WO2015072515A1 - 受信信号処理装置、通信システム及び受信信号処理方法 - Google Patents

受信信号処理装置、通信システム及び受信信号処理方法 Download PDF

Info

Publication number
WO2015072515A1
WO2015072515A1 PCT/JP2014/080074 JP2014080074W WO2015072515A1 WO 2015072515 A1 WO2015072515 A1 WO 2015072515A1 JP 2014080074 W JP2014080074 W JP 2014080074W WO 2015072515 A1 WO2015072515 A1 WO 2015072515A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
signal
symbol
received signal
error
Prior art date
Application number
PCT/JP2014/080074
Other languages
English (en)
French (fr)
Inventor
井上 崇
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to US15/034,282 priority Critical patent/US9722768B2/en
Priority to JP2015547787A priority patent/JP6156807B2/ja
Publication of WO2015072515A1 publication Critical patent/WO2015072515A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6164Estimation or correction of the frequency offset between the received optical signal and the optical local oscillator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6165Estimation of the phase of the received optical signal, phase error estimation or phase error correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0079Receiver details

Definitions

  • the present invention relates to a received signal processing apparatus and a received signal processing method for compensating for a carrier frequency offset and a phase offset of a modulated received signal.
  • the present invention also relates to a received signal processing device that performs a determination on a digitally modulated received signal based on a reference signal updated in accordance with the received signal, a communication system having the received signal processing device, and a received signal processing Regarding the method.
  • transmission / reception systems adopting a multi-level modulation method are being spread. Specifically, a method in which QPSK (quaternary phase shift keying) or QAM (quadrature amplitude modulation) is polarization multiplexed is adopted or studied. Since the phase of the light of these signals is modulated, it is necessary to perform coherent reception using interference with light emitted from a local oscillator (LO) built in the receiver when demodulating.
  • LO local oscillator
  • the laser diode (LD) used as the signal source and the local oscillator has an oscillation frequency stabilized to some extent, but the frequency fluctuates independently, causing the signal light and the light emitted from the local oscillator to interfere with each other.
  • the obtained reception signal has exp [i2 ⁇ f o t], which is a phase modulation component corresponding to the difference between the oscillation frequencies.
  • t time
  • f s and f LO are the oscillation frequencies of the signal light and LO, respectively.
  • f o is called a carrier frequency offset, corresponding to the frequency fluctuation of each laser, the value changes randomly.
  • the in-phase phase component and the quadrature phase component of an optical signal are received by a photodetector, and the obtained analog electric signal is converted into a digital signal by AD conversion.
  • a method for performing signal processing is known.
  • various processes including a carrier wave reproduction process are executed by various digital signal processes.
  • As a carrier wave recovery method based on the digital signal processing when the received signal is QPSK, the complex amplitude of the received signal is raised to the Mth power to remove the phase information of the M-value PSK signal, and then the phase error is raised to the 1 / Mth power.
  • Non-Patent Document 2 As one carrier recovery method when the received signal is a QAM signal, means for performing carrier recovery using a Phase Locked Loop (PLL) digital circuit is known (see Non-Patent Document 2).
  • PLL Phase Locked Loop
  • the feedback processing for each received symbol may be executed using a digital signal processor (DSP) that operates at a clock frequency that is higher than the symbol rate, for example, a symbol rate. it can.
  • DSP digital signal processor
  • the symbol rate is, for example, several tens of GHz, and there is no DSP that operates at a clock frequency higher than the symbol rate. Therefore, in the current technology, the feedback processing is performed for each received symbol.
  • Non-Patent Document 3 serially / parallel-converts a sequence of received symbols that are continuously input in time. At this time, each of the parallel received symbols includes a plurality of symbols that are consecutive in time. Shall be processed.
  • the carrier wave carrier recovery is tried for the plurality of symbols using a plurality of phase compensation candidate values, and the received symbol is determined for each trial result, A phase compensation candidate value that minimizes the determination error is adopted by combining the plurality of symbols, and phase compensation of the symbol is performed.
  • the frequency difference f o of the local oscillator and the symbol is substantially zero, if f o is the large frequency difference to some extent (for example, several hundred MHz or more), carrier recovery Is accompanied by difficulties such as large errors.
  • the carrier recovery method when the received signal is a QAM signal, it is common to perform carrier recovery using the phase error after the determination as an error signal.
  • an adaptive equalizer using a 2 ⁇ 2 butterfly finite impulse response (FIR) filter is used for the purpose of polarization separation.
  • FIR finite impulse response
  • a decision-oriented algorithm is used as a method for performing the equalization processing by the adaptive equalizer and the carrier wave reproduction with high accuracy.
  • the received symbol is determined, and the difference between the estimated transmission symbol and the received symbol before determination is taken as an error signal.
  • the received signal is processed so that the expected value is minimized.
  • a decision-directed phase correction amount calculating means is used (see, for example, Non-Patent Document 3).
  • a reference signal composed of all complex amplitude values that can be taken by the received symbol is used, and the symbol having the shortest Euclidean distance on the complex plane is selected from the reference signal This is selected and used as the determination result.
  • the ideal state of the QAM is a state in which the possible complex amplitude values are arranged in a lattice pattern at equal intervals on the complex plane.
  • the determination is performed considering the ideal state as the reference signal. That is, an ideal reference signal state is determined according to the digital modulation method to be used, and a determination based on this reference signal is performed.
  • FIGS. 13A to 13C show ideal arrangements (constellations) of complex amplitude points of the QAM signal. 13A shows the case of 4QAM (QPSK), FIG. 13B shows the case of 16QAM, and FIG. 13C shows the case of 64QAM.
  • FIGS. 14A to 14C show examples of the constellation of the 16QAM signal in which distortion occurs.
  • 14A has an error in which the amplitude of the quadrature component becomes smaller than that of the in-phase component
  • FIG. 14B has an error in which the angle formed by the in-phase component and the quadrature component deviates from 90 degrees.
  • FIG. 14C shows a case where both of the errors shown in FIGS. 14A and 14B are included.
  • the present invention provides a received signal processing apparatus and a received signal processing method that can be applied to optical communication at a high symbol rate and that can accurately reproduce a carrier wave even for a multilevel signal such as a QAM signal.
  • the present invention provides a reception signal that can be received without degrading the signal quality by operating the decision-oriented adaptive equalizer and the carrier recovery means normally even when the transmission signal is distorted. It is an object to provide a processing device, a communication system, and a received signal processing method.
  • Means for solving the problems are as follows. That is, ⁇ 1> Phase compensation for one separated symbol group obtained by separating a predetermined number of symbols of the modulated received signal into blocks is performed as a single process, and is performed a plurality of times according to the number of separated symbol groups.
  • the received signal processing apparatus performs the above-described processing, obtains the separated symbol group by time-separating the symbols inputted at regular time intervals into the block every predetermined number, and for each separated symbol constituting the separated symbol group
  • the pre-estimation frequency in the block and the pre-estimation center phase in the block are obtained from the processing values as the pre-estimation values obtained by estimating these current processing values.
  • a determination unit that obtains a matched post-determination symbol, and calculates a frequency error between the observed value of the intra-block frequency and the intra-block pre-estimated frequency, which is determined based on the pre-determination symbol and the post-determination symbol And a phase error between the observed value of the central phase in the block and the pre-estimated central phase in the block, which is determined based on the pre-determination symbol and the post-determination symbol
  • a posteriori estimated value obtained by correcting the prior estimated value based on the frequency error and the phase error, and estimating the most probable current processing value of the intra-block frequency and the intra-block center phase.
  • a post-estimation value acquisition unit for acquiring a post-estimation frequency within the block and a post-estimation center phase within the block; and calculating a post-estimation phase of each of the separated symbols from the post-estimation value, and
  • the main compensation unit for main compensation of the phase of each separated symbol, and the prior estimation value acquisition unit use the posterior estimation value as the previous processing value of the intra-block frequency and the intra-block center phase, and the next phase compensation.
  • a carrier recovery unit having a feedback processing unit for performing feedback processing so as to obtain the prior estimated value for the separated symbol group in Reception signal processing apparatus according to claim Rukoto.
  • ⁇ 2> The received signal processing apparatus according to ⁇ 1>, wherein the number of symbols of the separated symbol group acquired by the separated output unit is 2 to 1,024.
  • ⁇ 3> The received signal processing device according to any one of ⁇ 1> to ⁇ 2>, wherein the error observation unit calculates a frequency error and a phase error by maximum likelihood estimation.
  • the posterior estimation value acquisition unit is configured to input both the prior estimation value and the prior error based on the frequency error, the phase error, the prior state vector as the prior estimation value, and the input of the prior error covariance matrix for controlling the gain.
  • the received signal processing apparatus according to any one of ⁇ 1> to ⁇ 3>, wherein feedback processing is performed.
  • Phase compensation for one separated symbol group obtained by separating a predetermined number of symbols of the modulated received signal into blocks is performed as a single process, and is performed a plurality of times according to the number of separated symbol groups.
  • the received signal processing method is performed to obtain the separated symbol group by time-separating the symbols input at regular time intervals into the block at a certain number, and for each separated symbol constituting the separated symbol group Separation output step to output, one intra-block frequency determined based on a phase change with respect to time of each separation symbol, and one previous intra-block center phase determined as a time center value of each phase of each separation symbol
  • the pre-estimation frequency in the block and the pre-estimation center phase in the block are obtained from the processing values as the pre-estimation values obtained by estimating these current processing values
  • a pre-estimated value obtaining step, a pre-estimated phase of each separated symbol is calculated from the pre-estimated value, and a temporary compensation step for temporarily compensating the phase of each separated symbol based on the prior
  • An error observing step for calculating a phase error with respect to the constant center phase, and correcting the prior estimation value based on the frequency error and the phase error, and the most probable current processing of the intra-block frequency and the intra-block center phase A post-estimation value acquisition step of acquiring a post-estimation frequency within the block and a post-estimation center phase within the block as a post-estimation value, and a post-estimation phase of each separated symbol is calculated from the post-estimation value
  • the main compensation step for main compensation of the phase of each separated symbol based on the post-article estimated phase, and the pre-estimated value acquisition step, the previous processing of the post-estimated value in the intra-block frequency and the intra-block center phase As a value, feedback processing is performed so as to obtain the prior estimated value for the separated symbol group in the next phase compensation.
  • Reception signal processing method characterized by comprising the fed back processing step.
  • ⁇ 6> The received signal processing method according to ⁇ 5>, wherein the number of symbols of the separated symbol group acquired in the separated output step is 2 to 1,024.
  • ⁇ 7> The received signal processing method according to any one of ⁇ 5> to ⁇ 6>, wherein the error observation step calculates a frequency error and a phase error by maximum likelihood estimation.
  • the a posteriori estimation value acquisition step is based on the input of a frequency error, a phase error, a prior state vector as a prior estimation value, and a prior error covariance matrix for controlling the gain,
  • the posterior state vector as the posterior estimate and the posterior error covariance matrix are output with the variance matrix value corrected, and the feedback processing step is performed in the execution unit of the prior estimate acquisition step.
  • the prior estimation value acquisition step supplies these to the Kalman filter as the prior estimation value and the prior error covariance matrix in the next phase compensation.
  • the received signal processing method according to any one of ⁇ 5> to ⁇ 7>, wherein feedback processing is performed.
  • a complex signal is generated from a plurality of reference points constituting a reference signal determined by the modulation method of the digital modulation.
  • n represents the number of updates to the reference point
  • r n denotes a two-dimensional vector representing the position on the complex plane of the n-th updated on the said reference point
  • x n represents a two-dimensional vector representing the position of the received symbol on the complex plane at the time of the n-th update
  • represents a small numerical value of 10 ⁇ 10 to 0.1
  • r n + 1 represents FIG. 4 shows a two-dimensional vector representing the position of the reference point on the complex plane after correction.
  • ⁇ 10> The frequency of the carrier frequency and the local oscillation frequency using the phase difference between the received signal and the determination signal as the determination result of the determiner based on the reference signal updated by the reference signal updating means for the received signal as a control signal
  • the received signal processing apparatus further comprising: a phase correction amount calculating unit that calculates a phase correction amount according to a phase change of the received signal, which is caused by a fluctuation of the difference.
  • An error signal is a difference between a received signal whose noise component is filtered according to a tap coefficient and a determination signal as a determination result of a determiner based on a reference signal updated by a reference signal update unit with respect to the received signal.
  • the received signal processing according to ⁇ 9> to ⁇ 10> further including an adaptive equalizer that performs equalization processing of a subsequent received signal by controlling the tap coefficient so that the magnitude of the error signal is minimized.
  • apparatus. ⁇ 12> The received signal processing apparatus according to ⁇ 11>, wherein the adaptive equalizer includes polarization separation processing means for performing polarization separation processing of the polarization multiplexed reception signal.
  • a reception unit including the reception signal processing device according to any one of ⁇ 9> to ⁇ 12>, a transmission unit that transmits a transmission signal to the reception unit, and the transmission signal transmitted from the transmission unit A determination signal as a determination result of a determination unit based on a reception signal received by the reception unit and a reference signal updated by a reference signal update unit
  • the communication system is characterized in that information based on the difference between the transmission signal and the transmission signal is subjected to a feedback process to the distortion-free state as distortion of the transmission signal.
  • ⁇ 14> Further, for one received symbol of a digitally modulated received signal whose phase is fully compensated, from a plurality of reference points constituting a reference signal determined by the modulation method of the digital modulation, a complex plane Based on the main determination step for determining the reference point with the shortest Euclidean distance and the following equation [1], the position of the determined reference point is corrected so as to approach the position of the received symbol, and the main determination is performed.
  • the received signal processing method according to any one of ⁇ 5> to ⁇ 8>, further including a reference signal update step of updating the reference point of the reference signal used in a step to the corrected reference point.
  • n represents the number of updates to the reference point
  • r n denotes a two-dimensional vector representing the position on the complex plane of the n-th updated on the said reference point
  • x n represents a two-dimensional vector representing the position of the received symbol on the complex plane at the time of the n-th update
  • represents a small numerical value of 10 ⁇ 10 to 0.1
  • r n + 1 represents FIG. 4 shows a two-dimensional vector representing the position of the reference point on the complex plane after correction.
  • ⁇ 15> Using the phase difference between the received signal and the determination signal as the determination result of the main determination step based on the reference signal updated in the reference signal update step with respect to the received signal as a control signal, the carrier frequency and the local oscillation frequency
  • the received signal processing method according to ⁇ 14> further including a phase correction amount calculating step of calculating a phase correction amount corresponding to a phase change of the received signal, which is caused by fluctuation of a frequency difference.
  • ⁇ 16> The difference between the received signal whose noise component is filtered according to the tap coefficient and the determination signal as the determination result of the main determination step based on the reference signal updated by the reference signal update step with respect to the received signal is an error.
  • the above-mentioned problems in the prior art can be solved, and can be applied to optical communication at a high symbol rate, and carrier waves can be reproduced with high accuracy even for multilevel signals such as QAM signals.
  • a received signal processing apparatus and a received signal processing method can be provided.
  • the decision-directed adaptive equalizer and the phase correction amount calculating unit operate normally, and reception is performed without degrading the signal quality.
  • a possible received signal processing apparatus, communication system, and received signal processing method can be provided.
  • the measurement result of the bit error rate (BER) with respect to the measurement result of the carrier frequency offset when the optical signal to noise ratio (OSNR) is 37 dB and 23 dB is shown.
  • the measurement result of the Q factor with respect to the measurement result of the carrier frequency offset when the optical signal-to-noise ratio (OSNR) is 23 dB and 37 dB is shown.
  • the results of BER measurement of back-to-back and post-transmission signals when the block size N is 16 are shown. It is a figure which shows the ideal constellation in the case of 4QAM (QPSK). It is a figure which shows the ideal constellation in the case of 16QAM. It is a figure which shows the ideal constellation in the case of 64QAM.
  • AEQ adaptive equalizer
  • AEQ adaptive equalizer
  • the received signal processing apparatus uses the phase compensation for one separated symbol group obtained by separating the blocks of the modulated received signal into a predetermined number of blocks to obtain the number of the separated symbol groups as one process.
  • the separated output unit, the prior estimation value acquisition unit, the provisional compensation unit, the determination unit, the error observation unit, the posterior estimation value acquisition unit, the main compensation unit, and the feedback processing unit A carrier recovery unit having Below, the structure and signal processing of each part of the said received signal processing apparatus are demonstrated, referring drawings.
  • FIG. 1 shows a circuit configuration of a received signal processing apparatus according to an embodiment of the present invention.
  • the received signal processing apparatus (carrier wave recovery unit) 100 includes a separation output unit 1, a prior estimation value acquisition unit 2, a preliminary estimation phase calculation unit 3 and a multiplier 4 as the temporary compensation unit. 1 , 4 2 ,..., 4 N , determination units 5 1 , 5 2 ,..., 5 N , error observation unit 6, posterior estimation value acquisition unit 7, and posterior estimation phase calculation unit as the main compensation unit 8 and multipliers 9 1 , 9 2 ,..., 9 N and a feedback processing unit 10.
  • received signal processing apparatus 100 it is assumed that the modulation method of an input received signal is known, and it is possible to determine which symbol is transmitted with respect to the symbols constituting the received signal.
  • N symbols E 1 , E 2 ,. . . , E N are made into a block, and are made into one separated symbol group.
  • the carrier frequency and phase of the separated symbol group are collectively obtained to perform carrier recovery, and finally obtained signals s 1 , s 2 ,. . . , S N are output. This process is repeated a plurality of times according to the number of the separated symbol groups that are continuously input.
  • the parameter to be estimated is the separated symbols E 1 , E 2 ,. . . , E N , one intra-block frequency ⁇ k determined based on the phase change with respect to the time change, and each separated symbol E 1 , E 2 ,. . . , They are two of the block center phase theta k that is determined as the time the center value of each phase of the E N.
  • k represents the number of phase compensation processes for one separated symbol group, and represents an arbitrary integer.
  • FIG. 2 shows the relationship between the carrier phase of the separated separated symbol group, the intra-block frequency, and the intra-block center phase.
  • each point represents a carrier wave phase ⁇ , and shows how time changes according to the carrier frequency offset.
  • the broken line is a straight line that best approximates the phase of each separated symbol that constitutes the group of separated symbols, and the gradient thereof is the intra-block frequency ⁇ k .
  • a dotted line is the intra-block center phase ⁇ k in the separated symbol group.
  • the symbol rate is several tens of GHz, whereas the amount of frequency fluctuation of the laser used for the signal source and the local oscillator is short-term (time corresponding to several tens of symbols, on the order of nanoseconds).
  • the a posteriori estimated values ( ⁇ k , ⁇ k ) obtained here are used for feedback processing and to obtain prior estimated values ( ⁇ k + 1 ⁇ , ⁇ k + 1 ⁇ ) in the next (k + 1) th processing.
  • the above procedure is repeated for each number of the separated symbol groups, that is, for each processing.
  • the separation output unit 1 time-separates the symbols input at regular time intervals into the block by a certain number, thereby separating the symbols E 1 , E 2 ,. . . , E N is obtained, and the separated symbol group is divided into the separated symbols E 1 , E 2 ,. . . And outputs for each E N.
  • a separation output part 1 There is no restriction
  • the number of symbols (block size) N of the separated symbol group acquired by the separated output unit 1 is not particularly limited, but is preferably 2 to 1,024.
  • the existing estimation methods the observed value ( ⁇ ⁇ k, ⁇ ⁇ k ) and pre-estimated value ( ⁇ k -, ⁇ k - ) error between (epsilon omega, epsilon ⁇ ) can be observed, and carrier recovery for the received signal at a high symbol rate can be performed by a realistic digital signal processor (DSP).
  • DSP digital signal processor
  • the prior estimated value acquisition unit 2 includes the separated symbols E 1 , E 2 ,. . . , E N from the previous processing values ( ⁇ k ⁇ 1 , ⁇ k ⁇ 1 ) of the intra-block frequency and the intra-block center phase, the intra - block prior estimation frequency ⁇ k - and block advance estimated center phase theta k - to get.
  • the prior estimation value as a procedure for obtaining a specific intra-block prior estimation frequency ⁇ k ⁇ and an intra-block prior estimation center phase ⁇ k ⁇ , the speed of change of the carrier frequency offset value is compared with the symbol rate.
  • the intra-block prior estimation frequency ⁇ k ⁇ and the intra-block prior estimation center phase ⁇ k ⁇ are respectively expressed as follows. Estimate based on equations (2) and (3). The calculation of the previous processing value ( ⁇ k ⁇ 1 , ⁇ k ⁇ 1 ) will be described later.
  • the temporary compensation unit includes a pre-estimated phase calculation unit 3 and multipliers 4 1 , 4 2 ,..., 4 N.
  • the pre-estimated phase calculation unit 3 uses the intra-block pre-estimated frequency ⁇ k ⁇ and the intra-block pre-estimated center phase ⁇ k ⁇ as the pre-estimated values, based on the equation (1), to separate the separated symbols E 1 , E 2 ,. . . , E N in advance estimated phase ⁇ n ⁇ is calculated.
  • the multiplier 4 1, 4 2,..., In 4 N pre-estimated phase phi n - Based on the input, the separation symbol E 1, E 2,. . .
  • E N is multiplied by exp ( ⁇ i ⁇ n ⁇ ), and each separated symbol E 1 , E 2 ,. . . , E N are temporarily compensated for the aforementioned phase modulation components exp [i2 ⁇ f o t]. That is, the symbol s n ⁇ whose phase is temporarily compensated is obtained by the following equation (4).
  • the determination units 5 1 , 5 2 ,..., 5 N use the symbol s n ⁇ whose phase has been temporarily compensated as a pre-determination symbol, and this pre-determination symbol s n ⁇ (s 1 ⁇ , s 2 ⁇ , .., S N ⁇ ) are determined based on a reference signal (a set of all complex amplitude values that can be taken by a transmission symbol) set in accordance with the modulation method of the received signal.
  • a reference signal a set of all complex amplitude values that can be taken by a transmission symbol
  • Such determination units 5 1 , 5 2 ,..., 5 N are not particularly limited and can be configured using a known determination device based on an arbitrary method.
  • the error observing unit 6 calculates a frequency error ⁇ ⁇ between the observed values ⁇ 1 to k of the intra-block frequency determined based on the pre-determination symbol s n ⁇ and the post-determination symbol d n ⁇ and the intra-block prior estimated frequency ⁇ k ⁇ In addition to the calculation, a phase error ⁇ ⁇ between the observed values ⁇ 1 to k of the in-block center phase and the in-block pre-estimated center phase ⁇ k ⁇ is calculated.
  • the procedure for calculating the frequency error epsilon omega and the phase error epsilon theta not particularly limited, the separation symbol E 1, E 2,. . .
  • the phase error ⁇ ⁇ is calculated by the following equation (5), and this phase error ⁇ ⁇ is determined based on the pre-determination symbol s n ⁇ and the post-determination symbol d n ⁇ . observations of the central phase ( ⁇ ⁇ k) and block advance estimated center phase theta k - represents the difference between.
  • the frequency error ⁇ ⁇ is calculated by the following equation (6) by the maximum likelihood frequency estimation, and this frequency error ⁇ ⁇ is determined based on the pre-determination symbol s n ⁇ and the post-determination symbol d n ⁇ . This represents the difference between the observed value ( ⁇ 1 to k ) of the intra-block frequency and the intra-block prior estimated frequency ⁇ k ⁇ .
  • the likelihood function ⁇ ( ⁇ ) is defined by the following equation (6) ′, and under the assumption that ⁇ is very small, Exp (in ⁇ ) is approximated by the following equation (6) ′′, and ⁇ where d ⁇ / d ⁇ is 0 is treated as the maximum likelihood estimated value ⁇ ⁇ .
  • the posterior estimation value acquisition unit 7 corrects the prior estimation values ( ⁇ k ⁇ , ⁇ k ⁇ ) based on the frequency error ⁇ ⁇ and the phase error ⁇ ⁇ , and calculates the intra-block frequency and the intra-block center phase.
  • the post-block post-estimated frequency ⁇ k and the intra-block post-post center phase ⁇ k are acquired as the post-post estimation values for estimating the most probable current processing value.
  • the prior estimation values ( ⁇ k ⁇ , ⁇ k are applied by appropriately weighting the frequency error ⁇ ⁇ and the phase error ⁇ ⁇ . -) as long as it is a method for modifying a it is not particularly limited, taken from the viewpoint of obtaining higher the posterior estimate accuracy, the Kalman filter configured with reference to the Kalman filter described in the following references 2-4 It is preferable to do.
  • the Kalman filter configured with reference to the Kalman filter described in the following references 2-4 It is preferable to do.
  • References 3 and 4 a method of performing carrier wave recovery using a Kalman filter is described, but both are applied to processing for each symbol, and here, the block-like separation described above is applied.
  • x k in the equations (7) and (8) is a state vector in the k-th processing, and the purpose of the Kalman filter is to estimate this value.
  • x k is defined by the following equation (9) as a vector of two rows and one column using the intra-block center phase ⁇ k and the intra-block frequency ⁇ k .
  • T in the formula (9) represents transposition of a matrix.
  • the linear evolution matrix A in the equation (7) is defined by the following equation (10).
  • Equation (10) corresponds to the calculation of the previously estimated value described above using the equations (2) and (3).
  • B and n s in the formula (7) defines a parameter called system noise, a matrix and a vector that describes the noise that gives substantial fluctuations relative to the development of the system.
  • the frequency of the laser is considered as system noise because it fluctuates essentially, but phase and not considered as a system noise from the standpoint of those associated with the frequency fluctuation
  • B and n s the following formulas It is defined by (11) and (12).
  • n f in the equation (12) is a random variable representing the carrier frequency fluctuation, the average value is zero, and the variance value, that is, the noise power is ⁇ f 2 .
  • Y k in the equation (8) is an observation value vector, and is defined by the following equation (13) using the observation values ⁇ 1 to k of the intra-block center phase and the observation values ⁇ 1 to k of the intra-block frequency. .
  • C in the equation (8) is defined as a 2-by-2 unit matrix I.
