JP6760017B2 - 光受信器 - Google Patents

光受信器 Download PDF

Info

Publication number
JP6760017B2
JP6760017B2 JP2016230625A JP2016230625A JP6760017B2 JP 6760017 B2 JP6760017 B2 JP 6760017B2 JP 2016230625 A JP2016230625 A JP 2016230625A JP 2016230625 A JP2016230625 A JP 2016230625A JP 6760017 B2 JP6760017 B2 JP 6760017B2
Authority
JP
Japan
Prior art keywords
light intensity
intensity
input light
polarization
lane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016230625A
Other languages
English (en)
Other versions
JP2018088607A (ja
Inventor
将行 栗栖
将行 栗栖
秀一 安田
秀一 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Optical Components Ltd
Original Assignee
Fujitsu Optical Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Optical Components Ltd filed Critical Fujitsu Optical Components Ltd
Priority to JP2016230625A priority Critical patent/JP6760017B2/ja
Priority to US15/723,462 priority patent/US10044439B2/en
Publication of JP2018088607A publication Critical patent/JP2018088607A/ja
Application granted granted Critical
Publication of JP6760017B2 publication Critical patent/JP6760017B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6166Polarisation demultiplexing, tracking or alignment of orthogonal polarisation components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/613Coherent receivers including phase diversity, e.g., having in-phase and quadrature branches, as in QPSK coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Description

