WO2015072415A1 - Liquid-crystal-display-element sealant, vertical conductive material, and liquid-crystal display element - Google Patents

Liquid-crystal-display-element sealant, vertical conductive material, and liquid-crystal display element Download PDF

Info

Publication number
WO2015072415A1
WO2015072415A1 PCT/JP2014/079685 JP2014079685W WO2015072415A1 WO 2015072415 A1 WO2015072415 A1 WO 2015072415A1 JP 2014079685 W JP2014079685 W JP 2014079685W WO 2015072415 A1 WO2015072415 A1 WO 2015072415A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
meth
formula
acrylate
Prior art date
Application number
PCT/JP2014/079685
Other languages
French (fr)
Japanese (ja)
Inventor
雄一 尾山
秀幸 林
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020157031377A priority Critical patent/KR102240965B1/en
Priority to JP2014556282A priority patent/JP5759638B1/en
Priority to CN201480053487.8A priority patent/CN105579898B/en
Publication of WO2015072415A1 publication Critical patent/WO2015072415A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a sealant for a liquid crystal display element that is excellent in photocurability and can suppress liquid crystal contamination. Moreover, this invention relates to the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements.
  • a liquid crystal dropping method called a dropping method using a photothermal combined curing type sealing agent containing a polymerization initiator and a thermosetting agent is used.
  • a rectangular seal pattern is formed on one of the two substrates with electrodes by dispensing.
  • liquid crystal microdrops are dropped into the sealing frame of the substrate in a state where the sealing agent is uncured, the other substrate is superposed under vacuum, and the sealing portion is irradiated with light such as ultraviolet rays to perform temporary curing. Thereafter, heating is performed to perform main curing, and a liquid crystal display element is manufactured.
  • this dripping method has become the mainstream method for manufacturing liquid crystal display elements.
  • a narrow frame of the liquid crystal display unit can be cited.
  • the position of the seal portion is arranged under the black matrix (hereinafter also referred to as a narrow frame design).
  • Patent Document 3 discloses that a highly sensitive photopolymerization initiator is blended with a sealant. However, the sealing agent could not be sufficiently photocured simply by adding a highly sensitive photopolymerization initiator.
  • Patent Document 4 discloses that a sealing agent is combined with a highly sensitive photopolymerization initiator and a sensitizer. However, the use of a sensitizer has a problem that liquid crystal contamination is likely to occur.
  • This invention is the sealing compound for liquid crystal display elements containing curable resin, the thioxanthone type polymerization initiator represented by following formula (1), and an amine sensitizer.
  • R 3 is a hydrogen atom, a methyl group, or an ethyl group, and when n is greater than 1, the group or atom represented by R 3 is They may be the same or different.
  • A is represented by the formula —O—, — [O (CHR 2 CHR 1 ) a ] y —, — [O (CH 2 ) b CO] y —, or — [O (CH 2 ) b CO] (y— 1) a group represented by — [O (CHR 2 CHR 1 ) a ] —, wherein one of R 1 and R 2 represents a hydrogen atom, and the other represents a hydrogen atom, a methyl group, or an ethyl group, Is 1-2, b is 4-5, Q is (poly) ethylene glycol, (poly) propylene glycol, (poly) butylene glycol, glycerin, trimethylolpropane, ditrimethyl
  • the present inventors have surprisingly found that a compound having a specific structure has low contamination with liquid crystals and is excellent in photoreactivity. Therefore, the present inventors have found that by compounding the compound as a photopolymerization initiator, it is possible to obtain a sealing agent for a liquid crystal display element that is excellent in photocurability and can suppress liquid crystal contamination.
  • the present invention has been completed.
  • the sealing agent for liquid crystal display elements of this invention contains the thioxanthone type polymerization initiator represented by the said Formula (1).
  • the sealing agent for a liquid crystal display element of the present invention has high sensitivity and excellent photocurability, and Liquid crystal contamination can be suppressed.
  • x is a number that is greater than 1 and does not exceed the number of hydroxyl groups of Q.
  • a preferred lower limit is 2 and a preferred upper limit is 6. If x is less than 2, liquid crystal contamination may occur. When x exceeds 6, the viscosity becomes high and handling may be difficult.
  • n in the above formula (1) is 1, R 3 is a hydrogen atom, and A is a group of the formula —O—. .
  • Q in the above formula (1) is preferably a polybutylene glycol residue.
  • the thioxanthone polymerization initiator represented by the above formula (1) is preferably a lower fatty acid ester.
  • the preferable lower limit of the molecular weight of AQ is 100, and the preferable upper limit is 2000. If the molecular weight of AQ is less than 100, liquid crystal contamination may be caused. When the molecular weight of AQ exceeds 2000, the viscosity becomes too high and handling may be difficult.
  • Specific examples of the method for producing the thioxanthone polymerization initiator represented by the above formula (1) include a method of reacting carboxymethoxythioxanthone and polyethylene glycol.
  • the preferable lower limit of the content of the thioxanthone-based polymerization initiator represented by the above formula (1) in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 0.1 part by weight, and the preferable upper limit is 10 parts by weight.
  • the content of the thioxanthone polymerization initiator represented by the above formula (1) is less than 0.1 parts by weight, the photopolymerization of the obtained sealing agent for liquid crystal display elements may not sufficiently proceed.
  • the content of the thioxanthone polymerization initiator represented by the above formula (1) exceeds 10 parts by weight, a large amount of unreacted thioxanthone polymerization initiator remains and the resulting liquid crystal display element
  • the sealing agent for the resin may be inferior in weather resistance and storage stability, or liquid crystal contamination may occur.
  • the minimum with more preferable content of the thioxanthone type polymerization initiator represented by the said Formula (1) is 0.3 weight part, and a more preferable upper limit is 7 weight part.
  • the sealing agent for liquid crystal display elements of the present invention contains an amine sensitizer.
  • the amine sensitizer include, for example, a compound represented by the following formula (2), 4,4′-bis (diethylamino) benzophenone, 2-dimethylamino-ethylbenzoate, ethyl 4- (dimethylamino) benzoate, Examples thereof include 2-ethylhexyl-4-dimethylaminobenzoate, isoamyl-4- (dimethylamino) benzoate, butoxyethyl-4- (dimethylamino) benzoate.
  • amine sensitizer represented by formula (2) also referred to as).
  • z represents an integer of 1 or more
  • P is (poly) ethylene glycol, (poly) propylene glycol, (poly) butylene glycol, glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol, It is a residue of dipentaerythritol or caprolactone polyol.
  • z represents an integer of 1 or more, a preferred lower limit is 2, and a preferred upper limit is 6. If z is less than 2, liquid crystal contamination may be caused. When z exceeds 6, the viscosity becomes high and handling may be difficult.
  • P is (poly) ethylene glycol, (poly) propylene glycol, (poly) butylene glycol, glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, or caprolactone polyol. Residue.
  • the preferable lower limit of the molecular weight of P in the above formula (2) is 100, and the preferable upper limit is 2000. If the molecular weight of P is less than 100, liquid crystal contamination may occur. When the molecular weight of P exceeds 2000, the viscosity becomes too high and handling may be difficult.
  • z in the formula (2) is preferably 2, and P is a residue of polyethylene glycol.
  • Specific examples of the method for producing the amine sensitizer represented by the above formula (2) include a method of reacting 4- (dimethylamino) benzoyl chloride with polyethylene oxide.
  • the minimum with preferable content of the said amine sensitizer in 100 weight part of sealing compounds for liquid crystal display elements of this invention is 0.1 weight part, and a preferable upper limit is 10 weight part.
  • a preferable upper limit is 10 weight part.
  • the content of the amine-based sensitizer is less than 0.1 parts by weight, the obtained sealing agent for liquid crystal display elements is inferior in photocurability, and liquid crystal contamination may occur.
  • the content of the amine sensitizer exceeds 10 parts by weight, liquid crystal contamination due to the amine sensitizer may occur.
  • the minimum with more preferable content of the said amine sensitizer is 0.3 weight part, and a more preferable upper limit is 7 weight part.
  • the sealing agent for liquid crystal display elements of the present invention suppresses liquid crystal contamination. The effect and the photocurability are particularly excellent.
  • the sealing agent for liquid crystal display elements of this invention contains curable resin.
  • the curable resin preferably contains a (meth) acrylic resin.
  • the (meth) acrylic resin include an ester compound obtained by reacting a compound having a hydroxyl group with (meth) acrylic acid, and an epoxy (meta) obtained by reacting (meth) acrylic acid with an epoxy compound.
  • Urethane (meth) acrylate obtained by reacting a (meth) acrylic acid derivative having a hydroxyl group with an acrylate or isocyanate compound. Of these, epoxy (meth) acrylate is preferable.
  • the “(meth) acryl” means acryl or methacryl
  • the “(meth) acryl resin” means an acryloyl group or a methacryloyl group (hereinafter, “(meth) acryloyl”). It is also referred to as a “group”.
  • the “(meth) acrylate” means acrylate or methacrylate.
  • the “epoxy (meth) acrylate” represents a compound obtained by reacting all epoxy groups in the epoxy resin with (meth) acrylic acid.
  • Examples of the monofunctional compounds of the ester compounds include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, Isobutyl (meth) acrylate, t-butyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-methoxyethyl (meth) ) Acrylate, methoxyethylene glycol (meth) acrylate, 2-ethoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, benzyl (meth) acrylate, ethylcal Tall (meth) acrylate, phen
  • bifunctional ester compound examples include 1,4-butanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, and 1,6-hexanediol di (meth).
  • ester compound having three or more functional groups examples include pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri (meth) acrylate, and ethylene oxide-added trimethylol.
  • Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy resin and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
  • Examples of the epoxy resin used as a raw material for synthesizing the epoxy (meth) acrylate include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and 2,2′-diallyl bisphenol A type epoxy resin.
  • Hydrogenated bisphenol type epoxy resin propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol Novolac epoxy resin, ortho-cresol novolac epoxy resin, dicyclopentadiene novolac epoxy resin, biphenyl novolac epoxy resin, naphtha Emissions phenol novolak type epoxy resin, glycidyl amine type epoxy resin, alkyl polyol type epoxy resin, rubber-modified epoxy resins, glycidyl ester compounds.
  • Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
  • Examples of commercially available naphthalene type epoxy resins include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC) and the like.
  • Examples of commercially available phenol novolac epoxy resins include Epicron N-770 (manufactured by DIC).
  • Examples of the ortho-cresol novolac type epoxy resin that are commercially available include epiclone N-670-EXP-S (manufactured by DIC).
  • Examples of commercially available glycidylamine type epoxy resins include jER630 (manufactured by Mitsubishi Chemical), Epicron 430 (manufactured by DIC), and TETRAD-X (manufactured by Mitsubishi Gas Chemical).
  • Examples of commercially available alkyl polyol type epoxy resins include ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epiklon 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611. (Manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (both manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Corporation), and the like.
  • Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
  • Other commercially available epoxy resins include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by NS Also, Mitsubishi Chemical Corporation), EXA-7120 (DIC Corporation), TEPIC (Nissan Chemical Corporation) and the like.
  • the epoxy (meth) acrylate specifically, for example, 360 parts by weight of a resorcinol type epoxy resin (EX-201, manufactured by Nagase ChemteX) and 2 parts by weight of p-methoxyphenol as a polymerization inhibitor are used. Then, resorcinol type epoxy acrylate can be obtained by reacting 2 parts by weight of triethylamine as a reaction catalyst and 210 parts by weight of acrylic acid at 90 ° C. for 5 hours while feeding air and stirring under reflux.
  • a resorcinol type epoxy resin EX-201, manufactured by Nagase ChemteX
  • p-methoxyphenol p-methoxyphenol
  • Examples of commercially available epoxy (meth) acrylates include, for example, EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3703, EBECRY3603 EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Co., Ltd.), epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy Ester 200PA, epoxy ester 80MFA Epoxy ester 3002M, Epoxy ester 3002A, Epoxy ester 1600A, Epoxy ester 3000M, Epoxy ester 3000A, Epoxy ester 200EA, Epoxy ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.), Denacol acrylate DA-141, Den
  • Examples of the urethane (meth) acrylate obtained by reacting a hydroxyl group-containing (meth) acrylic acid derivative with the isocyanate compound include, for example, (meth) acrylic having a hydroxyl group with respect to 1 equivalent of an isocyanate compound having two isocyanate groups. Two equivalents of the acid derivative can be obtained by reacting in the presence of a catalytic amount of a tin-based compound.
  • isocyanate compound used as the raw material for the urethane (meth) acrylate examples include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and diphenylmethane-4,4.