  • n o in the formula (8) is the observation noise vector, is defined by the following equation (14).
  • n ⁇ and n ⁇ are random variables representing noise with respect to the observed values ⁇ 1 to k and ⁇ 1 to k , respectively, the average value is zero, and the variance value, that is, the noise power is Assume that ⁇ ⁇ 2 and ⁇ ⁇ 2 .
  • the optimum state vector x k is estimated by the following procedure.
  • the prior estimated value x ⁇ k ⁇ and the prior error covariance matrix P k ⁇ of the state vector x k are given by the following equations (15) and (16), respectively.
  • P k-1 of the formula (15) in the x ⁇ k-1 and the formula (16) in is a posteriori estimate and post the error covariance matrix of the state vector obtained in the previous processing, respectively .
  • Q shown in the equation (16) is a matrix representing system noise, and is given by the following equation (17) using the noise power ⁇ f 2 .
  • the value of the noise power ⁇ f 2 is determined by the frequency fluctuations of the laser that is the light source of the signal source and the local oscillator, a fixed value is used when the laser used in the system is determined.
  • R k is a matrix representing observation noise, and the following equation is used by using the observation noise powers ⁇ ⁇ 2 and ⁇ ⁇ 2 of the phase and frequency for the observation values ⁇ 1 to k and ⁇ 1 to k . (19).
  • the equation (18) includes an inverse matrix operation, but can be easily calculated because the matrix size is 2 rows and 2 columns.
  • initial values set in advance are used at the beginning of the iterative process.
  • the values of the matrix R k are updated as needed using values obtained as statistics of observed value errors obtained in the course of repeated processes.
  • the term “y k ⁇ x ⁇ k ⁇ ” in the equation (20) is given by the following equation (21) called “innovation”. It is the difference from the estimated value. That is, the phase error ⁇ ⁇ and the frequency error ⁇ ⁇ given by the equations (5) and (6) can be used.
  • the posterior error covariance matrix P k is given by the following equation (22) using the prior error covariance matrix P k ⁇ and the Kalman gain G k .
  • the posterior estimated value acquisition unit 7 can output the posterior estimated value x ⁇ k of the state vector as the posterior estimated value, that is, the intra-block post-estimated frequency ⁇ k and the intra-block post-estimated center phase ⁇ k.
  • a posterior error covariance matrix P k can be output (see the above formula (22) and the like).
  • the main compensation unit includes a posterior estimation phase calculation unit 8 and multipliers 9 1 , 9 2 ,..., 9 N.
  • posterior estimated phase calculation section 8 the block posteriori estimated frequency omega k and block posteriori estimated center phase theta k as the posterior estimates, based on the formula (1), each separation symbol E 1, E 2, . . . Calculates a posteriori estimated phase phi n of E N.
  • the multiplier 9 1, 9 2,..., The 9 N based on input post estimated phase phi n, each separation symbol E 1, E 2,. . . , E N is multiplied by exp ( ⁇ i ⁇ n ), and each separated symbol E 1 , E 2 ,. . .
  • the feedback processing unit 10 determines the posterior estimated values ( ⁇ k , ⁇ k ) based on the posterior estimated values ( ⁇ k , ⁇ k ).
  • the previous estimated values ( ⁇ k + 1 ⁇ , ⁇ k + 1 ⁇ ) for the separated symbol group in the next (k + 1) phase compensation are acquired as the previous processing values of the intra-block frequency and the intra-block center phase. Perform feedback processing.
  • the posterior estimation value acquisition unit 2 includes the posterior estimation value and the posterior error covariance matrix (x ⁇ k , P k ), the pre-estimation value acquisition unit 2 applies the pre-estimation value and the prior error covariance matrix (x ⁇ k + 1 ⁇ , Feedback processing is performed so that the output is output as P k + 1 ⁇ ).
  • an appropriate initial value is input to (x ⁇ 0 ⁇ , P 0 ⁇ ).
  • the initial value is influenced by the initial value, it is preferable that the substantial process is started after a certain number of processes.
  • the digital signal processor when performing feedback processing for each symbol as in the PLL, the digital signal processor (DSP) needs to operate at the same clock frequency as the symbol rate, so the symbol rate is set to several tens of GHz as in optical communication. In such a case, it is difficult to perform carrier wave recovery.
  • the time interval at which feedback occurs can be set to 1 / N of the symbol interval.
  • the received signal processing apparatus 100 shown in FIG. 1 has been described as an embodiment of the present invention, and the technical idea of the present invention is not limited to this example. For example, processing in a form that combines an adaptive equalizer that performs polarization separation and waveform shaping of polarization multiplexed signal light and the carrier wave recovery method of the present invention may be performed.
  • each unit of the reception signal processing device of the present invention including the reception signal processing device 100 uses an arbitrary integrated circuit such as an IC or LSI circuitized so as to execute the signal processing of each unit by the above-described configuration. Can be built.
  • the received signal processing apparatus of the present invention further uses a digital modulation modulation scheme for one received symbol of the digitally modulated received signal (here, each of the separated symbols output from the carrier recovery unit).
  • a reference signal updating unit that corrects the position so as to approach the position of the received symbol and updates the reference point of the reference signal used in the determination unit to the corrected reference point. can do.
  • n represents the number of updates to the reference point
  • r n denotes a two-dimensional vector representing the position on the complex plane of the n-th update treated the reference point
  • X n represents a two-dimensional vector representing the position of the received symbol on the complex plane at the time of the n-th update
  • represents a minute numerical value of 10 ⁇ 10 to 0.1
  • r n + 1 Indicates a two-dimensional vector representing the position of the reference point on the complex plane after correction.
  • the determination unit is not particularly limited, and an integrated circuit such as an IC or LSI that is circuitized so as to execute determination on the received symbol based on a circuit configuration in a known determination-oriented determination unit is used. Can be built.
  • the specific configuration of the reference signal update means is not particularly limited, and is constructed using an integrated circuit such as an IC or LSI that is circuitized so as to correct the reference point of the reference signal. be able to.
  • the main determination unit of the received signal processing apparatus is configured to compare the received signal and a determination signal as a determination result of the determiner based on the reference signal updated by the reference signal update unit with respect to the received signal. It is preferable to have phase correction amount calculation means for calculating a phase correction amount corresponding to a phase change of the received signal, which is generated due to fluctuation of the frequency difference between the carrier frequency and the local oscillation frequency, using the phase difference as a control signal. By having such a phase correction amount calculation means, it is possible to perform the carrier wave reproduction based on the control signal.
  • the received signal processing device may include the received signal having a noise component filtered by a finite impulse response (FIR) filter, and the determination based on the received signal and the reference signal updated by the reference signal updating unit.
  • a differential equalizer adaptive equalizer (adaptive equalizer; AEQ) in which a tap coefficient of the FIR filter is controlled so that a difference between the determination signal and the determination signal as an error signal is an error signal and the magnitude of the error signal is minimized. It is preferable.
  • equalization processing filtering processing that maximizes the quality of the received signal can be performed.
  • the adaptive equalizer has a polarization separation processing means for performing polarization separation processing of the received signal that has been polarization multiplexed.
  • polarization separation processing By having such polarization separation means, the equalization processing can be performed on the received signal that has been polarization multiplexed.
  • phase correction amount calculation means and the adaptive equalizer are not particularly limited, and the former is a digital phase-locked loop (DPLL) that is a known decision-oriented phase correction amount calculation means.
  • DPLL digital phase-locked loop
  • a circuitized configuration for performing signal correction and update may be mentioned. As such a configuration, based on the determination signal as a determination result of the determination unit based on the reference signal updated by the reference signal update unit in a state where the reference signal update unit and the determination unit are incorporated.
  • the phase correction amount calculation process and the equalization process can be constructed using an integrated circuit such as an IC or LSI circuitized to execute the phase correction amount calculation process and the equalization process.
  • FIG. 15 is a circuit diagram showing a configuration example of the DPLL.
  • FIG. 16 is a circuit diagram showing a configuration example of a reception signal processing apparatus configured to include a DPLL, a phase correction unit (e ⁇ j (•) calculation unit), and an AEQ.
  • the digital phase-locked loop 230 includes a phase error calculation processing unit 231, a phase difference calculation unit 232, a loop filter unit 233, and a numerically controlled oscillator 234.
  • the signal processing procedure of the digital phase lock loop 230 will be described together with the signal processing of each part.
  • the calculation for outputting the phase correction amount ⁇ is repeatedly performed for each reception symbol and determination symbol that are continuously input.
  • jth (where j is 1 or more)
  • z ⁇ 1 in the figure means a one symbol delay, and indicates that the value obtained by the processing one symbol before is fed back.
  • d j * is the complex conjugate of the received symbol after determination
  • Arg is a function that gives the phase angle of the complex number on the complex plane.
  • the subscript j means a value obtained by processing the jth input symbol.
  • the loop filter unit 233 performs the calculation shown in the figure using the Damping factor ⁇ , the Natural frequency ⁇ n, and the symbol time interval Ts, that is, the parameters C 1 and C 2 determined by the reciprocal of the symbol rate. Cut the high-frequency component of j .
  • the phase correction amount ⁇ j obtained for the j ⁇ 1th input symbol based on the input of the value after the high frequency component of ⁇ ′ j is cut (the output of the loop filter unit 233).
  • the sum of ⁇ 1 is taken and output as the phase correction amount ⁇ j obtained for the j-th input symbol.
  • the digital phase-locked loop 230 performs phase shift caused by a random frequency difference between the received signal carrier frequency and the local oscillator (LO) for the next input symbol. Value to be corrected).
  • phase correction amount ⁇ j output from the numerically controlled oscillator 234 is fed back to the phase difference calculation unit 232, and the arithmetic processing is performed on the subsequent inputs s j + 1 and d j + 1 in the same manner as described above to obtain the phase correction amount ⁇ j + 1 is calculated.
  • the digital phase-locked loop 230 repeatedly performs such signal processing each time a symbol is input, thereby providing a decision-directed phase correction amount calculation unit controlled by the phase error between the received symbol and the determination symbol. It is possible to output a phase correction amount ⁇ for tracking the phase change.
  • phase correction means for example, phase correction means (e ⁇ j (•) calculation unit) 235
  • the demodulated signal reproduced from the carrier wave based on the phase correction amount can be obtained.
  • the digital phase-locked loop 230 and the phase correction means into a known adaptive equalizer (see, for example, FIG. 16)
  • the demodulated signal that has been subjected to adaptive equalization and also subjected to carrier wave recovery is obtained.
  • the circuit configuration used for the carrier wave recovery is not limited to this example, and the received signal processing device of the present invention uses the relationship between the determination result for the received symbol and the received symbol as an error signal.
  • a circuit configuration of a carrier recovery circuit can be applied.
  • a circuit configuration of a carrier recovery circuit shown in Non-Patent Document 3 can also be used.
  • the adaptive equalizer 250 optimizes the tap coefficients of each FIR filter together with the FIR filters h11, h12, h21, and h22, the determiner 251, the error signal calculation unit, and the tap coefficient control unit 252. To control.
  • the adaptive equalizer 250 has a 2 ⁇ 2 butterfly configuration in order to execute polarization separation processing on the polarization multiplexed received signal.
  • the FIR filter constituting the adaptive equalizer 250 is, for example, a 9-tap T / 2 fractional interval FIR filter, but is not limited to this form, and an FIR filter having an arbitrary number of taps can be used. It is.
  • the signals E 1 and E 2 input to the adaptive equalizer 250 are complex amplitude values of the X polarization component and the Y polarization component of the received signal, but each of the signals E 1 and E 2 is the transmission signal. It does not necessarily match the X polarization component and Y polarization component of the signal.
  • a vector (tap coefficient vector) representing the tap coefficient determined by the error signal calculation unit and the tap coefficient control unit 252 is given to each of the FIR filters of h11 and h21 and h12 and h22.
  • An output is given by an inner product (convolution operation) of these tap coefficient vectors and a time-series input signal vector.
  • DPLL digital phase lock loop
  • a phase correction unit 235, and a determination unit 251 for performing determination are incorporated as a determination-oriented phase correction amount calculation unit.
  • a received signal processing apparatus is configured.
  • the phase of the signal output from the adaptive equalizer 250 is corrected (carrier recovery) by the phase correction unit 235 in accordance with the phase correction amount output from the digital phase-locked loop circuit 230 (DPLL) shown in FIG. This is input to the determiner 251.
  • the determiner 251 defines a reference signal determined by the digital modulation scheme of the received signal to be handled, and determines which reference point in the reference signal is closest to the received symbols s x and s y . .
  • the received symbols s x, Euclidean distance between the s y is to select the smallest reference point, and outputs the selected reference points to each decision symbol d x, as d y.
  • the output of the digital phase-locked loop (DPLL) 230 is input to the error signal calculation unit and the tap coefficient control unit 252 in the adaptive equalizer 250, which calculates the error signal from the received symbols before and after the determination.
  • the tap coefficient control unit 252 of the FIR filter controls the tap coefficient using a Last Mean Square (LMS) algorithm that minimizes the expected value of the square error based on the error signal.
  • LMS Last Mean Square
  • the tap coefficient control using the algorithm first, in a blind start-up state without relying on prior information regarding the received signals, using an error from a certain value of the absolute value amplitude signals s x, s y has, by Constant the Modulus Algorithm Next, after the tap coefficient has converged to some extent, the mode shifts to a decision-directed (DD) operation mode in which the difference between complex amplitudes before and after the determination is used as an error signal.
  • DD decision-directed
  • the difference between the received symbols s x , s y subjected to polarization separation processing and noise filtering by the FIR filters and the determination symbols d x , dy is set as an error signal, and the error signal
  • the tap coefficients are controlled so as to minimize the size of the received signal, and equalization processing is performed on subsequent received symbols to maximize the quality of the received signal.
  • the signal is demodulated by the reception signal processing apparatus, decision symbol d x outputted from the judging unit 251, to the d y may be directly demodulated signal, the signal s x after the equalization process, s y
  • a signal obtained by performing the determination by a determination unit provided separately outside may be used as a demodulated signal.
  • the determination unit 251 and a determination unit provided separately outside may perform determination based on different determination rules.
  • the input signal is a single polarization signal, in the case of only E 1, in FIG. 16, h21, h12, h22 FIR filter is not used regarding, may be operated only in the upper half of the circuit relating to h11.
  • a certain transmission signal here, a 16QAM signal is taken as an example
  • the quantity calculating means and the adaptive equalizer can be operated normally.
  • the transmission signal has a distorted constellation waveform as shown in FIGS. 14A to 14C
  • the determination is performed using the reference signal of an ideal constellation
  • the light at the time of reception is received.
  • the phase correction amount calculation means and the adaptive equalizer in the decision-oriented operation mode malfunction and are demodulated. Signal degradation will occur in later signal quality.
  • the determination unit of the reception signal processing device of the present invention corrects the reference signal by correcting the reference signal even when the transmission signal is distorted by the following signal processing.
  • the adaptive equalizer is normally operated.
  • the term “main determination unit” is used as the meaning of a determination unit having a function of correcting a reference signal for a determination unit that performs final determination in a received signal processing device.
  • a decision unit that exists only in the received signal processing apparatus makes a decision for carrying out decision-oriented carrier wave regeneration or adaptive equalization and gives a final decision result
  • a device having a function of correcting a signal is called a “main determination unit”
  • a determination device for carrying out carrier wave recovery is temporarily installed, and the final received signal after carrier wave recovery is renewed.
  • a main determination unit a determination unit that performs the final determination and that has a function of correcting a reference signal.
  • FIG. 17A is an explanatory diagram schematically illustrating the correction state of the reference signal.
  • the cross shape indicates the position on the complex plane of each reference point constituting the reference signal determined based on the constellation state of an ideal 16QAM signal, and is a round circle shape. Indicates the range of positions that one received symbol of the received signal can take on the complex plane, and the constellation of each received symbol is generally distorted.
  • the reference signal is corrected by updating the position of each reference point to the expected center position of the received symbol in a distorted state, as indicated by arrows in the figure. That is, the position of one reference point constituting the reference signal is corrected so as to approach the expected center position of one received symbol on the complex plane, and the reference point of the reference signal is corrected.
  • the reference point is updated. At this time, the correction is performed according to the following equation [1].
  • n represents the number of updates to the reference point
  • r n denotes a two-dimensional vector representing the position on the complex plane of the reference point is updated to n-th
  • X n represents a two-dimensional vector representing the position of the received symbol on the complex plane at the time of the n-th update
  • represents a minute numerical value of 10 ⁇ 10 to 0.1
  • r n + 1 Indicates a two-dimensional vector representing the position of the reference point on the complex plane after correction.
  • FIG. 17B is an explanatory diagram schematically illustrating a situation where the reference point of the reference signal is corrected.
  • the reference point r n ⁇ 1 is corrected to the reference point r n by the received symbol x n ⁇ 1
  • the reference point r n is changed to the reference point r by the next received symbol x n .
  • the reference point r n + 1 is further corrected to the reference point r n + 2 (only the cross symbol indicating the reference point is shown in the figure) by the next received symbol x n + 1 .
  • the reference point approaches the center point E [x n ] (the expected value of the complex amplitude value that can be taken by the received symbol) as the expected value of the range of positions that a given received symbol can take.
  • the range of symbol positions (the range indicated by a circle in the figure) and the center point E [x n ] as its expected value are determined from the respective reception positions of a plurality of received symbols and their average values. Further, the correction distance from the reference point r n ⁇ 1 to the reference point r n and from the reference point r n to the reference point r n + 1 depends on the value of ⁇ in the equation [1] and is less than 10 ⁇ 10 .
  • FIG. 18 shows a specific configuration example when the main determination unit that corrects and updates the reference signal is incorporated in one received signal processing apparatus.
  • FIG. 18 is a circuit diagram illustrating a configuration example of a received signal processing device.
  • the received signal processing apparatus 200 includes an FIR filter having a 2 ⁇ 2 butterfly configuration, an adaptive equalizer 250 including an error signal calculation unit and a tap coefficient control unit 252, a determination unit 251, a digital phase-locked loop.
  • the received signal processing apparatus having the phase correction unit 235 further includes a reference signal update unit 270.
  • the position of the reference point r that matches the determination symbol d x among the reference points that constitute the reference signal is determined based on the received reception symbol s x and the determination symbol d x in the complex plane.
  • correction is performed so as to approach the position of one received symbol x constituting the received symbol s x , and the position information of the corrected reference point r on the complex plane is determined by the determiner 251. Update processing that sequentially reflects the reference signal used is performed.
  • the received symbol s y based on the input signal E 2 of the Y polarization component is also determined based on the reference signal updated according to the distortion, and the result is used as the determined symbol. and outputs it as a d y. It is to be noted that a process of updating the reference signal of the determiner 251 is performed based on the correction process of the reference signal update unit 270, and the carrier wave reproduction is performed by the determination signal output from the determiner 251 based on the updated correction signal.
  • the target demodulated signal can be obtained by performing signal processing of the received signal in accordance with the signal processing procedure.
  • decision symbol d x may also be d y itself, each signal processing symbol s x and s y complete again, separately provided outside the received signal processing unit 200
  • a determination symbol obtained by inputting to a determination device may perform determination based on different determination rules.
  • the received signal to which the received signal processing apparatus can be applied is not particularly limited, and examples thereof include a BPSK signal, a QPSK signal, and a QAM signal that have been subjected to multilevel modulation with a plurality of complex amplitude values.
  • the received signal processing device may perform the constellation shown in FIGS. 14A to 14C unless the range of expected positions that can be taken by the received symbol exceeds the ideal waveform constellation threshold.
  • the present invention can be applied to a signal having a waveform distortion other than the waveform.
  • the present invention can also be applied to a signal having a constellation as shown in FIG.
  • FIG. 19 is a diagram showing a constellation of other signals that can be processed by the received signal processing apparatus.
  • FIG. 20 is a circuit diagram illustrating a configuration example of a received signal processing apparatus configured to include an adaptive equalizer (AEQ) and a carrier recovery unit.
  • the received signal processing apparatus 300 employs the circuit configuration of the carrier recovery unit 100 constituting the received signal processing apparatus shown in FIG. 1 in place of the DPLL 230 in the received signal processing apparatus shown in FIG. For example.
  • the carrier recovery unit 100 since the carrier recovery unit 100 is used in place of the DPLL 230, it can be applied to high symbol rate optical communication, and the carrier wave can be accurately detected with respect to a multilevel signal such as a QAM signal.
  • the tap coefficient can be controlled by the adaptive equalizer 250 so that the difference between the received signal and the determination signal output from the determination unit 251 is minimized.
  • FIG. 21 is a circuit diagram illustrating a configuration example of a received signal processing device configured to include a carrier wave reproducing unit and a main determination unit.
  • the received signal processing device 310 includes the carrier wave reproducing unit 100 constituting the received signal processing device shown in FIG. 1, the determination unit 251 and the reference signal updating unit 270 shown in FIG. It is comprised with this determination part.
  • the reference signal used by the determiner 251 by the reference signal update unit 270 is referred to.
  • the correction result is fed back to the determination units 5 1 , 5 2 ,... 5 N in the carrier recovery unit 100 and applied to the next determination, whereby the received symbol is transmitted to the transmission side. Even in the case of having a distortion caused by the above, it is possible to make a determination that eliminates the influence of the distortion.
  • FIG. 22 there is a received signal processing device configured to include the adaptive equalizer (AEQ), the carrier recovery unit, and the main determination unit.
  • FIG. 22 is a circuit diagram illustrating a configuration example of a reception signal processing device configured to include an adaptive equalizer (AEQ), a carrier recovery unit, and a main determination unit.
  • this received signal processing device 320 includes an adaptive equalizer 250 shown in FIG. 16, the carrier recovery unit 100 constituting the received signal processing device shown in FIG. 1, and a determiner shown in FIG. 251 and the reference signal update unit 270, and the main determination unit.
  • the carrier wave can be reproduced with high accuracy, the tap coefficient can be optimally controlled, and, similarly to the received signal processing device 310, Even when the received symbol has distortion generated on the transmission side, it is possible to make a determination that eliminates the influence of distortion.
  • the phase compensation for one separated symbol group obtained by separating the symbols of the modulated received signal into a predetermined number of blocks is processed as one process, and the number of the separated symbol groups is set as one process.
  • the separated output step, the prior estimation value acquisition step, the provisional compensation step, the determination step, the error observation step, the posterior estimation value acquisition step, the main compensation step, and the feedback processing step including.
  • the symbols input at regular time intervals in the block are time-separated by a predetermined number to obtain the separation symbol group, and output for each separation symbol constituting the separation symbol group It is.
  • the number of symbols in the separated symbol group acquired in the separated output step is not particularly limited, but is preferably 2 to 1,024.
  • the prior estimation value obtaining step includes: one intra-block frequency determined based on a phase change with respect to time of each separation symbol and one intra-block center phase determined as a time center of each phase of each separation symbol. This is a step of obtaining an intra-block prior estimated frequency and an intra-block prior estimated center phase as prior estimated values obtained by estimating these current processed values from the previous processed values.
  • the temporary compensation step is a step of calculating a pre-estimated phase of each separated symbol from the pre-estimated value, and temporarily compensating the phase of each separated symbol based on the pre-estimated phase.
  • each separation symbol whose phase has been provisionally compensated is a pre-determination symbol, and the determination is performed based on a reference signal set according to a modulation scheme of the reception signal with respect to the pre-determination symbol, It is a step of obtaining a post-determination symbol matched with a reference point of the reference signal.
  • the error observation step calculates a frequency error between the observed value of the intra-block frequency and the pre-estimated frequency within the block, which is determined based on the pre-determination symbol and the post-determination symbol, and before the determination Calculating a phase error between the observed value of the intra-block center phase and the intra-block pre-estimated center phase, which is determined based on the symbol and the determined symbol.
  • the error observation step is not particularly limited, but it is preferable to calculate the frequency error and the phase error by maximum likelihood estimation.
  • the a posteriori estimation value obtaining step corrects the a priori estimation value based on the frequency error and the phase error, and estimates a most probable current processing value of the intra-block frequency and the intra-block center phase. This is a step of acquiring the intra-block post-estimated frequency and the intra-block post-estimated center phase as values.
  • the a posteriori estimation value acquisition step includes the frequency error, the phase error, a prior state vector as the prior estimation value, and an input of a prior error covariance matrix for controlling a gain, and the prior estimation value and the previous estimation value. It is preferably executed by a Kalman filter that outputs the a posteriori state vector and the a posteriori error covariance matrix as the a posteriori estimation value, in which the value of the pre-article error covariance matrix is corrected.
  • the main compensation step is a step of calculating a post-estimation phase of each separated symbol from the post-estimation value and performing a main compensation of the phase of each separated symbol based on the post-estimation phase.
  • the prior estimation value acquisition step uses the posterior estimation value as a previous processing value of the intra-block frequency and the intra-block center phase, and the separated symbol group in the next phase compensation. This is a step of performing feedback processing so as to obtain the prior estimated value.