本発明は、偏波多重光信号を受信する光受信器に係わる。
大容量の光通信を実現する技術の1つとしてコヒーレント受信が実用化されている。コヒーレント光受信器は、ローカル光源を備え、受信光信号とローカル発振光とを混合させる。ここで、受信光信号のキャリア波長とローカル発振光の波長とは、ほぼ同じである。混合光は、受光器により電気信号に変換される。この電気信号は、増幅器(例えば、トランスインピーダンスアンプ(TIA))により増幅された後、信号処理回路に導かれる。信号処理回路は、復調回路などを備え、送信信号を再生する。
上述のコヒーレント光受信器において、受光器の感度を良くするためには、受光器の入力光強度(または、入力光パワー)が適切に制御されていることが要求される。したがって、コヒーレント光受信器は、多くのケースにおいて、受信光信号の強度を調整する可変光減衰器(VOA:Variable Optical Attenuator)を備える。この場合、コヒーレント光受信器は、受信光信号の強度を検出する機能を備える。そして、好適な強度の光信号が受光器に導かれるように、この機能による検出結果に基づいて可変光減衰器が制御される。
このように、コヒーレント光受信器は、受信光信号の強度を検出する機能を備える。受信光信号の強度は、例えば、上述した増幅器の利得に基づいて検出される(例えば、特許文献1)。
米国特許公開公報2016/0164624
大容量の光通信を実現する他の技術として、偏波多重が実用化されている。偏波多重通信では、互いに直交する1組の偏波(X偏波およびY偏波)を利用してデータが伝送される。よって、偏波多重でない通信と比較すると、偏波多重通信による1波長当たりの伝送容量は2倍である。
ところが、コヒーレント光受信器が偏波多重光信号を受信する場合、各偏波についてI成分およびQ成分が検出される。したがって、偏波多重光信号から4つのレーン(XI、XQ、YI、YQ)に対応する電気信号がそれぞれ生成され、各電気信号がそれぞれ増幅器で増幅される。そして、コヒーレント光受信器に実装されるプロセッサは、各増幅器の利得に基づいて各レーンの入力光強度を求め、それらの総和を計算することで偏波多重光信号の入力光強度を検出する。よって、コヒーレント光受信器が偏波多重光信号を受信する場合、入力光強度を算出するためのプロセッサの負荷が大きい。
なお、コヒーレント光受信器の小型化を図るためには、プロセッサが複数のタスクを実行することが好ましい。このため、入力光強度を算出するためのプロセッサの負荷が大きいときは、他のタスクが遅延するおそれがある。
本発明の1つの側面に係わる目的は、偏波多重光信号の入力光強度を検出するためのプロセッサの処理を削減することである。
本発明の1つの態様の光受信器は、偏波多重光信号とローカル発振光とを混合させることにより、第1の偏波における同相成分を表す第1の電気信号、第1の偏波における直交成分を表す第2の電気信号、第2の偏波における同相成分を表す第3の電気信号、第2の偏波における直交成分を表す第4の電気信号を生成するコヒーレント受信回路と、前記第1〜第4の電気信号をそれぞれ増幅する第1〜第4の増幅器と、前記第1〜第4の増幅器の出力信号の振幅がそれぞれ目標振幅に近づくように前記第1〜第4の増幅器の利得を制御する利得制御器と、前記第1の増幅器の利得に基づいて前記第1の偏波における同相成分の入力光強度を表す第1の光強度を算出し、前記第2の増幅器の利得に基づいて前記第1の偏波における直交成分の入力光強度を表す第2の光強度を算出し、前記第3の増幅器の利得に基づいて前記第2の偏波における同相成分の入力光強度を表す第3の光強度を算出し、前記第4の増幅器の利得に基づいて前記第2の偏波における直交成分の入力光強度を表す第4の光強度を算出する第1の光強度算出部と、前記第1〜第4の光強度に基づいて、前記第1の偏波の入力光強度と前記第2の偏波の入力光強度との比を表す偏波依存強度比、および前記同相成分の入力光強度と前記直交成分の入力光強度との比を表す位相依存強度比を算出する強度比算出部と、前記第1〜第4の増幅器のうちから選択される増幅器の利得に基づいて算出される光強度、前記偏波依存強度比、および前記位相依存強度比に基づいて、前記偏波多重光信号の入力光強度を算出する第2の光強度算出部と、を備える。
上述の態様によれば、偏波多重光信号の入力光強度を検出するためのプロセッサの処理が削減される。
第1の実施形態に係わる光受信器の一例を示す図である。 複数のタスクを実行する構成を模式的に示す図である。 増幅器の利得と入力光強度との依存関係の一例を示す図である。 依存関係情報の波長依存および温度依存を説明する図である。 X/Y強度比およびI/Q強度比を算出する方法の一例を示すフローチャートである。 目的波長チャネルの入力光強度を算出する方法の一例を示すフローチャートである。 第1の実施形態の方法を使用しないケースにおけるCPU負荷の一例を示す図である。 第1の実施形態におけるCPU負荷の一例を示す図である。 第2の実施形態に係わる光受信器の一例を示す図である。 第2の実施形態において目的波長チャネルの入力光強度を算出する方法の一例を示すフローチャートである。 第3の実施形態に係わる光受信器の一例を示す図である。 第4の実施形態に係わる光受信器の一例を示す図である。
<第1の実施形態>
図1は、本発明の第1の実施形態に係わる光受信器の一例を示す。第1の実施形態に係わる光受信器100は、コヒーレント受信により、WDM光信号中に多重化されている複数の光信号の中から所望の波長の光信号を選択的に受信することができる。なお、以下の記載では、「光強度」は、「光パワー」と同義であるものとする。
光受信器100は、可変光減衰器(VOA)1、偏波ビームスプリッタ(PBS)2、ローカル発振器3、90度光ハイブリッド回路4X、4Y、受光器(PD)5、増幅器6XI、6XQ、6YI、6YQ、振幅検出器7、利得制御器(AGC)8、CPU9、メモリ10、温度センサ11を備える。なお、光受信器100は、図1に示していない他の回路要素を備えていてもよい。
可変光減衰器1は、CPU9から与えられる指示に従って、入力光信号を減衰させる。ただし、光受信器100は、可変光減衰器1を備えていなくてもよい。偏波ビームスプリッタ2は、入力光信号を互いに直交する偏波成分(X偏波成分およびY偏波成分)に分離する。偏波ビームスプリッタ2から出力されるX偏波成分およびY偏波成分は、それぞれ90度光ハイブリッド回路4Xおよび4Yに導かれる。ローカル発振器3は、波長指示により指定される目的波長のローカル発振光を生成する。波長指示は、WDM光信号から抽出すべき波長チャネルを指定する。なお、波長指示は、例えば、ユーザまたはネットワーク管理者から与えられる。或いは、波長指示は、上位レイヤのアプリケーションから与えられるようにしてもよい。
90度光ハイブリッド回路4Xは、入力光信号のX偏波成分とローカル発振光とを混合させ、目的波長のXI成分およびXQ成分を生成する。XI成分は、入力光信号のX偏波のI成分を表し、XQ成分は、入力光信号のX偏波のQ成分を表す。同様に、90度光ハイブリッド回路4Yは、入力光信号のY偏波成分とローカル発振光とを混合させ、YI成分およびYQ成分を生成する。YI成分は、入力光信号のY偏波のI成分を表し、YQ成分は、入力光信号のY偏波のQ成分を表す。この実施例では、XI成分、XQ成分、YI成分、YQ成分は、それぞれ差動信号で表される。そして、XI成分、XQ成分、YI成分、YQ成分は、それぞれ対応する受光器5により電気信号に変換される。
なお、偏波ビームスプリッタ2、ローカル発振器3、90度光ハイブリッド回路4X、4Y、受光器5は、コヒーレント受信回路の一例である。ここで、コヒーレント受信回路は、入力光信号とローカル発振光とを混合させることにより、XI成分を表す第1の電気信号、XQ成分を表す第2の電気信号、YI成分を表す第3の電気信号、YQ成分を表す第4の電気信号を生成する。