  • MDI '-Diisocyanate
  • hydrogenated MDI polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanate) Phenyl) thiophosphate, tetramethylxylene diisocyanate, 1,6,10-undecanetriiso Aneto and the like.
  • MDI '-Diisocyanate
  • XDI xylylene diisocyanate
  • XDI hydrogenated XDI
  • lysine diisocyanate triphenylmethane triisocyanate
  • tris (isocyanate) Phenyl) thiophosphate tetramethylxylene diisocyanate, 1,6,10-unde
  • Examples of the isocyanate used as a raw material for the urethane (meth) acrylate include ethylene glycol, glycerin, sorbitol, trimethylolpropane, (poly) propylene glycol, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol. Chain-extended isocyanate compounds obtained by reaction of polyols with excess isocyanate compounds can also be used.
  • Examples of the (meth) acrylic acid derivative having a hydroxyl group, which is a raw material of the urethane (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth).
  • acrylate and 2-hydroxybutyl (meth) acrylate and divalent products such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol Epoxy (meth) acrylates such as mono (meth) acrylates of alcohol, mono (meth) acrylates or di (meth) acrylates of trivalent alcohols such as trimethylolethane, trimethylolpropane, and glycerin, and bisphenol A type epoxy acrylate Rate, and the like.
  • the urethane (meth) acrylate includes, for example, 134 parts by weight of trimethylolpropane, 0.2 part by weight of BHT as a polymerization inhibitor, 0.01 part by weight of dibutyltin dilaurate as a reaction catalyst, and 666 parts by weight of isophorone diisocyanate.
  • the mixture can be reacted at 60 ° C. for 2 hours with stirring under reflux, then 51 parts by weight of 2-hydroxyethyl acrylate is added, and air is fed in and the mixture is reacted at 90 ° C. with stirring under reflux for 2 hours.
  • Examples of commercially available urethane (meth) acrylates include M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), EBECRYL230, EBECRYL270, EBECRYL4858, EBECRYL8402, EBECRYL8804, EBECRYL8803, EBECRYL8807, EBECRYL9260, EBECRYL1290, EBECRYL5129, EBECRYL4842, EBECRYL210, EBECRYL4827, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700 , Art resin N-1255, Art Resin UN-330, Art Resin UN-3320HB, Art Resin UN-1200TPK, Art Resin SH-500B (all manufactured by Negami Industrial Co., Ltd.), U-122P, U-108A, U-340P,
  • the curable resin preferably further contains an epoxy resin for the purpose of improving the adhesiveness of the obtained sealing agent for liquid crystal display elements.
  • an epoxy resin the epoxy resin used as the raw material for synthesize
  • the partial (meth) acryl-modified epoxy resin means a resin having one or more epoxy groups and (meth) acryloyloxy groups in one molecule, for example, two or more epoxy resins. It can be obtained by reacting a part of the epoxy group of the resin with (meth) acrylic acid.
  • the sealing agent for a liquid crystal display element of the present invention contains the above epoxy resin
  • the (meth) acrylic resin and the above are adjusted so that the ratio of (meth) acryloyloxy group to epoxy group is 30:70 to 95: 5. It is preferable to blend with an epoxy resin.
  • the ratio of the (meth) acryloyloxy group is less than 30%, liquid crystal contamination may occur because a large amount of uncured epoxy resin component is present even when the polymerization of the (meth) acryloyloxy group is completed.
  • the ratio of the (meth) acryloyloxy group exceeds 95%, the obtained sealing agent for liquid crystal display elements may be inferior in adhesiveness.
  • the curable resin preferably has a hydrogen bondable unit such as —OH group, —NH— group, —NH 2 group, etc. from the viewpoint of suppressing liquid crystal contamination.
  • the (meth) acrylic resin preferably has 2 to 3 (meth) acryloyloxy groups in the molecule because of its high reactivity.
  • the sealing agent for liquid crystal display elements of the present invention may contain a thermal radical polymerization initiator.
  • a thermal radical polymerization initiator what consists of an azo compound, an organic peroxide, etc. is mentioned, for example.
  • an initiator made of a polymer azo compound (hereinafter also referred to as “polymer azo initiator”) is preferable.
  • the polymer azo initiator means a compound having an azo group and generating a radical capable of curing a (meth) acryloyloxy group by heat and having a number average molecular weight of 300 or more. .
  • the preferable lower limit of the number average molecular weight of the polymeric azo initiator is 1000, and the preferable upper limit is 300,000.
  • the number average molecular weight of the polymer azo initiator is less than 1000, the polymer azo initiator may adversely affect the liquid crystal.
  • the number average molecular weight of the polymeric azo initiator exceeds 300,000, mixing with the curable resin may be difficult.
  • the more preferable lower limit of the number average molecular weight of the polymeric azo initiator is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
  • the said number average molecular weight is a value calculated
  • GPC gel permeation chromatography
  • Examples of the column for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK).
  • polymer azo initiator examples include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
  • polymer azo initiator having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group those having a polyethylene oxide structure are preferable.
  • Examples of such a polymer azo initiator include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid) Examples thereof include polycondensates of polydimethylsiloxane having a terminal amino group, such as VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001 (all of which are Wako Pure Chemical Industries, Ltd.) Manufactured) and the like.
  • Examples of azo compounds that are not a polymer include V-65 and V-501 (both manufactured by Wako Pure Chemical Industries, Ltd.).
  • organic peroxide examples include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
  • the content of the thermal radical polymerization initiator is preferably 0.05 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin. If the content of the thermal radical polymerization initiator is less than 0.05 parts by weight, the thermal polymerization of the obtained sealing agent for liquid crystal display elements may not sufficiently proceed. If the content of the thermal radical polymerization initiator exceeds 10 parts by weight, liquid crystal contamination may occur due to the unreacted thermal radical polymerization initiator.
  • the minimum with more preferable content of the said thermal radical polymerization initiator is 0.1 weight part, and a more preferable upper limit is 5 weight part.
  • the sealing agent for liquid crystal display elements of the present invention may contain a thermosetting agent.
  • thermosetting agent include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Of these, organic acid hydrazide is preferably used.
  • organic acid hydrazide examples include sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide, and the like.
  • organic acid hydrazides examples include SDH, ADH (all manufactured by Otsuka Chemical Co., Ltd.), Amicure VDH, Amicure VDH-J, Amicure UDH, Amicure UDH-J (all Ajinomoto Fine Techno Co., Ltd.) Manufactured) and the like.
  • the content of the thermosetting agent is preferably 1 part by weight with respect to 100 parts by weight of the curable resin, and 50 parts by weight with respect to the preferable upper limit.
  • the content of the thermosetting agent is less than 1 part by weight, the obtained sealing agent for liquid crystal display elements may not be sufficiently cured.
  • content of the said thermosetting agent exceeds 50 weight part, the viscosity of the sealing compound for liquid crystal display elements obtained will become high, and applicability
  • the upper limit with more preferable content of the said thermosetting agent is 30 weight part.
  • the sealing agent for liquid crystal display elements of the present invention may contain a filler for the purpose of improving the viscosity, improving the adhesion due to the stress dispersion effect, improving the linear expansion coefficient, and further improving the moisture resistance of the cured product. preferable.
  • filler examples include talc, asbestos, silica, diatomaceous earth, smectite, bentonite, calcium carbonate, magnesium carbonate, alumina, montmorillonite, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, magnesium hydroxide, water
  • Organic filler such as aluminum oxide, glass beads, silicon nitride, barium sulfate, gypsum, calcium silicate, sericite activated clay, aluminum nitride, polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, etc. Agents. These fillers may be used independently and may use 2 or more types together.
  • the preferable lower limit of the content of the filler in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 10 parts by weight, and the preferable upper limit is 70 parts by weight.
  • the content of the filler is less than 10 parts by weight, effects such as improvement of adhesiveness may not be sufficiently exhibited.
  • content of the said filler exceeds 70 weight part, the viscosity of the sealing compound for liquid crystal display elements obtained will become high, and applicability
  • the minimum with more preferable content of the said filler is 20 weight part, and a more preferable upper limit is 60 weight part.
  • the sealing compound for liquid crystal display elements of this invention contains a silane coupling agent.
  • the silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the substrate.
  • silane coupling agent since it is excellent in the effect which improves adhesiveness with a board
  • -Aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like are preferably used.
  • These silane coupling agents may be used alone or in combination of two or more.
  • the minimum with preferable content of the said silane coupling agent in 100 weight part of sealing compounds for liquid crystal display elements of this invention is 0.1 weight part, and a preferable upper limit is 10 weight part.
  • a preferable upper limit is 10 weight part.
  • content of the silane coupling agent is less than 0.1 parts by weight, the effect of blending the silane coupling agent may not be sufficiently exhibited.
  • content of the said silane coupling agent exceeds 10 weight part, the sealing compound for liquid crystal display elements obtained may cause liquid-crystal contamination.
  • the minimum with more preferable content of the said silane coupling agent is 0.3 weight part, and a more preferable upper limit is 5 weight part.
  • the sealing agent for liquid crystal display elements of the present invention may contain a light shielding agent.
  • the sealing compound for liquid crystal display elements of this invention can be used suitably as a light shielding sealing agent.
  • Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Of these, titanium black is preferable.
  • Titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly for light having a wavelength of 370 to 450 nm, compared to the average transmittance for light having a wavelength of 300 to 800 nm. That is, the above-described titanium black sufficiently shields light having a wavelength in the visible light region, thereby providing a light shielding property to the sealing agent for liquid crystal display elements of the present invention, while transmitting light having a wavelength in the vicinity of the ultraviolet region.
  • the light shielding agent contained in the liquid crystal display element sealant of the present invention is preferably a highly insulating material, and titanium black is also preferred as the highly insulating light shielding agent.
  • the above-mentioned titanium black exhibits a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, oxidized Surface-treated titanium black such as those coated with an inorganic component such as zirconium or magnesium oxide can also be used. Especially, what is processed with the organic component is preferable at the point which can improve insulation more.
  • the liquid crystal display element produced using the sealing agent for liquid crystal display elements of the present invention containing the above-described titanium black as a light-shielding agent has a sufficient light-shielding property, and thus has high contrast without light leakage. A liquid crystal display element having excellent image display quality can be realized.
  • titanium black examples include 12S, 13M, 13M-C, 13R-N, 14M-C (all manufactured by Mitsubishi Materials Corporation), Tilak D (manufactured by Ako Kasei Co., Ltd.), and the like. Can be mentioned.
  • the preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
  • the preferred lower limit of the volume resistance of the titanium black is 0.5 ⁇ ⁇ cm, the preferred upper limit is 3 ⁇ ⁇ cm, the more preferred lower limit is 1 ⁇ ⁇ cm, and the more preferred upper limit is 2.5 ⁇ ⁇ cm.
  • the primary particle diameter of the light-shielding agent is not particularly limited as long as it is not more than the distance between the substrates of the liquid crystal display element, but the preferred lower limit is 1 nm and the preferred upper limit is 5 ⁇ m.
  • the primary particle diameter of the light-shielding agent is less than 1 nm, the viscosity and thixotropy of the obtained sealing agent for liquid crystal display elements is greatly increased, and workability may be deteriorated.
  • the primary particle diameter of the light-shielding agent exceeds 5 ⁇ m, the applicability of the obtained sealing agent for liquid crystal display elements to the substrate may be deteriorated.
  • the more preferable lower limit of the primary particle diameter of the light shielding agent is 5 nm, the more preferable upper limit is 200 nm, the still more preferable lower limit is 10 nm, and the still more preferable upper limit is 100 nm.
  • the preferable lower limit of the content of the light-shielding agent in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 5 parts by weight, and the preferable upper limit is 80 parts by weight. If the content of the light shielding agent is less than 5 parts by weight, sufficient light shielding properties may not be obtained. When the content of the light-shielding agent exceeds 80 parts by weight, the adhesion of the obtained sealing agent for liquid crystal display elements to the substrate and the strength after curing may be lowered, or the drawing property may be lowered.
  • the more preferable lower limit of the content of the light shielding agent is 10 parts by weight, the more preferable upper limit is 70 parts by weight, the still more preferable lower limit is 30 parts by weight, and the still more preferable upper limit is 60 parts by weight.
  • Examples of the method for producing the sealing agent for liquid crystal display elements of the present invention include a curable resin and a thioxanthone using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll.
  • a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll.
  • Examples thereof include a method of mixing a system polymerization initiator, an amine sensitizer, and an additive such as a silane coupling agent added as necessary.
  • a vertical conducting material can be produced by blending conductive fine particles with the liquid crystal display element sealant of the present invention.
  • Such a vertical conduction material containing the sealing agent for liquid crystal display elements of the present invention and conductive fine particles is also one aspect of the present invention.
