9126152B2 (en) * 2013-09-27 2015-09-08 Uop Llc Polybenzoxazole membranes from self-cross-linkable aromatic polyimide membranes
WO2015072692A1 (ko) * 2013-11-15 2015-05-21 한양대학교 산학협력단 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체, 이를 포함하는 기체분리막 및 그 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231875A (ja) * 2003-01-31 2004-08-19 Toyobo Co Ltd ポリベンゾオキサゾールフィルムおよびその製造方法
KR20090093029A (ko) * 2008-02-28 2009-09-02 한양대학교 산학협력단 폴리이미드-폴리벤조옥사졸 공중합체, 이의 제조방법, 및이를 포함하는 기체 분리막
KR20110130503A (ko) * 2009-03-27 2011-12-05 유오피 엘엘씨 고성능의 가교된 폴리벤족사졸 및 폴리벤조티아졸 고분자 막
JP2012521871A (ja) 2009-03-27 2012-09-20 ユーオーピー エルエルシー 高性能架橋ポリベンゾオキサゾール及びポリベンゾチアゾールポリマー膜
KR20120100920A (ko) 2009-09-25 2012-09-12 유오피 엘엘씨 폴리벤족사졸 막의 선택성을 개선하는 방법
US20120305484A1 (en) 2011-06-03 2012-12-06 Board Of Regents, The University Of Texas System Thermally Rearranged (TR) Polymers as Membranes for Ethanol Dehydration

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MARIOLA CALLE ET AL.: "Cross-Linked Thermally Rearranged Poly(benzoxazole-co-imide) Membranes for G as Separation", MACROMOLECULES, vol. 46, no. 20, 2013, pages 8179 - 8189, XP055341375 *
Y M. LEE ET AL., J. MEMBR. SCIENCE, vol. 350, 2010, pages 301 - 309
Y.M. LEE ET AL., SCIENCE, vol. 318, 2007, pages 254 - 258

Also Published As

Publication number Publication date
EP3069784B1 (en) 2020-01-08
CN105848768B (zh) 2019-02-15
US20160296893A1 (en) 2016-10-13
US10040034B2 (en) 2018-08-07
CN105848768A (zh) 2016-08-10
EP3069784A4 (en) 2017-07-05
CA2930848A1 (en) 2015-05-21
CA2930848C (en) 2020-01-14
EP3069784A1 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
WO2015183056A1 (ko) 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
WO2010041909A2 (ko) 고분자 및 이의 제조방법
WO2016032299A1 (ko) 단량체 염을 이용한 폴리이미드 제조방법
WO2017047917A1 (ko) 변성 폴리이미드 및 이를 포함하는 경화성 수지 조성물
WO2018038436A1 (ko) 디아민 화합물 및 이의 제조방법
WO2017111300A1 (ko) 신규 구조의 디아민 모노머를 적용한 폴리아믹산 용액 및 이를 포함하는 폴리이미드 필름
WO2015072692A1 (ko) 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체, 이를 포함하는 기체분리막 및 그 제조방법
WO2019235712A1 (ko) 실록산 화합물 및 이를 포함하는 폴리이미드 전구체 조성물
WO2015072694A1 (ko) 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 배연가스 분리용 막 및 그 제조방법
WO2020149574A1 (ko) 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
WO2021060752A1 (ko) 우수한 표면 평탄성을 갖는 폴리이미드계 필름 및 이의 제조방법
WO2018034549A1 (ko) 폴리케톤 화합물 제조용 촉매 조성물, 팔라듐 혼합 촉매 시스템, 이를 이용한 폴리케톤 화합물 제조 방법 및 폴리케톤 중합체
WO2020159086A1 (ko) 폴리아미드 수지 필름 및 이를 이용한 수지 적층체
WO2020105933A1 (ko) 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
WO2020130261A1 (ko) 가교제 화합물, 이를 포함하는 감광성 조성물, 및 이를 이용한 감광 재료
WO2015182925A1 (ko) 신규 디아민 합성 및 이를 이용한 액정 배향제
WO2013172554A1 (ko) 고분자, 이의 제조 방법 및 상기 고분자를 포함하는 성형품
WO2022182014A1 (ko) 광결정 구조체 및 이의 제조 방법
WO2023277347A1 (ko) 트리사이클로데칸 디메탄올 조성물 및 이의 제조방법
WO2020130552A1 (ko) 디아민 화합물, 이를 이용한 폴리이미드 전구체 및 폴리이미드 필름
WO2021071034A1 (ko) 가교 공중합체, 이의 제조방법 및 상기 가교 공중합체를 포함하는 기체 분리막
WO2020184972A1 (ko) 폴리이미드 공중합체, 폴리이미드 공중합체의 제조방법, 이를 이용한 감광성 수지 조성물, 감광성 수지 필름 및 광학 장치
WO2020153659A1 (ko) 액정 배향제 조성물, 이를 이용한 액정 배향막 및 액정표시소자
WO2020138644A1 (ko) 폴리아믹산 조성물, 및 이를 이용한 투명 폴리이미드 필름
WO2020218835A1 (ko) 신규 폴리이미드 타입 고분자 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861736

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15036727

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2930848

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014861736

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014861736

Country of ref document: EP