  • the post-estimation value acquisition step is executed by the Kalman filter, as the feedback processing step, the post-estimation value and the post-error covariance matrix are supplied to the execution unit of the pre-estimation value acquisition step.
  • the prior estimated value acquisition step can perform feedback processing so that the Kalman filter is supplied as the prior estimated value and the prior error covariance matrix in the next phase compensation.
  • the matters described in the reception signal processing apparatus can be applied. According to the received signal processing method described above, it can be applied to optical communication at a high symbol rate, and a carrier wave can be reproduced with high accuracy even for a multilevel signal such as a QAM signal.
  • the received signal processing method of the present invention is further determined by the modulation method of the digital modulation for one received symbol of the digitally modulated received signal (here, each of the separated symbols whose phase is fully compensated).
  • the determination step of determining a reference point having the shortest Euclidean distance on the complex plane from a plurality of reference points constituting the reference signal, and the position of the determined reference point based on the following equation [1]
  • a reference signal update step of correcting the reference point of the reference signal used in the main determination step to update the reference point to the corrected reference point. preferable.
  • the reference signal is repeatedly updated any number of times, so that all the reference points in the reference signal match the expected value of the complex amplitude value that can be taken by the received symbol. Even when the transmission signal is distorted, the decision-directed adaptive equalizer and the phase correction amount calculating means can be operated normally and received without degrading the signal quality.
  • the term “main determination step” is used as the meaning of a determination step including a step of correcting a reference signal for a determination step of performing a final determination in the received signal processing method.
  • the decision step that exists only in the received signal processing method makes a decision for carrying out decision-oriented carrier wave regeneration or adaptive equalization and gives a final decision result
  • a signal having a step of correcting a signal is referred to as a “main determination step”.
  • a determination step for performing carrier wave recovery is temporarily performed, and a final reception signal after carrier wave recovery is renewed.
  • the determination step for performing the determination is performed separately, the determination step for performing the final determination including the step of correcting the reference signal is referred to as a “main determination step”.
  • n represents the number of updates to the reference point
  • r n denotes a two-dimensional vector representing the position on the complex plane of the n-th updated on the said reference point
  • x n represents a two-dimensional vector representing the position of the received symbol on the complex plane at the time of the n-th update
  • represents a small numerical value of 10 ⁇ 10 to 0.1
  • r n + 1 represents FIG. 4 shows a two-dimensional vector representing the position of the reference point on the complex plane after correction.
  • the control signal includes a phase correction amount calculating step of calculating a phase correction amount corresponding to a phase change of the received signal, which is generated due to fluctuation of a frequency difference between the carrier frequency and the local oscillation frequency.
  • the determination result of the main determination step based on the received signal whose noise component is filtered by an FIR filter and the reference signal updated by the reference signal update step with respect to the received signal
  • an adaptive equalization step for performing equalization processing of the subsequent received signal by controlling the tap coefficient of the FIR filter so that the magnitude of the error signal is minimized.
  • equalization processing filtering processing
  • the adaptive equalization step further includes a polarization separation processing step for performing polarization separation processing of the polarization multiplexed received signal.
  • the equalization processing can be performed on the received signal that has been polarization multiplexed.
  • the communication system includes a reception unit having the reception signal processing apparatus including the main determination unit, a transmission unit that transmits a transmission signal to the reception unit, and the transmission signal transmitted from the transmission unit.
  • a transmission path for transmission to a reception unit, and the transmission unit receives a reception signal received by the reception unit and a determination signal as a determination result of a determination unit based on a reference signal updated by a reference signal update unit
  • Information based on the difference is subjected to feedback processing as a distortion of the transmission signal to a state without the distortion. That is, the determination signal output from the reception signal processing apparatus of the present invention has information regarding distortion of the transmission signal. This can be fed back to the transmission side and used to eliminate distortion of the transmission signal.
  • the receiving unit, the transmitting unit, and the transmission path, excluding the received signal processing device, can be constructed with a known configuration.
  • Examples of the transmission path include known optical fibers that transmit signals over long distances.
  • FIG. 3 shows an explanatory diagram of the communication system used in this experiment. As shown in FIG.
  • the communication system includes a laser diode (LD) 101, an IQ modulator (IQM) 102, an arbitrary waveform generator (AWG) 103, a variable optical attenuator (VOA) 104,
  • the optical amplifier 105, a band pass filter (BPF) 106, a coherent receiver 107, a real-time oscilloscope 108, an off-line digital signal processor (DSP) 109, and an optical spectrum analyzer (OSA) 110 are included.
  • the laser diode 101 outputs continuous light having a frequency of 193.1 THz (wavelength: 1,552.52 nm).
  • the continuous light output from the laser diode 101 is vector-modulated by an IQ modulator 102, which is a Mach-Zehnder vector modulator, and 16QAM and 64QAM signals are generated.
  • These modulated signals are obtained from a pseudo random bit sequence (PRBS) having a length of 2 15 ⁇ 1 by using Gray code encoding.
  • PRBS pseudo random bit sequence
  • the IQ modulator 102 is applied with electrical signals corresponding to the in-phase and quadrature components of the modulated signal output from the arbitrary waveform generator 103.
  • the 16QAM and 64QAM signals to be transmitted are adjusted for the optical signal-to-noise ratio (OSNR) by using the variable optical attenuator 104 and the optical amplifier 105, and subsequently the signal out-of-band optical noise generated by the optical amplification is reduced. After being removed by the band pass filter 106, it is received by the coherent receiver 107.
  • the adjustment of the optical signal-to-noise ratio was performed by adjusting the attenuation of the variable optical attenuator 104 and the gain of the optical amplifier 105 with the input power to the coherent receiver 107 being a constant value of 1 mW.
  • the optical signal-to-noise ratio was measured by an optical spectrum analyzer 110 installed in parallel with the coherent receiver 107.
  • the coherent receiver 107 includes a local oscillator (LO) light source, a 90-degree optical hybrid unit, and a balanced photodiode.
  • the 16QAM signal and the 64QAM signal output from the balanced photodiode are converted from analog to digital at a sampling rate of 80 GSa / s by the real-time oscilloscope 108 and stored in the off-line digital signal processor 109.
  • carrier wave reproduction was performed by the received signal processing apparatus according to the example. Thereafter, the 16QAM signal and the 64QAM signal whose phases were reproduced were demodulated, and the signal quality such as the bit error rate was evaluated.
  • a personal computer is used as the digital signal processor 109, and each signal processing unit including the received signal processing apparatus according to the embodiment is constructed on Matlab which is calculation software operating in the personal computer.
  • the initial value P o of the error covariance matrix is a 2-by-2 zero matrix.
  • the system noise power ⁇ f 2 of this experimental system was set to 10 ⁇ 9 and the matrix Q was fixed.
  • the observation noises ⁇ ⁇ 2 and ⁇ ⁇ 2 have initial values of 10 ⁇ 2 and 10 ⁇ 3 , respectively.
  • the 16QAM signal was received by changing the optical signal-to-noise ratio (OSNR) from 12 dB to 37 dB, and demodulated in the off-line digital signal processor 109.
  • FIG. 4A is a diagram illustrating the measurement result of the bit error rate (BER)
  • FIG. 4B is a diagram illustrating the measurement result of the Q factor. As shown in FIGS.
  • FIG. 5 shows the block size dependence of the Q factor when the optical signal-to-noise ratio (OSNR) is 37 dB and 15 dB.
  • OSNR optical signal-to-noise ratio
  • FIGS. 6A shows a constellation when the block size N is 2.
  • FIG. 6B shows a constellation when the block size N is 16.
  • FIG. (C) is a diagram showing a constellation when the block size N is 128.
  • FIG. As shown in FIGS. 6A to 6C, when the block size N increases, the constellation distortion increases, and in particular, a phase error occurs, resulting in a deterioration of the Q factor. The reason why the phase error occurs when the block size N is large is that the assumption that “the carrier frequency offset keeps a constant value within the block” does not hold.
  • the degree of time change of the carrier frequency offset is weakened, and as a result, the quality deterioration when the block size N is increased can be reduced. It is done.
  • the deterioration amount of the Q factor is very small as the block size N increases.
  • the Q factors when the block size N is 2 and 128 are 9.36 dB and 9.18 dB, respectively.
  • An actual communication system is designed to receive a signal with a certain margin secured to the lowest optical signal-to-noise ratio (OSNR) that can be made error-free by an error correction code (FEC).
  • FEC error correction code
  • BER bit error rate
  • the Q factor deterioration amount may be considered to be about 0.2 dB, and can be set to a sufficiently acceptable value. Since the symbol rate of this experiment is 12 Gbaud, when the block size N is 64, the time corresponding to 64 symbols per block is 5.3 nanoseconds, and this time is an iterative process for each block. Equivalent to 187.5 MHz. This clock frequency is a low value that can be sufficiently processed by a practical digital signal processor (DSP).
  • DSP digital signal processor
  • the frequency of each laser is set so that the value of the carrier frequency offset takes a value from 0 to about 1.2 GHz, and the signal to noise ratio (OSNR) of the 16QAM signal is 37 dB and 15 dB.
  • the BER and Q factor were measured with respect to the carrier frequency offset measurement result found from the carrier recovery result, and the carrier frequency offset dependency was confirmed.
  • FIG. 7A shows the measurement result of the bit error rate (BER) with respect to the measurement result of the carrier frequency offset when the optical signal-to-noise ratio (OSNR) is 15 dB.
  • FIG. 7B shows the Q factor measurement results for the carrier frequency offset measurement results when the optical signal-to-noise ratio (OSNR) is 15 dB and 37 dB.
  • the method disclosed in Non-Patent Document 3 is based on the premise that the carrier frequency offset is 0, and therefore cannot be processed when the value of the carrier frequency offset is large.
  • the received signal processing apparatus and the received signal processing method of the present invention operate even for a large carrier frequency offset value.
  • the carrier frequency offset increases and the value deteriorates, and the optical signal-to-noise ratio (OSNR) is 37 dB compared to 15 dB.
  • the amount of degradation is greater.
  • the optical signal-to-noise ratio (OSNR) is 15 dB
  • the amount of degradation of the Q factor is slight, but focusing on the bit error rate (BER), it is slightly degraded as the value of the carrier frequency offset increases.
  • BER bit error rate
  • the reason why the signal quality deteriorates when the carrier frequency offset is large is that, in the received signal processing apparatus and the received signal processing method of the present invention, there is a certain amount of estimation error when estimating the carrier frequency. This is probably because the larger the value of, the greater the proportion of the estimated error reflected in the phase error.
  • the 64QAM signal was received by changing the optical signal-to-noise ratio (OSNR) from 20 dB to 37 dB, and demodulated in the off-line digital signal processor 109.
  • 8A is a diagram showing the measurement result of the bit error rate (BER)
  • FIG. 8B is a diagram showing the measurement result of the Q factor.
  • FIGS. 8 (a) and 8 (b) it can be seen that the demodulation process including carrier wave recovery is successful and the bit error rate (BER) can be measured correctly in any block size.
  • the bit error rate (BER) and Q factor are slightly increased in the case of 64QAM signal as the block size increases, particularly when the optical signal-to-noise ratio (OSNR) is high. It has deteriorated. Note that an error floor occurs in a region where the optical signal-to-noise ratio (OSNR) is large. This is due to the noise component of the communication system of this experiment, and the received signal processing device and the received signal It is not due to the carrier wave recovery of the processing method.
  • FIG. 9 shows the block size dependence of the Q factor when the optical signal-to-noise ratio (OSNR) is 37 dB and 23 dB.
  • OSNR optical signal-to-noise ratio
  • FIGS. 10A shows a constellation when the block size N is 2.
  • FIG. 10B shows a constellation when the block size N is 16.
  • FIG. (C) is a diagram showing a constellation when the block size N is 64.
  • FIG. 10A to 10C when the block size N increases, the constellation distortion increases, and in particular, a phase error occurs, resulting in a deterioration of the Q factor.
  • the optical signal-to-noise ratio (OSNR) when the optical signal-to-noise ratio (OSNR) is 23 dB in FIG. 9, the amount of deterioration of the Q factor is very small as the block size increases.
  • the Q factor when the block size is 2 and 64 is 9.02 dB and 8.78 dB, respectively.
  • the frequency of each laser is set so that the value of the carrier frequency offset takes a value from 0 to around 1.2 GHz, and the optical signal-to-noise ratio (OSNR) of the 64QAM signal is 37 dB and 23 dB.
  • the BER and Q factor were measured with respect to the carrier frequency offset measurement result found from the carrier recovery result, and the carrier frequency offset dependency was confirmed.
  • FIG. 11A shows the measurement result of the bit error rate (BER) with respect to the measurement result of the carrier frequency offset when the optical signal-to-noise ratio (OSNR) is 37 dB and 23 dB.
  • 11B shows the Q factor measurement result for the carrier frequency offset measurement result when the optical signal-to-noise ratio (OSNR) is 23 dB and 37 dB.
  • OSNR optical signal-to-noise ratio
  • 64QAM signals are transmitted over long distances, and demodulated using the proposed carrier recovery technique. That is, in the communication system shown in FIG. 3, the test was performed by increasing the transmission distance between the IQ modulator 102 and the optical attenuator 104.
  • the transmission line is composed of two spans of standard single mode fiber (SSMF) of 80 km, and the total transmission distance is 160 km.
  • An optical amplifier is installed on the incident side of each span, and the span incident power of the signal is ⁇ 7 dBm.
  • the optical signal-to-noise ratio (OSNR) is changed by adjusting the gains of the optical attenuator 104 and the optical amplifier 105.
  • OSNR optical signal-to-noise ratio
  • FIG. 12 shows the BER measurement results of the back-to-back and post-transmission signals when the block size N is 16. As shown in FIG. 12, it can be seen that although the penalty associated with transmission is slightly generated, reception and demodulation processing can be normally performed.
  • the received signal processing apparatus and the received signal processing method of the present invention can be applied to high symbol rate communication and can reproduce a carrier wave with high accuracy even for a multilevel signal such as a QAM signal. Therefore, it can be suitably used in a digital signal processing process in a receiver in the communication field, particularly in the optical fiber communication field.
  • main determination unit and main determination step described as a preferred configuration example and a preferred implementation method of the received signal processing apparatus and method of the present invention are applied And the effect confirmed from this experiment is demonstrated.
  • the received signal processing apparatus and method can be applied to a signal of an arbitrary modulation scheme, but here, description will be given focusing on the 16QAM modulation scheme.
  • signal processing is performed on symbols whose carrier phase has been recovered using a decision-oriented DPLL as a carrier recovery method.
  • FIG. 23 shows the communication system used in this experiment.
  • FIG. 23 is an explanatory diagram for explaining the communication system used in the experiment. As shown in FIG.
  • this communication system includes a laser diode (LD) 201, an IQ modulator (IQM) 202, an arbitrary waveform generator (AWG) 203, a polarization multiplexing emulator 204, a variable light Attenuator (VOA) 205, optical amplifier 206, bandpass filter (BPF) 207, coherent receiver 208, real-time oscilloscope 209, offline digital signal processor (DSP) 210, and optical spectrum analyzer (OSA) ) 211.
  • LD laser diode
  • IQM IQ modulator
  • AMG arbitrary waveform generator
  • VOA variable light Attenuator
  • BPF bandpass filter
  • coherent receiver 208 real-time oscilloscope 209
  • DSP offline digital signal processor
  • OSA optical spectrum analyzer
  • the laser diode 201 outputs continuous light having a center wavelength of 1,552.52 nm.
  • the continuous light output from the laser diode 201 is vector-modulated by the IQ modulator 202 to generate a 16QAM signal.
  • This 16QAM signal is obtained from a pseudo random bit sequence (PRBS) having a symbol rate of 12 Gaud and a length of 2 15 ⁇ 1 by using Gray code encoding.
  • PRBS pseudo random bit sequence
  • An electrical signal corresponding to the in-phase component and quadrature component of the 16QAM signal output from the arbitrary waveform generator 203 is applied to the IQ modulator 202. In the case of an ideal constellation as shown in FIG.
  • 16QAM having an ideal constellation output from the arbitrary waveform generator 203 to the IQ modulator 202 is obtained.
  • the electric signal corresponding to the in-phase component and the quadrature component of the signal is applied as it is, but in the case of a distorted constellation as shown in FIG. 14C, the amplitude output of the arbitrary waveform generator 203 is adjusted to obtain the quadrature component.
  • the angle formed above is reduced by 20 degrees from the ideal value of 90 degrees to give a quadrature phase error.
  • both a single polarization 16QAM signal (SP-16QAM) and a polarization multiplexed 16QAM signal (DP-16QAM) are handled as transmission signals.
  • polarization multiplexing is performed using a polarization multiplexing emulator 204 having a polarization beam splitter (PBS) and a fiber delay line. That is, in this experiment, SP-16QAM and DP-16QAM are used for each of 16QAM signals having ideal constellation and distorted constellation waveforms, and a total of 16QAM signals in four states are used as transmission signals.
  • Each 16QAM signal to be transmitted has its optical signal-to-noise ratio (OSNR) adjusted using the variable optical attenuator 205 and the optical amplifier 206. After being removed by the pass filter 207, it is received by the coherent receiver 208. The optical signal-to-noise ratio was measured by an optical spectrum analyzer 211 installed in parallel with the coherent receiver 208.
  • Each 16QAM signal received by the coherent receiver 208 is analog-to-digital converted by the real-time oscilloscope 209 and acquired as a digital signal.
  • the sampling rate in the analog / digital conversion is 80 GSa / s in the case of SP-16QAM and 40 GSa / s in the case of DP-16QAM.
  • Each 16QAM signal acquired as a digital signal is output to an off-line digital signal processor 210, resampled at 24GSa / s corresponding to 2 samples per symbol, and then constructed on the digital signal processor 210. Demodulation is performed by executing a signal processing program.
  • a personal computer is used as the digital signal processor 210, and the signal processing program is built on Matlab, which is calculation software operating in the personal computer, as a received signal processing device according to the reference examples and embodiments described below. It has been done.
  • the received signal processing device having the same circuit configuration as that of the received signal processing device having the adaptive equalizer 250 shown in FIG. 16 described above is output to the digital signal processor 210 (see FIG. 23). 16QAM signals were demodulated.
  • the digital phase-locked loop 230 shown in FIG. 16 has the same circuit configuration as that shown in FIG. 15, and Damping factor ⁇ , Natural frequency ⁇ n , which are set as operating characteristics of the digital phase-locked loop,
  • the reference signal used for determination in the determiner 251 has a shape having an ideal constellation of 16QAM signal shown in FIG. 13B according to the modulation method of the received signal.
  • the reference signal is arbitrary in terms of a bias (translation) and an amplitude value with respect to an in-phase component (real axis direction) and a quadrature component (imaginary axis direction).
  • the bias of the reference signal was set to 0, and the amplitude value was adjusted so that the average power of the reference signal coincided with the average power of the received signal.
  • the received signal processing apparatus (see FIG. 16) to which the adaptive equalizer according to the reference example is applied performs equalization processing (including polarization separation processing in the case of DP-16QAM signal) and carrier wave recovery processing.
  • equalization processing including polarization separation processing in the case of DP-16QAM signal
  • carrier wave recovery processing For the symbols that have been implemented and have been demodulated, the determination is performed again using a determiner provided outside the received signal processing apparatus, and the bit error rate (BER) and the error vector magnitude (EVM) are analyzed. .
  • BER bit error rate
  • EVM error vector magnitude
  • the constellation waveform of the 16QAM signal after demodulation processing was observed. It should be noted that when the determination is performed again on the demodulated 16QAM signal, the distortion of the transmission signal is known in advance, and a reference signal that matches the distortion can be used from the beginning.
  • the distortion of the transmission signal does not affect the determination after the demodulation process, and the operation of the adaptive equalizer and the digital phase-locked loop connected to the adaptive equalizer (refer to FIG. 16 for these) is performed. Only pay attention to evaluate the effect of waveform distortion of the transmission signal.
  • the analysis of the EVM was performed by defining the root-mean square (rms) value of the EVM by the following formula [2].
  • M indicates the number of complex amplitude values in the reference signal
  • a M 16 in the case of 16QAM signal
  • r m is the m-th complex amplitude value in the reference signal
  • N represents the number of received symbols
  • x n represents a two-dimensional vector representing the nth received symbol
  • r (x n ) is in the reference signal obtained from the determination for x n
  • FIG. 24A shows the BER measurement result of the received signal processing apparatus according to the reference example.
  • FIG. 24B shows the EVM measurement result of the received signal processing apparatus according to the reference example.
  • reception results for ideal waveforms for both SP-16QAM and DP-16QAM see Ideal SP-16QAM and DP-16QAM in each figure.
  • Distorted SP-16QAM and DP-16QAM in each figure it can be seen that an error floor and a large penalty occur.
  • FIG. 24C shows a constellation waveform when the ideal signal SP-16QAM signal is demodulated by the received signal processing apparatus according to the reference example.
  • FIG. 24D shows a constellation waveform when the SP-16QAM signal having distortion is demodulated by the received signal processing apparatus according to the reference example.
  • OSNR optical signal-to-noise ratio
  • FIG. 24E shows a constellation when the DP-16QAM signal having distortion is demodulated by the received signal processing apparatus according to the reference example. As shown in FIG. 24 (e), it can be confirmed that the DP-16QAM signal has a larger noise component than the SP-16QAM signal.
  • the constellation waveform shown in FIG. 24E is obtained when the OSNR is 33 dB.
  • Example As an embodiment, for a method of demodulating a 16QAM signal output to the digital signal processor 210 (see FIG. 23), reception with the same circuit configuration as that of the reception signal processing device 200 shown in FIG. An experiment similar to the reference example was performed except that the signal processing apparatus was used. However, the received signal processing apparatus according to this embodiment is configured without applying the carrier wave reproducing section shown in FIG. 1 as a test apparatus for confirming the effect when the present determining section is applied. In the reference signal updating unit 270 of the received signal processing apparatus according to the embodiment, the value of ⁇ in the equation [1] is set to 0.005 to correct and update the reference point.
  • the adaptive equalizer 250 operates on the error signal obtained by the Constant Modulus Algorithm (CMA), and only the digital phase-locked loop circuit 230 (DPLL) is directed to the determination.
  • CMA Constant Modulus Algorithm
  • DPLL digital phase-locked loop circuit 230
  • the update processing of the reference signal is performed on the first 16,000 received symbols received.
  • the update process is further performed on 10,000 received symbols. In any case, all the reference points r in the reference signal converge to the center of the range of positions that can be taken by the received symbol x (expected complex amplitude value), and the reference signal can be updated appropriately. It was.
  • FIG. 25A shows the BER measurement result of the received signal processing apparatus according to the embodiment.
  • FIG. 25B shows the EVM measurement result of the received signal processing apparatus according to the embodiment. Note that these measurement results were obtained by performing measurement in the same manner as in the reference example, except that the reference signal was corrected and updated based on the reference signal update unit 270 and the determiner 251. . As shown in these figures, it can be seen that both SP-16QAM and DP-16QAM can receive signals without generating a large penalty even when the waveform is distorted (ideal SP in each figure). -16QAM, DP-16QAM, and Distorted SP-16QAM, DP-16QAM). Although no penalty is generated in the EVM shown in FIG.
  • the OSNR penalty of about 1 dB occurs in the BER shown in FIG. This is because waveform distortion is applied to the 16QAM signal, and as a result of reducing the amplitude of the quadrature component by 20% compared to the in-phase component, the symbol interval on the quadrature axis is reduced by 12% at the same average power, resulting in the same BER. This is essential by requiring a large average power of 1.29 times, ie +1.1 dB, to obtain Note that the essential penalty caused by such distortion of the transmission signal is determined based on the reference signal updated by the reference signal update unit by the communication system of the present invention in a situation of actual use. This information can be resolved by feeding back to the transmission side the distortion information of the determination signal as the determination result of the device and correcting the distortion of the transmission signal.
  • FIG. 25C shows a constellation waveform when the ideal signal SP-16QAM signal is demodulated by the received signal processing apparatus according to the embodiment.
  • FIG. 25 (d) shows a constellation waveform when the SP-16QAM signal having distortion is demodulated by the received signal processing apparatus according to the embodiment.
  • FIG. 25E shows a constellation waveform when a DP-16QAM signal having distortion is demodulated by the received signal processing apparatus according to the embodiment.
  • AEQ adaptive equalizer
  • the quantity calculation means (DPLL) is operating normally.
  • This EVM measurement result is obtained when the DP-16QAM signal is generated by changing the amplitude reduction rate of the quadrature component with respect to the in-phase component from 0% to 45% and further changing the quadrature phase error from 0 ° to 25 °.
  • 4 shows the EVM when the OSNR is received as 35 dB and the demodulation processing is performed by the received signal processing apparatus according to the embodiment.
  • FIGS. 26A to 26F show the EVM measurement when each DP-16QAM signal in which the amplitude reduction rate of the quadrature component with respect to the in-phase component is changed from 0% to 45% is demodulated. Results are shown.
  • 26A shows the case where the quadrature phase error is 0 degree
  • FIG. 26B shows the case where the quadrature phase error is 5 degrees
  • FIG. 26C shows the case where the quadrature phase error is 10 degrees
  • FIG. 26D shows the EVM when the quadrature phase error is 15 degrees
  • FIG. 26E shows the EVM when the quadrature phase error is 20 degrees
  • FIG. 26F shows the EVM when the quadrature phase error is 25 degrees. The measurement results are shown.
  • the horizontal axis indicates the amount of decrease in amplitude of the quadrature component in% when the in-phase component amplitude is 1, for example, when the horizontal axis value is 20%, This means that the amplitude of the component is reduced by 20%, and the amplitude ratio between the in-phase component and the quadrature component is 5: 4.
  • the maximum allowable value of the amplitude attenuation amount of the quadrature component is 45%.
  • the maximum allowable value of the amplitude attenuation amount of the quadrature component is 40%.
  • the maximum allowable value of the amplitude attenuation amount of the quadrature component is 15%.
  • the maximum allowable value is mainly determined by the center position (expected complex amplitude value) of each symbol of the distorted received signal, and the center position does not exceed a threshold when an ideal constellation is used as a reference signal. Distortion is acceptable. If the transmission signal distortion is less than or equal to the maximum allowable value, the demodulation processing by the reception signal processing apparatus according to the embodiment operates normally, and the penalty of the EVM is small enough to be ignored.
  • the measurement result when the same EVM measurement is performed using the received signal processing apparatus according to the reference example is shown in FIG. That is, in FIG.
  • the decision-oriented adaptive equalization is performed.