  • the conductive fine particles a metal ball, a resin fine particle formed with a conductive metal layer on the surface, or the like can be used.
  • the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the transparent substrate due to the excellent elasticity of the resin fine particles.
  • the liquid crystal display element manufactured using the sealing compound for liquid crystal display elements of this invention or the vertical conduction material of this invention is also one of this invention.
  • the sealing agent for the liquid crystal display element of the present invention is applied to one of two substrates such as a glass substrate with electrodes such as an ITO thin film and a polyethylene terephthalate substrate.
  • the process of forming a rectangular seal pattern by printing, dispenser application, etc., the liquid crystal display element sealant of the present invention is applied in an uncured state, and liquid crystal microdrops are dropped into the seal frame of the substrate and applied under vacuum.
  • a step of superimposing another substrate, a step of irradiating the seal pattern portion of the sealant for the liquid crystal display element of the present invention with light such as ultraviolet rays, and the step of pre-curing the sealant, and the pre-cured sealant The method etc. which have the process of heating and carrying out this hardening are mentioned.
  • the sealing compound for liquid crystal display elements which is excellent in photocurability and can suppress liquid crystal contamination can be provided.
  • the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.
  • Examples 1 to 13, Comparative Examples 1 to 5 According to the mixing ratios described in Tables 1 and 2, after mixing each material using a planetary stirrer (“Shinky Co., Ltd.,“ Awatori Netaro ”), by further mixing using three rolls The sealing agents for liquid crystal display elements of Examples 1 to 13 and Comparative Examples 1 to 5 were prepared.
  • a glass substrate was prepared by dispersing 1 part by weight of spacer fine particles (manufactured by Sekisui Chemical Co., Ltd., “Micropearl SI-H050”) in 100 parts by weight of the sealant for each liquid crystal display element obtained in Examples and Comparative Examples.
  • a glass substrate of the same size was applied to the substrate, and then a 100 mW / cm 2 light was irradiated for 10 seconds using a metal halide lamp to prepare a photocurable test piece. The light irradiation was performed in two patterns with no cut filter and with a 400 nm cut filter, and three test pieces were produced for each.
  • Photocurability was evaluated by measuring the amount of change of the (meth) acryloyl group-derived peak before and after light irradiation using an infrared spectroscope (manufactured by BIORAD, “FTS3000”). “ ⁇ ” when the peak derived from the (meth) acryloyl group is reduced by 90% or more after light irradiation, “ ⁇ ” when the peak derived from the (meth) acryloyl group is reduced by 80% or more but less than 90% after the light irradiation.
  • liquid crystal contamination 1 part by weight of spacer fine particles (“Micropearl SI-H050”, manufactured by Sekisui Chemical Co., Ltd.) is dispersed in 100 parts by weight of each liquid crystal display element sealant obtained in Examples and Comparative Examples, and the liquid crystal display element sealant is obtained.
  • the sealant was applied to one of the two rubbed alignment films and the substrate with a transparent electrode with a dispenser so that the line width of the sealant was 1 mm.
  • liquid droplets manufactured by Chisso Corp., “JC-5004LA”
  • JC-5004LA liquid droplets
  • the agent part was cured by irradiating with 100 mW / cm 2 ultraviolet rays for 30 seconds using a metal halide lamp, and further heated at 120 ° C. for 1 hour to obtain a liquid crystal display element.
  • the light irradiation was performed in two patterns with no cut filter and with a 400 nm cut filter, and three liquid crystal display elements were produced for each.
  • the liquid-crystal contamination of the sealant vicinity after making it into a voltage application state at 60 degreeC for 1000 hours was confirmed visually. Liquid crystal contamination is determined by the color unevenness of the three liquid crystal display elements.
  • indicates that there is no color unevenness for all the liquid crystal display elements, and at least one liquid crystal
  • when at least one liquid crystal display element had slight color unevenness, “ ⁇ ”, and at least one liquid crystal display element had considerable color unevenness.
  • the case was evaluated as “x” to evaluate the liquid crystal contamination. Note that the liquid crystal display elements with the evaluations “ ⁇ ” and “ ⁇ ” are at a level that causes no problem in practical use.
  • the sealing compound for liquid crystal display elements which is excellent in photocurability and can suppress liquid crystal contamination can be provided.
  • the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Sealing Material Composition (AREA)
  • Liquid Crystal (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

This invention is a liquid-crystal-display-element sealant containing a curable resin, a thioxanthone-based polymerization initiator that can be represented by formula (1), and an amine-based sensitizer. In formula (1), n represents a number from 1 to 6; R3 represents a hydrogen atom or the like; A represents the group -O-, the group -[O(CHR2CHR1)a]y-, the group -[O(CH2)bCO]y-, or the group -[O(CH2)bCO](y−1)-[O(CHR2CHR1)a]-; R1 and R2 represent hydrogen atoms or the like; a is either 1 or 2; b is either 4 or 5; Q represents (poly)ethylene glycol, (poly)propylene glycol, (poly)butylene glycol, glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, or a caprolactone polyol residue; a free hydroxyl group within Q may be esterified; x represents a number that is greater than 1 but does not exceed the number of hydroxyl groups in Q; and y represents a number from 1 to 10.

Description

液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
本発明は、光硬化性に優れ、かつ、液晶汚染を抑制することができる液晶表示素子用シール剤に関する。また、本発明は、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子に関する。 The present invention relates to a sealant for a liquid crystal display element that is excellent in photocurability and can suppress liquid crystal contamination. Moreover, this invention relates to the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements.
近年、液晶表示セル等の液晶表示素子の製造方法としては、タクトタイム短縮、使用液晶量の最適化といった観点から、特許文献1、特許文献2に開示されているような、硬化性樹脂と光重合開始剤と熱硬化剤とを含有する光熱併用硬化型のシール剤を用いた滴下工法と呼ばれる液晶滴下方式が用いられている。
滴下工法では、まず、2枚の電極付き基板の一方に、ディスペンスにより長方形状のシールパターンを形成する。次いで、シール剤が未硬化の状態で液晶の微小滴を基板のシール枠内に滴下し、真空下で他方の基板を重ね合わせ、シール部に紫外線等の光を照射して仮硬化を行う。その後、加熱して本硬化を行い、液晶表示素子を作製する。現在この滴下工法が液晶表示素子の製造方法の主流となっている。
In recent years, as a method of manufacturing a liquid crystal display element such as a liquid crystal display cell, a curable resin and a light as disclosed in Patent Document 1 and Patent Document 2 from the viewpoint of shortening tact time and optimizing the amount of liquid crystal used. A liquid crystal dropping method called a dropping method using a photothermal combined curing type sealing agent containing a polymerization initiator and a thermosetting agent is used.
In the dropping method, first, a rectangular seal pattern is formed on one of the two substrates with electrodes by dispensing. Next, liquid crystal microdrops are dropped into the sealing frame of the substrate in a state where the sealing agent is uncured, the other substrate is superposed under vacuum, and the sealing portion is irradiated with light such as ultraviolet rays to perform temporary curing. Thereafter, heating is performed to perform main curing, and a liquid crystal display element is manufactured. At present, this dripping method has become the mainstream method for manufacturing liquid crystal display elements.
ところで、携帯電話、携帯ゲーム機等、各種液晶パネル付きモバイル機器が普及している現代において、機器の小型化は最も求められている課題である。機器の小型化の手法としては、液晶表示部の狭額縁化が挙げられ、例えば、シール部の位置をブラックマトリックス下に配置することが行われている(以下、狭額縁設計ともいう)。 By the way, in the present age when mobile devices with various liquid crystal panels such as mobile phones and portable game machines are widespread, downsizing of devices is the most demanded issue. As a technique for downsizing the device, a narrow frame of the liquid crystal display unit can be cited. For example, the position of the seal portion is arranged under the black matrix (hereinafter also referred to as a narrow frame design).
しかしながら、狭額縁設計ではシール剤がブラックマトリックスの直下に配置されるため、滴下工法を行うと、シール剤を光硬化させる際に照射した光が遮られ、シール剤の内部に光が到達し難く硬化が不充分となるという問題があった。このようにシール剤の硬化が不充分となると、未硬化のシール剤成分が液晶中に溶出して液晶汚染を発生させやすくなるという問題があった。 However, in the narrow frame design, since the sealing agent is arranged directly under the black matrix, when the dripping method is performed, the light irradiated when photocuring the sealing agent is blocked, and it is difficult for the light to reach the inside of the sealing agent. There was a problem that the curing was insufficient. As described above, when the sealant is insufficiently cured, there is a problem in that the uncured sealant component is eluted in the liquid crystal and easily causes liquid crystal contamination.
特許文献3には、シール剤に高感度の光重合開始剤を配合することが開示されている。しかしながら、単に高感度の光重合開始剤を配合しただけでは、充分にシール剤を光硬化させることができなかった。また、特許文献4には、シール剤に高感度の光重合開始剤と増感剤とを組み合わせて配合することが開示されている。しかしながら、増感剤を用いることにより、液晶汚染が発生しやすくなるという問題があった。 Patent Document 3 discloses that a highly sensitive photopolymerization initiator is blended with a sealant. However, the sealing agent could not be sufficiently photocured simply by adding a highly sensitive photopolymerization initiator. Patent Document 4 discloses that a sealing agent is combined with a highly sensitive photopolymerization initiator and a sensitizer. However, the use of a sensitizer has a problem that liquid crystal contamination is likely to occur.
特開2001-133794号公報JP 2001-133794 A 国際公開第02/092718号International Publication No. 02/092718 国際公開第2011/002028号International Publication No. 2011/002028 特開2010-286640号公報JP 2010-286640 A
本発明は、光硬化性に優れ、かつ、液晶汚染を抑制することができる液晶表示素子用シール剤を提供することを目的とする。また、本発明は、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することを目的とする。 An object of this invention is to provide the sealing compound for liquid crystal display elements which is excellent in photocurability and can suppress liquid-crystal contamination. Another object of the present invention is to provide a vertical conduction material and a liquid crystal display element using the sealing agent for a liquid crystal display element.
本発明は、硬化性樹脂と、下記式(1)で表されるチオキサントン系重合開始剤と、アミン系増感剤とを含有する液晶表示素子用シール剤である。 This invention is the sealing compound for liquid crystal display elements containing curable resin, the thioxanthone type polymerization initiator represented by following formula (1), and an amine sensitizer.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
式(1)中、nは、1~6であり、Rは、水素原子、メチル基、又は、エチル基であり、nが1より大きい場合、Rで表される基又は原子は、同一であってもよいし、異なっていてもよい。Aは、式-O-、-[O(CHRCHR-、-[O(CHCO]-、又は、-[O(CHCO](y-1)-[O(CHRCHR]-の基を表し、RとRの一方は、水素原子を表し、他方は、水素原子、メチル基、又は、エチル基を表し、aは、1~2であり、bは、4~5であり、Qは、(ポリ)エチレングリコール、(ポリ)プロピレングリコール、(ポリ)ブチレングリコール、グリセリン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、又は、カプロラクトンポリオールの残基であり、Q内の遊離ヒドロキシル基がエステル化されていてもよく、xは、1より大きく、Qの水酸基の数を超えない数であり、xが1より大きく、2を超えない場合、yは1~10であり、xが2を超える場合、yは3~10である。 In the formula (1), n is 1 to 6, R 3 is a hydrogen atom, a methyl group, or an ethyl group, and when n is greater than 1, the group or atom represented by R 3 is They may be the same or different. A is represented by the formula —O—, — [O (CHR 2 CHR 1 ) a ] y —, — [O (CH 2 ) b CO] y —, or — [O (CH 2 ) b CO] (y— 1) a group represented by — [O (CHR 2 CHR 1 ) a ] —, wherein one of R 1 and R 2 represents a hydrogen atom, and the other represents a hydrogen atom, a methyl group, or an ethyl group, Is 1-2, b is 4-5, Q is (poly) ethylene glycol, (poly) propylene glycol, (poly) butylene glycol, glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol , Dipentaerythritol or a residue of caprolactone polyol, the free hydroxyl group in Q may be esterified, x is a number greater than 1 and not exceeding the number of hydroxyl groups in Q, x But When it is larger than 1 and does not exceed 2, y is 1 to 10, and when x exceeds 2, y is 3 to 10.
本発明者らは、驚くべきことに、特定の構造を有する化合物が、液晶に対する汚染性が低く、かつ、光反応性に優れることを見出した。そこで本発明者らは、該化合物を光重合開始剤として配合することにより、光硬化性に優れ、かつ、液晶汚染を抑制することができる液晶表示素子用シール剤を得ることができることを見出し、本発明を完成させるに至った。 The present inventors have surprisingly found that a compound having a specific structure has low contamination with liquid crystals and is excellent in photoreactivity. Therefore, the present inventors have found that by compounding the compound as a photopolymerization initiator, it is possible to obtain a sealing agent for a liquid crystal display element that is excellent in photocurability and can suppress liquid crystal contamination. The present invention has been completed.