以下の記載では、偏波および位相成分の組み合わせを「レーン」と呼ぶことがある。例えば、X偏波におけるI成分を「レーンXI」と呼ぶことがある。また、各レーンには、それぞれ対応する増幅器が実装されている。具体的には、レーンXI、XQ、YI、YQには、それぞれ増幅器6XI、6XQ、6YI、6YQが実装されている。したがって、レーンを選択または指定することは、増幅器を選択または指定することと同義である。
増幅器6XI、6XQ、6YI、6YQは、それぞれ対応するレーンに設けられる受信器5の出力信号を増幅する。すなわち、レーンXIに対して設けられる増幅器6XIは、入力光信号のXI成分を表す電気信号を増幅し、レーンXQに対して設けられる増幅器6XQは、入力光信号のXQ成分を表す電気信号を増幅する。同様に、レーンYIに対して設けられる増幅器6YIは、入力光信号のYI成分を表す電気信号を増幅し、レーンYQに対して設けられる増幅器6YQは、入力光信号のYQ成分を表す電気信号を増幅する。復調回路は、増幅器6XI、6XQ、6YI、6YQの出力信号を復調して送信データを再生する。
振幅検出器7は、各増幅器6XI、6XQ、6YI、6YQの出力信号の振幅(以下、出力振幅)を検出する。利得制御器8は、AGCモードで各増幅器6XI、6XQ、6YI、6YQの利得を制御する。具体的には、利得制御器8は、各増幅器6XI、6XQ、6YI、6YQの出力振幅がそれぞれ目標振幅に近づくように各増幅器6XI、6XQ、6YI、6YQの利得を制御する。目標振幅は、例えば、CPU9から指定される。
CPU9は、目的波長チャネルの入力光強度を算出する。加えて、CPU9は、算出した入力光強度に基づいて可変光減衰器1を制御してもよい。この場合、CPU9は、例えば、受光器5の感度が高くなるように、可変光減衰器1の減衰量を制御する。さらに、CPU9は、他の機能を提供してもよい。なお、CPU9は、プロセッサおよびメモリを含む。また、CPU9は、与えられるプログラムを実行することにより上述の機能を提供する。
メモリ10は、後述する依存関係情報、X/Y強度比情報、I/Q強度比情報を格納する。尚、メモリ10は、CPU9により実行されるプログラムを格納してもよい。また、メモリ10は、図1に示していない他の情報を格納してもよい。温度センサ11は、増幅器(6XI、6XQ、6YI、6YQ)の近傍に実装され、増幅器の近傍の温度を測定する。
上記構成の光受信器100において、目的波長チャネルの入力光強度は、各レーン(XI、XQ、YI、YQ)の入力光強度に基づいて算出され得る。ここで、各レーンの入力光強度は、この実施例では、対応する増幅器の利得に基づいて算出される。例えば、レーンXIの入力光強度は、増幅器6XIの利得に基づいて算出される。具体的には、CPU9は、目的波長チャネルの入力光強度を算出するときに、利得制御部8にアクセスして各増幅器6XI、6XQ、6YI、6YQの利得情報を取得し、取得した利得情報に基づいて各レーンの入力光強度を算出する。そして、CPU9は、各レーンの入力光強度の総和に計算することで目的波長チャネルの入力光強度を検出することができる。
他方、光受信器100の小型化および/または低コスト化が要求される場合、CPU9は、図2に示すように、複数のタスクを実行することが好ましい。各タスクは、対応するデバイスにアクセスする処理を含む。なお、図2に示すデバイス21a、21b、...は、可変光減衰器1、振幅検出器7、温度センサ11、復調回路などに相当する。
複数のタスクは、例えば、時間分割多重方式で実行される。ここで、CPU9は、各増幅器6XI、6XQ、6YI、6YQの利得情報を利得制御部8から順番に取得し、それらの利得情報を使用して目的波長チャネルの入力光強度を順番に算出する。この場合、利得制御部8から利得情報を取得するための読出し時間が長くなってしまう。すなわち、入力光強度を算出するために要する時間が長くなる。この結果、他のタスクが遅延するおそれがある。或いは、他のタスクの実行間隔を長くする必要が生じるおそれがある。
そこで、光受信器100は、4つのレーン(XI、XQ、YI、YQ)の中の1つのレーンの利得情報に基づいて、目的波長チャネルの入力光強度を算出する。ここで、各レーンの入力光強度が互いに同じであれば、いずれか1つのレーンの入力光強度を4倍することで目的波長チャネルの入力光強度が算出され得る。しかし、偏波ビームスプリッタ2から出力されるX偏波成分およびY偏波成分の強度は、互いに同じであるとは限らない。また、各90度光ハイブリッド回路(4X、4Y)により生成されるI成分およびQ成分の強度も、互いに同じであるとは限らない。したがって、光受信器100は、これらの要因を考慮して目的波長チャネルの入力光強度を算出する。
CPU9は、与えられたプログラムを実行することにより、依存関係生成部31、1レーン強度算出部32、補正部33、X/Y強度比算出部34、I/Q強度比算出部35、入力光強度算出部36の各機能を提供することができる。なお、CPU9は、図1に示していない他の機能を提供することもできる。
依存関係生成部31は、各レーンに対して依存関係情報を生成する。依存関係情報は、増幅器の利得と入力光強度との間の関係を表す。そして、依存関係生成部31により生成される依存関係情報は、メモリ10に格納される。
図3は、レーンXIにおける増幅器の利得と入力光強度との依存関係の一例を示す。横軸は、増幅器6XIの利得制御電圧を表し、縦軸は、レーンXIの入力光強度を表す。なお、増幅器6XIの出力振幅は、25℃の環境下で、AGCモードにより1Vppに保持されている。
この依存関係は、例えば、プローブ光源を用いて光受信器100の入力光強度を変えながら、各サンプリング点において利得制御電圧を測定することにより生成される。この測定において、レーンXIの入力光強度は、レーンXIに対して実装されている受光器5の出力信号から算出される。なお、増幅器6XIの利得は、利得制御器8から増幅器6XIに印加される利得制御電圧に一意に対応する。
依存関係情報は、例えば、増幅器の利得と入力光強度との依存関係を表す依存関係式で表される。この場合、依存関係式は、複数のサンプリング点における測定値に基づいて近似曲線を求めることで生成される。また、依存関係式は、レーン毎に生成される。
光受信器100が複数の目標出力振幅の中から選択的に任意の目標出力振幅を設定可能なときは、各目標出力振幅に対して依存関係情報が生成される。例えば、利得制御器8によるAGCが1Vppおよび1.5Vppを提供するときは、1Vppおよび1.5Vppに対してそれぞれ依存関係情報が生成される。
なお、増幅器(6XI、6XQ、6YI、6YQ)の出力振幅は、利得制御器8により目標振幅に近づくように制御される。ここで、この目標振幅は、CPU9にとって既知である。よって、CPU9は、依存関係情報を利用することにより、目的レーンに対応する増幅器の利得(または、利得制御電圧)からその目的レーンの入力光強度を算出することができる。
増幅器の利得と入力光強度との依存関係は、入力光信号の波長および増幅器の温度に依存して変化する。したがって、依存関係生成部31は、波長依存性を補償するための波長補正情報および温度依存性を補償するための温度補正情報を生成してもよい。
波長補正情報を生成するときには、プローブ光の波長を変化させながら、異なる波長に対して増幅器の利得および入力光強度が測定される。そうすると、図4(a)に示すように、複数の異なる波長に対してそれぞれ依存関係カーブが得られる。そして、依存関係生成部31は、これらの依存関係カーブに基づいて波長補正情報を生成する。波長補正情報は、例えば、ΔP1[μW/nm]で表される。この場合、波長補正情報は「入力光信号の波長が基準波長に対して1nmシフトしたときに、入力光強度をΔP1μWだけ補正する」を意味する。なお、基準波長は、例えば、WDM光信号の信号帯の中心波長である。