Abstract

【課題】高シンボルレートの光通信に適用でき、多値化信号に対しても高精度な搬送波の再生を可能とする。 【解決手段】ブロック化された分離シンボル群を出力する分離出力部と、ブロック内周波数及びブロック内中心位相の前回処理値から、これらの今回処理値を推定した事前推定値を取得する事前推定値取得部と、事前推定位相に基づいて前記各分離シンボルの位相を仮補償する仮補償部と、判定前シンボルに対して参照信号に基づく判定を行い判定後シンボルを取得する判定部と、周波数誤差と位相誤差とを算出する誤差観測部と、前記周波数誤差及び前記位相誤差に基づいて事後推定値を取得する事後推定値取得部と、事後推定位相に基づいて前記位相を本補償する本補償部と、前記事前推定値取得部に前回処理値として前記事後推定値をフィードバックするフィードバック処理部と、を有する搬送波再生部を備える。

Description

受信信号処理装置、通信システム及び受信信号処理方法
 本発明は、変調された受信信号の搬送波周波数オフセット及び位相オフセットを補償する受信信号処理装置及び受信信号処理方法に関する。また、本発明は、デジタル変調された受信信号に対して、前記受信信号に応じて更新される参照信号に基づく判定を行う受信信号処理装置、該受信信号処理装置を有する通信システム及び受信信号処理方法に関する。
 光通信の大容量化を目的として、多値変調方式を採用した送受信システムの普及が進められている。具体的には、QPSK(四値位相シフトキーイング)やQAM(直交振幅変調)を偏波多重した方式が採用あるいは検討されている。これらの信号は、光の位相が変調されているため、復調に当たっては受信機に内蔵された局所発振器(LO)が発する光との干渉を利用したコヒーレント受信を実施する必要がある。
 信号源及び前記局所発振器として用いられるレーザーダイオード(LD)は、発振周波数がある程度安定化されてはいるものの、それぞれ独立に周波数が揺らいでおり、信号光と前記局所発振器が発する光を干渉させて得られた受信信号は、それらの発振周波数の差に対応する位相変調成分である、exp[i2πft]を持つことになる。ここでtは、時間、fは、f=f-fLOであり、f及びfLOは、それぞれ信号光及びLOの発振周波数である。また、fは、搬送波周波数オフセットと呼ばれ、各レーザーの周波数揺らぎに対応して、値がランダムに変化する。
 このランダムな搬送波周波数オフセットfに起因して揺らぐ位相成分(搬送波位相オフセット)を補償し、送信信号が本来持っている位相変調成分のみを取り出すことを搬送波再生と呼び、前記搬送波再生は、QPSK方式やQAM方式で変調された信号を復調するにあたっては必須のプロセスとされる。
 搬送波再生の手段として近年用いられている方法として、光信号の同相位相成分及び直交位相成分をそれぞれ光検出器で受信し、得られたアナログ電気信号をAD変換によってデジタル信号に変換した後、デジタル信号処理を行う方法が知られている。また、受信機では、各種のデジタル信号処理によって搬送波再生処理を含む様々な処理が実行されている。
 前記デジタル信号処理に基づく搬送波再生方法として、受信信号がQPSKの場合、受信した信号の複素振幅をM乗してM値PSK信号の位相情報を除去した後、1/M乗して位相誤差を求め、信号の位相から引くことで搬送波再生を実施する手段が知られている(非特許文献1参照)。しかしながら、この手段は、振幅が変調されていないM値PSK(M=4の場合がQPSK)に適用可能であり、QAM信号に対して適用するのは困難である。
 前記受信信号がQAM信号の場合の一つの搬送波再生方法として、Phase Locked Loop(PLL)方式のデジタル回路を用いて搬送波再生を実施する手段が知られている(非特許文献2参照)。この前記PLLの動作原理では、受信シンボルごとのフィードバック処理が必須とされる。この点、無線通信などでは、シンボルレートが例えばMHzオーダーであり、前記シンボルレートを上回るクロック周波数で動作するデジタルシグナルプロセッサ(DSP)を用いて、前記受信シンボルごとの前記フィードバック処理を実行することができる。しかしながら、光通信では、前記シンボルレートが例えば数十GHzに及び、前記シンボルレートを上回るクロック周波数で動作する前記DSPが存在しないことから、現在の技術では、前記受信シンボルごとの前記フィードバック処理を実行する搬送波再生を行うことができない問題がある。また、前記光通信では、前記DSPに対して前記受信シンボルの列をシリアル・パラレル変換し、変換信号の並行処理を実行する回路設計を行う必要が生じるため、前記搬送波再生処理に前記PLLを用いることは、原理的にも困難を伴う。
 また、前記受信信号がQAM信号の場合の他の搬送波再生方法として、次のような方法が知られている(非特許文献3参照)。先ず、時間的に連続して入力される受信シンボルの列をシリアル・パラレル変換するが、その際、並列化した各受信シンボルに対して、時間的に前後して連続する複数のシンボルを含んで処理するものとする。次に、並行処理される各シンボルを対象として、複数の位相補償候補値を用いて前記複数のシンボルに対して搬送波搬送波再生を試行し、各試行結果に対して受信シンボルの判定を実施し、前記複数のシンボルを総合して判定誤りが最も小さくなる位相補償候補値を採用して、当該シンボルの位相補償を実施するというものである。しかしながら、この方法では、前記シンボルと前記局所発振器の周波数差fがほぼ零であることを前提としているので、fがある程度大きな周波数差(例えば数百MHz以上)となる場合は、搬送波再生に大きな誤差が生じるなどの困難を伴う。
 また、これら前記受信信号がQAM信号の場合の搬送波再生方法を使用する際、判定後の位相誤差を誤差信号として搬送波再生を行うことが一般的であるが、64QAMのような多値数の大きなQAM変調方式においては、符号間距離が小さいため判定誤りを生じやすく、誤差信号の精度が落ちるため、搬送波再生できない場合がある。更に、加法性ガウス型雑音(AWGN)が加わった場合、全てのシンボルに加わる雑音振幅の期待値は同じである一方、ある振幅の雑音に対して生ずる実際の位相誤差は、振幅の小さいシンボルの方が大きくなるため、前記位相誤差に基づく前記搬送波再生が困難となる。
 なお、搬送波周波数オフセットをある手段で補償した後、搬送波位相オフセットを別の手段で補償する方法も知られているが、回路規模が大きくなったり、搬送波周波数オフセット残留誤差が搬送波位相オフセット補償を劣化させたりするなどの問題がある。
 また、偏波多重されたQPSK信号やQAM信号を復調する際、偏波分離を目的として2×2バタフライ構成の有限インパルスレスポンス(FIR)フィルタによる適応等化器が用いられ、更に、搬送波再生を目的として、受信した複素振幅を四乗してから四分の一乗することで位相誤差を導出して補償する方法(非特許文献1参照)やブラインド位相推定を行う方法(非特許文献3参照)などのフィードフォワード形式のデジタル信号処理や、フェーズロックループを用いたフィードバック形式のデジタル信号処理(非特許文献2)が実施される。
 前記適応等化器による等化処理及び前記搬送波再生を高精度に実施する方法として、判定指向型のアルゴリズムが用いられる。このアルゴリズムを用いた信号処理方法は、受信シンボルに対して判定を行い、推定される送信シンボルと、判定前の前記受信シンボルとの差をとってこれを誤差信号とし、前記誤差信号に対する誤差の期待値が最小となるように受信信号を処理する方法である。なお、前記搬送波再生では、判定指向型の位相補正量算出手段が用いられる(例えば、非特許文献3参照)。
 前記受信シンボルの判定においては、前記受信シンボルが取り得る全ての複素振幅値から構成される参照信号を用い、前記受信シンボルと複素平面上のユークリッド距離が最短となるシンボルを前記参照信号の中から選び、これを判定結果とする。
 このような方法を前記QAM信号に対する信号処理を例にとり説明する。前記QAMの理想的な状態は、取り得る前記複素振幅値が複素平面上で等間隔かつ格子状に並んだ状態である。送信信号の波形がこのような理想的な状態にある場合、前記参照信号として理想的な状態を考え、判定を実施する。即ち、使用するデジタル変調方式に応じて理想的な参照信号の状態を決定し、この参照信号に基づく判定が実施される。図13(a)~(c)に理想的な前記QAM信号の複素振幅点の配置(コンスタレーション)を示す。なお、図13(a)は、4QAM(QPSK)の場合、図13(b)は、16QAMの場合、図13(c)は、64QAMの場合である。
 しかしながら、変調器を含む信号発生器に不具合がある場合など、何らかの理由で前記QAM信号が理想的でない場合、前記QAM信号の前記コンスタレーションに歪みが発生する。図14(a)~(c)に歪みが生じた前記16QAM信号の前記コンスタレーションの例を示す。なお、図14(a)は、同相成分と比較して直交成分の振幅が小さくなる誤差を有する場合、図14(b)は、同相成分と直交成分のなす角が90度からずれる誤差を有する場合、図14(c)は、図14(a)及び図14(b)に示す誤差を双方とも有する場合である。
 送信側でこのような歪みが発生している状況において、受信側で前記判定指向型のアルゴリズムに基づく前記等化処理及び前記位相補正量算出処理を実施する際、判定のための参照信号として、図13(a)~(c)に示す理想的な状態の前記コンスタレーションを用いると、前記受信信号に含まれる雑音電力が低い場合であっても判定誤りが頻繁に発生し、前記適応等化器及び前記位相補正量算出手段の処理動作が不安定になって、信号品質が劣化するという問題がある。
A. J. Viterbi et al., "Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission," IEEE Trans. Inf. Theory, Vol. IT-29, No. 4, pp. 543-551, (1983). Y. R. Shayan et al., "All digital phase-locked loop: concepts, design and applications," IEE Proceedings, Vol. 136, Pt. F (Radar and Signal Processing), No. 1, pp. 53-56 (1989). T. Pfau et al., "Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations," J. Lightwave Technol., Vol.27, No.8, pp.989-999 (2009).
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、高シンボルレートの光通信に適用でき、かつ、QAM信号等の多値化信号に対しても高精度に搬送波再生が可能な受信信号処理装置及び受信信号処理方法を提供することを目的とする。
 また、本発明は、副次的に、送信信号が歪みを有する場合でも、判定指向型の適応等化器や搬送波再生手段を正常に動作させ、信号品質を低下させずに受信可能な受信信号処理装置、通信システム及び受信信号処理方法を提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 変調された受信信号のシンボルを一定数ごとに分離してブロック化させた1つの分離シンボル群に対する位相補償を1回の処理として、前記分離シンボル群の数に応じて複数回連続して行う受信信号処理装置であり、ブロック内に一定時間間隔で入力される前記シンボルを一定数ごとに時間分離させて前記分離シンボル群を取得し、前記分離シンボル群を構成する各分離シンボルごとに出力する分離出力部と、前記各分離シンボルの時間に対する位相変化に基づき決定される1つのブロック内周波数及び前記各分離シンボルの各位相の時間中心値として決定される1つのブロック内中心位相の前回処理値から、これらの今回処理値を推定した事前推定値として、ブロック内事前推定周波数及びブロック内事前推定中心位相を取得する事前推定値取得部と、前記事前推定値から前記各分離シンボルの事前推定位相を算出し、前記事前推定位相に基づいて前記各分離シンボルの位相を仮補償する仮補償部と、前記位相が仮補償された前記各分離シンボルを判定前シンボルとし、前記判定前シンボルに対して、前記受信信号の変調方式に応じて設定される参照信号に基づく判定を行い、前記参照信号の参照点に一致させた判定後シンボルを取得する判定部と、前記判定前シンボル及び前記判定後シンボルに基づいて決定される、前記ブロック内周波数の観測値と前記ブロック内事前推定周波数との周波数誤差を算出するとともに、前記判定前シンボル及び前記判定後シンボルに基づいて決定される、前記ブロック内中心位相の観測値と前記ブロック内事前推定中心位相との位相誤差を算出する誤差観測部と、前記周波数誤差及び前記位相誤差に基づいて前記事前推定値を修正し、前記ブロック内周波数及び前記ブロック内中心位相の最も確からしい今回処理値を推定した事後推定値として、ブロック内事後推定周波数及びブロック内事後推定中心位相を取得する事後推定値取得部と、前記事後推定値から前記各分離シンボルの事後推定位相を算出し、前記事後推定位相に基づいて前記各分離シンボルの位相を本補償する本補償部と、前記事前推定値取得部が、前記事後推定値を前記ブロック内周波数及び前記ブロック内中心位相の前回処理値として、次回の前記位相補償における前記分離シンボル群に対する前記事前推定値を取得するよう、フィードバック処理を行うフィードバック処理部と、を有する搬送波再生部を備えることを特徴とする受信信号処理装置。
 <2> 分離出力部で取得される分離シンボル群のシンボル数が、2~1,024である前記<1>に記載の受信信号処理装置。
 <3> 誤差観測部が最尤推定により周波数誤差及び位相誤差を算出する前記<1>から<2>のいずれかに記載の受信信号処理装置。
 <4> 事後推定値取得部が、周波数誤差、位相誤差、事前推定値としての事前状態ベクトル及び利得を制御する事前誤差共分散行列の入力に基づき、前記事前推定値及び前記事前誤差共分散行列の値が修正された、事後推定値としての事後状態ベクトル及び事後誤差共分散行列を出力するカルマンフィルタで構成され、フィードバック処理部が、事前推定値取得部に前記事後推定値及び前記事後誤差共分散行列を入力することで、前記事前推定値取得部が前記カルマンフィルタに対し、これらを次回の前記位相補償における前記事前推定値及び前記事前誤差共分散行列として出力するよう、フィードバック処理を行う前記<1>から<3>のいずれかに記載の受信信号処理装置。
 <5> 変調された受信信号のシンボルを一定数ごとに分離してブロック化させた1つの分離シンボル群に対する位相補償を1回の処理として、前記分離シンボル群の数に応じて複数回連続して行う受信信号処理方法であり、ブロック内に一定時間間隔で入力される前記シンボルを一定数ごとに時間分離させて前記分離シンボル群を取得し、前記分離シンボル群を構成する各分離シンボルごとに出力する分離出力ステップと、前記各分離シンボルの時間に対する位相変化に基づき決定される1つのブロック内周波数及び前記各分離シンボルの各位相の時間中心値として決定される1つのブロック内中心位相の前回処理値から、これらの今回処理値を推定した事前推定値として、ブロック内事前推定周波数及びブロック内事前推定中心位相を取得する事前推定値取得ステップと、前記事前推定値から前記各分離シンボルの事前推定位相を算出し、前記事前推定位相に基づいて前記各分離シンボルの位相を仮補償する仮補償ステップと、前記位相が仮補償された前記各分離シンボルを判定前シンボルとし、前記判定前シンボルに対して、前記受信信号の変調方式に応じて設定される参照信号に基づく判定を行い、前記参照信号の参照点に一致させた判定後シンボルを取得する判定ステップと、前記判定前シンボル及び前記判定後シンボルに基づいて決定される、前記ブロック内周波数の観測値と前記ブロック内事前推定周波数との周波数誤差を算出するとともに、前記判定前シンボル及び前記判定後シンボルに基づいて決定される、前記ブロック内中心位相の観測値と前記ブロック内事前推定中心位相との位相誤差を算出する誤差観測ステップと、前記周波数誤差及び前記位相誤差に基づいて前記事前推定値を修正し、前記ブロック内周波数及び前記ブロック内中心位相の最も確からしい今回処理値を推定した事後推定値として、ブロック内事後推定周波数及びブロック内事後推定中心位相を取得する事後推定値取得ステップと、前記事後推定値から前記各分離シンボルの事後推定位相を算出し、前記事後推定位相に基づいて前記各分離シンボルの位相を本補償する本補償ステップと、前記事前推定値取得ステップが、前記事後推定値を前記ブロック内周波数及び前記ブロック内中心位相の前回処理値として、次回の前記位相補償における前記分離シンボル群に対する前記事前推定値を取得するよう、フィードバック処理を行うフィードバック処理ステップと、を有することを特徴とする受信信号処理方法。
 <6> 分離出力ステップで取得される分離シンボル群のシンボル数が、2~1,024である前記<5>に記載の受信信号処理方法。
 <7> 誤差観測ステップが最尤推定により周波数誤差及び位相誤差を算出する前記<5>から<6>のいずれかに記載の受信信号処理方法。
 <8> 事後推定値取得ステップが、周波数誤差、位相誤差、事前推定値としての事前状態ベクトル及び利得を制御する事前誤差共分散行列の入力に基づき、前記事前推定値及び前記事前誤差共分散行列の値が修正された、事後推定値としての事後状態ベクトル及び事後誤差共分散行列を出力するカルマンフィルタで実行され、フィードバック処理ステップが、事前推定値取得ステップの実行部に前記事後推定値及び前記事後誤差共分散行列を供給することで、前記事前推定値取得ステップが前記カルマンフィルタに対し、これらを次回の前記位相補償における前記事前推定値及び前記事前誤差共分散行列として供給するよう、フィードバック処理を行う前記<5>から<7>のいずれかに記載の受信信号処理方法。
 <9> 更に、搬送波再生部から出力される、デジタル変調された受信信号の1つの受信シンボルに対して、前記デジタル変調の変調方式により決定される参照信号を構成する複数の参照点から、複素平面上でのユークリッド距離が最も短い参照点を判定する判定器と、下記式〔1〕に基づき、判定された前記参照点の位置を前記受信シンボルの位置に近づくように補正し、前記判定器で用いられる前記参照信号の前記参照点を補正後の前記参照点に更新させる参照信号更新手段と、を有する本判定部を備える前記<1>から<4>のいずれかに記載の受信信号処理装置。
Figure JPOXMLDOC01-appb-M000003
 ただし、前記式〔1〕中、nは、前記参照点に対する更新の回数を示し、rは、n回目に更新された前記参照点の複素平面上での位置を表す2次元ベクトルを示し、xは、n回目の更新時における前記受信シンボルの前記複素平面上での位置を表す2次元ベクトルを示し、μは、10-10以上0.1以下の微小な数値を示し、rn+1は、補正後における前記参照点の前記複素平面上での位置を表す2次元ベクトルを示す。
 <10> 受信信号と、前記受信信号に対する、参照信号更新手段により更新された参照信号に基づく判定器の判定結果としての判定信号との位相差を制御信号として、搬送波周波数と局所発振周波数の周波数差の揺らぎに起因して発生する、前記受信信号の位相変化に応じた位相補正量を算出する位相補正量算出手段を有する前記<9>に記載の受信信号処理装置。
 <11> タップ係数に応じて雑音成分がフィルタリングされた受信信号と、前記受信信号に対する、参照信号更新手段により更新された参照信号に基づく判定器の判定結果としての判定信号との差を誤差信号とし、前記誤差信号の大きさが最小となるように前記タップ係数を制御して後続受信信号の等化処理を行う適応等化器を有する前記<9>から<10>に記載の受信信号処理装置。
 <12> 適応等化器が、偏波多重された受信信号の偏波分離処理を実施する偏波分離処理手段を有する前記<11>に記載の受信信号処理装置。
 <13> 前記<9>から<12>のいずれかに記載の受信信号処理装置を有する受信部と、前記受信部に送信信号を送信する送信部と、前記送信部から送信される前記送信信号を前記受信部に伝送する伝送路と、を有し、前記送信部が、前記受信部が受信する受信信号と参照信号更新手段により更新された参照信号に基づく判定器の判定結果としての判定信号との差に基づく情報を前記送信信号の歪みとして前記歪みのない状態にフィードバック処理されることを特徴とする通信システム。
 <14> 更に、位相が本補償された、デジタル変調された受信信号の1つの受信シンボルに対して、前記デジタル変調の変調方式により決定される参照信号を構成する複数の参照点から、複素平面上でのユークリッド距離が最も短い参照点を判定する本判定工程と、下記式〔1〕に基づき、判定された前記参照点の位置を前記受信シンボルの位置に近づくように補正し、前記本判定工程で用いられる前記参照信号の前記参照点を補正後の前記参照点に更新させる参照信号更新工程と、を含む前記<5>から<8>のいずれかに記載の受信信号処理方法。
Figure JPOXMLDOC01-appb-M000004
 ただし、前記式〔1〕中、nは、前記参照点に対する更新の回数を示し、rは、n回目に更新された前記参照点の複素平面上での位置を表す2次元ベクトルを示し、xは、n回目の更新時における前記受信シンボルの前記複素平面上での位置を表す2次元ベクトルを示し、μは、10-10以上0.1以下の微小な数値を示し、rn+1は、補正後における前記参照点の前記複素平面上での位置を表す2次元ベクトルを示す。
 <15> 受信信号と、前記受信信号に対する、参照信号更新工程により更新された参照信号に基づく本判定工程の判定結果としての判定信号との位相差を制御信号として、搬送波周波数と局所発振周波数の周波数差の揺らぎに起因して発生する、前記受信信号の位相変化に応じた位相補正量を算出する位相補正量算出工程を含む前記<14>に記載の受信信号処理方法。
 <16> タップ係数に応じて雑音成分がフィルタリングされた受信信号と、前記受信信号に対する、参照信号更新工程により更新された参照信号に基づく本判定工程の判定結果としての判定信号との差を誤差信号とし、前記誤差信号の大きさが最小となるように前記タップ係数を制御して後続受信信号の等化処理を行う適応等化工程を含む前記<14>から<15>のいずれかに記載の受信信号処理方法。
 <17> 適応等化工程が、偏波多重された受信信号の偏波分離処理を実施する偏波分離処理工程を含む前記<16>に記載の受信信号処理方法。
 本発明によれば、従来技術における前記諸問題を解決することができ、高シンボルレートの光通信に適用でき、かつ、QAM信号等の多値化信号に対しても高精度に搬送波再生が可能な受信信号処理装置及び受信信号処理方法を提供することができる。
 また、本発明によれば、副次的に、送信信号が歪みを有する場合でも、判定指向型の適応等化器や位相補正量算出手段を正常に動作させ、信号品質を低下させずに受信可能な受信信号処理装置、通信システム及び受信信号処理方法を提供することができる。
本発明の一実施形態に係る受信信号処理装置の回路構成を説明する説明図である。 ブロック化された分離シンボル群の搬送波位相と、ブロック内周波数及びブロック内中心位相との関係を示す説明図である。 実験に用いた通信系を説明する説明図である。 ビットエラーレート(BER)の測定結果を示す図である。 Qファクターの測定結果を示す図である。 Qファクターのブロックサイズ依存性を示す図である。 ブロックサイズNが2のときのコンスタレーションを示す図である。 ブロックサイズNが16のときのコンスタレーションを示す図である。 ブロックサイズNが128のときのコンスタレーションを示す図である。 光信号対雑音比(OSNR)が15dBのときの搬送波周波数オフセット測定結果に対するビットエラーレート(BER)の測定結果を示す図である。 光信号対雑音比(OSNR)が15dB,37dBのときの搬送波周波数オフセット測定結果に対するQファクターの測定結果を示す図である。 ビットエラーレート(BER)の測定結果を示す図である。 Qファクターの測定結果を示す図である。 Qファクターのブロックサイズ依存性を示す図である。 ブロックサイズNが2のときのコンスタレーションを示す図である。 ブロックサイズNが16のときのコンスタレーションを示す図である。 ブロックサイズNが64のときのコンスタレーションを示す図である。 光信号対雑音比(OSNR)が37dB,23dBのときの搬送波周波数オフセット測定結果に対するビットエラーレート(BER)の測定結果を示す。 光信号対雑音比(OSNR)が23dB,37dBのときの搬送波周波数オフセット測定結果に対するQファクターの測定結果を示す。 ブロックサイズNを16としたときの、Back-to-back及び伝送後信号のBER測定結果を示す。 4QAM(QPSK)の場合の理想的なコンスタレーションを示す図である。 16QAMの場合の理想的なコンスタレーションを示す図である。 64QAMの場合の理想的なコンスタレーションを示す図である。 同相成分と比較して直交成分の振幅が小さくなる誤差を有する場合の16QAM信号のコンスタレーションの例を示す図である。 同相成分と直交成分のなす角が90度からずれる誤差を有する場合の16QAM信号のコンスタレーションの例を示す図である。 図14(a)及び図14(b)に示す誤差を双方とも有する場合の16QAM信号のコンスタレーションの例を示す図である。 DPLLの構成例を示す回路図である。 DPLL、位相補正手段(e-j(・)演算部)、及びAEQを有して構成される受信信号処理装置の構成例を示す回路図である。 参照信号の補正状況を模式的に説明する説明図である。 参照信号内の参照点が補正される状況を模式的に説明する説明図である。 受信信号処理装置の構成例を示す回路図である。 受信信号処理装置で処理可能な他の信号のコンスタレーションを示す図である。 適応等化器(AEQ)と、搬送波再生部とを有して構成される受信信号処理装置の構成例を示す回路図である。 搬送波再生部と、本判定部とを有して構成される受信信号処理装置の構成例を示す回路図である。 適応等化器(AEQ)と、搬送波再生部と、本判定部とを有して構成される受信信号処理装置の構成例を示す回路図である。 実験に用いた通信系を説明する説明図である。 参考例に係る受信信号処理装置のBER測定結果を示す図である。 参考例に係る受信信号処理装置のEVM測定結果を示す図である。 参考例に係る受信信号処理装置で、理想的な波形のSP-16QAM信号を復調した場合のコンスタレーション波形を示す図である。 参考例に係る受信信号処理装置で、歪みを有するSP-16QAM信号を復調した場合のコンスタレーション波形を示す図である。 参考例に係る受信信号処理装置で、歪みを有するDP-16QAM信号を復調した場合のコンスタレーション波形を示す図である。 実施例に係る受信信号処理装置のBER測定結果を示す図である。 実施例に係る受信信号処理装置のEVM測定結果を示す図である。 実施例に係る受信信号処理装置で、理想的な波形のSP-16QAM信号を復調した場合のコンスタレーション波形を示す図である。 実施例に係る受信信号処理装置で、歪みを有するSP-16QAM信号を復調した場合のコンスタレーション波形を示す図である。 実施例に係る受信信号処理装置で、歪みを有するDP-16QAM信号を復調した場合のコンスタレーション波形を示す図である。 直交位相誤差が0度の場合において、同相成分に対する直交成分の振幅減少率を0%から45%まで変化させた各DP-16QAM信号をそれぞれ復調したときのEVM測定結果を示す図である。 直交位相誤差が5度の場合において、同相成分に対する直交成分の振幅減少率を0%から45%まで変化させた各DP-16QAM信号をそれぞれ復調したときのEVM測定結果を示す図である。 直交位相誤差が10度の場合において、同相成分に対する直交成分の振幅減少率を0%から45%まで変化させた各DP-16QAM信号をそれぞれ復調したときのEVM測定結果を示す図である。 直交位相誤差が15度の場合において、同相成分に対する直交成分の振幅減少率を0%から40%まで変化させた各DP-16QAM信号をそれぞれ復調したときのEVM測定結果を示す図である。 直交位相誤差が20度の場合において、同相成分に対する直交成分の振幅減少率を0%から40%まで変化させた各DP-16QAM信号をそれぞれ復調したときのEVM測定結果を示す図である。 直交位相誤差が25度の場合において、同相成分に対する直交成分の振幅減少率を0%から15%まで変化させた各DP-16QAM信号をそれぞれ復調したときのEVM測定結果を示す図である。 参照信号の補正を行わない場合に、同相成分に対する直交成分の振幅減少率を0%から45%に変化させるとともに、直交位相誤差を0度から25度まで変化させた各DP-16QAM信号をそれぞれ復調したときのEVM測定結果をまとめて示す図である。
(受信信号処理装置)
 本発明の受信信号処理装置は、変調された受信信号のシンボルを一定数ごとに分離してブロック化させた1つの分離シンボル群に対する位相補償を1回の処理として、前記分離シンボル群の数に応じて複数回連続して行う受信信号処理装置であり、分離出力部、事前推定値取得部、仮補償部、判定部、誤差観測部、事後推定値取得部、本補償部、及びフィードバック処理部を有する搬送波再生部を備える。
 以下では、前記受信信号処理装置の各部の構成及び信号処理を、図面を参照しつつ説明する。
<基本構成>
 図1に、本発明の一実施形態に係る受信信号処理装置の回路構成を示す。該図1に示すように、受信信号処理装置(搬送波再生部)100は、分離出力部1と、事前推定値取得部2と、前記仮補償部としての事前推定位相算出部3及び乗算器4,4,…,4と、判定部5,5,…,5と、誤差観測部6と、事後推定値取得部7と、前記本補償部としての事後推定位相算出部8及び乗算器9,9,…,9と、フィードバック処理部10とで構成される。