本発明の液晶表示素子用シール剤は、上記式(1)で表されるチオキサントン系重合開始剤を含有する。上記式(1)で表されるチオキサントン系重合開始剤をアミン系増感剤と組み合わせて含有することにより、本発明の液晶表示素子用シール剤は、高感度で光硬化性に優れ、かつ、液晶汚染を抑制することができるものとなる。 The sealing agent for liquid crystal display elements of this invention contains the thioxanthone type polymerization initiator represented by the said Formula (1). By containing the thioxanthone polymerization initiator represented by the above formula (1) in combination with an amine sensitizer, the sealing agent for a liquid crystal display element of the present invention has high sensitivity and excellent photocurability, and Liquid crystal contamination can be suppressed.
上記式(1)中、xは、1より大きく、Qの水酸基の数を超えない数であり、好ましい下限は2、好ましい上限は6である。上記xが2未満であると、液晶汚染を引き起こすことがある。上記xが6を超えると、粘度が高くなり、取扱いが困難になることがある。 In the above formula (1), x is a number that is greater than 1 and does not exceed the number of hydroxyl groups of Q. A preferred lower limit is 2 and a preferred upper limit is 6. If x is less than 2, liquid crystal contamination may occur. When x exceeds 6, the viscosity becomes high and handling may be difficult.
上記式(1)で表されるチオキサントン系重合開始剤は、上記式(1)中のnが1であり、Rが水素原子であり、Aが式-O-の基であることが好ましい。 In the thioxanthone polymerization initiator represented by the above formula (1), it is preferable that n in the above formula (1) is 1, R 3 is a hydrogen atom, and A is a group of the formula —O—. .
上記式(1)中のQは、ポリブチレングリコールの残基であることが好ましい。
また、Q内の遊離ヒドロキシル基がエステル化されている場合、上記式(1)で表されるチオキサントン系重合開始剤は、低級脂肪酸エステルであることが好ましい。
Q in the above formula (1) is preferably a polybutylene glycol residue.
When the free hydroxyl group in Q is esterified, the thioxanthone polymerization initiator represented by the above formula (1) is preferably a lower fatty acid ester.
上記式(1)中、A-Qの分子量の好ましい下限は100、好ましい上限は2000である。A-Qの分子量が100未満であると、液晶汚染を引き起こすことがある。A-Qの分子量が2000を超えると、粘度が高くなりすぎ、取扱いが困難になることがある。 In the above formula (1), the preferable lower limit of the molecular weight of AQ is 100, and the preferable upper limit is 2000. If the molecular weight of AQ is less than 100, liquid crystal contamination may be caused. When the molecular weight of AQ exceeds 2000, the viscosity becomes too high and handling may be difficult.
上記式(1)で表されるチオキサントン系重合開始剤を製造する方法としては、具体的には例えば、カルボキシメトキシチオキサントンとポリエチレングリコールとを反応させる方法等が挙げられる。 Specific examples of the method for producing the thioxanthone polymerization initiator represented by the above formula (1) include a method of reacting carboxymethoxythioxanthone and polyethylene glycol.
本発明の液晶表示素子用シール剤100重量部中における上記式(1)で表されるチオキサントン系重合開始剤の含有量の好ましい下限は0.1重量部、好ましい上限は10重量部である。上記式(1)で表されるチオキサントン系重合開始剤の含有量が0.1重量部未満であると、得られる液晶表示素子用シール剤の光重合が充分に進行しないことがある。上記式(1)で表されるチオキサントン系重合開始剤の含有量が10重量部を超えると、未反応の式(1)で表されるチオキサントン系重合開始剤が多く残り、得られる液晶表示素子用シール剤が、耐候性や保存安定性に劣るものとなったり、液晶汚染が発生したりすることがある。上記式(1)で表されるチオキサントン系重合開始剤の含有量のより好ましい下限は0.3重量部、より好ましい上限は7重量部である。 The preferable lower limit of the content of the thioxanthone-based polymerization initiator represented by the above formula (1) in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 0.1 part by weight, and the preferable upper limit is 10 parts by weight. When the content of the thioxanthone polymerization initiator represented by the above formula (1) is less than 0.1 parts by weight, the photopolymerization of the obtained sealing agent for liquid crystal display elements may not sufficiently proceed. When the content of the thioxanthone polymerization initiator represented by the above formula (1) exceeds 10 parts by weight, a large amount of unreacted thioxanthone polymerization initiator remains and the resulting liquid crystal display element The sealing agent for the resin may be inferior in weather resistance and storage stability, or liquid crystal contamination may occur. The minimum with more preferable content of the thioxanthone type polymerization initiator represented by the said Formula (1) is 0.3 weight part, and a more preferable upper limit is 7 weight part.
本発明の液晶表示素子用シール剤は、アミン系増感剤を含有する。上記アミン系増感剤としては、例えば、下記式(2)で表される化合物、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、2-ジメチルアミノ-エチルベンゾエート、エチル4-(ジメチルアミノ)ベンゾエート、2-エチルヘキシル-4-ジメチルアミノベンゾエート、イソアミル-4-(ジメチルアミノ)ベンゾエート、ブトキシエチル-4-(ジメチルアミノ)ベンゾエート等が挙げられる。なかでも、得られる液晶表示素子用シール剤が硬化性に優れるものとなることから、下記式(2)で表される化合物(以下、「式(2)で表されるアミン系増感剤」ともいう)が好ましい。 The sealing agent for liquid crystal display elements of the present invention contains an amine sensitizer. Examples of the amine sensitizer include, for example, a compound represented by the following formula (2), 4,4′-bis (diethylamino) benzophenone, 2-dimethylamino-ethylbenzoate, ethyl 4- (dimethylamino) benzoate, Examples thereof include 2-ethylhexyl-4-dimethylaminobenzoate, isoamyl-4- (dimethylamino) benzoate, butoxyethyl-4- (dimethylamino) benzoate. Especially, since the obtained sealing agent for liquid crystal display elements is excellent in curability, a compound represented by the following formula (2) (hereinafter referred to as “amine sensitizer represented by formula (2)”): Also referred to as).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
式(2)中、zは、1以上の整数を表し、Pは、(ポリ)エチレングリコール、(ポリ)プロピレングリコール、(ポリ)ブチレングリコール、グリセリン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、又は、カプロラクトンポリオールの残基である。 In the formula (2), z represents an integer of 1 or more, and P is (poly) ethylene glycol, (poly) propylene glycol, (poly) butylene glycol, glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol, It is a residue of dipentaerythritol or caprolactone polyol.
上記式(2)中、zは、1以上の整数を表し、好ましい下限は2、好ましい上限は6である。上記zが2未満であると、液晶汚染を引き起こすことがある。上記zが6を超えると、粘度が高くなり、取扱いが困難になることがある。 In the above formula (2), z represents an integer of 1 or more, a preferred lower limit is 2, and a preferred upper limit is 6. If z is less than 2, liquid crystal contamination may be caused. When z exceeds 6, the viscosity becomes high and handling may be difficult.
上記式(2)中、Pは、(ポリ)エチレングリコール、(ポリ)プロピレングリコール、(ポリ)ブチレングリコール、グリセリン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、又は、カプロラクトンポリオールの残基である。
上記式(2)中のPの分子量の好ましい下限は100、好ましい上限は2000である。Pの分子量が100未満であると、液晶汚染を引き起こすことがある。Pの分子量が2000を超えると、粘度が高くなりすぎ、取扱いが困難になることがある。
In the above formula (2), P is (poly) ethylene glycol, (poly) propylene glycol, (poly) butylene glycol, glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, or caprolactone polyol. Residue.
The preferable lower limit of the molecular weight of P in the above formula (2) is 100, and the preferable upper limit is 2000. If the molecular weight of P is less than 100, liquid crystal contamination may occur. When the molecular weight of P exceeds 2000, the viscosity becomes too high and handling may be difficult.
上記式(2)で表されるアミン系増感剤は、式(2)中のzが2であり、Pがポリエチレングリコールの残基であることが好ましい。 In the amine sensitizer represented by the above formula (2), z in the formula (2) is preferably 2, and P is a residue of polyethylene glycol.
上記式(2)で表されるアミン系増感剤を製造する方法としては、具体的には例えば、4-(ジメチルアミノ)ベンゾイルクロライドとポリエチレンオキサイドとを反応させる方法等が挙げられる。 Specific examples of the method for producing the amine sensitizer represented by the above formula (2) include a method of reacting 4- (dimethylamino) benzoyl chloride with polyethylene oxide.
本発明の液晶表示素子用シール剤100重量部中における上記アミン系増感剤の含有量の好ましい下限は0.1重量部、好ましい上限は10重量部である。上記アミン系増感剤の含有量が0.1重量部未満であると、得られる液晶表示素子用シール剤が光硬化性に劣るものとなり、液晶汚染が発生することがある。上記アミン系増感剤の含有量が10重量部を超えると、アミン系増感剤による液晶汚染が発生することがある。上記アミン系増感剤の含有量のより好ましい下限は0.3重量部、より好ましい上限は7重量部である。 The minimum with preferable content of the said amine sensitizer in 100 weight part of sealing compounds for liquid crystal display elements of this invention is 0.1 weight part, and a preferable upper limit is 10 weight part. When the content of the amine-based sensitizer is less than 0.1 parts by weight, the obtained sealing agent for liquid crystal display elements is inferior in photocurability, and liquid crystal contamination may occur. When the content of the amine sensitizer exceeds 10 parts by weight, liquid crystal contamination due to the amine sensitizer may occur. The minimum with more preferable content of the said amine sensitizer is 0.3 weight part, and a more preferable upper limit is 7 weight part.
上記式(1)で表されるチオキサントン系重合開始剤と上記アミン系増感剤との含有割合は、重量比で、式(1)で表されるチオキサントン系重合開始剤:アミン系増感剤=1:0.05~1:5であることが好ましい。上記式(1)で表されるチオキサントン系重合開始剤と上記アミン系増感剤との含有割合がこの範囲内であることにより、本発明の液晶表示素子用シール剤は、液晶汚染を抑制する効果、及び、光硬化性に特に優れるものとなる。上記式(1)で表されるチオキサントン系重合開始剤と上記アミン系増感剤との含有割合は、式(1)で表されるチオキサントン系重合開始剤:アミン系増感剤=1:0.1~1:2であることがより好ましい。 The content ratio of the thioxanthone polymerization initiator represented by the formula (1) and the amine sensitizer is a weight ratio, and the thioxanthone polymerization initiator represented by the formula (1): amine sensitizer. = 1: 0.05 to 1: 5 is preferable. When the content ratio of the thioxanthone polymerization initiator represented by the above formula (1) and the amine sensitizer is within this range, the sealing agent for liquid crystal display elements of the present invention suppresses liquid crystal contamination. The effect and the photocurability are particularly excellent. The content ratio of the thioxanthone polymerization initiator represented by the formula (1) and the amine sensitizer is as follows: the thioxanthone polymerization initiator represented by the formula (1): amine sensitizer = 1: 0. 1 to 1: 2 is more preferable.
本発明の液晶表示素子用シール剤は、硬化性樹脂を含有する。
上記硬化性樹脂は、(メタ)アクリル樹脂を含有することが好ましい。
上記(メタ)アクリル樹脂としては、例えば、(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物、(メタ)アクリル酸とエポキシ化合物とを反応させることにより得られるエポキシ(メタ)アクリレート、イソシアネート化合物に水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレート等が挙げられる。なかでも、エポキシ(メタ)アクリレートが好ましい。
なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味し、上記「(メタ)アクリル樹脂」とは、アクリロイル基又はメタクリロイル基(以下、併せて「(メタ)アクリロイル基」ともいう)を有する樹脂を意味する。また、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。更に、上記「エポキシ(メタ)アクリレート」とは、エポキシ樹脂中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物のことを表す。
The sealing agent for liquid crystal display elements of this invention contains curable resin.
The curable resin preferably contains a (meth) acrylic resin.
Examples of the (meth) acrylic resin include an ester compound obtained by reacting a compound having a hydroxyl group with (meth) acrylic acid, and an epoxy (meta) obtained by reacting (meth) acrylic acid with an epoxy compound. ) Urethane (meth) acrylate obtained by reacting a (meth) acrylic acid derivative having a hydroxyl group with an acrylate or isocyanate compound. Of these, epoxy (meth) acrylate is preferable.