温度補正情報を生成するときには、増幅器の近傍の温度を変化させながら、異なる温度に対して増幅器の利得および入力光強度が測定される。そうすると、図4(b)に示すように、複数の異なる温度に対してそれぞれ依存関係カーブが得られる。そして、依存関係生成部31は、これらの依存関係カーブに基づいて温度補正情報を生成する。温度補正情報は、例えば、ΔP2[μW/℃]で表される。この場合、温度補正情報は「増幅器の近傍の温度が基準温度に対して1℃シフトしたときに、入力光強度をΔP2μWだけ補正する」を意味する。なお、基準温度は、予め指定された温度(例えば、25度)である。
1レーン強度算出部32は、各レーンの入力光強度を算出する。このとき、1レーン強度算出部32は、メモリ10に格納されている依存関係情報を参照する。例えば、レーンXIの入力光強度を算出するときは、1レーン強度算出部32は、増幅器6XIの利得を検出する。そして、1レーン強度算出部32は、図3に示す依存関係情報に基づいて、増幅器6XIの利得に対応する入力光強度を算出する。また、1レーン強度算出部32は、同様の方法でレーンXQ、レーンYI、レーンYQの入力光強度をそれぞれ算出する。
補正部33は、必要に応じて、波長、温度、または出力振幅に基づいて、1レーン強度算出部32により算出される入力光強度を補正する。即ち、補正部33は、入力光強度を算出すべき目的波長チャネルのキャリア波長に基づいて、1レーン強度算出部32により算出される入力光強度を上述の波長補正情報を利用して補正することができる。また、補正部33は、温度センサ11により測定される温度に基づいて、1レーン強度算出部32により算出される入力光強度を上述の温度補正情報を利用して補正することができる。さらに、補正部33は、振幅検出部7により検出される出力振幅と目的出力振幅との差分に基づいて、1レーン強度算出部32により算出される入力光強度を補正してもよい。
X/Y強度比算出部34は、1レーン強度算出部32により算出される各レーンの入力光強度に基づいて、目的波長チャネルのX偏波およびY偏波の入力光強度の比(X/Y強度比、偏波依存強度比)を算出する。X/Y強度比は、例えば、(1)式で算出される。なお、強度XI、強度XQ、強度YI、強度YQは、それぞれ、1レーン強度算出部32により算出されるレーンXIの入力光強度、レーンXQの入力光強度、レーンYIの入力光強度、レーンYQの入力光強度を表す。
Figure 0006760017
I/Q強度比算出部35は、1レーン強度算出部32により算出される各レーンの入力光強度に基づいて、目的波長チャネルのI成分およびQ成分の入力光強度の比(I/Q強度比、位相依存強度比)を算出する。I/Q強度比は、例えば、X偏波を利用して(2)式で算出される。
Figure 0006760017
また、I/Q強度比算出部35は、Y偏波を利用して(3)式でI/Q強度比を算出してもよい。
Figure 0006760017
さらに、I/Q強度比算出部35は、X偏波およびY偏波を利用して(4)式でI/Q強度比を算出してもよい。
Figure 0006760017
なお、X/Y強度比算出部34により算出されるX/Y強度比を表すX/Y強度比情報はメモリ10に格納される。また、I/Q強度比算出部35により算出されるI/Q強度比を表すI/Q強度比情報もメモリ10に格納される。
入力光強度算出部36は、指定されたレーンの入力光強度、X/Y強度比、I/Q強度比に基づいて、目的波長チャネルの入力光強度を算出する。例えば、レーンXIが指定されたときは、入力光強度算出部36は、以下の手順で目的波長チャネルの入力光強度を算出する。
(1)1レーン強度算出部32により算出されるレーンXIの入力光強度(強度XI)およびI/Q強度比に基づいて、レーンXQの入力光強度(強度XQ)を算出する。
(2)強度XIと強度XQとを足し合わせることによりX偏波の入力光強度を算出する。
(3)X偏波の入力光強度(強度X)およびX/Y強度比に基づいて、Y偏波の入力光強度(強度Y)を算出する。
(4)強度Xと強度Yとを足し合わせることにより目的波長チャネルの入力光強度を算出する。
このように、入力光強度算出部36は、4つのレーンの中から指定される1つのレーンの入力光強度に基づいて、目的波長チャネルの入力光強度を算出することができる。したがって、すべてのレーンについての入力光強度に基づいて目的波長チャネルの入力光強度を算出する方法と比較して、第1の実施形態によれば、目的波長チャネルの入力光強度を算出するためのCPU9の負荷が削減される。
また、第1の実施形態では、X偏波とY偏波との入力光強度の比を表すX/Y強度比、およびI成分とQ成分との入力光強度の比を表すI/Q強度比が予め検出されている。そして、入力光強度算出部36は、X/Y強度比およびI/Q強度比を利用して目的波長チャネルの入力光強度を算出する。したがって、X偏波とY偏波との入力光強度が互いに異なっている場合、及び/又は、I成分とQ成分との入力光強度が互いに異なっている場合であっても、1つのレーンの入力光強度に基づいて目的波長チャネルの入力光強度を精度よく算出することができる。
図5は、X/Y強度比およびI/Q強度比を算出する方法の一例を示すフローチャートである。このフローチャートの処理は、例えば、光受信器100がデータ信号を受信する前にCPU9により実行される。また、CPU9は、このフローチャートの処理を定期的に実行してもよい。なお、このフローチャートの処理が実行される前に、依存関係情報が生成されてメモリ10に格納されているものとする。
S1〜S4の処理は、各レーン(XI、XQ、YI、YQ)に対してそれぞれ実行される。以下では、レーンXIについてS1〜S4が実行されるときの処理を記載する。
S1において、1レーン強度算出部32は、利得制御器8にアクセスして増幅器6XIの利得を表す利得制御電圧を取得する。S2において、1レーン強度算出部32は、レーンXIについての依存関係情報をメモリ10から取得する。S3において、1レーン強度算出部32は、S2で取得した依存関係情報に基づいて、S1で取得した利得制御電圧に対応する入力光強度を算出する。この結果、レーンXIの入力光強度が算出される。S4において、補正部33は、増幅器6XIの出力振幅に基づいて、S3で算出された入力光強度を補正する。なお、増幅器6XIの出力振幅は、振幅検出部7により検出される。このように、各レーン(XI、XQ、YI、YQ)に対してそれぞれS1〜S4の処理を実行することにより、各レーンの入力光強度が算出される。
S5において、補正部33は、増幅器の近傍の温度に基づいて、各レーンについて算出された入力光強度を補正する。増幅器の近傍の温度は、温度センサ11によって測定される。S6において、補正部33は、目的波長チャネルのキャリア波長に基づいて、各レーンについて算出された入力光強度を補正する。
S7において、X/Y強度比算出部34は、各レーンの入力光強度に基づいてX/Y強度比を算出する。X/Y強度比は、例えば、(1)式で算出される。S8において、I/Q強度比算出部35は、各レーンの入力光強度に基づいてI/Q強度比を算出する。I/Q強度比は、例えば、(2)〜(4)式のいずれかで算出される。CPU9は、算出したX/Y強度比を表すX/Y強度比情報および算出したI/Q強度比を表すI/Q強度比情報をメモリ10に格納する。なお、メモリ10にX/Y強度比情報およびI/Q強度比情報が既に格納されているときは、CPU9は、新たに算出したX/Y強度比およびI/Q強度比でX/Y強度比情報およびI/Q強度比情報を更新する。
図6は、目的波長チャネルの入力光強度を算出する方法の一例を示すフローチャートである。このフローチャートの処理は、例えば、CPU9により定期的に実行される。尚、このフローチャートの処理が実行される前に、X/Y強度比情報およびI/Q強度比情報がメモリ10に格納されているものとする。また、以下の記載では、4個の増幅器(6XI、6XQ、6YI、6YQ)のうちから増幅器6XIが選択されるものとする。すなわち、レーンXIの入力光強度に基づいて目的波長チャネルの入力光強度が算出されるものとする。