 受信信号処理装置100では、入力される受信信号の変調方式は既知であり、前記受信信号を構成するシンボルに対して、どのシンボルが送信されたかを判定することができるものとする。
 また、受信信号処理装置100では、入力される前記受信信号に対して、時間的に連続したN個のシンボルE,E,...,Eをブロック化させて、まとめて一つの分離シンボル群とする。前記分離シンボル群の搬送波周波数及び位相を一括して求めて搬送波再生を行い、最終的に得られた信号s,s,...,sを出力する。これを連続して入力される前記分離シンボル群の数に応じて複数回繰返して処理する。
 k回目に入力される前記分離シンボル群に対する信号処理において、推定すべきパラメータは、前記分離シンボル群を構成する各分離シンボルE,E,...,Eの時間変化に対する位相変化に基づき決定される1つのブロック内周波数ω及び各分離シンボルE,E,...,Eの各位相の時間中心値として決定されるブロック内中心位相θの2つである。なお、kは、1つの前記分離シンボル群に対する前記位相補償の処理回数を示し、任意の整数を表す。
 図2に、ブロック化された前記分離シンボル群の搬送波位相と、前記ブロック内周波数及び前記ブロック内中心位相との関係を示す。該図2において、各点は、搬送波位相φを表しており、搬送波周波数オフセットにしたがって時間変化する様子を表している。破線は、ブロック化された前記分離シンボル群を構成する各分離シンボルの位相を最もよく近似する直線であって、その傾きがブロック内周波数ωである。また、点線は、前記分離シンボル群におけるブロック内中心位相θである。
 光通信の場合、シンボルレートが数十GHzであるのに対して、信号源及び局所発振器に使用されるレーザーの周波数揺らぎの量は、短期的(数十シンボルに相当する時間、ナノ秒オーダー)には通常1MHz以下(例えば100kHz以下)であるから、数十の分離シンボルから構成されるブロック内においては、ブロック内周波数ωがほぼ一定であり、更に搬送波位相φの値は、時間に対してほぼ線形に変化するとみなしてよい。
 そこで、ブロック内周波数ω及びブロック内中心位相θの2つが判明すれば、線形予測により、ブロック化された前記分離シンボル群の全てのシンボルの位相φが高精度に推定できる。
 具体的には、n=1,2,…,Nとして、下記計算式(1)から位相φk,nを求めることができる。
Figure JPOXMLDOC01-appb-M000005
 ブロック内周波数ω及びブロック内中心位相θの2つを精度よく推定する方法について述べる。大まかな手順としては、最初に、前回(k-1回目)の処理で得られたブロック内周波数及びブロック内中心位相の推定結果(ωk-1、θk-1)から今回(k回目)の処理における事前推定値(ω 、θ )を得る。次に、今回(k回目)の前記分離シンボル群ついての観測を実施し、観測値(ω 、θ )と事前推定値(ω 、θ )との誤差(εω、εθ)を測定する。得られた誤差情報に適当な重みをかけて事前推定値(ω 、θ )を修正し、最適な事後推定値(ω、θ)を得る。ここで得られた事後推定値(ω、θ)は、フィードバック処理が実施され、次回(k+1回目)の処理における事前推定値(ωk+1 、θk+1 )を得るために用いられる。以上の手順を前記分離シンボル群の数ごと、即ち、処理回数ごとに繰返して行う。
 以下では、以上に説明した基本構成をもとに、再び図1を参照しつつ、より具体的な説明を行う。
<分離出力部>
 分離出力部1は、ブロック内に一定時間間隔で入力される前記シンボルを一定数ごとに時間分離させて分離シンボルE,E,...,Eで構成される前記分離シンボル群を取得し、前記分離シンボル群を各分離シンボルE,E,...,Eごとに出力する。
 このような分離出力部1としては、特に制限はなく、例えば、公知のシリアル・パラレル変換器を用いて構成することができる。
 また、分離出力部1で取得される前記分離シンボル群のシンボル数(ブロックサイズ)Nの値としては、特に制限はないが、2~1,024が好ましい。このようなシンボル数の範囲内であれば、既存の推定方法により、観測値(ω 、θ )と事前推定値(ω θ )との誤差(εω、εθ)を観測することができるとともに、高シンボルレートの前記受信信号に対する搬送波再生を現実的なデジタルシグナルプロセッサ(DSP)によって実施することができる。
<事前推定値取得部>
 事前推定値取得部2は、分離シンボルE,E,...,Eの前記ブロック内周波数及びブロック内中心位相の前回処理値(ωk-1、θk-1)から、これらの今回処理値を推定した事前推定値として、ブロック内事前推定周波数ω 及びブロック内事前推定中心位相θ を取得する。
 前記事前推定値として、具体的なブロック内事前推定周波数ω 及びブロック内事前推定中心位相θ の取得手順としては、搬送波周波数オフセット値の変化の速さがシンボルレートと比較して相当遅いことがわかっているため、ブロック内周波数ωは、ブロックごとにほとんど変化しないと仮定して、ブロック内事前推定周波数ω 及びブロック内事前推定中心位相θ を、それぞれ、下記式(2)、(3)に基づき、推定する。
 なお、前回処理値(ωk-1、θk-1)の算出については、後述の記載で説明する。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
<仮補償部>
 前記仮補償部は、事前推定位相算出部3及び乗算器4,4,・・・,4で構成される。
 事前推定位相算出部3では、前記事前推定値としてのブロック内事前推定周波数ω 及びブロック内事前推定中心位相θ から、前記式(1)に基づき、各分離シンボルE,E,...,Eの事前推定位相φ を算出する。
 乗算器4,4,・・・,4では、事前推定位相φ の入力に基づき、各分離シンボルE,E,...,Eに対して、exp(-iφ )を乗算し、各分離シンボルE,E,...,Eがそれぞれ持つ前述の位相変調成分exp[i2πft]に対する仮補償を行う。即ち、下記式(4)により、位相が仮補償されたシンボルs を取得する。
Figure JPOXMLDOC01-appb-M000008
<判定部>
 判定部5,5,…,5は、位相が仮補償されたシンボルs を判定前シンボルとし、この判定前シンボルs (図1中のs ,s ,・・・,s )に対して、前記受信信号の変調方式に応じて設定される参照信号(送信シンボルが取り得る全ての複素振幅値の組)に基づく判定を行い、前記参照信号の参照点のうち、複素平面上で受信信号(前記各分離シンボル)とのユークリッド距離が最も小さいものに一致させた判定後シンボルd (図1中のd ,d ,・・・,d )を取得する。なお、このような判定部5,5,…,5としては、特に制限はなく、任意の方法に基づく公知の判定器を用いて構成することができる。
<誤差観測部>
 誤差観測部6では、判定前シンボルs 及び判定後シンボルd に基づいて決定されるブロック内周波数の観測値ω とブロック内事前推定周波数ω との周波数誤差εωを算出するとともに、ブロック内中心位相の観測値θ とブロック内事前推定中心位相θ との位相誤差εθを算出する。
 周波数誤差εω及び位相誤差εθの算出手順としては、特に制限はなく、各分離シンボルE,E,...,Eの時間変化に対する位相変化の平均値及び各分離シンボルE,E,...,Eの各位相の時間中心値の平均値を観測値として算出してもよいが、高精度に誤差の推定を行う観点から、下記参考文献1に記載される最尤位相推定(Maximum-Likelihood Phase Estimation)にしたがって算出することが好ましい。
 参考文献1;J. G. Proakis et al., “Digital Communications,”2008, 5th ed., McGraw Hill.
 前記最尤位相推定では、位相誤差εθが下記式(5)により算出され、この位相誤差εθは、判定前シンボルs 及び判定後シンボルd に基づいて決定される、ブロック内中心位相の観測値(θ )とブロック内事前推定中心位相θ との差を表す。
Figure JPOXMLDOC01-appb-M000009
 また同様に、最尤周波数推定によって周波数誤差εωが下記式(6)により算出され、この周波数誤差εωは、判定前シンボルs 及び判定後シンボルd に基づいて決定される、ブロック内周波数の観測値(ω )とブロック内事前推定周波数ω との差を表す。
Figure JPOXMLDOC01-appb-M000010
 なお、前記式(6)の推定結果を得るにあたっては、尤度関数Λ(ω)を下記式(6)’により定義し、ωが微小であるという仮定の下で下記式(6)’中のexp(inω)を下記式(6)’’で近似し、dΛ/dωが0となるωを最尤推定値εωとして扱うこととする。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
<事後推定値取得部>
 事後推定値取得部7は、周波数誤差εω及び位相誤差εθに基づいて、前記事前推定値(ω ,θ )を修正し、前記ブロック内周波数及び前記ブロック内中心位相の最も確からしい今回処理値を推定した事後推定値として、ブロック内事後推定周波数ω及びブロック内事後中心位相θを取得する。
 ブロック内事後推定周波数ω及びブロック内事後中心位相θを取得する方法としては、周波数誤差εω及び位相誤差εθに適当な重みをかけて前記事前推定値(ω ,θ )を修正する方法であれば、特に制限はないが、より精度の高い前記事後推定値を得る観点から、下記参考文献2~4に記載のカルマンフィルタを参照して構成されるカルマンフィルタにより取得することが好ましい。なお、下記参考文献3、4では、カルマンフィルタを用いて搬送波再生を行う方法が記載されているが、いずれもシンボルごとの処理に対して適用するものであり、ここでは、ブロック化された前記分離シンボル群を構成する複数の前記分離シンボルに対して適用する手段として、前記周波数誤差、前記位相誤差、前記事前推定値としての事前状態ベクトル及び利得を制御する事前誤差共分散行列の入力に基づき、前記事前推定値及び前記事前誤差共分散行列の値が修正された、前記事後推定値としての事後状態ベクトル及び事後誤差共分散行列を出力するカルマンフィルタを提案する。
 参考文献2;足立他、「カルマンフィルタの基礎」、2012、東京電機大学出版局
 参考文献3;W.-T. Lin et al., “Adaptive Carrier Synchronization Using Decision-Aided Kalman Filtering Algorithms,” IEEE Trans. Consumer Electron., Vol.53, No.4, pp.1260-1267 (2007).
 参考文献4;T. Marshall et al., “Kalman filter carrier and polarization-state tracking,” Opt. Lett., Vol.35, No.13, pp.2203-2205 (2010).
 先ず、前記カルマンフィルタを適用するうえで、モデルとして発展方程式及び観測方程式をそれぞれ下記式(7)及び(8)により定義する。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 なお、前記式(7)、(8)中のxは、k回目の処理における状態ベクトルであり、この値を推定することが前記カルマンフィルタの目的である。ここでは、xをブロック内中心位相θとブロック内周波数ωを用いて二行一列のベクトルとして下記式(9)により定義する。
Figure JPOXMLDOC01-appb-M000015
 ただし、前記式(9)中のTは、行列の転置を表す。
 また、前記式(7)中の線形発展行列Aを下記式(10)により定義する。
Figure JPOXMLDOC01-appb-M000016
 この式(10)の定義は、前述の前記事前推定値を前記式(2)、(3)によって計算することに相当する。
 また、前記式(7)中のB及びnは、システム雑音と呼ばれるパラメータを規定するもので、系の発展に対して本質的な揺らぎを与える雑音を記述する行列及びベクトルである。ここでは、レーザーの周波数は本質的に揺らいでいるためシステム雑音として考えるが、位相は周波数揺らぎに付随するものであるという立場からシステム雑音としては考えないこととし、B及びnをそれぞれ下記式(11)、(12)により定義する。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 ただし、前記式(12)中のnは、搬送波周波数揺らぎを表すランダム変数であり、平均値が零であり、分散値、即ち雑音電力がσ であるとする。
 前記式(8)のyは、観測値ベクトルであり、前記ブロック内中心位相の観測値θ と前記ブロック内周波数の観測値ω を用いて下記式(13)で定義される。
Figure JPOXMLDOC01-appb-M000019
 また、状態ベクトルxは、yとして直接観測可能であるとして、前記式(8)中のCは、二行二列の単位行列Iと定義する。また、前記式(8)中のnは、観測雑音ベクトルであり、下記式(14)により定義される。
Figure JPOXMLDOC01-appb-M000020
 ただし、前記式(14)中、nθ及びnωは、それぞれ観測値θ 、ω に対する雑音を表すランダム変数であり、平均値が零であり、分散値、即ち雑音電力がそれぞれσθ 及びσω であるとする。
 以上の定義から、最適な状態ベクトルxを以下の手順により推定する。
 先ず、状態ベクトルxの事前推定値x^ 及び事前誤差共分散行列P が、それぞれ下記式(15)、(16)により与えられる。
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
 ただし、前記式(15)中のx^k-1及び前記式(16)中のPk-1は、それぞれ前回の処理で得られた状態ベクトルの事後推定値及び事後誤差共分散行列である。
 また、前記式(16)に示すQは、システム雑音を表す行列であり、雑音電力σ を用いて下記式(17)により与えられる。
Figure JPOXMLDOC01-appb-M000023
 なお、雑音電力σ の値は、信号源及び局所発振器の光源であるレーザーの周波数揺らぎによって決定されるので、システムで使用されるレーザーを決定した時点で固定値を用いることとする。
 次に、カルマンゲインGは、下記式(18)により与えられる。
Figure JPOXMLDOC01-appb-M000024
 ただし、前記式(18)中、Rは、観測雑音を表す行列であり、観測値θ 、ω に対する位相及び周波数の観測雑音電力σθ 及びσω を用いて下記式(19)により与えられる。
Figure JPOXMLDOC01-appb-M000025
 なお、前記式(18)は、逆行列演算を含んでいるが、行列のサイズが2行2列であるので容易に計算できる。
 また、前記式(19)中の観測雑音電力σθ 及びσω の値は、入力される前記受信信号の品質に依存するので、繰返し処理の当初は、あらかじめ設定される初期値を用いる一方、ある程度処理回数を重ねた後は、繰返し処理を行う過程で得られた観測値誤差の統計量として得られた値を用い、行列Rの値を随時更新するものとする。
 これにより、受信中に前記受信信号の品質が変化したとしても、常に最適な推定結果を与えることが可能となる。この点は、前述のPLLを用いた搬送波再生(非特許文献2参照)と比較して大きな利点となる。つまり、前述のPLLを使用する場合は、受信信号の品質に合わせてループフィルタ帯域等のパラメータを最適化する必要が生じ、その方法が単純ではないことから、受信中に前記受信信号の品質が変化したとしても、それに適応させることは容易ではない。これに対し、前記カルマンフィルタを採用した場合、観測結果から最適な制御パラメータが自動的に得られる。
 状態ベクトルの事後推定値x^は、事前推定値x^ 、観測値ベクトルy、及びカルマンゲインGを用いて、下記式(20)により与えられる。
Figure JPOXMLDOC01-appb-M000026
 ここで、式(20)中の「y-x^ 」の項は、イノベーションと呼ばれる下記式(21)により与えられ、前記ブロック内中心位相及び前記ブロック内周波数に関しての観測値と事前推定値との差である。即ち、前記式(5)、(6)で与えられる位相誤差εθ及び周波数誤差εωを用いることができる。
Figure JPOXMLDOC01-appb-M000027
 最後に事後誤差共分散行列Pは、事前誤差共分散行列P 及びカルマンゲインGを用いて下記式(22)により与えられる。
Figure JPOXMLDOC01-appb-M000028
 以上により、事後推定値取得部7では、前記事後推定値としての状態ベクトルの事後推定値x^、即ち、ブロック内事後推定周波数ω及びブロック内事後推定中心位相θが出力可能とされ(前記式(9)等参照)、また、前記カルマンフィルタを用いる場合の構成として、事後誤差共分散行列Pが出力可能とされる(前記式(22)等参照)。
<本補償部>
 前記本補償部は、事後推定位相算出部8及び乗算器9,9,・・・,9で構成される。
 事後推定位相算出部8では、前記事後推定値としてのブロック内事後推定周波数ω及びブロック内事後推定中心位相θから、前記式(1)に基づき、各分離シンボルE,E,...,Eの事後推定位相φを算出する。
 乗算器9,9,・・・,9では、事後推定位相φの入力に基づき、各分離シンボルE,E,...,Eに対して、exp(-iφ)を乗算し、各分離シンボルE,E,...,Eがそれぞれ持つ前述の位相変調成分exp[i2πft]に対する補償を行う。
 このようにして、ブロック化された各分離シンボルE,E,...,Eの搬送波位相を一括して補償して再生することができる。また、引き続き、次の前記分離シンボル群に対する搬送波再生を実施し、処理を繰り返すことで全ての受信シンボルに対する搬送波再生が可能となる。
 なお、搬送波再生が実施された受信シンボルに対して、公知の復調処理(判定及び逆符号化)を行うことにより、前記受信信号を復調することができる。
<フィードバック処理部>
 フィードバック処理部10は、今回(k回目)得られた前記事後推定値(ω、θ)に基づき、事前推定値取得部2が、前記事後推定値(ω、θ)を前記ブロック内周波数及び前記ブロック内中心位相の前回処理値として、次回(k+1回目)の前記位相補償における前記分離シンボル群に対する前記事前推定値(ωk+1 、θk+1 )を取得するようにフィードバック処理を行う。
 なお、事後推定値取得部7が前記カルマンフィルタで構成される場合には、前記フィードバック処理に加えて、事前推定値取得部2に前記事後推定値及び前記事後誤差共分散行列(x^、P)を入力することで、事前推定値取得部2が、前記カルマンフィルタに対し、これらを次回の前記位相補償における前記事前推定値及び前記事前誤差共分散行列(x^k+1 、Pk+1 )として出力するよう、フィードバック処理を行う。
 なお、今回(k回目)の前記事後推定値(ω、θ)、前記事後推定値及び前記事後誤差共分散行列(x^、P)を取得する際に用いる前回(k-1回目)の処理値に関し、初回(k=1)については、(x^ 、P )に適当な初期値を入力して処理を行う。また、処理開始当初は、前記初期値の影響を受けるため、ある程度十分な回数の処理を経てから、実質的な処理の開始を行うことが好ましい。
 前述の通り、PLLのようにシンボルごとにフィードバック処理を行う場合、デジタルシグナルプロセッサ(DSP)がシンボルレートと同じクロック周波数で動作する必要があるので、光通信のようにシンボルレートが数十GHzに及ぶ場合、搬送波再生を行うことが難しい。これに対し、受信信号処理装置100では、前記分離シンボル群のシンボル数(ブロックサイズ)をNとすると、フィードバックが発生する時間間隔は、原理的にシンボル間隔のN分の1とすることができることから、Nを数十以上の大きな値にすることで、デジタルシグナルプロセッサ(DSP)の所要クロック周波数を低くすることができ、シンボルレートが数十GHzの場合でも現実的なデジタルシグナルプロセッサ(DSP)で搬送波再生を実施することが可能となる。
 なお、図1に示す受信信号処理装置100は、本発明の一実施形態として説明したものであり、本発明の技術的思想は、この例に限られない。例えば、偏波多重信号光の偏波分離や波形整形を行う適応等化器と本発明の搬送波再生方法を組み合わせた形の処理を実施してもよい。また、受信信号処理装置100を含む本発明の受信信号処理装置の各部は、前述の構成により、各部の信号処理を実行するように回路化されたIC、LSI等の任意の集積回路を用いて構築することができる。
<受信信号処理装置(本判定部を備える構成例等)>
 本発明の受信信号処理装置は、更に、デジタル変調された受信信号の1つの受信シンボル(ここでは、前記搬送波再生部から出力される前記各分離シンボル)に対して、前記デジタル変調の変調方式により決定される参照信号を構成する複数の参照点から、複素平面上でのユークリッド距離が最も短い参照点を判定する判定器と、下記式〔1〕に基づき、判定された前記参照点の位置を前記受信シンボルの位置に近づくように補正し、前記判定器で用いられる前記参照信号の前記参照点を補正後の前記参照点に更新させる参照信号更新手段と、を有する本判定部を備えて構成することができる。
 このような参照信号更新手段により、前記参照信号の更新を任意の回数繰り返して行うことで、前記参照信号内の全ての前記参照点を前記受信シンボルが取り得る複素振幅値の期待値と一致させるように更新させることができ、送信信号が歪みを有する場合でも、判定指向型の各種信号処理手段を正常に動作させ、信号品質を低下させずに処理することができる。
Figure JPOXMLDOC01-appb-M000029
 ただし、前記式〔1〕中、nは、前記参照点に対する更新の回数を示し、rは、n回目に更新処理された前記参照点の複素平面上での位置を表す2次元ベクトルを示し、xは、n回目の更新時における前記受信シンボルの前記複素平面上での位置を表す2次元ベクトルを示し、μは、10-10以上0.1以下の微小な数値を示し、rn+1は、補正後における前記参照点の前記複素平面上での位置を表す2次元ベクトルを示す。
 前記判定器としては、特に制限はなく、公知の判定指向型の判定器における回路構成に基づいて、前記受信シンボルに対する判定を実行するように回路化されたIC、LSI等の集積回路を用いて構築することができる。
 また、前記参照信号更新手段の具体的な構成としては、特に制限はなく、前記参照信号の前記参照点の補正を実行するように回路化されたIC、LSI等の集積回路を用いて構築することができる。
 前記受信信号処理装置の前記本判定部としては、前記受信信号と、前記受信信号に対する、前記参照信号更新手段により更新された前記参照信号に基づく前記判定器の判定結果としての判定信号との位相差を制御信号として、搬送波周波数と局所発振周波数の周波数差の揺らぎに起因して発生する、前記受信信号の位相変化に応じた位相補正量を算出する位相補正量算出手段を有することが好ましい。このような位相補正量算出手段を有することで、前記制御信号に基づく、前記搬送波再生を行うことが可能となる。
 また、前記受信信号処理装置としては、有限インパルス応答(FIR)フィルタによって雑音成分がフィルタリングされた前記受信信号と、前記受信信号に対する、前記参照信号更新手段により更新された前記参照信号に基づく前記判定器の判定結果としての判定信号との差を誤差信号とし、前記誤差信号の大きさが最小となるように前記FIRフィルタのタップ係数が制御される適応等化器(アダプティブイコライザ;AEQ)を有することが好ましい。このような適応等化器を有することで、前記受信信号の品質を最大化させた等化処理(フィルタリング処理)を行うことができる。
 前記適応等化器としては、偏波多重された前記受信信号の偏波分離処理を実施する偏波分離処理手段を有することが好ましい。このような偏波分離手段を有することで、偏波多重された前記受信信号を対象とした前記等化処理を行うことができる。
 前記位相補正量算出手段及び前記適応等化器の具体的な構成としては、特に制限はなく、前者については、公知の判定指向型の位相補正量算出手段であるデジタルフェーズロックループ(DPLL)に任意の位相補正手段を組み合わせたものに対して、前記参照信号の補正及び更新を実行するよう回路化した構成、そして後者については、公知の判定指向型の適応等化器に対して、前記参照信号の補正及び更新を実行するよう回路化した構成が挙げられる。このような構成としては、前記参照信号更新手段及び前記判定器が組み込まれた状態で、前記参照信号更新手段により更新された前記参照信号に基づく前記判定器の判定結果としての前記判定信号に基づく前記位相補正量算出処理及び前記等化処理を実行するように回路化されたIC、LSI等の集積回路を用いて構築することができる。
 ここで、公知の判定指向型の前記位相補正量算出手段及び前記適応等化器の各回路構成例、及びこれらが実行する信号処理例を図15、図16を用いて説明するとともに、これらが有する問題点についても説明する。また、ここでは、図16に示す各回路構成を一つの受信信号処理装置と見立てて説明をする。なお、図15はDPLLの構成例を示す回路図である。また、図16は、DPLL、位相補正手段(e-j(・)演算部)、及びAEQを有して構成される受信信号処理装置の構成例を示す回路図である。
 図15に示すように、デジタルフェーズロックループ230は、位相誤差演算処理部231と、位相差算出部232と、ループフィルタ部233と、数値制御発振器234とで構成される。
 このデジタルフェーズロックループ230の信号処理手順を各部の信号処理とともに説明する。なお、デジタルフェーズロックループ230では、連続して入力される受信シンボル及び判定シンボルごとに位相補正量φを出力するための演算を繰り返し行っていて、以下では、j番目(ただしjは1以上の整数)に入力される受信シンボル及び判定シンボルに対する演算処理について説明するものとし、立ち上がり時であるj=1の場合を除き、1シンボル前のj-1番目の処理が完了していて、フィードバック信号が適宜供給されているものとする。また、図中のz-1は、1シンボル遅延を意味し、1シンボル前の処理で得られた値がフィードバックされて得られることを示す。
 位相誤差演算処理部231では、受信シンボルである入力sと、判定シンボルである入力dとの位相誤差θを算出する。この際、位相誤差θは、θ=Arg(s×d )として得られる。ここで、d は、判定後の受信シンボルの複素共役であり、Argは、複素数の複素平面上における位相角を与える関数を意味する。また、添え字jはj番目の入力シンボルに対して処理されて得られる値であることを意味している。
 位相差算出部232では、j番目の入力シンボルに対する位相誤差θと、j-1番目の入力シンボルに対して得られた、後述する位相補正量φj-1との差であるθ’を算出する。ただし、j=1の場合は、φ=0とする。
 ループフィルタ部233では、Damping factor ζ、Natural frequency ωと、シンボル時間間隔Ts、即ち、シンボルレートの逆数によって決定されるパラメータC及びCを用いて図中に示す演算を行い、θ’の高周波成分をカットする。
 数値制御発振器234では、θ’の高周波成分がカットされた後の値(ループフィルタ部233の出力)の入力に基づき、j-1番目の入力シンボルに対して得られた位相補正量φj-1との和をとり、j番目の入力シンボルに対して得られた位相補正量φとして、出力する。ただし、j=1の場合は、φ=0とする。
 以上の信号処理手順により、デジタルフェーズロックループ230では、次の入力シンボルに対する位相補正量φ(受信信号搬送波周波数と、前記局所発振器(LO)のランダムな周波数差に起因して発生する位相シフトを補正する値)を算出する。また、数値制御発振器234から出力される位相補正量φを位相差算出部232にフィードバックさせて、上記と同様に後続の入力sj+1、dj+1に対して演算処理を行い、位相補正量φj+1を算出する。
 デジタルフェーズロックループ230では、こうした信号処理をシンボルが入力されるごとに繰り返し行うことで、受信シンボルと判定シンボルの位相誤差で制御される判定指向型の位相補正量算出手段として、各受信シンボル間の位相変化を追尾する位相補正量φの出力が可能とされる。
 また、デジタルフェーズロックループ230を公知の位相補正手段(例えば、位相補正手段(e-j(・)演算部)235)と組み合わせることで、前記位相補正量に基づき、搬送波再生された復調信号を得ることができる。
 更に、デジタルフェーズロックループ230と位相補正手段を公知の適応等化器に組み込む(例えば、図16参照)ことで、適応等化が実施されたうえで、前記搬送波再生も実施された復調信号を得ることができる。
 なお、前記搬送波再生に用いられる回路構成としては、この例に限られず、本発明の受信信号処理装置は、前記受信シンボルに対する判定結果と前記受信シンボルとの関係を誤差信号として利用する、全ての搬送波再生回路の回路構成を適用することができ、例えば、非特許文献3に示される搬送波再生回路の回路構成とすることもできる。
 図16に示すように、適応等化器250は、h11,h12,h21,h22の各FIRフィルタ、判定器251、誤差信号算出部及びタップ係数制御部252とともに、各FIRフィルタのタップ係数を最適に制御する。この適応等化器250では、偏波多重された前記受信信号に対する偏波分離処理を実行するため、2×2バタフライ構成とされる。また、適応等化器250を構成するFIRフィルタは、例えば、9タップのT/2分数間隔FIRフィルタとされるが、この形態に制限されることなく、任意のタップ数のFIRフィルタを利用可能である。