In the present specification, the “(meth) acryl” means acryl or methacryl, and the “(meth) acryl resin” means an acryloyl group or a methacryloyl group (hereinafter, “(meth) acryloyl”). It is also referred to as a “group”. The “(meth) acrylate” means acrylate or methacrylate. Further, the “epoxy (meth) acrylate” represents a compound obtained by reacting all epoxy groups in the epoxy resin with (meth) acrylic acid.
上記エステル化合物のうち単官能のものとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、プロピル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル2-ヒドロキシプロピルフタレート、グリシジル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルホスフェート等が挙げられる。 Examples of the monofunctional compounds of the ester compounds include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, Isobutyl (meth) acrylate, t-butyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-methoxyethyl (meth) ) Acrylate, methoxyethylene glycol (meth) acrylate, 2-ethoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, benzyl (meth) acrylate, ethylcal Tall (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, imide (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, n- Butyl (meth) acrylate, propyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isononyl (meth) acrylate, isomyristyl (Meth) acrylate, 2-butoxyethyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, bicyclopentenyl (meth) acrylate, isodecyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl 2-hydroxypropyl phthalate, glycidyl (meth) acrylate, 2- ( And (meth) acryloyloxyethyl phosphate.
また、上記エステル化合物のうち2官能のものとしては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional ester compound include 1,4-butanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, and 1,6-hexanediol di (meth). Acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decandiol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene Glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol (Meth) acrylate, propylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol F di (meth) acrylate, dimethylol dicyclopentadienyl di (meth) acrylate, 1 , 3-butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide modified isocyanuric acid di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, carbonate diol Di (meth) acrylate, polyether diol di (meth) acrylate, polyester diol di (meth) acrylate, polycaprolactone diol di (meth) acrylate Over DOO, polybutadiene di (meth) acrylate.
また、上記エステル化合物のうち3官能以上のものとしては、例えば、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート等が挙げられる。 Examples of the ester compound having three or more functional groups include pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri (meth) acrylate, and ethylene oxide-added trimethylol. Propane tri (meth) acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane tetra (Meth) acrylate, pentaerythritol tetra (meth) acrylate, glycerin tri (meth) acrylate, propylene Oxide addition glycerin tri (meth) acrylate, tris (meth) acryloyloxyethyl phosphate, and the like.
上記エポキシ(メタ)アクリレートとしては、例えば、エポキシ樹脂と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応することにより得られるもの等が挙げられる。 Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy resin and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物等が挙げられる。 Examples of the epoxy resin used as a raw material for synthesizing the epoxy (meth) acrylate include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and 2,2′-diallyl bisphenol A type epoxy resin. , Hydrogenated bisphenol type epoxy resin, propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol Novolac epoxy resin, ortho-cresol novolac epoxy resin, dicyclopentadiene novolac epoxy resin, biphenyl novolac epoxy resin, naphtha Emissions phenol novolak type epoxy resin, glycidyl amine type epoxy resin, alkyl polyol type epoxy resin, rubber-modified epoxy resins, glycidyl ester compounds.
上記ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、jER828EL、jER1004(いずれも三菱化学社製)、エピクロン850CRP(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ樹脂のうち市販されているものとしては、例えば、jER806、jER4004(いずれも三菱化学社製)等が挙げられる。
上記ビスフェノールS型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA1514(DIC社製)等が挙げられる。
上記2,2’-ジアリルビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、RE-810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ樹脂のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ樹脂のうち市販されているものとしては、例えば、jER YX-4000H(三菱化学社製)等が挙げられる。
上記スルフィド型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-50TE(新日鉄住金化学社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-80DE(新日鉄住金化学社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP4032、エピクロンEXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、ESN-165S(新日鉄住金化学社製)等が挙げられる。
上記グリシジルアミン型エポキシ樹脂のうち市販されているものとしては、例えば、jER630(三菱化学社製)、エピクロン430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ樹脂のうち市販されているものとしては、例えば、ZX-1542(新日鉄住金化学社製)、エピクロン726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ樹脂のうち市販されているものとしては、例えば、YR-450、YR-207(いずれも新日鉄住金化学社製)、エポリードPB(ダイセル社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記エポキシ樹脂のうちその他に市販されているものとしては、例えば、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも新日鉄住金化学社製)、XAC4151(旭化成社製)、jER1031、jER1032(いずれも三菱化学社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
As what is marketed among the said bisphenol A type epoxy resins, jER828EL, jER1004 (all are the Mitsubishi Chemical company make), Epiklon 850CRP (made by DIC company), etc. are mentioned, for example.
As what is marketed among the said bisphenol F-type epoxy resins, jER806, jER4004 (all are the Mitsubishi Chemical company make) etc. are mentioned, for example.
As what is marketed among the said bisphenol S-type epoxy resins, Epicron EXA1514 (made by DIC Corporation) etc. are mentioned, for example.
Examples of commercially available 2,2′-diallylbisphenol A type epoxy resins include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
As what is marketed among the said hydrogenated bisphenol type | mold epoxy resins, Epicron EXA7015 (made by DIC Corporation) etc. are mentioned, for example.
Examples of commercially available propylene oxide-added bisphenol A type epoxy resins include EP-4000S (manufactured by ADEKA).
Examples of commercially available resorcinol type epoxy resins include EX-201 (manufactured by Nagase ChemteX Corporation).
Examples of commercially available biphenyl type epoxy resins include jER YX-4000H (manufactured by Mitsubishi Chemical Corporation).
Examples of commercially available sulfide type epoxy resins include YSLV-50TE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
Examples of commercially available naphthalene type epoxy resins include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC) and the like.
Examples of commercially available phenol novolac epoxy resins include Epicron N-770 (manufactured by DIC).
Examples of the ortho-cresol novolac type epoxy resin that are commercially available include epiclone N-670-EXP-S (manufactured by DIC).
As what is marketed among the said dicyclopentadiene novolak-type epoxy resins, epiclone HP7200 (made by DIC) etc. are mentioned, for example.
Examples of commercially available biphenyl novolac epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
Examples of commercially available naphthalene phenol novolac type epoxy resins include ESN-165S (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available glycidylamine type epoxy resins include jER630 (manufactured by Mitsubishi Chemical), Epicron 430 (manufactured by DIC), and TETRAD-X (manufactured by Mitsubishi Gas Chemical).
Examples of commercially available alkyl polyol type epoxy resins include ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epiklon 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611. (Manufactured by Nagase ChemteX Corporation).
Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (both manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Corporation), and the like.
Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
Other commercially available epoxy resins include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by NS Also, Mitsubishi Chemical Corporation), EXA-7120 (DIC Corporation), TEPIC (Nissan Chemical Corporation) and the like.
上記エポキシ(メタ)アクリレートを製造する方法としては、具体的には例えば、レゾルシノール型エポキシ樹脂(EX-201、ナガセケムテックス社製)360重量部と、重合禁止剤としてp-メトキシフェノール2重量部と、反応触媒としてトリエチルアミン2重量部と、アクリル酸210重量部とを、空気を送り込んで還流撹拌しながら、90℃で5時間反応させることによってレゾルシノール型エポキシアクリレートを得ることができる。 As a method for producing the epoxy (meth) acrylate, specifically, for example, 360 parts by weight of a resorcinol type epoxy resin (EX-201, manufactured by Nagase ChemteX) and 2 parts by weight of p-methoxyphenol as a polymerization inhibitor are used. Then, resorcinol type epoxy acrylate can be obtained by reacting 2 parts by weight of triethylamine as a reaction catalyst and 210 parts by weight of acrylic acid at 90 ° C. for 5 hours while feeding air and stirring under reflux.
上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3800、EBECRYL6040、EBECRYLRDX63182(いずれもダイセル・オルネクス社製)、EA-1010、EA-1020、EA-5323、EA-5520、EA-CHD、EMA-1020(いずれも新中村化学工業社製)、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA(いずれも共栄社化学社製)、デナコールアクリレートDA-141、デナコールアクリレートDA-314、デナコールアクリレートDA-911(いずれもナガセケムテックス社製)等が挙げられる。 Examples of commercially available epoxy (meth) acrylates include, for example, EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3703, EBECRY3603 EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Co., Ltd.), epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy Ester 200PA, epoxy ester 80MFA Epoxy ester 3002M, Epoxy ester 3002A, Epoxy ester 1600A, Epoxy ester 3000M, Epoxy ester 3000A, Epoxy ester 200EA, Epoxy ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.), Denacol acrylate DA-141, Denacol acrylate DA-314, Denacol acrylate DA-911 (all manufactured by Nagase ChemteX Corporation).
上記イソシアネート化合物に水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレートとしては、例えば、2つのイソシアネート基を有するイソシアネート化合物1当量に対して水酸基を有する(メタ)アクリル酸誘導体2当量を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。 Examples of the urethane (meth) acrylate obtained by reacting a hydroxyl group-containing (meth) acrylic acid derivative with the isocyanate compound include, for example, (meth) acrylic having a hydroxyl group with respect to 1 equivalent of an isocyanate compound having two isocyanate groups. Two equivalents of the acid derivative can be obtained by reacting in the presence of a catalytic amount of a tin-based compound.
上記ウレタン(メタ)アクリレートの原料となるイソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシレンジイソシアネート、1,6,10-ウンデカントリイソシアネート等が挙げられる。 Examples of the isocyanate compound used as the raw material for the urethane (meth) acrylate include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and diphenylmethane-4,4. '-Diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanate) Phenyl) thiophosphate, tetramethylxylene diisocyanate, 1,6,10-undecanetriiso Aneto and the like.
また、上記ウレタン(メタ)アクリレートの原料となるイソシアネートとしては、例えば、エチレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、(ポリ)プロピレングリコール、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等のポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物も使用することができる。 Examples of the isocyanate used as a raw material for the urethane (meth) acrylate include ethylene glycol, glycerin, sorbitol, trimethylolpropane, (poly) propylene glycol, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol. Chain-extended isocyanate compounds obtained by reaction of polyols with excess isocyanate compounds can also be used.
上記ウレタン(メタ)アクリレートの原料となる、水酸基を有する(メタ)アクリル酸誘導体としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等の市販品や、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレートや、トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレートや、ビスフェノールA型エポキシアクリレート等のエポキシ(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylic acid derivative having a hydroxyl group, which is a raw material of the urethane (meth) acrylate, include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth). Commercial products such as acrylate and 2-hydroxybutyl (meth) acrylate, and divalent products such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol Epoxy (meth) acrylates such as mono (meth) acrylates of alcohol, mono (meth) acrylates or di (meth) acrylates of trivalent alcohols such as trimethylolethane, trimethylolpropane, and glycerin, and bisphenol A type epoxy acrylate Rate, and the like.
上記ウレタン(メタ)アクリレートは、具体的には例えば、トリメチロールプロパン134重量部、重合禁止剤としてBHT0.2重量部、反応触媒としてジブチル錫ジラウリレート0.01重量部、イソホロンジイソシアネート666重量部を加え、60℃で還流撹拌しながら2時間反応させ、次に、2-ヒドロキシエチルアクリレート51重量部を加え、空気を送り込んで還流撹拌しながら90℃で2時間反応させることにより得ることができる。 Specifically, the urethane (meth) acrylate includes, for example, 134 parts by weight of trimethylolpropane, 0.2 part by weight of BHT as a polymerization inhibitor, 0.01 part by weight of dibutyltin dilaurate as a reaction catalyst, and 666 parts by weight of isophorone diisocyanate. The mixture can be reacted at 60 ° C. for 2 hours with stirring under reflux, then 51 parts by weight of 2-hydroxyethyl acrylate is added, and air is fed in and the mixture is reacted at 90 ° C. with stirring under reflux for 2 hours.