S11において、入力光強度算出部36は、利得制御器8にアクセスして増幅器6XIの利得を表す利得制御電圧を取得する。S12において、入力光強度算出部36は、レーンXIについての依存関係情報をメモリ10から取得する。S13において、入力光強度算出部36は、S12で取得した依存関係情報に基づいて、S11で取得した利得制御電圧に対応する入力光強度を算出する。この結果、レーンXIの入力光強度が算出される。なお、入力光強度算出部36により実行されるS11〜S13は、図5において1レーン強度算出部32により実行されるS1〜S3と実質的に同じである。この後、入力光強度算出部36は、増幅器6XIの出力振幅、温度、および/または目的波長チャネルのキャリア波長に基づいて、S3で得られた入力光強度を補正してもよい。
S14において、入力光強度算出部36は、レーンXIの入力光強度およびI/Q強度比に基づいて、レーンXQの入力光強度を算出する。S15において、入力光強度算出部36は、レーンXIの入力光強度およびレーンXQの入力光強度に基づいて目的波長チャネルのX偏波の入力光強度を算出する。S16において、入力光強度算出部36は、X偏波の入力光強度およびX/Y強度比に基づいて、目的波長チャネルのY偏波の入力光強度を算出する。そして、S17において、入力光強度算出部36は、X偏波の入力光強度およびY偏波の入力光強度に基づいて、目的波長チャネルの入力光強度を算出する。
S14〜S17では、例えば、以下の計算が実行される。なお、P_XIは、レーンXIの入力光強度を表す。P_XQは、レーンXQの入力光強度を表す。R_IQは、I/Q強度比を表す。P_Xは、目的波長チャネルのX偏波の入力光強度を表す。P_Yは、目的波長チャネルのY偏波の入力光強度を表す。R_XYは、X/Y強度比を表す。P_INは、目的波長チャネルの入力光強度を表す。
S14:P_XQ=P_XI×R_IQ
S15:P_X=P_XI+P_XQ
S16:P_Y=P_X×R_XY
S17:P_IN=P_X+P_Y
なお、上述の実施例では、レーンXIの入力光強度に基づいて目的波長チャネルの入力光強度が算出されるが、入力光強度算出部36は、他のレーン入力光強度に基づいて目的波長チャネルの入力光強度を算出してもよい。例えば、レーンYQの入力光強度に基づいて目的波長チャネルの入力光強度を算出する場合には、S14〜S17において以下の計算が実行される。
S14:P_YI=P_YQ×(1/R_IQ
S15:P_Y=P_YI+P_YQ
S16:P_X=P_Y×(1/R_XY
S17:P_IN=P_X+P_Y
このように、第1の実施形態においては、4つのレーンの中から指定される1つのレーンの入力光強度に基づいて、目的波長チャネルの入力光強度が算出される。したがって、すべてのレーンについての入力光強度に基づいて目的波長チャネルの入力光強度を算出する方法と比較して、第1の実施形態によれば、目的波長チャネルの入力光強度を算出するためのCPU9の負荷が削減される。また、X/Y強度比およびI/Q強度比を用いることなく1つのレーンの入力光強度に基づいて目的波長チャネルの入力光強度を算出する方法と比較して、第1の実施形態によれば、目的波長チャネルの入力光強度を精度よく算出することができる。
図7〜図8は、第1の実施形態による効果の一例を示す。なお、図7〜図8に示す例では、CPU9は、時間分割多重方式でタスク1、タスク2、および入力光強度を算出するタスクを並列に実行するものとする。
4つのレーン(XI、XQ、YI、YQ)の入力光強度をそれぞれ検出する方法においては、図7に示すように、1回の光強度算出タスクに要する時間が長い。このため、光強度算出タスクが実行されるときは、他のタスクの実行が遅れるおそれがある。図7では、点線で描かれているタスク1、2がそれぞれ遅延している。
このように、各レーン(XI、XQ、YI、YQ)の入力光強度をそれぞれ検出する方法においては、他のタスクの実行が遅れるおそれがあるので、光強度算出タスクの実行周期を高くすることは好ましくない。このため、光受信器において入力光強度の変動の検出が遅れるおそれがある。したがって、例えば、光受信器の入力光強度が急激に低下した場合には、可変光減衰器の制御が遅れてしまい、受光器の入力光強度が許容レベルより低くなることがある。この場合、光受信器は、受信信号を正しく復調できないことがある。
これに対して、第1の実施形態では、1つのレーンの利得制御電圧に基づいて目的波長チャネルの入力光強度が算出されるので、図8に示すように、1回の光強度算出タスクに要する時間は短い。このため、光強度算出タスクを実行しても、他のタスクに影響が及ばない。
このように、第1の実施形態では、他のタスクは光強度算出タスクの影響を受けにくいので、光強度算出タスクの実行周期を高くできる。このため、光受信器100において入力光強度の変動を即座に検出できる。したがって、例えば、光受信器100の入力光強度が急激に低下した場合であっても、可変光減衰器1が即座に制御され、受光器5の入力光強度は許容範囲内に維持され得る。この場合、光受信器100は、受信信号を正しく復調できる。
<第2の実施形態>
第1の実施形態では、予め指定されたレーン(例えば、レーンXI)の利得制御電圧が検出され、その利得制御電圧に基づいて目的波長チャネルの入力光強度が算出される。これに対して、第2の実施形態では、4つのレーン(XI、XQ、YI、YQ)の中から順番に1つのレーンが選択され、選択されたレーンの利得制御電圧に基づいて目的波長チャネルの入力光強度が算出される。
図9は、本発明の第2の実施形態に係わる光受信器の一例を示す。第2の実施形態に係わる光受信器200の構成は、第1の実施形態に係わる光受信器100と実質的に同じである。ただし、第2の実施形態では、CPU9は、レーン選択部37を備える。また、メモリ10には、レーン情報が格納される。
レーン選択部37は、利得制御電圧を検出すべきレーン(即ち、利得の検出すべき増幅器)を選択する。この実施例では、光受信器200において目的波長チャネルの入力光強度が繰り返し算出される場合、レーン選択部37は、4つのレーン(XI、XQ、YI、YQ)の中からサイクリックに1つのレーンを選択する。そして、入力光強度算出部36は、レーン選択部37により選択されたレーンの利得制御電圧に基づいて目的波長チャネルの入力光強度を算出する。なお、メモリ10に格納されるレーン情報は、レーン選択部37により選択されるレーンを識別する。
図10は、第2の実施形態において目的波長チャネルの入力光強度を算出する方法の一例を示すフローチャートである。このフローチャートの処理は、CPU9により定期的に実行される。
S21において、レーン選択部37は、メモリ10からレーン情報を取得する。レーン情報は、4つのレーン(XI、XQ、YI、YQ)を識別する。よって、レーン情報は、ゼロ、1、2、または3を表す。また、レーン情報の初期値はゼロである。そして、レーン選択部37は、S22において、レーン情報に応じてレーンを選択する。
レーン情報がゼロであるときは、レーン選択部37は、レーンXIを選択する。この場合、入力光強度算出部36は、S23において、レーンXIの入力光強度を算出する。なお、S23の処理は、図6に示すS11〜S13の処理と実質的に同じである。即ち、入力光強度算出部36は、増幅器6XIの利得(または、利得制御電圧)に基づいて、レーンXIの入力光強度を算出する。
同様に、レーン情報が1であるときには、レーンXQが選択され、入力光強度算出部36は、S24において、レーンXQの入力光強度を算出する。レーン情報が2であるときには、レーンYIが選択され、入力光強度算出部36は、S25において、レーンYIの入力光強度を算出する。レーン情報が3であるときには、レーンYQが選択され、入力光強度算出部36は、S26において、レーンYQの入力光強度を算出する。
S27において、入力光強度算出部36は、S23〜S26のいずれか1つにおいて得られた入力光強度に基づいて、目的波長チャネルの入力光強度を算出する。なお、S27の処理は、図6に示すS14〜S17と実質的に同じである。すなわち、入力光強度算出部36は、選択されたレーンの入力光強度、X/Y強度比、I/Q強度比に基づいて、目的波長チャネルの入力光強度を算出する。