 適応等化器250に入力される信号E及びEは、前記受信信号のX偏波成分及びY偏波成分の複素振幅値であるが、信号E及びEのそれぞれは、前記送信信号のX偏波成分及びY偏波成分と必ずしも一致していない。また、h11及びh21、並びに、h12及びh22の各FIRフィルタには、誤差信号算出部及びタップ係数制御部252によって決定されたタップ係数を表すベクトル(タップ係数ベクトル)が与えられ、各FIRフィルタの出力は、これらタップ係数ベクトルと、時系列の入力信号ベクトルとの内積(畳み込み演算)によって与えられる。
 本例では、適応等化器250と、判定指向型の位相補正量算出手段として、図15に示すデジタルフェーズロックループ(DPLL)230、位相補正手段235、及び判定を行う判定器251が組み込まれて受信信号処理装置が構成されている。
 適応等化器250から出力される信号は、図15で示すデジタルフェーズロックループ回路230(DPLL)から出力される位相補正量に応じて、位相補正手段235によって位相が補正(搬送波再生)され、判定器251に入力される。
 判定器251では、取り扱う前記受信信号のデジタル変調方式により決定される参照信号が規定されていて、受信シンボルs,sに対して、参照信号内のどの参照点が最も近いかを判定する。具体的には、複素平面上で、受信シンボルs,sとのユークリッド距離が最も小さい参照点を選び、選ばれた参照点をそれぞれ判定シンボルd,dとして出力する。
 判定器251により判定される前の受信シンボルs,s、及び判定された後の判定シンボルd,dは、適応等化器250の前記信号処理、及びデジタルフェーズロックループ回路30の前記信号処理を制御するのに用いられる。
 なお、デジタルフェーズロックループ(DPLL)230の出力が、適応等化器250内の誤差信号算出部及びタップ係数制御部252に入力されているが、これは判定前後の受信シンボルから誤差信号を計算する際、補正した搬送波位相を元の状態に戻したうえで、タップ係数の計算を実施しているためである。
 FIRフィルタのタップ係数制御部252では、誤差信号に基づいて二乗誤差の期待値を最小化するLeast Mean Square(LMS)アルゴリズムを用いた前記タップ係数の制御を行う。
 前記アルゴリズムを用いたタップ係数制御は、先ず、前記受信信号に関する事前情報に頼らないブラインドスタートアップ状態では、信号s,sが持つ絶対値振幅の一定値からの誤差を利用する、Constant Modulus Algorithm(CMA)を用いて行い、次に、前記タップ係数がある程度収束した後は、判定前後の複素振幅の差を誤差信号として利用する判定指向型(Decision-directed;DD)動作モードに移行して行う。
 このようにして、前記各FIRフィルタによって、偏波分離処理及び雑音のフィルタリングが実施された受信シンボルs,sと、判定シンボルd,dとの差を誤差信号とし、前記誤差信号の大きさが最小になるように前記各タップ係数を制御して、後続の受信シンボルに対する等化処理を行い、前記受信信号の品質を最大化させる。
 前記受信信号処理装置により復調される信号としては、判定器251より出力される判定シンボルd,dをそのまま復調された信号としてもよいし、前記等化処理後の信号s,sに対して、外部に別途設けられた判定器による判定を再度実施して得られる信号を復調された信号としてもよい。後者の場合、前記判定器251と、外部に別途設けられる判定器とは、それぞれ異なる判定ルールによる判定を実施してもよい。
 なお、入力信号が単一偏波信号で、Eだけの場合は、図16において、h21、h12、h22に関するFIRフィルタは使用せず、h11に関する回路の上半分のみで動作させればよい。
 ある送信信号(ここでは、16QAM信号を例とする)が、前記参照信号と同じく、図13(b)に示す理想的なコンスタレーション波形を有する場合、前記判定に問題は生じず、前記位相補正量算出手段及び前記適応等化器を正常に動作させることができる。
 ところが、前記送信信号が、図14(a)~(c)に示すような歪んだコンスタレーション波形を有する場合、理想的なコンスタレーションの前記参照信号を用いて判定を行うと、受信時の光信号対雑音比が高い状態であっても、多くの誤りを発生することになり、その結果、前記判定指向型動作モードにある前記位相補正量算出手段及び前記適応等化器が誤動作し、復調後の信号品質に信号劣化が発生することになる。
 そこで、本発明の前記受信信号処理装置の本判定部では、以下の信号処理により、前記送信信号が歪んでいる場合であっても、前記参照信号を補正することで前記位相補正量算出手段及び前記適応等化器を正常に動作させることとしている。なお、本明細書において、「本判定部」の用語は、受信信号処理装置における最終的な判定を行う判定器について、参照信号を補正する機能を備えた判定部の意味として用いる。したがって、受信信号処理装置内に唯一存在する判定器が、判定指向型の搬送波再生や適応等化を実施するための判定を行いかつそれが最終的な判定結果を与える場合、その判定器に参照信号を補正する機能を備えたものを「本判定部」と呼ぶことにし、一方で搬送波再生を実施するための判定器が仮に設置してあって、搬送波再生後の受信信号に対して改めて最終的な判定を実施する判定器を別に備える場合には、その最終判定を行う判定器に参照信号を補正する機能を備えたものを「本判定部」と呼ぶことにする。
 このような参照信号の補正状況を、図17(a)を用いて模式的に説明する。図17(a)は、前記参照信号の補正状況を模式的に説明する説明図である。
 該図17(a)において、十字の図形は、理想的な16QAM信号のコンスタレーション状態に基づき決定される前記参照信号を構成する各参照点の複素平面上での位置を示し、丸い円の図形は、受信信号の1つの受信シンボルが前記複素平面上で取り得る位置の範囲を示し、前記各受信シンボルのコンスタレーションは、総じて歪んだ状態である。
 前記参照信号の補正は、図中矢印で示すように、前記各参照点の位置を歪んだ状態の前記受信シンボルの期待される中心位置に更新することで行う。
 即ち、前記参照信号を構成する1つの参照点の位置を、前記複素平面上で1つの前記受信シンボルの期待される中心位置に近づくように補正し、前記参照信号の前記参照点を補正後の前記参照点に更新処理する。
 このとき、補正は、下記式〔1〕にしたがって行う。
Figure JPOXMLDOC01-appb-M000030
 ただし、前記式〔1〕中、nは、前記参照点に対する更新の回数を示し、rは、n回目に更新された前記参照点の前記複素平面上での位置を表す2次元ベクトルを示し、xは、n回目の更新時における前記受信シンボルの前記複素平面上での位置を表す2次元ベクトルを示し、μは、10-10以上0.1以下の微小な数値を示し、rn+1は、補正後における前記参照点の前記複素平面上での位置を表す2次元ベクトルを示す。
 こうした前記参照点が補正される状況を、図17(b)を用いて模式的に説明する。図17(b)は、前記参照信号の前記参照点が補正される状況を模式的に説明する説明図である。
 該図17(b)に示すように、参照点rn-1は、受信シンボルxn-1により参照点rに補正され、参照点rは、次の受信シンボルxにより参照点rn+1に補正され、参照点rn+1は、更に次の受信シンボルxn+1により参照点rn+2(図中には、参照点を示す十字記号のみ表示している)に補正される。この処理を繰り返すことで、参照点は、ある受信シンボルが取り得る位置の範囲の期待値としての中心点E[x](前記受信シンボルが取り得る複素振幅値の期待値)へと近づいていく。なお、前記シンボル位置の範囲(図中、円形で示す範囲)及びその期待値としての中心点E[x]は、複数の受信シンボルの各受信位置及びこれらの平均値からそれぞれ決定される。
 また、参照点rn-1から参照点r、参照点rから参照点rn+1への補正距離は、前記式〔1〕におけるμの値に依存し、10-10未満であると、収束が遅くなり、0.1を超えると、急速に収束するものの、不安定な動作の一因となる。
 以上の補正処理に基づく前記参照信号の前記参照点の更新を任意の回数繰り返して行うことで、前記参照信号内の全ての前記参照点を前記受信シンボルの歪みに合わせた形にすることができる。そのため、前記受信シンボルが送信側で生じた歪みを有する場合でも、歪みの影響を排除した判定を行うことができ、判定指向型の前記適応等化器や前記位相補正量算出手段を正常に動作させ、信号品質を低下させずに受信することができる。
 なお、どのタイミングで、いくつの受信シンボルに基づいて前記補正及び前記更新を行うかについては、特に制限はなく、目的に応じて適宜選択することができる。
 前記参照信号の補正及び更新を行う前記本判定部を、1つの前記受信信号処理装置に組み入れた場合の具体的な構成例を図18に示す。図18は、受信信号処理装置の構成例を示す回路図である。
 図18に示すように、受信信号処理装置200は、2×2バタフライ構成のFIRフィルタと、誤差信号算出部及びタップ係数制御部252からなる適応等化器250、判定器251、デジタルフェーズロックループ230、位相補正部235、を有する受信信号処理装置において、更に、参照信号更新部270が配された構成とされる。
 参照信号更新部270では、入力される受信シンボルs及び判定シンボルdに基づき、前記参照信号を構成する前記参照点のうち、判定シンボルdに一致する参照点rの位置を、複素平面上で前記式〔1〕により受信シンボルsを構成する1つの受信シンボルxの位置に近づくように補正し、補正された参照点rの前記複素平面上での位置情報を、判定器251で用いられる参照信号に対して逐次反映する更新処理を行う。これら参照信号更新部270での参照点rの補正と、参照点rの補正に伴う判定器251に対する参照点rの更新を、任意の回数繰り返して行うことで、前記参照信号内の全ての前記参照点を所望の形に更新していく。判定器251では、後続の受信シンボルsに対して、受信シンボルsの歪みに応じて更新された前記参照信号に基づき、前記複素平面上でのユークリッド距離が最も短い参照点rを判定し、その結果を判定シンボルdとして出力する。また、Y偏波成分の入力信号Eに基づく受信シンボルsに対しても受信信号sと同様に、歪みに応じて更新された前記参照信号に基づく判定を行い、その結果を判定シンボルdとして出力する。
 なお、参照信号更新部270の補正処理に基づいて判定器251の参照信号を更新する処理を実施し、更新された前記補正信号に基づいて判定器251から出力される判定信号により、前記搬送波再生を目的とする前記位相補正量算出処理、前記等化処理及び前記偏波分離処理を実施すること以外の事項については、公知の前記位相補正量算出処理、前記等化処理及び前記偏波分離処理の信号処理手順にしたがって前記受信信号の信号処理を行うことで、目的とする復調信号を得ることができる。なお、前記復調信号としては、判定シンボルd,dそのものであってもよいし、前記各信号処理が完了したシンボルs及びsを再度、受信信号処理装置200の外部に別途設けられた判定器に入力して得られる判定シンボルとしてもよい。後者の場合は、前記判定器251と、外部に別途設けられる判定器は異なる判定ルールによる判定を実施してもよい。
 前記受信信号処理装置が適用可能な前記受信信号としては、特に制限はなく、複数の複素振幅値により多値化変調されたBPSK信号、QPSK信号、QAM信号が挙げられる。
 また、前記受信信号処理装置は、前記受信シンボルが取り得る期待位置の範囲が、理想的な波形のコンスタレーションの閾値を超えていない限り、図14(a)~(c)に示したコンスタレーション波形以外の波形歪みを有する信号に対しても適用することができ、例えば、図19に示すようなコンスタレーションを有する信号に対しても、適用することができる。なお、図19は、前記受信信号処理装置で処理可能な他の信号のコンスタレーションを示す図である。
 以上の説明をもとに、本発明の前記受信信号処理装置のより具体的な実施形態について説明をする。
 このような実施形態としては、先ず、図20に示すような、前記適応等化器(AEQ)と、前記搬送波再生部とを有して構成される受信信号処理装置が挙げられる。なお、図20は、適応等化器(AEQ)と、搬送波再生部とを有して構成される受信信号処理装置の構成例を示す回路図である。
 該図20に示すように、受信信号処理装置300は、図16に示す受信信号処理装置において、DPLL230に代え、図1に示す受信信号処理装置を構成する搬送波再生部100の回路構成を適用した例に係る。
 こうした受信信号処理装置300によれば、DPLL230に代えて、搬送波再生部100を用いるため、高シンボルレートの光通信に適用でき、かつ、QAM信号等の多値化信号に対して高精度に搬送波再生が可能とされ、更に、適応等化器250により、受信信号と判定器251から出力される判定信号との差が最少となるようにタップ係数を制御することができる。
 次に、図21に示すような、前記搬送波再生部と前記本判定部を有して構成される受信信号処理装置が挙げられる。なお、図21は、搬送波再生部と本判定部とを有して構成される受信信号処理装置の構成例を示す回路図である。
 該図21に示すように、この受信信号処理装置310は、図1に示す受信信号処理装置を構成する搬送波再生部100と、図18に示す判定器251と参照信号更新部270とを有する前記本判定部とで構成される。
 こうした受信信号処理装置310によれば、受信信号処理装置300と同様に、高精度に搬送波再生が可能となることに加え、参照信号更新部270により判定器251で用いられる前記参照信号の前記参照点を補正するとともに、その補正結果を搬送波再生部100における判定部5,5,・・・5に対してフィードバック処理させて次回の判定に適用することで、前記受信シンボルが送信側で生じた歪みを有する場合でも、歪みの影響を排除した判定を行うことができる。
 また、図22に示すような、前記適応等化器(AEQ)と前記搬送波再生部と前記本判定部を有して構成される受信信号処理装置が挙げられる。なお、図22は、適応等化器(AEQ)と搬送波再生部と本判定部とを有して構成される受信信号処理装置の構成例を示す回路図である。
 該図22に示すように、この受信信号処理装置320は、図16に示す適応等化器250と、図1に示す受信信号処理装置を構成する搬送波再生部100と、図18に示す判定器251と参照信号更新部270とを有する前記本判定部と、を有して構成される。
 こうした受信信号処理装置320によれば、受信信号処理装置300と同様に、高精度に搬送波再生が可能で、タップ係数を最適に制御することができ、更に、受信信号処理装置310と同様に、前記受信シンボルが送信側で生じた歪みを有する場合でも、歪みの影響を排除した判定を行うことができる。
(受信信号処理方法)
 本発明の受信信号処理方法は、変調された受信信号のシンボルを一定数ごとに分離してブロック化させた1つの分離シンボル群に対する位相補償を1回の処理として、前記分離シンボル群の数に応じて複数回連続して行う受信信号処理方法であり、分離出力ステップ、事前推定値取得ステップ、仮補償ステップ、判定ステップ、誤差観測ステップ、事後推定値取得ステップ、本補償ステップ、及びフィードバック処理ステップを含む。
 前記分離出力ステップは、ブロック内に一定時間間隔で入力される前記シンボルを一定数ごとに時間分離させて前記分離シンボル群を取得し、前記分離シンボル群を構成する各分離シンボルごとに出力するステップである。
 前記分離出力ステップで取得される前記分離シンボル群のシンボル数としては、特に制限はないが、2~1,024が好ましい。
 前記事前推定値取得ステップは、前記各分離シンボルの時間に対する位相変化に基づき決定される1つのブロック内周波数及び前記各分離シンボルの各位相の時間中心として決定される1つのブロック内中心位相の前回処理値から、これらの今回処理値を推定した事前推定値として、ブロック内事前推定周波数及びブロック内事前推定中心位相を取得するステップである。
 また、仮補償ステップは、前記事前推定値から前記各分離シンボルの事前推定位相を算出し、前記事前推定位相に基づいて前記各分離シンボルの位相を仮補償するステップである。
 前記判定ステップは、前記位相が仮補償された前記各分離シンボルを判定前シンボルとし、前記判定前シンボルに対して、前記受信信号の変調方式に応じて設定される参照信号に基づく判定を行い、前記参照信号の参照点に一致させた判定後シンボルを取得するステップである。
 また、前記誤差観測ステップは、前記判定前シンボル及び前記判定後シンボルに基づいて決定される、前記ブロック内周波数の観測値と前記ブロック内事前推定周波数との周波数誤差を算出するとともに、前記判定前シンボル及び前記判定後シンボルに基づいて決定される、前記ブロック内中心位相の観測値と前記ブロック内事前推定中心位相との位相誤差を算出するステップである。
 前記誤差観測ステップとしては、特に制限はないが、最尤推定により前記周波数誤差及び前記位相誤差を算出することが好ましい。
 前記事後推定値取得ステップは、前記周波数誤差及び前記位相誤差に基づいて前記事前推定値を修正し、前記ブロック内周波数及び前記ブロック内中心位相の最も確からしい今回処理値を推定した事後推定値として、ブロック内事後推定周波数及びブロック内事後推定中心位相を取得するステップである。
 前記事後推定値取得ステップとしては、前記周波数誤差、前記位相誤差、前記事前推定値としての事前状態ベクトル及び利得を制御する事前誤差共分散行列の入力に基づき、前記事前推定値及び前記事前誤差共分散行列の値が修正された、前記事後推定値としての事後状態ベクトル及び事後誤差共分散行列を出力するカルマンフィルタで実行されることが好ましい。
 前記本補償ステップは、前記事後推定値から前記各分離シンボルの事後推定位相を算出し、前記事後推定位相に基づいて前記各分離シンボルの位相を本補償するステップである。
 また、前記フィードバック処理ステップは、前記事前推定値取得ステップが、前記事後推定値を前記ブロック内周波数及び前記ブロック内中心位相の前回処理値として、次回の前記位相補償における前記分離シンボル群に対する前記事前推定値を取得するよう、フィードバック処理を行うステップである。
 前記事後推定値取得ステップを前記カルマンフィルタにより実行する場合、前記フィードバック処理ステップとしては、前記事前推定値取得ステップの実行部に前記事後推定値及び前記事後誤差共分散行列を供給することで、前記事前推定値取得ステップが前記カルマンフィルタに対し、これらを次回の前記位相補償における前記事前推定値及び前記事前誤差共分散行列として供給するよう、フィードバック処理を行うことができる。
 なお、これら以外の事項については、前記受信信号処理装置で述べた事項を適用することができる。
 以上の前記受信信号処理方法によれば、高シンボルレートの光通信に適用でき、かつ、QAM信号等の多値化信号に対しても高精度に搬送波再生が可能となる。
<受信信号処理方法(本判定工程を含む構成例)>
 本発明の受信信号処理方法は、更に、デジタル変調された受信信号の1つの受信シンボル(ここでは、位相が本補償された前記各分離シンボル)に対して、前記デジタル変調の変調方式により決定される参照信号を構成する複数の参照点から、複素平面上でのユークリッド距離が最も短い参照点を判定する本判定工程と、下記式〔1〕に基づき、本判定された前記参照点の位置を前記受信シンボルの位置に近づくように補正し、前記本判定工程で用いられる前記参照信号の前記参照点を補正後の前記参照点に更新させる参照信号更新工程と、を含み、実施されることが好ましい。
 このような参照信号更新工程により、前記参照信号の更新を任意の回数繰り返して行うことで、前記参照信号内の全ての前記参照点を前記受信シンボルが取り得る複素振幅値の期待値と一致させるように更新させることができ、送信信号が歪みを有する場合でも、判定指向型の適応等化器や位相補正量算出手段を正常に動作させ、信号品質を低下させずに受信することができる。
 なお、本明細書において、「本判定工程」の用語は、受信信号処理方法における最終的な判定を行う判定ステップについて、参照信号を補正するステップを備えた判定工程の意味として用いる。したがって、受信信号処理方法内に唯一存在する判定ステップが、判定指向型の搬送波再生や適応等化を実施するための判定を行いかつそれが最終的な判定結果を与える場合、その判定器に参照信号を補正するステップを備えたものを「本判定工程」と呼ぶことにし、一方で搬送波再生を実施するための判定ステップが仮に実施されていて、搬送波再生後の受信信号に対して改めて最終的な判定を実施する判定ステップが別に実施される場合には、その最終判定を行う判定ステップに参照信号を補正するステップを備えたものを「本判定工程」と呼ぶことにする。
Figure JPOXMLDOC01-appb-M000031
 ただし、前記式〔1〕中、nは、前記参照点に対する更新の回数を示し、rは、n回目に更新された前記参照点の複素平面上での位置を表す2次元ベクトルを示し、xは、n回目の更新時における前記受信シンボルの前記複素平面上での位置を表す2次元ベクトルを示し、μは、10-10以上0.1以下の微小な数値を示し、rn+1は、補正後における前記参照点の前記複素平面上での位置を表す2次元ベクトルを示す。
 また、前記受信信号処理方法としては、前記受信信号と、前記受信信号に対する、前記参照信号更新工程により更新された前記参照信号に基づく前記本判定工程の判定結果としての判定信号との位相差を制御信号として、搬送波周波数と局所発振周波数の周波数差の揺らぎに起因して発生する、前記受信信号の位相変化に応じた位相補正量を算出する位相補正量算出工程を含むことが好ましい。このような位相補正量算出工程を有することで、前記制御信号に基づく、前記搬送波再生を行うことが可能となる。
 また、前記受信信号処理方法としては、FIRフィルタによって雑音成分がフィルタリングされた前記受信信号と、前記受信信号に対する、前記参照信号更新工程により更新された前記参照信号に基づく前記本判定工程の判定結果としての判定信号との差を誤差信号とし、前記誤差信号の大きさが最小となるように前記FIRフィルタのタップ係数が制御されて後続受信信号の等化処理を行う適応等化工程を含むことが好ましい。このような適応等化工程を有することで、前記受信信号の品質を最大化させた等化処理(フィルタリング処理)を行うことができる。ここで、前記適応等化工程としては、更に偏波多重された前記受信信号の偏波分離処理を実施する偏波分離処理工程を有することが好ましい。このような偏波分離工程を有することで、偏波多重された前記受信信号を対象とした前記等化処理を行うことができる。
 なお、前記受信信号処理方法における各信号処理は、本発明の前記受信信号処理装置を用いて実行することができる。
(通信システム)
 本発明の通信システムは、前記本判定部を備えた前記受信信号処理装置を有する受信部と、前記受信部に送信信号を送信する送信部と、前記送信部から送信される前記送信信号を前記受信部に伝送する伝送路と、を有し、前記送信部が、前記受信部が受信する受信信号と参照信号更新手段により更新された参照信号に基づく判定器の判定結果としての判定信号との差に基づく情報を前記送信信号の歪みとして前記歪みのない状態にフィードバック処理される。
 即ち、本発明の前記受信信号処理装置から出力される前記判定信号は、前記送信信号の歪みに関する情報を有している。これを送信側にフィードバックし、送信信号の歪みを解消するために用いることができる。その結果、送信信号の歪みに起因する本質的なペナルティを解消することができ、復調される信号品質をより向上させることができる。
 なお、前記受信信号処理装置を除く、前記受信部及び前記送信部及び前記伝送路としては、公知の構成により構築することができる。なお、前記伝送路としては、信号を長距離伝送する公知の光ファイバなどが挙げられる。
 本発明の前記受信信号処理装置及び前記受信信号処理方法を適用した実験の内容と、該実験から確認される効果について説明をする。なお、本発明の前記受信信号処理装置及び前記受信信号処理方法は、任意の変調方式の信号に対して適用することができるが、ここでは、送信信号としてシンボルレートが12Gbaudの単一偏波16QAM及び64QAM信号を用いた。
 図3に、本実験で用いた通信系の説明図を示す。該図3に示すように、本通信系は、レーザーダイオード(LD)101と、IQ変調器(IQM)102と、任意波形発生器(AWG)103と、可変光減衰器(VOA)104と、光増幅器105と、バンドパスフィルタ(BPF)106と、コヒーレント受信器107と、リアルタイムオシロスコープ108と、オフラインのデジタル信号処理器(DSP)109と、光スペクトラムアナライザ(OSA)110とで構成される。
 レーザーダイオード101では、周波数193.1THz(波長;1,552.52nm)の連続光が出力される。
 レーザーダイオード101から出力された連続光は、マッハツェンダー型ベクトル変調器であるIQ変調器102でベクトル変調され、16QAM及び64QAM信号が生成される。これら変調信号は、長さが215-1の疑似ランダムビットシーケンス(PRBS)から、グレイコードによる符号化を用いて得られたものである。
 IQ変調器102には、任意波形発生器103から出力される、前記変調信号の同相(in-phase)及び直交(quadrature)成分それぞれに相当する電気信号が印可される。
 送信される16QAM及び64QAM信号は、可変光減衰器104と光増幅器105を用いて、光信号対雑音比(OSNR)が調整され、続いて、光増幅に伴って発生する信号帯域外光雑音がバンドパスフィルタ106で除去された後、コヒーレント受信機107で受信される。なお、前記光信号対雑音比の調整は、コヒーレント受信機107への入力パワーを一定値1mWとして、可変光減衰器104の減衰量及び光増幅器105の利得の調整を行って実施した。また、前記光信号対雑音比の測定を、コヒーレント受信機107と並行して設置された光スペクトラムアナライザ110によって実施した。
 コヒーレント受信機107は、局所発振器(LO)光源と、90度光ハイブリッド部と、バランスフォトダイオードとで構成される。前記バランスフォトダイオードから出力される16QAM信号及び64QAM信号は、リアルタイムオシロスコープ108によりサンプリングレート80GSa/sでアナログ・デジタル変換され、オフラインデジタル信号処理器109に保存される。前記オフラインデジタル信号処理器109には、図1に示す受信信号処理装置と同様の構成からなる実施例に係る受信信号処理装置が組み込まれており、アンチエリアスフィルタを適用後、オーバーサンプリングレート=2に相当する24GSa/sでリサンプリングし、タイミングが送信時のものと一致するようにリタイミングを行った後、実施例に係る受信信号処理装置による搬送波再生を行った。その後、位相が再生された16QAM信号及び64QAM信号を復調し、ビット誤り率等の信号品質を評価した。
 なお、デジタル信号処理器109としては、パソコンを用い、実施例に係る受信信号処理装置を含む各信号処理部は、パソコン内で稼働する計算ソフトであるMatlab上に構築されたものである。
 実施例に係る受信信号処理装置に基づく信号処理にあたり、いくつかのパラメータの初期値を設定した。先ず、誤差共分散行列の初期値Pについては、2行2列の零行列とした。
 また、本実験系のシステム雑音電力σ を10-9とし、行列Qを固定した。なお、レーザーダイオード101の雑音特性が変化する場合は、それに応じて値を変化すべきであるが、ここでは常に同じレーザーを用いるものとし、行列Qを固定したままとする。また、観測雑音σθ 及びσω については、初期値をそれぞれ10-2及び10-3とし、実施例に係る受信信号処理を実施していく中で、統計量的にある程度十分な数の観測サンプル数が得られて以降は、観測した位相と周波数の誤差に関して統計的に得た誤差の分散値を用いるものとし、行列Rkを随時更新した。
 また、状態ベクトルの初期値xに関し、位相θについては零とおくが、周波数ωに関しては、ある程度正確な値を入力する必要がある。本実験では、入力された最初の1,024シンボルについて、下記参考文献5で示される手法、即ち、複素振幅を4乗したものを高速フーリエ変換し、スペクトルが最大の強度を与える周波数成分をもって搬送波周波数の近似値とみなす手法を採用し、この値を周波数ωの初期値とおいた。
 参考文献5;M. Selmi et al., “Accurate Digital Frequency Offset Estimator for Coherent PolMux QAM Transmission Systems,” Proc. ECOC2009, P3.08 (2009).
 以上の実験条件において、先ず、16QAM信号に対して、光信号対雑音比(OSNR)を12dBから37dBまで変化させて受信し、オフラインデジタル信号処理器109において復調を行った。前記受信信号処理装置の分離出力部におけるブロックサイズをN=2(m=2,3,…,7)とし、ビットエラーレート(BER)及びQファクター(Q値の二乗をdBで表示したもの;20log10(Q)[dB])を測定した結果を図4(a)、(b)に示す。なお、図4(a)は、ビットエラーレート(BER)の測定結果を示す図であり、図4(b)は、Qファクターの測定結果を示す図である。
 これら図4(a)、(b)に示すように、いずれのブロックサイズの場合でも、搬送波再生を含めた復調処理が成功し、ビットエラーレート(BER)が正しく測定できていることがわかる。ブロックサイズを増やしていくと、特に光信号対雑音比(OSNR)が高い場合にわずかながらBERやQファクターが劣化しているのがわかる。
 また、図5に光信号対雑音比(OSNR)が37dB及び15dBの場合のQファクターのブロックサイズ依存性を示す。