上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、M-1100、M-1200、M-1210、M-1600(いずれも東亞合成社製)、EBECRYL230、EBECRYL270、EBECRYL4858、EBECRYL8402、EBECRYL8804、EBECRYL8803、EBECRYL8807、EBECRYL9260、EBECRYL1290、EBECRYL5129、EBECRYL4842、EBECRYL210、EBECRYL4827、EBECRYL6700、EBECRYL220、EBECRYL2220(いずれもダイセル・オルネクス社製)、アートレジンUN-9000H、アートレジンUN-9000A、アートレジンUN-7100、アートレジンUN-1255、アートレジンUN-330、アートレジンUN-3320HB、アートレジンUN-1200TPK、アートレジンSH-500B(いずれも根上工業社製)、U-122P、U-108A、U-340P、U-4HA、U-6HA、U-324A、U-15HA、UA-5201P、UA-W2A、U-1084A、U-6LPA、U-2HA、U-2PHA、UA-4100、UA-7100、UA-4200、UA-4400、UA-340P、U-3HA、UA-7200、U-2061BA、U-10H、U-122A、U-340A、U-108、U-6H、UA-4000(いずれも新中村化学工業社製)、AH-600、AT-600、UA-306H、AI-600、UA-101T、UA-101I、UA-306T、UA-306I(いずれも共栄社化学社製)等が挙げられる。 Examples of commercially available urethane (meth) acrylates include M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), EBECRYL230, EBECRYL270, EBECRYL4858, EBECRYL8402, EBECRYL8804, EBECRYL8803, EBECRYL8807, EBECRYL9260, EBECRYL1290, EBECRYL5129, EBECRYL4842, EBECRYL210, EBECRYL4827, EBECRYL6700, EBECRYL6700, EBECRYL6700 , Art resin N-1255, Art Resin UN-330, Art Resin UN-3320HB, Art Resin UN-1200TPK, Art Resin SH-500B (all manufactured by Negami Industrial Co., Ltd.), U-122P, U-108A, U-340P, U- 4HA, U-6HA, U-324A, U-15HA, UA-5201P, UA-W2A, U-1084A, U-6LPA, U-2HA, U-2PHA, UA-4100, UA-7100, UA-4200, UA-4400, UA-340P, U-3HA, UA-7200, U-2061BA, U-10H, U-122A, U-340A, U-108, U-6H, UA-4000 (all Shin-Nakamura Chemical Industries ), AH-600, AT-600, UA-306H, AI-600, UA-101T, UA-101I, A-306T, UA-306I (all manufactured by Kyoeisha Chemical Co., Ltd.).
上記硬化性樹脂は、得られる液晶表示素子用シール剤の接着性を向上させることを目的として、更に、エポキシ樹脂を含有することが好ましい。上記エポキシ樹脂としては、例えば、上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ樹脂や、部分(メタ)アクリル変性エポキシ樹脂等が挙げられる。
なお、本明細書において上記部分(メタ)アクリル変性エポキシ樹脂とは、1分子中にエポキシ基と(メタ)アクリロイルオキシ基とをそれぞれ1つ以上有する樹脂を意味し、例えば、2つ以上のエポキシ樹脂の一部分のエポキシ基を(メタ)アクリル酸と反応させることによって得ることができる。
The curable resin preferably further contains an epoxy resin for the purpose of improving the adhesiveness of the obtained sealing agent for liquid crystal display elements. As said epoxy resin, the epoxy resin used as the raw material for synthesize | combining the said epoxy (meth) acrylate, a partial (meth) acryl modified epoxy resin, etc. are mentioned, for example.
In the present specification, the partial (meth) acryl-modified epoxy resin means a resin having one or more epoxy groups and (meth) acryloyloxy groups in one molecule, for example, two or more epoxy resins. It can be obtained by reacting a part of the epoxy group of the resin with (meth) acrylic acid.
本発明の液晶表示素子用シール剤が上記エポキシ樹脂を含有する場合、(メタ)アクリロイルオキシ基とエポキシ基との比が30:70~95:5になるように上記(メタ)アクリル樹脂と上記エポキシ樹脂とを配合することが好ましい。(メタ)アクリロイルオキシ基の比率が30%未満であると、(メタ)アクリロイルオキシ基の重合が完了しても未硬化のエポキシ樹脂成分が多く存在するため液晶汚染が発生することがある。(メタ)アクリロイルオキシ基の比率が95%を超えると、得られる液晶表示素子用シール剤が接着性に劣るものとなることがある。 When the sealing agent for a liquid crystal display element of the present invention contains the above epoxy resin, the (meth) acrylic resin and the above are adjusted so that the ratio of (meth) acryloyloxy group to epoxy group is 30:70 to 95: 5. It is preferable to blend with an epoxy resin. When the ratio of the (meth) acryloyloxy group is less than 30%, liquid crystal contamination may occur because a large amount of uncured epoxy resin component is present even when the polymerization of the (meth) acryloyloxy group is completed. When the ratio of the (meth) acryloyloxy group exceeds 95%, the obtained sealing agent for liquid crystal display elements may be inferior in adhesiveness.
上記硬化性樹脂は、液晶汚染を抑える点で、-OH基、-NH-基、-NH基等の水素結合性のユニットを有するものが好ましい。
また、上記(メタ)アクリル樹脂は、反応性の高さから分子中に(メタ)アクリロイルオキシ基を2~3個有するものが好ましい。
The curable resin preferably has a hydrogen bondable unit such as —OH group, —NH— group, —NH 2 group, etc. from the viewpoint of suppressing liquid crystal contamination.
The (meth) acrylic resin preferably has 2 to 3 (meth) acryloyloxy groups in the molecule because of its high reactivity.
本発明の液晶表示素子用シール剤は、熱ラジカル重合開始剤を含有してもよい。
上記熱ラジカル重合開始剤としては、例えば、アゾ化合物、有機過酸化物等からなるものが挙げられる。なかでも、高分子アゾ化合物からなる開始剤(以下、「高分子アゾ開始剤」ともいう)が好ましい。
なお、本明細書において高分子アゾ開始剤とは、アゾ基を有し、熱によって(メタ)アクリロイルオキシ基を硬化させることができるラジカルを生成する、数平均分子量が300以上の化合物を意味する。
The sealing agent for liquid crystal display elements of the present invention may contain a thermal radical polymerization initiator.
As said thermal radical polymerization initiator, what consists of an azo compound, an organic peroxide, etc. is mentioned, for example. Among these, an initiator made of a polymer azo compound (hereinafter also referred to as “polymer azo initiator”) is preferable.
In the present specification, the polymer azo initiator means a compound having an azo group and generating a radical capable of curing a (meth) acryloyloxy group by heat and having a number average molecular weight of 300 or more. .
上記高分子アゾ開始剤の数平均分子量の好ましい下限は1000、好ましい上限は30万である。上記高分子アゾ開始剤の数平均分子量が1000未満であると、高分子アゾ開始剤が液晶に悪影響を与えることがある。上記高分子アゾ開始剤の数平均分子量が30万を超えると、硬化性樹脂への混合が困難になることがある。上記高分子アゾ開始剤の数平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は9万である。
なお、本明細書において、上記数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際のカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。
The preferable lower limit of the number average molecular weight of the polymeric azo initiator is 1000, and the preferable upper limit is 300,000. When the number average molecular weight of the polymer azo initiator is less than 1000, the polymer azo initiator may adversely affect the liquid crystal. When the number average molecular weight of the polymeric azo initiator exceeds 300,000, mixing with the curable resin may be difficult. The more preferable lower limit of the number average molecular weight of the polymeric azo initiator is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
In addition, in this specification, the said number average molecular weight is a value calculated | required by polystyrene conversion by measuring with gel permeation chromatography (GPC). Examples of the column for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK).
上記高分子アゾ開始剤としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ開始剤としては、ポリエチレンオキサイド構造を有するものが好ましい。このような高分子アゾ開始剤としては、例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられ、具体的には例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001(いずれも和光純薬工業社製)等が挙げられる。
また、高分子ではないアゾ化合物の例としてはV-65、V-501(いずれも和光純薬工業社製)等が挙げられる。
Examples of the polymer azo initiator include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
As the polymer azo initiator having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group, those having a polyethylene oxide structure are preferable. Examples of such a polymer azo initiator include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid) Examples thereof include polycondensates of polydimethylsiloxane having a terminal amino group, such as VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001 (all of which are Wako Pure Chemical Industries, Ltd.) Manufactured) and the like.
Examples of azo compounds that are not a polymer include V-65 and V-501 (both manufactured by Wako Pure Chemical Industries, Ltd.).
上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。 Examples of the organic peroxide include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
上記熱ラジカル重合開始剤の含有量は、硬化性樹脂100重量部に対して、好ましい下限が0.05重量部、好ましい上限が10重量部である。上記熱ラジカル重合開始剤の含有量が0.05重量部未満であると、得られる液晶表示素子用シール剤の熱重合が充分に進行しないことがある。上記熱ラジカル重合開始剤の含有量が10重量部を超えると、未反応の熱ラジカル重合開始剤によって液晶汚染が生じることがある。上記熱ラジカル重合開始剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は5重量部である。 The content of the thermal radical polymerization initiator is preferably 0.05 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin. If the content of the thermal radical polymerization initiator is less than 0.05 parts by weight, the thermal polymerization of the obtained sealing agent for liquid crystal display elements may not sufficiently proceed. If the content of the thermal radical polymerization initiator exceeds 10 parts by weight, liquid crystal contamination may occur due to the unreacted thermal radical polymerization initiator. The minimum with more preferable content of the said thermal radical polymerization initiator is 0.1 weight part, and a more preferable upper limit is 5 weight part.
本発明の液晶表示素子用シール剤は、熱硬化剤を含有してもよい。
上記熱硬化剤としては、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、酸無水物等が挙げられる。なかでも、有機酸ヒドラジドが好適に用いられる。
The sealing agent for liquid crystal display elements of the present invention may contain a thermosetting agent.
Examples of the thermosetting agent include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Of these, organic acid hydrazide is preferably used.
上記有機酸ヒドラジドとしては、例えば、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、マロン酸ジヒドラジド等が挙げられる。
上記有機酸ヒドラジドのうち市販されているものとしては、例えば、SDH、ADH(いずれも大塚化学社製)、アミキュアVDH、アミキュアVDH-J、アミキュアUDH、アミキュアUDH-J(いずれも味の素ファインテクノ社製)等が挙げられる。
Examples of the organic acid hydrazide include sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide, and the like.
Examples of commercially available organic acid hydrazides include SDH, ADH (all manufactured by Otsuka Chemical Co., Ltd.), Amicure VDH, Amicure VDH-J, Amicure UDH, Amicure UDH-J (all Ajinomoto Fine Techno Co., Ltd.) Manufactured) and the like.
上記熱硬化剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が1重量部、好ましい上限が50重量部である。上記熱硬化剤の含有量が1重量部未満であると、得られる液晶表示素子用シール剤を充分に熱硬化させることができないことがある。上記熱硬化剤の含有量が50重量部を超えると、得られる液晶表示素子用シール剤の粘度が高くなり、塗布性が悪くなることがある。上記熱硬化剤の含有量のより好ましい上限は30重量部である。 The content of the thermosetting agent is preferably 1 part by weight with respect to 100 parts by weight of the curable resin, and 50 parts by weight with respect to the preferable upper limit. When the content of the thermosetting agent is less than 1 part by weight, the obtained sealing agent for liquid crystal display elements may not be sufficiently cured. When content of the said thermosetting agent exceeds 50 weight part, the viscosity of the sealing compound for liquid crystal display elements obtained will become high, and applicability | paintability may worsen. The upper limit with more preferable content of the said thermosetting agent is 30 weight part.
本発明の液晶表示素子用シール剤は、粘度の向上、応力分散効果による接着性の改善、線膨張率の改善、硬化物の耐湿性の更なる向上等を目的として充填剤を含有することが好ましい。 The sealing agent for liquid crystal display elements of the present invention may contain a filler for the purpose of improving the viscosity, improving the adhesion due to the stress dispersion effect, improving the linear expansion coefficient, and further improving the moisture resistance of the cured product. preferable.
上記充填剤としては、例えば、タルク、石綿、シリカ、珪藻土、スメクタイト、ベントナイト、炭酸カルシウム、炭酸マグネシウム、アルミナ、モンモリロナイト、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、水酸化マグネシウム、水酸化アルミニウム、ガラスビーズ、窒化珪素、硫酸バリウム、石膏、珪酸カルシウム、セリサイト活性白土、窒化アルミニウム等の無機充填剤や、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子等の有機充填剤が挙げられる。これらの充填剤は単独で用いてもよいし、2種以上を併用してもよい。 Examples of the filler include talc, asbestos, silica, diatomaceous earth, smectite, bentonite, calcium carbonate, magnesium carbonate, alumina, montmorillonite, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, magnesium hydroxide, water Organic filler such as aluminum oxide, glass beads, silicon nitride, barium sulfate, gypsum, calcium silicate, sericite activated clay, aluminum nitride, polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, etc. Agents. These fillers may be used independently and may use 2 or more types together.
本発明の液晶表示素子用シール剤100重量部中における上記充填剤の含有量の好ましい下限は10重量部、好ましい上限は70重量部である。上記充填剤の含有量が10重量部未満であると、接着性の改善等の効果が充分に発揮されないことがある。上記充填剤の含有量が70重量部を超えると、得られる液晶表示素子用シール剤の粘度が高くなり、塗布性が悪くなることがある。上記充填剤の含有量のより好ましい下限は20重量部、より好ましい上限は60重量部である。 The preferable lower limit of the content of the filler in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 10 parts by weight, and the preferable upper limit is 70 parts by weight. When the content of the filler is less than 10 parts by weight, effects such as improvement of adhesiveness may not be sufficiently exhibited. When content of the said filler exceeds 70 weight part, the viscosity of the sealing compound for liquid crystal display elements obtained will become high, and applicability | paintability may worsen. The minimum with more preferable content of the said filler is 20 weight part, and a more preferable upper limit is 60 weight part.