S28において、レーン選択部37は、レーン情報を1だけインクリメントする。S29において、レーン選択部37は、インクリメントされたレーン情報が4未満であるか判定する。インクリメントされたレーン情報が4以上であれば、レーン選択部37は、S30において、レーン情報をゼロに初期化する。一方、インクリメントされたレーン情報が4未満であれば、S30の処理はスキップされる。そして、S31において、レーン選択部37は、初期化されたレーン情報またはインクリメントされたレーン情報をメモリ10に保存する。
このように、第2の実施形態では、目的波長チャネルの入力光強度が定期的にモニタされるケースにおいて、各レーンの利得制御電圧が順番に使用される。したがって、レーン間で回路素子(受光器、増幅器など)の特性が異なる場合であっても、目的波長チャネルの入力光強度の算出結果は平均化される。
<第3の実施形態>
第1の実施形態では、予め指定された1つのレーンの利得制御電圧に基づいて目的波長チャネルの入力光強度が算出される。これに対して、第3の実施形態では、ユーザにより指定される1または複数のレーンの利得制御電圧に基づいて目的波長チャネルの入力光強度が算出され得る。
図11は、本発明の第3の実施形態に係わる光受信器の一例を示す。第3の実施形態に係わる光受信器300の構成は、第1の実施形態に係わる光受信器100と実質的に同じである。ただし、第3の実施形態では、CPU9は、外部インターフェース12に接続される。外部インターフェース12は、ユーザ指示を受け付けることができる。よって、光受信器300のユーザは、外部インターフェース12を介して、1または複数の所望のレーンを指定することができる。
入力光強度算出部36は、ユーザにより指定されたレーンの利得制御電圧を検出する。ユーザにより複数のレーンが指定されたときは、入力光強度算出部36は、指定された各レーンの利得制御電圧をそれぞれ検出する。そして、入力光強度算出部36は、検出した利得制御電圧に基づいて目的波長チャネルの入力光強度を算出する。なお、ユーザによりレーンが指定されないときは、入力光強度算出部36は、第1の実施形態と同様に、予め指定された1つのレーンの利得制御電圧に基づいて目的波長チャネルの入力光強度を算出してもよい。
例えば、ユーザによりレーンXI、YQが指定されたときには、入力光強度算出部36は、増幅器6XIの利得制御電圧に基づいてレーンXIの入力光強度P_XIを算出し、増幅器6YQの利得制御電圧に基づいてレーンYQの入力光強度P_YQを算出する。入力光強度算出部36は、P_XIおよびI/Q強度比からレーンXQの入力光強度P_XQを算出し、P_YQおよびI/Q強度比からレーンYIの入力光強度P_YIを算出する。そして、入力光強度算出部36は、P_XI、P_XQ、P_YI、P_YQの総和を求めることで、目的波長チャネルの入力光強度を算出する。
或いは、ユーザによりレーンXI、XQ、YQが指定されたときには、入力光強度算出部36は、増幅器6XIの利得制御電圧に基づいてレーンXIの入力光強度P_XIを算出し、増幅器6XQの利得制御電圧に基づいてレーンXQの入力光強度P_XQを算出し、増幅器6YQの利得制御電圧に基づいてレーンYQの入力光強度P_YQを算出する。また、入力光強度算出部36は、P_YQおよびI/Q強度比からレーンYIの入力光強度P_YIを算出する。そして、入力光強度算出部36は、P_XI、P_XQ、P_YI、P_YQの総和を求めることで、目的波長チャネルの入力光強度を算出する。
なお、ユーザにより全レーン(すなわち、XI、XQ、YI、YQ)が指定されたときは、図7を参照しながら説明したように、CPU9の負荷が大きくなるおそれがある。したがって、この場合、CPU9は、外部インターフェース12を介して警告を出力してもよい。
<第4の実施形態>
目的波長チャネルの入力光強度は、上述したように、X/Y強度比およびI/Q強度比を利用して算出される。ただし、X/Y強度比およびI/Q強度比は、温度変化または経年劣化などに起因して変化することがある。例えば、偏波ビームスプリッタ2、ローカル発振器3、90度光ハイブリッド回路4X、4Y、受光器5、増幅器6XI、6XQ、6YI、6YQの特性は、温度または経年に起因して変化し得る。そして、X/Y強度比およびI/Q強度比が正しくない場合には、CPU9は、目的波長チャネルの入力光強度を精度よく算出することはできない。そこで、第4の実施形態の光受信器は、X/Y強度比およびI/Q強度比を定期的に算出する機能を備える。
図12は、本発明の第4の実施形態に係わる光受信器の一例を示す。第4の実施形態に係わる光受信器400の構成は、第1の実施形態に係わる光受信器100と実質的に同じである。ただし、第4の実施形態では、CPU9は、外部インターフェース12に接続される。また、CPU9は、更新周期制御部38を備える。
光受信器400のユーザは、外部インターフェース12を介して、X/Y強度比およびI/Q強度比の更新周期を指定することができる。更新周期を指定するユーザ指示は、更新周期制御部38に与えられる。
更新周期制御部38は、ユーザ指示に従って、X/Y強度比算出部34およびI/Q強度比算出部35を制御する。すなわち、更新周期制御部38は、ユーザにより指定された更新周期でX/Y強度比算出部34およびI/Q強度比算出部35を起動する。
X/Y強度比算出部34は、更新周期制御部38により起動されると、各レーンの利得制御電圧に基づいてX/Y強度比を算出する。また、I/Q強度比算出部35は、更新周期制御部38により起動されると、各レーンの利得制御電圧に基づいてI/Q強度比を算出する。すなわち、ユーザにより指定される更新周期に従って、図5に示すフローチャートの処理が定期的に実行される。そして、新たに算出されたX/Y強度比およびI/Q強度比を表すX/Y強度比情報およびI/Q強度比情報は、メモリ10に格納される。
このように、第4の実施形態では、最新のX/Y強度比およびI/Q強度比を利用して目的波長チャネルの入力光強度が算出される。したがって、温度または経年劣化の影響は抑制され、目的波長チャネルの入力光強度が精度よく算出される。
なお、更新周期が短いときは、CPU9から利得制御器8へのアクセス頻度が高く、CPU9の演算量が増加する。すなわち、更新周期が短いときは、CPU9の負荷が大きくなる。したがって、CPU9は、ユーザにより指定される更新周期が所定の閾値よりも短いときは、外部インターフェース12を介して警告を出力してもよい。また、更新周期がユーザから指定されないときは、CPU9は、予め決められた周期でX/Y強度比およびI/Q強度比を更新してもよい。
<他の実施形態>
第1〜第4の実施形態は、矛盾のない範囲で組み合わせてもよい。例えば、図1に示す第1の実施形態、図9に示す第2の実施形態、または図11に示す第3の実施形態において、更新周期制御部38を用いてX/Y強度比およびI/Q強度比を定期的に更新してもよい。
第1〜第4の実施形態では、CPU9により算出される入力光強度は可変光減衰器1を制御するために使用されるが、本発明はこの構成に限定されるものではない。例えば、CPU9は、算出した入力光強度を表示装置に表示してもよい。或いは、CPU9は、算出した入力光強度を送信ノードまたはネットワーク管理システムに通知してもよい。
上述の実施例では、光受信器100、200、300、400は、WDM光信号中に多重化されている複数の光信号の中から所望の波長の光信号を選択的に受信するが、本発明はこの構成に限定されるものではない。
7 振幅検出器
8 利得制御器
9 CPU
10 メモリ
12 外部インターフェース
32 1レーン強度算出部
33 補正部
34 X/Y強度比算出部
35 I/Q強度比算出部
36 入力光強度算出部
37 レーン選択部
38 更新周期制御部
100、200、300、400 光受信器