 該図5に示すように、光信号対雑音比(OSNR)が37dBの場合、ブロックサイズNが2のときのQファクターが18.3dBであるのに対して、ブロックサイズNが16のときのQファクターは、18.1dBであり、ブロックサイズNが128のときのQファクターは、17.5dBである。このようにブロックサイズを増していくと、Qファクターの低下が確認され、信号の品質が劣化する。
 この点に関し、光信号対雑音比(OSNR)が37dBで、ブロックサイズNが2,16,128のときの受信シンボルのコンスタレーションを図6(a)~(c)に示す。なお、図6(a)は、ブロックサイズNが2のときのコンスタレーションを示す図であり、図6(b)は、ブロックサイズNが16のときのコンスタレーションを示す図であり、図6(c)は、ブロックサイズNが128のときのコンスタレーションを示す図である。
 これら図6(a)~(c)に示すように、ブロックサイズNが大きくなるとコンスタレーションの歪みが大きくなり、特に位相誤差が発生し、結果としてQファクターが劣化する。ブロックサイズNが大きいと位相誤差が生じる原因は、「ブロック内で搬送波周波数オフセットが一定値を保つ」という仮定が成り立たなくなるためである。そこで、より狭線幅のレーザーを信号源や局所発振器の光源に用いることで、搬送波周波数オフセットの時間変化の度合いを弱め、結果としてブロックサイズNを大きくしたときの品質劣化を低減できるものと考えられる。
 一方、図5において光信号対雑音比(OSNR)が15dBの場合は、ブロックサイズNの増加に対してQファクターの劣化量が非常に小さい。例えば、ブロックサイズNが2のとき及び128のときのQファクターは、それぞれ9.36dB及び9.18dBである。これは、光信号対雑音比(OSNR)が低い場合には、自然放出光(ASE)雑音による品質劣化が支配的となるため、搬送波再生にともなう位相雑音の影響がほぼ無視できるためである。現実の通信システムでは、誤り訂正符号(FEC)によってエラーフリーにできる最低の光信号対雑音比(OSNR)に一定のマージンを確保したうえで受信するように設計される。一例として、7%のオーバーヘッドが付与された誤り訂正符号(FEC)を用いた場合、ビットエラーレート(BER)が3.9×10-3以下又はQファクターが8.5dB以上であればエラーフリーとできる。つまり、そのようなシステムにおいては、ブロックサイズNを128とした場合でも、Qファクターの劣化量を0.2dB程度と考えればよく、十分許容範囲の値とすることができる。
 なお、本実験のシンボルレートは、12Gbaudであるので、ブロックサイズNが64の場合、1ブロック64シンボル分に相当する時間は、5.3ナノ秒であり、この時間は、ブロックごとの繰返し処理のクロック周波数に換算すると187.5MHzに相当する。このクロック周波数は、現実的なデジタルシグナルプロセッサ(DSP)で十分処理可能な低い値である。
 続いて、受信した16QAM信号について、復調後の信号品質の搬送波周波数オフセット依存性について述べる。ここでは、搬送波周波数オフセットの値が0から約1.2GHz付近の値をとるよう各レーザーの周波数を設定し、16QAM信号の光信号対雑音比(OSNR)を37dB及び15dBとした場合に、信号を受信及び復調し、搬送波再生の結果から判明した搬送波周波数オフセット測定結果に対する、BER及びQファクターを測定し、搬送波周波数オフセット依存性を確認した。
 図7(a)に光信号対雑音比(OSNR)が15dBのときの搬送波周波数オフセット測定結果に対するビットエラーレート(BER)の測定結果を示す。なお、図には示さないが、光信号対雑音比(OSNR)が37dBの場合、全ての搬送波周波数オフセットの値に対して搬送波再生を含む復調処理が成功し、このときビットエラーは一つも観測されなかった。また、図7(b)に光信号対雑音比(OSNR)が15dB,37dBのときの搬送波周波数オフセット測定結果に対するQファクターの測定結果を示す。
 先に述べたように、非特許文献3に示されている手法では、搬送波周波数オフセットが0であることを前提としているため、搬送波周波数オフセットの値が大きな場合には処理することができない。これに対して、本発明の前記受信信号処理装置及び前記受信信号処理方法では、大きな搬送波周波数オフセットの値に対しても動作することがわかる。
 一方、Qファクターに着目すると、図7(b)に示すように、搬送波周波数オフセットが大きくなるとともに値が劣化しており、光信号対雑音比(OSNR)が15dBの場合に比べ37dBの場合の方が劣化量が大きい。光信号対雑音比(OSNR)が15dBの場合は、Qファクターの劣化量がわずかではあるが、ビットエラーレート(BER)に着目すると、搬送波周波数オフセットの値が大きくなるにつれてやや劣化しているのがわかる(図7(a)参照)。
 搬送波周波数オフセットが大きい場合に信号品質が劣化する理由として、本発明の前記受信信号処理装置及び前記受信信号処理方法では、搬送波周波数を推定する際に推定誤差が一定量存在するが、搬送波周波数オフセットの値が大きいほど、その推定誤差が位相誤差に反映される割合が大きくなるためと考えられる。
 次に、64QAM信号について、光信号対雑音比(OSNR)を20dBから37dBまで変化させて受信し、オフラインデジタル信号処理器109において復調を行った。前記受信信号処理装置の分離出力部におけるブロックサイズをN=2(m=2,3,…,6)とし、ビットエラーレート(BER)及びQファクターを測定した結果を図8(a)、(b)に示す。なお、図8(a)は、ビットエラーレート(BER)の測定結果を示す図であり、図8(b)は、Qファクターの測定結果を示す図である。
 これら図8(a)、(b)に示すように、いずれのブロックサイズの場合でも、搬送波再生を含む復調処理が成功し、ビットエラーレート(BER)が正しく測定できていることがわかる。また、16QAM信号の場合と同様に、64QAM信号の場合も、ブロックサイズが増えていくと、特に光信号対雑音比(OSNR)が高い場合に、わずかながらビットエラーレート(BER)及びQファクターが劣化している。なお、光信号対雑音比(OSNR)が大きな領域でエラーフロアが生じているが、これは、本実験の通信系が持つ雑音成分に起因するものであり、前記受信信号処理装置及び前記受信信号処理方法の搬送波再生によるものではない。
 また、図9に光信号対雑音比(OSNR)が37dB及び23dBの場合のQファクターのブロックサイズ依存性を示す。
 該図9に示すように、光信号対雑音比(OSNR)が37dBの場合、ブロックサイズNが2のときのQファクターが12.3dBであるのに対して、ブロックサイズNが16のときのQファクターは、12.2dBであり、ブロックサイズNが64のときのQファクターは、11.9dBである。このようにブロックサイズを増していくと、Qファクターの低下が確認され、信号の品質が劣化するが、この原因は16QAM信号の場合と同様、位相誤差によるものである。
 この点に関し、光信号対雑音比(OSNR)が37dBで、ブロックサイズNが2,16,64のときの受信シンボルのコンスタレーションを図10(a)~(c)に示す。なお、図10(a)は、ブロックサイズNが2のときのコンスタレーションを示す図であり、図10(b)は、ブロックサイズNが16のときのコンスタレーションを示す図であり、図10(c)は、ブロックサイズNが64のときのコンスタレーションを示す図である。
 これら図10(a)~(c)に示すように、ブロックサイズNが大きくなるとコンスタレーションの歪みが大きくなり、特に位相誤差が発生し、結果としてQファクターが劣化する。一方、16QAM信号の場合と同様に、図9において光信号対雑音比(OSNR)が23dBの場合は、ブロックサイズ増加に対してQファクターの劣化量が非常に小さい。例えば、ブロックサイズが2のとき及び64のときのQファクターは、それぞれ9.02dB及び8.78dBである。
 続いて、受信した64QAM信号について、復調後の信号品質の搬送波周波数オフセット依存性について述べる。ここでは、搬送波周波数オフセットの値が0から約1.2GHz付近の値をとるよう各レーザーの周波数を設定し、64QAM信号の光信号対雑音比(OSNR)を37dB及び23dBとした場合に、信号を受信及び復調し、搬送波再生の結果から判明した搬送波周波数オフセット測定結果に対する、BER及びQファクターを測定し、搬送波周波数オフセット依存性を確認した。
 図11(a)に光信号対雑音比(OSNR)が37dB,23dBのときの搬送波周波数オフセット測定結果に対するビットエラーレート(BER)の測定結果を示す。また、図11(b)に光信号対雑音比(OSNR)が23dB,37dBのときの搬送波周波数オフセット測定結果に対するQファクターの測定結果を示す。
 これら図11(a)、(b)に示すように、64QAM信号についても、搬送波周波数オフセットが1GHzを上回る大きな値の場合でも、復調処理が正常に動作できている。ただし、16QAM信号の結果(図7a)、(b)参照)と比較すると、搬送波周波数オフセットが増加した際の信号品質劣化が著しい。これは、64QAM信号のシンボル間間隔が16QAM信号よりも小さく、同じ位相誤差に対するQファクター劣化量が大きいためである。64QAM信号について、光信号対雑音比(OSNR)が23dBで搬送波周波数オフセットが1GHzの場合、搬送波周波数オフセットが0の場合に対するQファクターペナルティは約0.5dBである。
 最後に、64QAM信号を長距離伝送して受信し、提案する搬送波再生手法を用いて復調した結果を示す。即ち、図3に示す通信系において、IQ変調機102-光減衰器104間の伝送距離を長距離化させて試験を行った。伝送路は、80kmの標準シングルモードファイバ(SSMF)2スパンから構成され、これらを合計した伝送距離は、160kmである。各スパンの入射側には光増幅器が設置され、信号のスパン入射パワーは、-7dBmである。コヒーレント受信機107に入射する前に、光減衰器104と光増幅器105の利得を調整することで光信号対雑音比(OSNR)を変化させる。復調のためのオフラインデジタル信号処理器109においては、これまで述べた方法に加え、最初にデジタルフィルタによる分散補償を行う。本実験における分散補償量は、2,648.1ps/nmとした。
 図12に、ブロックサイズNを16としたときの、Back-to-back及び伝送後信号のBER測定結果を示す。該図12に示すように、伝送に伴うペナルティがわずかに発生しているものの、正常に受信及び復調処理ができていることがわかる。
 以上のように、本発明の前記受信信号処理装置及び受信信号処理方法は、高シンボルレートの通信に適用でき、かつ、QAM信号等の多値化信号に対しても高精度に搬送波再生が可能であることから、通信分野、特に光ファイバ通信分野における受信機内のデジタル信号処理プロセスにおいて、好適に用いることができる。
 本発明の前記受信信号処理装置及び方法の好適な構成例及び好適な実施方法として説明した前記本判定部及び前記本判定工程(以下、単に本判定部、本判定工程)を適用した実験の内容と、該実験から確認される効果について説明をする。なお、前記受信信号処理装置及び方法(本判定部及び本判定工程)は、任意の変調方式の信号に対して適用することができるが、ここでは、16QAM変調方式に注目して説明をする。また、ここでは、前記本判定部及び前記本判定工程自体の有効性を確認するため、搬送波再生の手法として判定指向型のDPLLを用いて搬送波位相が再生されたシンボルに対して信号処理を行うが、本発明の前記受信信号処理装置及び方法(搬送波再生部及び該部による信号処理方法)に基づいて、搬送波位相が再生された前記各分離シンボルに対して信号処理を行うことができる。
 図23に、本実験で用いた通信系を示す。なお、図23は、実験に用いた通信系を説明する説明図である。
 該図23に示すように、本通信系は、レーザーダイオード(LD)201と、IQ変調器(IQM)202と、任意波形発生器(AWG)203と、偏波多重化エミュレータ204と、可変光減衰器(VOA)205と、光増幅器206と、バンドパスフィルタ(BPF)207と、コヒーレント受信器208と、リアルタイムオシロスコープ209と、オフラインのデジタル信号処理器(DSP)210と、光スペクトラムアナライザ(OSA)211とで構成される。
 レーザーダイオード201では、中心波長が1,552.52nmの連続光が出力される。
 レーザーダイオード201から出力された連続光は、IQ変調器202でベクトル変調され、16QAM信号が生成される。この16QAM信号は、シンボルレートが12Gaudで、長さが215-1の疑似ランダムビット列(PRBS)から、グレイコードによる符号化を用いて得られたものである。
 IQ変調器202には、任意波形発生器203から出力される、16QAM信号の同相成分及び直交成分に相当する電気信号が印加される。送信する16QAM信号の波形として、図13(b)に示すような理想的なコンスタレーションとする場合では、IQ変調器202に任意波形発生器203から出力される、理想的なコンスタレーションを持つ16QAM信号の同相成分及び直交成分に相当する電気信号をそのまま印可するが、図14(c)に示すような歪んだコンスタレーションとする場合では、任意波形発生器203の振幅出力を調整し、直交成分の振幅が同相成分と比較して20%小さくなるように設定してIQ変調器202に印可し、更に、IQ変調器202に印加するバイアス電圧を調整して、同相成分と直交成分が複素平面上でなす角を理想値である90度から20度減少させ、直交位相誤差を与えることとしている。
 本実験では、送信信号として単一偏波16QAM信号(SP-16QAM)と、偏波多重16QAM信号(DP-16QAM)の両方を取り扱う。DP-16QAM信号を用いる場合、偏光ビームスプリッタ(PBS)とファイバ遅延線を有する偏波多重化エミュレータ204を用いて偏波多重する。即ち、本実験では、理想的なコンスタレーションと歪んだコンスタレーションの各波形を有する16QAM信号のそれぞれについて、SP-16QAM及びDP-16QAMとし、計4つの状態の16QAM信号を送信信号とする。
 送信される各16QAM信号は、可変光減衰器205と光増幅器206を用いて、光信号対雑音比(OSNR)が調整され、続いて、光増幅に伴って発生する信号帯域外光雑音がバンドパスフィルタ207で除去された後、コヒーレント受信機208で受信される。なお、光信号対雑音比は、コヒーレント受信機208と並行して設置された光スペクトラムアナライザ211によって測定を行った。
 コヒーレント受信機208により受信された各16QAM信号は、リアルタイムオシロスコープ209によりアナログ・デジタル変換され、デジタル信号として取得される。アナログ・デジタル変換におけるサンプリングレートは、SP-16QAMの場合で80GSa/s、DP-16QAMの場合で40GSa/sとした。
 デジタル信号として取得された各16QAM信号は、オフラインのデジタル信号処理器210に出力され、1シンボルあたり2サンプルに相当する24GSa/sでリサンプリングされた後、デジタル信号処理器210上に構築された信号処理プログラムを実行することで復調される。なお、デジタル信号処理器210としては、パソコンを用い、前記信号処理プログラムは、以下に説明する参考例及び実施例に係る受信信号処理装置として、パソコン内で稼働する計算ソフトであるMatlab上に構築されたものである。
(参考例)
 参考例として先に説明した図16に示す適応等化器250を有する受信信号処理装置の回路構成と同じ回路構成とした受信信号処理装置により、デジタル信号処理器210(図23参照)に出力された16QAM信号の復調処理を行った。なお、この回路構成では、図16中に示すデジタルフェーズロックループ230を図15に示す回路構成と同じ回路構成とし、デジタルフェーズロックループの動作特性として設定されるDamping factor ζ、Natural frequency ω、及びサンプル時間間隔Tを、次のように設定している。
 ζ=0.707
 ω=2π×50[MHz]
 Ts=(12×10-1=83.3[ps]
 また、判定器251における判定に用いられる参照信号は、受信信号の変調方式にしたがって、図13(b)に示した、16QAM信号の理想的なコンスタレーションを有する形状とした。形状以外の要素として、前記参照信号は、同相成分(実軸方向)及び直交成分(虚軸方向)に対するバイアス(平行移動)及び振幅値について任意性を有するが、ここでは、一つの方法として、前記参照信号のバイアスを0とし、また、振幅値を前記参照信号の平均電力が前記受信信号の平均電力と一致するように調整した。
 また、参考例に係る適応等化器が適用された受信信号処理装置(図16参照)により、等化処理(DP-16QAM信号の場合には、偏波分離処理を含む)及び搬送波再生処理が実施され、復調処理が完了したシンボルに対し、前記受信信号処理装置外に設けられた判定器を用いて改めて判定を行い、ビットエラーレート(BER)及びError Vector Magnitude(EVM)の解析を行った。また、復調処理後の16QAM信号のコンスタレーション波形の観察を行った。なお、復調処理された16QAM信号に対して改めて判定を実施する際、送信信号の歪みが事前に判明していて、歪みに合わせた参照信号が最初から利用できるものとした。これによって復調処理後の判定に対して送信信号の歪みが影響を及ぼさなくなり、前記適応等化器と前記適応等化器と接続されるデジタルフェーズロックループ(これらにつき、図16参照)の動作にのみ注目して、送信信号の波形歪みの影響を評価する。
 また、ここで、前記EVMの解析は、前記EVMのroot-mean square(rms)値を下記式〔2〕により定義して行った。
Figure JPOXMLDOC01-appb-M000032
 ただし、前記式〔2〕中、Mは、参照信号内の複素振幅値の数を示し、16QAM信号の場合でM=16であり、rは、参照信号内のm番目の複素振幅値を表す2次元ベクトルを示し、Nは、受信シンボルの数、xは、n番目の受信シンボルを表す2次元ベクトルを示し、r(x)は、xに対する判定より得られた参照信号内複素振幅を表す2次元ベクトルである。
 なお、前記BER及び前記EVMの解析は、前記信号処理プログラム内に構築された計算ブロックにより行い、前記コンスタレーション波形の観察は、前記信号処理プログラム内に構築されたコンスタレーション波形導出ブロックにより行った。
 図24(a)に参考例に係る受信信号処理装置の前記BER測定結果を示す。また、図24(b)に参考例に係る受信信号処理装置の前記EVM測定結果を示す。
 これらの図に示すように、参考例に係る受信信号処理装置では、SP-16QAM及びDP-16QAMの両方について、理想的な波形に対する受信結果(各図中のIdeal SP-16QAM、DP-16QAM参照)に対して、歪みを与えた波形に対する受信結果(各図中のDistorted SP-16QAM、DP-16QAM参照)では、エラーフロア及び大きなペナルティが発生していることが分かる。
 図24(c)に参考例に係る受信信号処理装置で、理想的な波形のSP-16QAM信号を復調した場合のコンスタレーション波形を示す。また、図24(d)に参考例に係る受信信号処理装置で、歪みを有するSP-16QAM信号を復調した場合のコンスタレーション波形を示す。これらのコンスタレーション波形は、ともに受信信号の光信号対雑音比(OSNR)が30dBのときに得られたものである。
 図24(c)に対し、図24(d)では、振幅値の大きなシンボルに対する大きな位相雑音の発生が確認され、判定時に発生する多くの誤りによって前記位相補正量算出手段(DPLL)の動作が劣化したものと考えられる。実際、前記DPLL内で使用した数値制御発振器(NCO)の発振周波数の標準偏差は、歪みのないSP-16QAM信号の場合に4MHzであったのに対して、歪みを与えたSP-16QAM信号の場合は、12MHzと増大しており、このことは、前記NCOを含む前記DPLLの動作が不安定になっていたことを意味する。
 また、図24(e)に参考例に係る受信信号処理装置で、歪みを有するDP-16QAM信号を復調した場合のコンスタレーションを示す。
 この図24(e)に示すように、DP-16QAM信号については、SP-16QAM信号の場合よりも大きな雑音成分の発生が確認できる。この図24(e)に示すコンスタレーション波形は、前記OSNRが33dBのときに得られたものであるが、振幅値の大きなシンボルに対する位相雑音に加えて、全体的に大きな雑音成分が加わっていることが分かる。なお、DP-16QAM信号の一偏波当たりの前記OSNRは、SP-16QAMの場合と同じである。この結果は、多くの判定誤りによって前記適応等化器の動作が劣化し、偏波分離性能に影響を与えたためと考えられる。
 以上のように、歪んだ波形の16QAM信号を受信して、理想的な波形の参照信号に基づく判定指向型の前記適応等化器及び前記位相補正量算出手段を用いて復調すると、受信信号品質が大きく劣化することが分かる。
(実施例)
 実施例として、デジタル信号処理器210(図23参照)に出力された16QAM信号の復調を行う方法について、先に説明した図18に示す受信信号処理装置200の回路構成と同じ回路構成とした受信信号処理装置を用いたこと以外、参考例と同様の実験を行った。ただし、この実施例に係る受信信号処理装置は、本判定部を適用した場合の効果を確認するための試験装置として、図1に示す前記搬送波再生部を適用せずに構成されている。
 なお、実施例に係る受信信号処理装置の参照信号更新部270では、前記式〔1〕におけるμの値を0.005に設定して前記参照点の補正及び更新を行った。
 また、実施例に係る受信信号処理装置は、適応等化器250がConstant Modulus Algorithm(CMA)によって得られた誤差信号で動作しており、デジタルフェーズロックループ回路230(DPLL)のみが前記判定指向型動作モードで動作している状態で、最初に受信した16,000の受信シンボルに対して、前記参照信号の前記更新処理を行うこととした。また、更に、適応等化器250も前記判定指向型動作モードに移行した後、更に、10,000の受信シンボルに対して前記更新処理を行うこととした。いずれの場合も、前記参照信号内の全ての参照点rが、受信シンボルxが取り得る位置の範囲の中心(複素振幅期待値)へと収束し、前記参照信号を適切に更新することができた。
 図25(a)に実施例に係る受信信号処理装置の前記BER測定結果を示す。また、図25(b)に実施例に係る受信信号処理装置の前記EVM測定結果を示す。なお、これらの測定結果は、参照信号更新部270及び判定器251に基づく前記参照信号の補正及び更新を行ったこと以外は、参考例と同様の方法で測定を行って得られたものである。
 これらの図に示すように、SP-16QAM及びDP-16QAMの両方について、波形に歪みを与えた場合でも大きなペナルティを発生することなく信号を受信できていることが分かる(各図中のIdeal SP-16QAM、DP-16QAM、及びDistorted SP-16QAM、DP-16QAM参照)。
 なお、図25(b)に示す前記EVMにペナルティが発生していないものの、図25(a)に示す前記BERに1dB程度の前記OSNRペナルティが発生している。これは、16QAM信号に波形歪みを与えるため、直交成分の振幅を同相成分と比較して20%減少させた結果、同じ平均パワーにおいて直交軸上のシンボル間隔が12%減少し、結果として同じBERを得るために1.29倍、即ち、+1.1dB分、大きな平均パワーを要することによる、本質的なものである。なお、このような送信信号の歪みに起因して生じる本質的なペナルティは、実使用の場面では、本発明の前記通信システムにより、前記参照信号更新部により更新された前記参照信号に基づく前記判定器の判定結果としての前記判定信号が有する歪みの情報を送信側にフィードバックし、前記送信信号が有する歪みを修正することで解消することができる。
 図25(c)に実施例に係る受信信号処理装置で、理想的な波形のSP-16QAM信号を復調した場合のコンスタレーション波形を示す。また、図25(d)に実施例に係る受信信号処理装置で、歪みを有するSP-16QAM信号を復調した場合のコンスタレーション波形を示す。また、図25(e)に実施例に係る受信信号処理装置で、歪みを有するDP-16QAM信号を復調した場合のコンスタレーション波形を示す。
 これらの図に示すように、実施例に係る受信信号処理装置を用いて復調した場合、前記コンスタレーション波形中に大きな雑音の発生が確認されず、前記適応等化器(AEQ)及び前記位相補正量算出手段(DPLL)が正常に動作できている。
 次に、送信信号に与える歪みの程度を変化させた場合のEVM測定結果について説明する。このEVM測定結果は、同相成分に対する直交成分の振幅減少率を0%から45%まで変化させ、更に、直交位相誤差を0度から25度まで変化させてDP-16QAM信号を生成させた場合に、前記OSNRを35dBとして受信し、実施例に係る受信信号処理装置による前記復調処理を行った場合の前記EVMを示している。
 前記EVM測定結果に関し、図26(a)~(f)に、同相成分に対する直交成分の振幅減少率を0%から45%まで変化させた各DP-16QAM信号をそれぞれ復調したときの前記EVM測定結果を示す。ここで、測定結果が示されていない条件は、歪みの程度が前記受信信号処理装置の適用範囲を超えるほど大きく、復調処理が実施できなかったことを示している。なお、図26(a)は、直交位相誤差が0度の場合、図26(b)は、直交位相誤差が5度の場合、図26(c)は、直交位相誤差が10度の場合、図26(d)は、直交位相誤差が15度の場合、図26(e)は、直交位相誤差が20度の場合、図26(f)は、直交位相誤差が25度の場合の前記EVM測定結果を示している。また、各図中、横軸は、同相成分の振幅を1としたときに、直交成分の振幅減少量を%で示したものであり、例えば、横軸の値が20%のときは、直交成分の振幅が20%減少して、同相成分と直交成分との振幅比が5:4であることを意味する。
 図26(a)~(c)に示すように、直交位相誤差が10度以下の場合、直交成分の振幅減衰量の最大許容値は、45%であった。また、図26(d)~(e)に示すように、直交位相誤差が15度及び20度の場合、直交成分の振幅減衰量の最大許容値は、40%あった。また、図26(f)に示すように、直交位相誤差が10度以下の場合、直交成分の振幅減衰量の最大許容値は、15%であった。
 前記最大許容値は、主として歪んだ受信信号の各シンボルの中心位置(複素振幅期待値)により決定され、前記中心位置が理想的なコンスタレーションを参照信号として用いた場合の閾値を超えていなければ歪みが許容されるものである。前記最大許容値以下の送信信号の歪みであれば、実施例に係る受信信号処理装置による復調処理が正常に動作し、前記EVMのペナルティは、ほぼ無視できるほど小さい。
 これに対し、参考例に係る受信信号処理装置を用いて同様の前記EVM測定を行った場合の測定結果を図26(g)に示す。即ち、該図26(g)は、参照信号の補正を行わない場合に、同相成分に対する直交成分の振幅減少率を0%から45%に変化させるとともに、直交位相誤差を0度から25度まで変化させた各DP-16QAM信号をそれぞれ復調したときのEVM測定結果をまとめて示す図である。
 この図26(g)に示すように、実用的と言える直交成分の振幅減衰量及び直交位相誤差の最大許容値は、それぞれ20%及び15度であり、本発明を適用した場合と比べると、実用的な範囲が大きく狭まっているうえに、復調が成功した場合でも、EVMペナルティも発生していることが分かる。
 以上のように、前記本判定部を含む受信信号処理装置、通信システム及び前記本判定工程を含む受信信号処理方法によれば、送信信号が歪みを有する場合でも、判定指向型の前記適応等化器や前記位相補正量算出手段を正常に動作させ、信号品質を低下させずに受信可能であることから、広く通信分野において利用することができ、特に光ファイバ通信分野で適用することで、多値数の大きなQAM信号に対しても、搬送波の周波数及び位相のそれぞれを高精度に推測して、信号の復調処理を行うことができる。
   1   分離出力部
   2   事前推定値取得部
   3   事前推定位相算出部
 4,4,4 乗算器
 5,5,5 判定部
   6   誤差観測部
   7   事後推定値取得部
   8   事後推定位相算出部
 9,9,9 乗算器
  10   フィードバック処理部
  100  受信信号処理装置(搬送波再生部)
  101  レーザーダイオード(LD)
  102  IQ変調器(IQM)
  103  任意波形発生器(AWG)
  104  可変光減衰器(VOA)
  105  光増幅器
  106  バンドパスフィルタ(BPF)
  107  コヒーレント受信器
  108  リアルタイムオシロスコープ
  109  デジタル信号処理器(DSP)
  110  光スペクトラムアナライザ(OSA)
  201  レーザーダイオード(LD)
  202  IQ変調器(IQM)
  203  任意波形発生器(AWG)
  204  偏波多重化エミュレータ
  205  可変光減衰器(VOA)
  206  光増幅器
  207  バンドパスフィルタ(BPF)
  208  コヒーレント受信機
  209  リアルタイムオシロスコープ
  210  デジタル信号処理器(DSP)
  211  光スペクトラムアナライザ(OSA)
  230  デジタルフェーズロックループ(DPLL)
  231  位相誤差演算処理部
  232  位相差算出部
  233  ループフィルタ部
  234  数値制御発振器
  235  位相補正手段
  250  適応等化器
  251  判定器
  252  誤算信号算出部及びタップ係数制御部
  270  参照信号更新部
  200  本判定部を含む受信信号処理装置
  300,310,320  受信信号処理装置
 