本発明の液晶表示素子用シール剤は、シランカップリング剤を含有することが好ましい。上記シランカップリング剤は、主にシール剤と基板等とを良好に接着するための接着助剤としての役割を有する。 It is preferable that the sealing compound for liquid crystal display elements of this invention contains a silane coupling agent. The silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the substrate.
上記シランカップリング剤としては、基板等との接着性を向上させる効果に優れ、硬化性樹脂と化学結合することにより液晶中への硬化性樹脂の流出を抑制することができることから、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が好適に用いられる。これらのシランカップリング剤は単独で用いてもよいし、2種以上を併用してもよい。 As said silane coupling agent, since it is excellent in the effect which improves adhesiveness with a board | substrate etc. and it can suppress the outflow of curable resin in a liquid crystal by chemically bonding with curable resin, it is 3 for example. -Aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like are preferably used. These silane coupling agents may be used alone or in combination of two or more.
本発明の液晶表示素子用シール剤100重量部中における上記シランカップリング剤の含有量の好ましい下限は0.1重量部、好ましい上限は10重量部である。上記シランカップリング剤の含有量が0.1重量部未満であると、シランカップリング剤を配合することによる効果が充分に発揮されないことがある。上記シランカップリング剤の含有量が10重量部を超えると、得られる液晶表示素子用シール剤が液晶汚染を引き起こすことがある。上記シランカップリング剤の含有量のより好ましい下限は0.3重量部、より好ましい上限は5重量部である。 The minimum with preferable content of the said silane coupling agent in 100 weight part of sealing compounds for liquid crystal display elements of this invention is 0.1 weight part, and a preferable upper limit is 10 weight part. When the content of the silane coupling agent is less than 0.1 parts by weight, the effect of blending the silane coupling agent may not be sufficiently exhibited. When content of the said silane coupling agent exceeds 10 weight part, the sealing compound for liquid crystal display elements obtained may cause liquid-crystal contamination. The minimum with more preferable content of the said silane coupling agent is 0.3 weight part, and a more preferable upper limit is 5 weight part.
本発明の液晶表示素子用シール剤は、遮光剤を含有してもよい。上記遮光剤を含有することにより、本発明の液晶表示素子用シール剤は、遮光シール剤として好適に用いることができる。 The sealing agent for liquid crystal display elements of the present invention may contain a light shielding agent. By containing the said light shielding agent, the sealing compound for liquid crystal display elements of this invention can be used suitably as a light shielding sealing agent.
上記遮光剤としては、例えば、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック、樹脂被覆型カーボンブラック等が挙げられる。なかでも、チタンブラックが好ましい。 Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Of these, titanium black is preferable.
上記チタンブラックは、波長300~800nmの光に対する平均透過率と比較して、紫外線領域付近、特に波長370~450nmの光に対する透過率が高くなる物質である。即ち、上記チタンブラックは、可視光領域の波長の光を充分に遮蔽することで本発明の液晶表示素子用シール剤に遮光性を付与する一方、紫外線領域付近の波長の光は透過させる性質を有する遮光剤である。本発明の液晶表示素子用シール剤に含有される遮光剤としては、絶縁性の高い物質が好ましく、絶縁性の高い遮光剤としてもチタンブラックが好適である。 Titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly for light having a wavelength of 370 to 450 nm, compared to the average transmittance for light having a wavelength of 300 to 800 nm. That is, the above-described titanium black sufficiently shields light having a wavelength in the visible light region, thereby providing a light shielding property to the sealing agent for liquid crystal display elements of the present invention, while transmitting light having a wavelength in the vicinity of the ultraviolet region. A shading agent. The light shielding agent contained in the liquid crystal display element sealant of the present invention is preferably a highly insulating material, and titanium black is also preferred as the highly insulating light shielding agent.
上記チタンブラックは、表面処理されていないものでも充分な効果を発揮するが、表面がカップリング剤等の有機成分で処理されているものや、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の無機成分で被覆されているもの等、表面処理されたチタンブラックを用いることもできる。なかでも、有機成分で処理されているものは、より絶縁性を向上できる点で好ましい。
また、遮光剤として上記チタンブラックを含有する本発明の液晶表示素子用シール剤を用いて製造した液晶表示素子は、充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有する液晶表示素子を実現することができる。
The above-mentioned titanium black exhibits a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, oxidized Surface-treated titanium black such as those coated with an inorganic component such as zirconium or magnesium oxide can also be used. Especially, what is processed with the organic component is preferable at the point which can improve insulation more.
In addition, the liquid crystal display element produced using the sealing agent for liquid crystal display elements of the present invention containing the above-described titanium black as a light-shielding agent has a sufficient light-shielding property, and thus has high contrast without light leakage. A liquid crystal display element having excellent image display quality can be realized.
上記チタンブラックのうち市販されているものとしては、例えば、12S、13M、13M-C、13R-N、14M-C(いずれも三菱マテリアル社製)、ティラックD(赤穂化成社製)等が挙げられる。 Examples of commercially available titanium black include 12S, 13M, 13M-C, 13R-N, 14M-C (all manufactured by Mitsubishi Materials Corporation), Tilak D (manufactured by Ako Kasei Co., Ltd.), and the like. Can be mentioned.
上記チタンブラックの比表面積の好ましい下限は13m/g、好ましい上限は30m/gであり、より好ましい下限は15m/g、より好ましい上限は25m/gである。
また、上記チタンブラックの体積抵抗の好ましい下限は0.5Ω・cm、好ましい上限は3Ω・cmであり、より好ましい下限は1Ω・cm、より好ましい上限は2.5Ω・cmである。
The preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
Further, the preferred lower limit of the volume resistance of the titanium black is 0.5 Ω · cm, the preferred upper limit is 3 Ω · cm, the more preferred lower limit is 1 Ω · cm, and the more preferred upper limit is 2.5 Ω · cm.
上記遮光剤の一次粒子径は、液晶表示素子の基板間の距離以下であれば特に限定されないが、好ましい下限は1nm、好ましい上限は5μmである。上記遮光剤の一次粒子径が1nm未満であると、得られる液晶表示素子用シール剤の粘度やチクソトロピーが大きく増大してしまい、作業性が悪くなることがある。上記遮光剤の一次粒子径が5μmを超えると、得られる液晶表示素子用シール剤の基板への塗布性が悪くなることがある。上記遮光剤の一次粒子径のより好ましい下限は5nm、より好ましい上限は200nm、更に好ましい下限は10nm、更に好ましい上限は100nmである。 The primary particle diameter of the light-shielding agent is not particularly limited as long as it is not more than the distance between the substrates of the liquid crystal display element, but the preferred lower limit is 1 nm and the preferred upper limit is 5 μm. When the primary particle diameter of the light-shielding agent is less than 1 nm, the viscosity and thixotropy of the obtained sealing agent for liquid crystal display elements is greatly increased, and workability may be deteriorated. When the primary particle diameter of the light-shielding agent exceeds 5 μm, the applicability of the obtained sealing agent for liquid crystal display elements to the substrate may be deteriorated. The more preferable lower limit of the primary particle diameter of the light shielding agent is 5 nm, the more preferable upper limit is 200 nm, the still more preferable lower limit is 10 nm, and the still more preferable upper limit is 100 nm.
本発明の液晶表示素子用シール剤100重量部中における上記遮光剤の含有量の好ましい下限は5重量部、好ましい上限は80重量部である。上記遮光剤の含有量が5重量部未満であると、充分な遮光性が得られないことがある。上記遮光剤の含有量が80重量部を超えると、得られる液晶表示素子用シール剤の基板に対する密着性や硬化後の強度が低下したり、描画性が低下したりすることがある。上記遮光剤の含有量のより好ましい下限は10重量部、より好ましい上限は70重量部であり、更に好ましい下限は30重量部、更に好ましい上限は60重量部である。 The preferable lower limit of the content of the light-shielding agent in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 5 parts by weight, and the preferable upper limit is 80 parts by weight. If the content of the light shielding agent is less than 5 parts by weight, sufficient light shielding properties may not be obtained. When the content of the light-shielding agent exceeds 80 parts by weight, the adhesion of the obtained sealing agent for liquid crystal display elements to the substrate and the strength after curing may be lowered, or the drawing property may be lowered. The more preferable lower limit of the content of the light shielding agent is 10 parts by weight, the more preferable upper limit is 70 parts by weight, the still more preferable lower limit is 30 parts by weight, and the still more preferable upper limit is 60 parts by weight.
本発明の液晶表示素子用シール剤を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、硬化性樹脂と、チオキサントン系重合開始剤と、アミン系増感剤と、必要に応じて添加するシランカップリング剤等の添加剤とを混合する方法等が挙げられる。 Examples of the method for producing the sealing agent for liquid crystal display elements of the present invention include a curable resin and a thioxanthone using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll. Examples thereof include a method of mixing a system polymerization initiator, an amine sensitizer, and an additive such as a silane coupling agent added as necessary.
本発明の液晶表示素子用シール剤に、導電性微粒子を配合することにより、上下導通材料を製造することができる。このような本発明の液晶表示素子用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。 A vertical conducting material can be produced by blending conductive fine particles with the liquid crystal display element sealant of the present invention. Such a vertical conduction material containing the sealing agent for liquid crystal display elements of the present invention and conductive fine particles is also one aspect of the present invention.
上記導電性微粒子としては、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。 As the conductive fine particles, a metal ball, a resin fine particle formed with a conductive metal layer on the surface, or the like can be used. Among them, the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the transparent substrate due to the excellent elasticity of the resin fine particles.
本発明の液晶表示素子用シール剤、又は、本発明の上下導通材料を用いて製造される液晶表示素子もまた、本発明の1つである。 The liquid crystal display element manufactured using the sealing compound for liquid crystal display elements of this invention or the vertical conduction material of this invention is also one of this invention.
本発明の液晶表示素子を製造する方法としては、例えば、ITO薄膜等の電極付きのガラス基板やポリエチレンテレフタレート基板等の2枚の基板の一方に、本発明の液晶表示素子用シール剤等をスクリーン印刷、ディスペンサー塗布等により長方形状のシールパターンを形成する工程、本発明の液晶表示素子用シール剤等が未硬化の状態で液晶の微小滴を基板のシール枠内に滴下塗布し、真空下で別の基板を重ね合わせる工程、及び、本発明の液晶表示素子用シール剤等のシールパターン部分に紫外線等の光を照射してシール剤を仮硬化させる工程、及び、仮硬化させたシール剤を加熱して本硬化させる工程を有する方法等が挙げられる。 As a method for producing the liquid crystal display element of the present invention, for example, the sealing agent for the liquid crystal display element of the present invention is applied to one of two substrates such as a glass substrate with electrodes such as an ITO thin film and a polyethylene terephthalate substrate. The process of forming a rectangular seal pattern by printing, dispenser application, etc., the liquid crystal display element sealant of the present invention is applied in an uncured state, and liquid crystal microdrops are dropped into the seal frame of the substrate and applied under vacuum. A step of superimposing another substrate, a step of irradiating the seal pattern portion of the sealant for the liquid crystal display element of the present invention with light such as ultraviolet rays, and the step of pre-curing the sealant, and the pre-cured sealant The method etc. which have the process of heating and carrying out this hardening are mentioned.
本発明によれば、光硬化性に優れ、かつ、液晶汚染を抑制することができる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing compound for liquid crystal display elements which is excellent in photocurability and can suppress liquid crystal contamination can be provided. Moreover, according to this invention, the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(実施例1~13、比較例1~5)
表1、2に記載された配合比に従い、各材料を、遊星式撹拌機(シンキー社製、「あわとり練太郎」)を用いて混合した後、更に3本ロールを用いて混合することにより実施例1~13、比較例1~5の各液晶表示素子用シール剤を調製した。
(Examples 1 to 13, Comparative Examples 1 to 5)
According to the mixing ratios described in Tables 1 and 2, after mixing each material using a planetary stirrer (“Shinky Co., Ltd.,“ Awatori Netaro ”), by further mixing using three rolls The sealing agents for liquid crystal display elements of Examples 1 to 13 and Comparative Examples 1 to 5 were prepared.
<評価>
実施例及び比較例で得られた各液晶表示素子用シール剤について以下の評価を行った。結果を表1、2に示した。
<Evaluation>
The following evaluation was performed about each sealing compound for liquid crystal display elements obtained by the Example and the comparative example. The results are shown in Tables 1 and 2.