Claims (9)

  1. 偏波多重光信号とローカル発振光とを混合させることにより、第1の偏波における同相成分を表す第1の電気信号、第1の偏波における直交成分を表す第2の電気信号、第2の偏波における同相成分を表す第3の電気信号、第2の偏波における直交成分を表す第4の電気信号を生成するコヒーレント受信回路と、
    前記第1〜第4の電気信号をそれぞれ増幅する第1〜第4の増幅器と、
    前記第1〜第4の増幅器の出力信号の振幅がそれぞれ目標振幅に近づくように前記第1〜第4の増幅器の利得を制御する利得制御器と、
    前記第1の増幅器の利得に基づいて前記第1の偏波における同相成分の入力光強度を表す第1の光強度を算出し、前記第2の増幅器の利得に基づいて前記第1の偏波における直交成分の入力光強度を表す第2の光強度を算出し、前記第3の増幅器の利得に基づいて前記第2の偏波における同相成分の入力光強度を表す第3の光強度を算出し、前記第4の増幅器の利得に基づいて前記第2の偏波における直交成分の入力光強度を表す第4の光強度を算出する第1の光強度算出部と、
    前記第1〜第4の光強度に基づいて、前記第1の偏波の入力光強度と前記第2の偏波の入力光強度との比を表す偏波依存強度比、および前記同相成分の入力光強度と前記直交成分の入力光強度との比を表す位相依存強度比を算出する強度比算出部と、
    前記第1〜第4の増幅器のうちから選択される増幅器の利得に基づいて算出される光強度、前記偏波依存強度比、および前記位相依存強度比に基づいて、前記偏波多重光信号の入力光強度を算出する第2の光強度算出部と、
    を備える光受信器。
  2. 前記強度比算出部は、前記第1の光強度と前記第2の光強度との和および前記第3の光強度と前記第4の光強度との和を用いて前記偏波依存強度比を算出する
    ことを特徴とする請求項1に記載の光受信器。
  3. 前記強度比算出部は、前記第1の光強度および前記第2の光強度を用いて前記位相依存強度比を算出する
    ことを特徴とする請求項1に記載の光受信器。
  4. 前記強度比算出部は、前記第3の光強度および前記第4の光強度を用いて前記位相依存強度比を算出する
    ことを特徴とする請求項1に記載の光受信器。
  5. 前記強度比算出部は、前記第1の光強度と前記第3の光強度との和および前記第2の光強度と前記第4の光強度との和を用いて前記位相依存強度比を算出する
    ことを特徴とする請求項1に記載の光受信器。
  6. 前記第2の光強度算出部は、
    前記第1〜第4の光強度のうちから前記第1の光強度を選択し、
    前記第1の光強度に前記位相依存強度比を乗算して第5の光強度を算出し、
    前記第1の光強度に前記第5の光強度を加算して第6の光強度を算出し、
    前記第6の光強度に前記偏波依存強度比を乗算して第7の光強度を算出し、
    前記第6の光強度に前記第7の光強度を加算して前記偏波多重光信号の入力光強度を算出する
    ことを特徴とする請求項1に記載の光受信器。
  7. 前記第1〜第4の増幅器から順番に1つの増幅器を選択する選択部をさらに備え、
    前記第2の光強度算出部は、前記選択部により選択される増幅器の利得に基づいて算出される光強度、前記偏波依存強度比、および前記位相依存強度比に基づいて、前記偏波多重光信号の入力光強度を算出する
    ことを特徴とする請求項1に記載の光受信器。
  8. ユーザ指示を受け付ける外部インターフェースをさらに備え、
    前記第2の光強度算出部は、前記第1〜第4の増幅器のうちから前記ユーザ指示により指定される増幅器の利得に基づいて算出される光強度、前記偏波依存強度比、および前記位相依存強度比に基づいて、前記偏波多重光信号の入力光強度を算出する
    ことを特徴とする請求項1に記載の光受信器。
  9. 前記強度比算出部は、定期的に、前記第1〜第4の光強度に基づいて、前記偏波依存強度比および前記位相依存強度比を更新する
    ことを特徴とする請求項1に記載の光受信器。
JP2016230625A 2016-11-28 2016-11-28 光受信器 Active JP6760017B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016230625A JP6760017B2 (ja) 2016-11-28 2016-11-28 光受信器
US15/723,462 US10044439B2 (en) 2016-11-28 2017-10-03 Optical receiver that receives polarization multiplexed optical signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016230625A JP6760017B2 (ja) 2016-11-28 2016-11-28 光受信器