Claims (17)

  1.  変調された受信信号のシンボルを一定数ごとに分離してブロック化させた1つの分離シンボル群に対する位相補償を1回の処理として、前記分離シンボル群の数に応じて複数回連続して行う受信信号処理装置であり、
     ブロック内に一定時間間隔で入力される前記シンボルを一定数ごとに時間分離させて前記分離シンボル群を取得し、前記分離シンボル群を構成する各分離シンボルごとに出力する分離出力部と、
     前記各分離シンボルの時間に対する位相変化に基づき決定される1つのブロック内周波数及び前記各分離シンボルの各位相の時間中心値として決定される1つのブロック内中心位相の前回処理値から、これらの今回処理値を推定した事前推定値として、ブロック内事前推定周波数及びブロック内事前推定中心位相を取得する事前推定値取得部と、
     前記事前推定値から前記各分離シンボルの事前推定位相を算出し、前記事前推定位相に基づいて前記各分離シンボルの位相を仮補償する仮補償部と、
     前記位相が仮補償された前記各分離シンボルを判定前シンボルとし、前記判定前シンボルに対して、前記受信信号の変調方式に応じて設定される参照信号に基づく判定を行い、前記参照信号の参照点に一致させた判定後シンボルを取得する判定部と、
     前記判定前シンボル及び前記判定後シンボルに基づいて決定される、前記ブロック内周波数の観測値と前記ブロック内事前推定周波数との周波数誤差を算出するとともに、前記判定前シンボル及び前記判定後シンボルに基づいて決定される、前記ブロック内中心位相の観測値と前記ブロック内事前推定中心位相との位相誤差を算出する誤差観測部と、
     前記周波数誤差及び前記位相誤差に基づいて前記事前推定値を修正し、前記ブロック内周波数及び前記ブロック内中心位相の最も確からしい今回処理値を推定した事後推定値として、ブロック内事後推定周波数及びブロック内事後推定中心位相を取得する事後推定値取得部と、
     前記事後推定値から前記各分離シンボルの事後推定位相を算出し、前記事後推定位相に基づいて前記各分離シンボルの位相を本補償する本補償部と、
     前記事前推定値取得部が、前記事後推定値を前記ブロック内周波数及び前記ブロック内中心位相の前回処理値として、次回の前記位相補償における前記分離シンボル群に対する前記事前推定値を取得するよう、フィードバック処理を行うフィードバック処理部と、
     を有する搬送波再生部を備えることを特徴とする受信信号処理装置。
  2.  分離出力部で取得される分離シンボル群のシンボル数が、2~1,024である請求項1に記載の受信信号処理装置。
  3.  誤差観測部が最尤推定により周波数誤差及び位相誤差を算出する請求項1から2のいずれかに記載の受信信号処理装置。
  4.  事後推定値取得部が、周波数誤差、位相誤差、事前推定値としての事前状態ベクトル及び利得を制御する事前誤差共分散行列の入力に基づき、前記事前推定値及び前記事前誤差共分散行列の値が修正された、事後推定値としての事後状態ベクトル及び事後誤差共分散行列を出力するカルマンフィルタで構成され、
     フィードバック処理部が、事前推定値取得部に前記事後推定値及び前記事後誤差共分散行列を入力することで、前記事前推定値取得部が前記カルマンフィルタに対し、これらを次回の前記位相補償における前記事前推定値及び前記事前誤差共分散行列として出力するよう、フィードバック処理を行う請求項1から3のいずれかに記載の受信信号処理装置。
  5.  変調された受信信号のシンボルを一定数ごとに分離してブロック化させた1つの分離シンボル群に対する位相補償を1回の処理として、前記分離シンボル群の数に応じて複数回連続して行う受信信号処理方法であり、
     ブロック内に一定時間間隔で入力される前記シンボルを一定数ごとに時間分離させて前記分離シンボル群を取得し、前記分離シンボル群を構成する各分離シンボルごとに出力する分離出力ステップと、
     前記各分離シンボルの時間に対する位相変化に基づき決定される1つのブロック内周波数及び前記各分離シンボルの各位相の時間中心値として決定される1つのブロック内中心位相の前回処理値から、これらの今回処理値を推定した事前推定値として、ブロック内事前推定周波数及びブロック内事前推定中心位相を取得する事前推定値取得ステップと、
     前記事前推定値から前記各分離シンボルの事前推定位相を算出し、前記事前推定位相に基づいて前記各分離シンボルの位相を仮補償する仮補償ステップと、
     前記位相が仮補償された前記各分離シンボルを判定前シンボルとし、前記判定前シンボルに対して、前記受信信号の変調方式に応じて設定される参照信号に基づく判定を行い、前記参照信号の参照点に一致させた判定後シンボルを取得する判定ステップと、
     前記判定前シンボル及び前記判定後シンボルに基づいて決定される、前記ブロック内周波数の観測値と前記ブロック内事前推定周波数との周波数誤差を算出するとともに、前記判定前シンボル及び前記判定後シンボルに基づいて決定される、前記ブロック内中心位相の観測値と前記ブロック内事前推定中心位相との位相誤差を算出する誤差観測ステップと、
     前記周波数誤差及び前記位相誤差に基づいて前記事前推定値を修正し、前記ブロック内周波数及び前記ブロック内中心位相の最も確からしい今回処理値を推定した事後推定値として、ブロック内事後推定周波数及びブロック内事後推定中心位相を取得する事後推定値取得ステップと、
     前記事後推定値から前記各分離シンボルの事後推定位相を算出し、前記事後推定位相に基づいて前記各分離シンボルの位相を本補償する本補償ステップと、
     前記事前推定値取得ステップが、前記事後推定値を前記ブロック内周波数及び前記ブロック内中心位相の前回処理値として、次回の前記位相補償における前記分離シンボル群に対する前記事前推定値を取得するよう、フィードバック処理を行うフィードバック処理ステップと、
     を有することを特徴とする受信信号処理方法。
  6.  分離出力ステップで取得される分離シンボル群のシンボル数が、2~1,024である請求項5に記載の受信信号処理方法。
  7.  誤差観測ステップが最尤推定により周波数誤差及び位相誤差を算出する請求項5から6のいずれかに記載の受信信号処理方法。
  8.  事後推定値取得ステップが、周波数誤差、位相誤差、事前推定値としての事前状態ベクトル及び利得を制御する事前誤差共分散行列の入力に基づき、前記事前推定値及び前記事前誤差共分散行列の値が修正された、事後推定値としての事後状態ベクトル及び事後誤差共分散行列を出力するカルマンフィルタで実行され、
     フィードバック処理ステップが、事前推定値取得ステップの実行部に前記事後推定値及び前記事後誤差共分散行列を供給することで、前記事前推定値取得ステップが前記カルマンフィルタに対し、これらを次回の前記位相補償における前記事前推定値及び前記事前誤差共分散行列として供給するよう、フィードバック処理を行う請求項5から7のいずれかに記載の受信信号処理方法。
  9.  更に、搬送波再生部から出力される、デジタル変調された受信信号の1つの受信シンボルに対して、前記デジタル変調の変調方式により決定される参照信号を構成する複数の参照点から、複素平面上でのユークリッド距離が最も短い参照点を判定する判定器と、
     下記式〔1〕に基づき、判定された前記参照点の位置を前記受信シンボルの位置に近づくように補正し、前記判定器で用いられる前記参照信号の前記参照点を補正後の前記参照点に更新させる参照信号更新手段と、を有する本判定部を備える請求項1から4のいずれかに記載の受信信号処理装置。
    Figure JPOXMLDOC01-appb-M000001
     ただし、前記式〔1〕中、nは、前記参照点に対する更新の回数を示し、rは、n回目に更新された前記参照点の複素平面上での位置を表す2次元ベクトルを示し、xは、n回目の更新時における前記受信シンボルの前記複素平面上での位置を表す2次元ベクトルを示し、μは、10-10以上0.1以下の微小な数値を示し、rn+1は、補正後における前記参照点の前記複素平面上での位置を表す2次元ベクトルを示す。
  10.  受信信号と、前記受信信号に対する、参照信号更新手段により更新された参照信号に基づく判定器の判定結果としての判定信号との位相差を制御信号として、搬送波周波数と局所発振周波数の周波数差の揺らぎに起因して発生する、前記受信信号の位相変化に応じた位相補正量を算出する位相補正量算出手段を有する請求項9に記載の受信信号処理装置。
  11.  タップ係数に応じて雑音成分がフィルタリングされた受信信号と、前記受信信号に対する、参照信号更新手段により更新された参照信号に基づく判定器の判定結果としての判定信号との差を誤差信号とし、前記誤差信号の大きさが最小となるように前記タップ係数を制御して後続受信信号の等化処理を行う適応等化器を有する請求項9から10に記載の受信信号処理装置。
  12.  適応等化器が、偏波多重された受信信号の偏波分離処理を実施する偏波分離処理手段を有する請求項11に記載の受信信号処理装置。
  13.  請求項9から12のいずれかに記載の受信信号処理装置を有する受信部と、前記受信部に送信信号を送信する送信部と、前記送信部から送信される前記送信信号を前記受信部に伝送する伝送路と、を有し、前記送信部が、前記受信部が受信する受信信号と参照信号更新手段により更新された参照信号に基づく判定器の判定結果としての判定信号との差に基づく情報を前記送信信号の歪みとして前記歪みのない状態にフィードバック処理されることを特徴とする通信システム。
  14.  更に、位相が本補償された、デジタル変調された受信信号の1つの受信シンボルに対して、前記デジタル変調の変調方式により決定される参照信号を構成する複数の参照点から、複素平面上でのユークリッド距離が最も短い参照点を判定する本判定工程と、
     下記式〔1〕に基づき、判定された前記参照点の位置を前記受信シンボルの位置に近づくように補正し、前記本判定工程で用いられる前記参照信号の前記参照点を補正後の前記参照点に更新させる参照信号更新工程と、を含む請求項5から8のいずれかに記載の受信信号処理方法。
    Figure JPOXMLDOC01-appb-M000002
     ただし、前記式〔1〕中、nは、前記参照点に対する更新の回数を示し、rは、n回目に更新された前記参照点の複素平面上での位置を表す2次元ベクトルを示し、xは、n回目の更新時における前記受信シンボルの前記複素平面上での位置を表す2次元ベクトルを示し、μは、10-10以上0.1以下の微小な数値を示し、rn+1は、補正後における前記参照点の前記複素平面上での位置を表す2次元ベクトルを示す。
  15.  受信信号と、前記受信信号に対する、参照信号更新工程により更新された参照信号に基づく本判定工程の判定結果としての判定信号との位相差を制御信号として、搬送波周波数と局所発振周波数の周波数差の揺らぎに起因して発生する、前記受信信号の位相変化に応じた位相補正量を算出する位相補正量算出工程を含む請求項14に記載の受信信号処理方法。
  16.  タップ係数に応じて雑音成分がフィルタリングされた受信信号と、前記受信信号に対する、参照信号更新工程により更新された参照信号に基づく本判定工程の判定結果としての判定信号との差を誤差信号とし、前記誤差信号の大きさが最小となるように前記タップ係数を制御して後続受信信号の等化処理を行う適応等化工程を含む請求項14から15のいずれかに記載の受信信号処理方法。
  17.  適応等化工程が、偏波多重された受信信号の偏波分離処理を実施する偏波分離処理工程を含む請求項16に記載の受信信号処理方法。
PCT/JP2014/080074 2013-11-15 2014-11-13 受信信号処理装置、通信システム及び受信信号処理方法 WO2015072515A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/034,282 US9722768B2 (en) 2013-11-15 2014-11-13 Received signal processing device, communication system, and received signal processing method
JP2015547787A JP6156807B2 (ja) 2013-11-15 2014-11-13 受信信号処理装置、通信システム及び受信信号処理方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-236486 2013-11-15
JP2013236486 2013-11-15
JP2013263120 2013-12-19
JP2013-263120 2013-12-19

Publications (1)

Publication Number Publication Date
WO2015072515A1 true WO2015072515A1 (ja) 2015-05-21

Family

ID=53057449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080074 WO2015072515A1 (ja) 2013-11-15 2014-11-13 受信信号処理装置、通信システム及び受信信号処理方法

Country Status (3)

Country Link
US (1) US9722768B2 (ja)
JP (1) JP6156807B2 (ja)
WO (1) WO2015072515A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109076040A (zh) * 2016-06-17 2018-12-21 Ntt 电子株式会社 相位补偿装置、相位补偿方法和通信装置
WO2020174656A1 (ja) * 2019-02-28 2020-09-03 三菱電機株式会社 受信信号処理装置、受信信号処理方法及び光受信器
WO2023119627A1 (ja) * 2021-12-24 2023-06-29 日本電信電話株式会社 利得調整方法、光受信装置及びコンピュータプログラム

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9225430B2 (en) * 2013-05-20 2015-12-29 Ciena Corporation Digital noise loading for optical receivers
US10634778B2 (en) * 2014-10-21 2020-04-28 Texas Instruments Incorporated Camera assisted tracking of objects in a radar system
JP6313730B2 (ja) * 2015-04-10 2018-04-18 タタ コンサルタンシー サービシズ リミテッドTATA Consultancy Services Limited 異常検出システムおよび方法
GB2551347B (en) * 2016-06-13 2020-04-15 Toshiba Kk Indoor localisation using received signal quality weights
US9654117B1 (en) * 2016-06-14 2017-05-16 Cooper Technologies Company Digital phase-locked loop having de-coupled phase and frequency compensation
US9800440B1 (en) * 2016-06-28 2017-10-24 Intel IP Corporation Transmitter (TX) dead-time modulation
US10211917B1 (en) 2016-06-29 2019-02-19 Juniper Networks, Inc. Methods and apparatus for predicting and monitoring performance of a coherent optical transceiver
JP6760017B2 (ja) * 2016-11-28 2020-09-23 富士通オプティカルコンポーネンツ株式会社 光受信器
US10090920B1 (en) * 2017-03-17 2018-10-02 Ciena Corporation Fiber kerr nonlinear noise estimation
US10484230B2 (en) 2017-05-01 2019-11-19 Google Llc Mitigating optical modulator impairment for coherent optical communication systems
US10341066B2 (en) 2017-08-03 2019-07-02 Samsung Electronics Co., Ltd. System and method for common phase error and inter-carrier interference estimation and compensation
US20190149390A1 (en) * 2017-10-04 2019-05-16 Infinera Corporation Distribution matching for probabilistic constellation shaping with an arbitrary input/output alphabet
US10218548B1 (en) * 2018-01-24 2019-02-26 National Instruments Corporation Wireless radio receiver that performs adaptive phase tracking
US10218549B1 (en) 2018-01-24 2019-02-26 National Instruments Corporation Wireless radio receiver that performs adaptive phase tracking
JP7210891B2 (ja) * 2018-03-29 2023-01-24 セイコーエプソン株式会社 回路装置、発振器、電子機器及び移動体
US10560253B2 (en) * 2018-05-31 2020-02-11 Nio Usa, Inc. Systems and methods of controlling synchronicity of communication within a network of devices
CN110896384B (zh) * 2018-09-13 2023-04-11 中兴通讯股份有限公司 频偏估计补偿方法、装置、通信设备及存储介质
CN112118053B (zh) * 2019-06-21 2022-01-14 华为技术有限公司 信号处理方法以及光接收机
US20220393918A1 (en) * 2019-10-07 2022-12-08 Lg Electronics Inc. Multi-layer transmission and reception method in 1-bit quantization system, and apparatus therefor
JP7166502B2 (ja) * 2020-08-04 2022-11-07 三菱電機株式会社 信号処理装置、信号処理方法、受信器及び光通信システム
CN112217757B (zh) * 2020-09-30 2023-06-27 北京升哲科技有限公司 自适应频偏跟踪装置以及接收机
US11821807B2 (en) 2021-01-25 2023-11-21 Ciena Corporation Estimating nonlinear phase shift in a multi-span fiber-optic link using a coherent receiver
US11387935B2 (en) * 2021-02-19 2022-07-12 Ultralogic 6G, Llc Error detection and correction by modulation quality in 5G/6G
CN112769497B (zh) * 2021-02-23 2022-02-22 苏州大学 对大容量高阶qam相干光进行非线性补偿的方法
US11824667B2 (en) 2022-09-06 2023-11-21 Ultralogic 6G Llc Waveform indicators for fault localization in 5G and 6G messages
US11770209B2 (en) 2022-09-06 2023-09-26 Ultralogic 6G, Llc Signal quality input for error-detection codes in 5G and 6G
US11784764B2 (en) 2022-09-06 2023-10-10 Ultralogic 6G, Llc Artificial intelligence for fault localization and mitigation in 5G/6G
US11799585B2 (en) 2022-09-06 2023-10-24 David E. Newman Error correction in 5G and 6G using AI-based analog-digital correlations

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6560294B1 (en) * 1998-09-25 2003-05-06 Texas Instruments Incorporated Phase estimation in carrier recovery of phase-modulated signals such as QAM signals
WO2006049628A1 (en) * 2004-11-16 2006-05-11 Thomson Licensing Method and apparatus for carrier recovery using phase interpolation with assist
WO2011099589A1 (ja) * 2010-02-09 2011-08-18 日本電気株式会社 位相偏差・搬送波周波数偏差補償装置および位相偏差・搬送波周波数偏差補償方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2542536B1 (fr) * 1983-03-07 1985-07-12 Trt Telecom Radio Electr Dispositif de recuperation de la porteuse d'un signal d'entree module par sauts d'amplitude et par sauts de phase
US5970093A (en) * 1996-01-23 1999-10-19 Tiernan Communications, Inc. Fractionally-spaced adaptively-equalized self-recovering digital receiver for amplitude-Phase modulated signals
JP4109003B2 (ja) * 2002-01-21 2008-06-25 富士通株式会社 情報記録再生装置、信号復号回路及び方法
JP5635457B2 (ja) * 2011-07-01 2014-12-03 日本電信電話株式会社 無線通信システム、通信装置、無線通信方法、及び送信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6560294B1 (en) * 1998-09-25 2003-05-06 Texas Instruments Incorporated Phase estimation in carrier recovery of phase-modulated signals such as QAM signals
WO2006049628A1 (en) * 2004-11-16 2006-05-11 Thomson Licensing Method and apparatus for carrier recovery using phase interpolation with assist
WO2011099589A1 (ja) * 2010-02-09 2011-08-18 日本電気株式会社 位相偏差・搬送波周波数偏差補償装置および位相偏差・搬送波周波数偏差補償方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. VITERBI ET AL.: "Nonlinear estimation of PSK- modulated carrier phase with application to burst digital transmission", IEEE TRANSACTIONS ON INFORMATION THEORY, vol. 29, no. 4, July 1983 (1983-07-01), pages 543 - 551 *
T. PFAU ET AL.: "Hardware-Efficient Coherent Digital Receiver Concept With Feedforward Carrier Recovery for M -QAM Constellations", IEEE JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 27, no. 8, April 2009 (2009-04-01), pages 989 - 999 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109076040A (zh) * 2016-06-17 2018-12-21 Ntt 电子株式会社 相位补偿装置、相位补偿方法和通信装置
EP3402146A4 (en) * 2016-06-17 2019-08-28 NTT Electronics Corporation PHASE COMPENSATION DEVICE, PHASE COMPENSATION PROCESS AND COMMUNICATION DEVICE
CN109076040B (zh) * 2016-06-17 2021-04-16 Ntt 电子株式会社 相位补偿装置、相位补偿方法和通信装置
WO2020174656A1 (ja) * 2019-02-28 2020-09-03 三菱電機株式会社 受信信号処理装置、受信信号処理方法及び光受信器
WO2023119627A1 (ja) * 2021-12-24 2023-06-29 日本電信電話株式会社 利得調整方法、光受信装置及びコンピュータプログラム

Also Published As

Publication number Publication date
US20160323091A1 (en) 2016-11-03
US9722768B2 (en) 2017-08-01
JP6156807B2 (ja) 2017-07-05
JPWO2015072515A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6156807B2 (ja) 受信信号処理装置、通信システム及び受信信号処理方法
CN110337788B (zh) 光传输特性估计方法、光传输特性补偿方法、光传输特性估计系统及光传输特性补偿系统
Zhong et al. Linewidth-tolerant and low-complexity two-stage carrier phase estimation based on modified QPSK partitioning for dual-polarization 16-QAM systems
Winzer et al. Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM
US11025405B2 (en) High capacity optical data transmission using intensity-modulation and direct-detection
WO2018042838A1 (ja) 光伝送歪補償装置、光伝送歪補償方法及び通信装置
US9225429B2 (en) Recovering data from quadrature phase shift keying modulated optical signals
US10148465B2 (en) Training assisted joint equalization
US9537683B1 (en) Method and apparatus for residual phase noise compensation
US11323184B2 (en) Chromatic dispersion equalizer adaption systems and methods
Selmi et al. Block-wise digital signal processing for PolMux QAM/PSK optical coherent systems
Yoshida et al. Simultaneous monitoring of frequency-dependent IQ imbalances in a dual-polarization IQ modulator by using a single photodetector: A phase retrieval approach
Lu et al. Frequency offset estimation for 32-QAM based on constellation rotation
JP5657168B2 (ja) 偏波推定器、偏波分離器、光受信器、偏波推定方法、および、偏波分離方法
Zhao et al. Independent component analysis for phase and residual frequency offset compensation in OQAM multicarrier systems
US8238760B2 (en) Optical receiver with improved noise tolerance
Chen et al. Blind identification of the shaping rate for probabilistic shaping QAM signal
Rozental et al. Low complexity blind phase recovery algorithm with increased robustness against cycle-slips
Liu et al. Parallelized Kalman filters for mitigation of the excess phase noise of fast tunable lasers in coherent optical communication systems
Nguyen et al. New metric for IQ imbalance compensation in optical QPSK coherent systems
Pan et al. Coded-aided phase tracking for coherent fiber channels
BR102012016714B1 (pt) método digital de demultiplexação da polarização em receptores coerentes para modulação pm-qpsk
US11451367B1 (en) Techniques for enhanced clock recovery
Shu et al. Experimental investigation of extended Kalman Filter combined with carrier phase recovery for 16-QAM system
Bofang et al. Block carrier-phase recovery with recursive noise adaptive Kalman filtering for 16-QAM signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015547787

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15034282

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14861825

Country of ref document: EP

Kind code of ref document: A1