Publications (2)

Publication Number Publication Date
JP2018088607A JP2018088607A (ja) 2018-06-07
JP6760017B2 true JP6760017B2 (ja) 2020-09-23

Family

ID=62190523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016230625A Active JP6760017B2 (ja) 2016-11-28 2016-11-28 光受信器

Country Status (2)

Country Link
US (1) US10044439B2 (ja)
JP (1) JP6760017B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105379149B (zh) 2013-07-11 2018-01-05 日本电气株式会社 光学接收设备和监测信号产生方法
JP6112202B2 (ja) * 2013-07-11 2017-04-12 日本電気株式会社 光通信システム、光受信器、光受信器の制御方法及びプログラム
US10594281B1 (en) * 2019-03-04 2020-03-17 Ciena Corporation Receiver automatic gain control systems and methods for asymmetrical or unbalanced constellations
CN111814105B (zh) * 2020-06-24 2021-06-11 武汉光迅科技股份有限公司 一种相干光模块的定标方法、装置、设备及计算机可读存储介质
JP7524631B2 (ja) 2020-06-29 2024-07-30 富士通株式会社 光受信装置及び光受信方法
US12003278B1 (en) * 2020-12-29 2024-06-04 Acacia Communications, Inc. Differentially-balanced photodetector configuration for coherent receiver
US11489590B1 (en) * 2021-05-10 2022-11-01 Cisco Technology, Inc. Optical link and coherent receiver noise characterization

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767093B2 (ja) * 1989-03-28 1995-07-19 日本電気株式会社 偏波ダイバーシチ光ヘテロダイン検波受信方法およびその装置
JP5365315B2 (ja) * 2009-04-03 2013-12-11 富士通株式会社 光受信機および光受信方法
US8831436B2 (en) * 2010-12-30 2014-09-09 Infinera Corporation Method and apparatus for local optimization of an optical transmitter
US8625997B2 (en) * 2010-12-30 2014-01-07 Infinera Corporation Method and apparatus for local optimization of an optical transmitter
US9252888B2 (en) * 2011-01-20 2016-02-02 Nec Corporation Coherent optical receiver device and coherent optical receiving method
US8768178B2 (en) * 2011-09-15 2014-07-01 Opnext Subsystems, Inc. Automatic gain control for high-speed coherent optical receivers
CN103999382B (zh) * 2011-12-15 2016-08-24 日本电气株式会社 光学接收器以及用于控制光学接收器的方法
US8649690B2 (en) * 2012-05-30 2014-02-11 Cisco Technology, Inc. Optical communication reception system
US9042730B2 (en) * 2013-02-08 2015-05-26 Fujitsu Limited System and method for compensating signal degradation in dual polarization optical systems
CN105379149B (zh) * 2013-07-11 2018-01-05 日本电气株式会社 光学接收设备和监测信号产生方法
JP6156807B2 (ja) * 2013-11-15 2017-07-05 国立研究開発法人産業技術総合研究所 受信信号処理装置、通信システム及び受信信号処理方法
JP6330500B2 (ja) * 2014-06-12 2018-05-30 富士通株式会社 増幅装置、受信装置、及び増幅方法
JP6365256B2 (ja) * 2014-11-18 2018-08-01 富士通株式会社 光伝送システム、光受信装置、管理装置及び信号調整方法
JP6536072B2 (ja) * 2015-02-20 2019-07-03 富士通株式会社 光伝送装置及び受信光パワー制御方法
US10187141B2 (en) * 2015-04-10 2019-01-22 Viasat, Inc. Cross-band system for end-to-end beamforming
US9647753B1 (en) * 2016-01-12 2017-05-09 Fujitsu Optical Components Limited Coherent optical receiver

Also Published As

Publication number Publication date
US20180152242A1 (en) 2018-05-31
US10044439B2 (en) 2018-08-07
JP2018088607A (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
JP6760017B2 (ja) 光受信器
US9647753B1 (en) Coherent optical receiver
US10720998B2 (en) Coherent optical receiver device and coherent optical receiving method
US10608738B2 (en) Coherent optical receiver device and coherent optical receiving method
US20210021366A1 (en) Optical reception apparatus and monitor signal generating method
US9413455B2 (en) Apparatus and method for creating calibration coefficient used to monitor optical signal-to-noise ratio
US20170134097A1 (en) Optical receiver and optical receiving method
US9537570B2 (en) Optical transceiving apparatus, optical transmitting method, and optical transmitting device
JP6885408B2 (ja) デジタルコヒーレント受信器およびそのスキュー調整方法
US9124364B1 (en) Quadrature power balance control in optical transmitters
JP7276404B2 (ja) 測距装置及び測距方法
JP2013145942A (ja) 光送受信装置
JP6331509B2 (ja) 光受信装置及び光受信方法
JP6897359B2 (ja) 光受信装置の調整装置
US11902014B2 (en) Signal processing device and transmission device
JP2019208111A (ja) 光受信器および受信方法
JP2017143332A (ja) 光受信装置
CN115733558A (zh) 激光通信方法、激光通信接收端、发射端和激光通信系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R150 Certificate of patent or registration of utility model

Ref document number: 6760017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150