(光硬化性)
実施例及び比較例で得られた各液晶表示素子用シール剤100重量部にスペーサ微粒子(積水化学工業社製、「ミクロパールSI-H050」)1重量部を分散させたものをガラス基板上に塗布し、その基板に同サイズのガラス基板を重ね合わせ、次に、メタルハライドランプを用いて100mW/cmの光を10秒照射し、光硬化性試験片を作製した。光照射はカットフィルター無しの場合と400nmカットフィルター有りの場合の2パターンを行い、それぞれについて3枚の試験片を作製した。赤外分光装置(BIORAD社製、「FTS3000」)を用い、(メタ)アクリロイル基由来ピークの光照射前後での変化量を測定することで光硬化性の評価を行った。光照射後に(メタ)アクリロイル基由来のピークが90%以上減少した場合を「◎」、光照射後に(メタ)アクリロイル基由来のピークが80%以上90%未満減少した場合を「○」、光照射後に(メタ)アクリロイル基由来のピークが70%以上80%未満減少した場合を「△」、光照射後の(メタ)アクリロイル基由来のピークの減少が70%未満であった場合を「×」として光硬化性を評価した。
なお、(メタ)アクリロイル基由来ピークの光照射前後での変化量は、3枚の試験片から得られた平均値を取った。
(Photo-curing)
A glass substrate was prepared by dispersing 1 part by weight of spacer fine particles (manufactured by Sekisui Chemical Co., Ltd., “Micropearl SI-H050”) in 100 parts by weight of the sealant for each liquid crystal display element obtained in Examples and Comparative Examples. A glass substrate of the same size was applied to the substrate, and then a 100 mW / cm 2 light was irradiated for 10 seconds using a metal halide lamp to prepare a photocurable test piece. The light irradiation was performed in two patterns with no cut filter and with a 400 nm cut filter, and three test pieces were produced for each. Photocurability was evaluated by measuring the amount of change of the (meth) acryloyl group-derived peak before and after light irradiation using an infrared spectroscope (manufactured by BIORAD, “FTS3000”). “◎” when the peak derived from the (meth) acryloyl group is reduced by 90% or more after light irradiation, “◯” when the peak derived from the (meth) acryloyl group is reduced by 80% or more but less than 90% after the light irradiation. The case where the peak derived from the (meth) acryloyl group is reduced by 70% or more and less than 80% after the irradiation is “Δ”, and the case where the decrease in the peak derived from the (meth) acryloyl group after the light irradiation is less than 70% is “×” The photocurability was evaluated as “
In addition, the variation | change_quantity before and behind light irradiation of the (meth) acryloyl group origin peak took the average value obtained from three test pieces.
(液晶汚染性)
実施例及び比較例で得られた各液晶表示素子用シール剤100重量部にスペーサ微粒子(積水化学工業社製、「ミクロパールSI-H050」)1重量部を分散させ、液晶表示素子用シール剤として、2枚のラビング済み配向膜及び透明電極付き基板の一方にシール剤の線幅が1mmになるようにディスペンサーで塗布した。
続いて液晶(チッソ社製、「JC-5004LA」)の微小滴を透明電極付き基板のシール剤の枠内全面に滴下塗布し、すぐにもう一方の透明電極付きカラーフィルター基板を貼り合わせ、シール剤部分にメタルハライドランプを用いて100mW/cmの紫外線を30秒照射して硬化させ、更に、120℃で1時間加熱して液晶表示素子を得た。光照射はカットフィルター無しの場合と400nmカットフィルター有りの場合の2パターンを行い、それぞれについて3枚の液晶表示素子を作製した。
得られた液晶表示素子について、60℃で1000時間電圧印加状態とした後のシール剤付近の液晶汚染を目視によって確認した。
液晶汚染は、3枚の液晶表示素子の色むらにより判断しており、色むらの程度に応じて、全ての液晶表示素子について色むらが全くなかった場合を「◎」、少なくとも1枚の液晶表示素子に色むらが微かにあった場合を「○」、少なくとも1枚の液晶表示素子に色むらが少しあった場合を「△」、少なくとも1枚の液晶表示素子に色むらがかなりあった場合を「×」として液晶汚染性を評価した。
なお、評価が「◎」、「○」の液晶表示素子は実用に全く問題のないレベルである。
(Liquid crystal contamination)
1 part by weight of spacer fine particles (“Micropearl SI-H050”, manufactured by Sekisui Chemical Co., Ltd.) is dispersed in 100 parts by weight of each liquid crystal display element sealant obtained in Examples and Comparative Examples, and the liquid crystal display element sealant is obtained. As an example, the sealant was applied to one of the two rubbed alignment films and the substrate with a transparent electrode with a dispenser so that the line width of the sealant was 1 mm.
Subsequently, liquid droplets (manufactured by Chisso Corp., “JC-5004LA”) are dropped onto the entire surface of the sealing agent frame of the substrate with the transparent electrode, and the other color filter substrate with the transparent electrode is immediately bonded to the seal. The agent part was cured by irradiating with 100 mW / cm 2 ultraviolet rays for 30 seconds using a metal halide lamp, and further heated at 120 ° C. for 1 hour to obtain a liquid crystal display element. The light irradiation was performed in two patterns with no cut filter and with a 400 nm cut filter, and three liquid crystal display elements were produced for each.
About the obtained liquid crystal display element, the liquid-crystal contamination of the sealant vicinity after making it into a voltage application state at 60 degreeC for 1000 hours was confirmed visually.
Liquid crystal contamination is determined by the color unevenness of the three liquid crystal display elements. Depending on the degree of the color unevenness, “◎” indicates that there is no color unevenness for all the liquid crystal display elements, and at least one liquid crystal When the display element had slight color unevenness, “◯”, when at least one liquid crystal display element had slight color unevenness, “△”, and at least one liquid crystal display element had considerable color unevenness. The case was evaluated as “x” to evaluate the liquid crystal contamination.
Note that the liquid crystal display elements with the evaluations “◎” and “で” are at a level that causes no problem in practical use.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
本発明によれば、光硬化性に優れ、かつ、液晶汚染を抑制することができる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing compound for liquid crystal display elements which is excellent in photocurability and can suppress liquid crystal contamination can be provided. Moreover, according to this invention, the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.

Claims (10)

  1. 硬化性樹脂と、下記式(1)で表されるチオキサントン系重合開始剤と、アミン系増感剤とを含有することを特徴とする液晶表示素子用シール剤。
    Figure JPOXMLDOC01-appb-C000001
    式(1)中、nは、1~6であり、Rは、水素原子、メチル基、又は、エチル基であり、nが1より大きい場合、Rで表される基又は原子は、同一であってもよいし、異なっていてもよい。Aは、式-O-、-[O(CHRCHR-、-[O(CHCO]-、又は、-[O(CHCO](y-1)-[O(CHRCHR]-の基を表し、RとRの一方は、水素原子を表し、他方は、水素原子、メチル基、又は、エチル基を表し、aは、1~2であり、bは、4~5であり、Qは、(ポリ)エチレングリコール、(ポリ)プロピレングリコール、(ポリ)ブチレングリコール、グリセリン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、又は、カプロラクトンポリオールの残基であり、Q内の遊離ヒドロキシル基がエステル化されていてもよく、xは、1より大きく、Qの水酸基の数を超えない数であり、xが1より大きく、2を超えない場合、yは1~10であり、xが2を超える場合、yは3~10である。
    A sealing agent for a liquid crystal display element, comprising a curable resin, a thioxanthone polymerization initiator represented by the following formula (1), and an amine sensitizer.
    Figure JPOXMLDOC01-appb-C000001
    In the formula (1), n is 1 to 6, R 3 is a hydrogen atom, a methyl group, or an ethyl group, and when n is greater than 1, the group or atom represented by R 3 is They may be the same or different. A is represented by the formula —O—, — [O (CHR 2 CHR 1 ) a ] y —, — [O (CH 2 ) b CO] y —, or — [O (CH 2 ) b CO] (y— 1) a group represented by — [O (CHR 2 CHR 1 ) a ] —, wherein one of R 1 and R 2 represents a hydrogen atom, and the other represents a hydrogen atom, a methyl group, or an ethyl group, Is 1-2, b is 4-5, Q is (poly) ethylene glycol, (poly) propylene glycol, (poly) butylene glycol, glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol , Dipentaerythritol or a residue of caprolactone polyol, the free hydroxyl group in Q may be esterified, x is a number greater than 1 and not exceeding the number of hydroxyl groups in Q, x But When it is larger than 1 and does not exceed 2, y is 1 to 10, and when x exceeds 2, y is 3 to 10.
  2. 式(1)中のnが1であり、Rが水素原子であり、Aが式-O-の基であることを特徴とする請求項1記載の液晶表示素子用シール剤。 2. The sealant for a liquid crystal display element according to claim 1, wherein n in the formula (1) is 1, R 3 is a hydrogen atom, and A is a group of the formula —O—.
  3. 式(1)中のQがポリブチレングリコールの残基であることを特徴とする請求項1又は2記載の液晶表示素子用シール剤。 The sealing agent for liquid crystal display elements according to claim 1 or 2, wherein Q in formula (1) is a residue of polybutylene glycol.
  4. アミン系増感剤は、下記式(2)で表される化合物であることを特徴とする請求項1、2又は3記載の液晶表示素子用シール剤。
    Figure JPOXMLDOC01-appb-C000002
    式(2)中、zは、1以上の整数を表し、Pは、(ポリ)エチレングリコール、(ポリ)プロピレングリコール、(ポリ)ブチレングリコール、グリセリン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、又は、カプロラクトンポリオールの残基である。
    4. The sealing agent for liquid crystal display elements according to claim 1, wherein the amine sensitizer is a compound represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    In the formula (2), z represents an integer of 1 or more, and P is (poly) ethylene glycol, (poly) propylene glycol, (poly) butylene glycol, glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol, It is a residue of dipentaerythritol or caprolactone polyol.
  5. 式(2)中のzが2であり、Pがポリエチレングリコールの残基であることを特徴とする請求項4記載の液晶表示素子用シール剤。 5. The sealing agent for liquid crystal display elements according to claim 4, wherein z in formula (2) is 2 and P is a residue of polyethylene glycol.
  6. 液晶表示素子用シール剤100重量部中における式(1)で表されるチオキサントン系重合開始剤の含有量が0.1~10重量部であることを特徴とする請求項1、2、3、4又は5記載の液晶表示素子用シール剤。 The content of the thioxanthone polymerization initiator represented by the formula (1) in 100 parts by weight of the sealing agent for liquid crystal display elements is 0.1 to 10 parts by weight, 4. The sealing agent for liquid crystal display elements according to 4 or 5.
  7. 式(1)で表されるチオキサントン系重合開始剤とアミン系増感剤との含有割合が、重量比で、式(1)で表されるチオキサントン系重合開始剤:アミン系増感剤=1:0.05~1:5であることを特徴とする請求項1、2、3、4、5又は6記載の液晶表示素子用シール剤。 The content ratio of the thioxanthone polymerization initiator represented by the formula (1) and the amine sensitizer is a weight ratio, and the thioxanthone polymerization initiator represented by the formula (1): amine sensitizer = 1 The sealing agent for liquid crystal display elements according to claim 1, wherein the ratio is from 0.05 to 1: 5.
  8. 遮光剤を含有することを特徴とする請求項1、2、3、4、5、6又は7記載の液晶表示素子用シール剤。 The light-shielding agent is contained, The sealing agent for liquid crystal display elements of Claim 1, 2, 3, 4, 5, 6 or 7 characterized by the above-mentioned.
  9. 請求項1、2、3、4、5、6、7又は8記載の液晶表示素子用シール剤と、導電性微粒子とを含有することを特徴とする上下導通材料。 A vertical conduction material comprising the sealing agent for a liquid crystal display element according to claim 1, 2, 3, 4, 6, 7, or 8 and conductive fine particles.
  10. 請求項1、2、3、4、5、6、7若しくは8記載の液晶表示素子用シール剤、又は、請求項9記載の上下導通材料を用いて製造されることを特徴とする液晶表示素子。 A liquid crystal display element manufactured using the sealing agent for a liquid crystal display element according to claim 1, 2, 3, 4, 5, 6, 7 or 8, or the vertical conduction material according to claim 9. .
PCT/JP2014/079685 2013-11-13 2014-11-10 Liquid-crystal-display-element sealant, vertical conductive material, and liquid-crystal display element WO2015072415A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157031377A KR102240965B1 (en) 2013-11-13 2014-11-10 Liquid-crystal-display-element sealant, vertical conductive material, and liquid-crystal display element
JP2014556282A JP5759638B1 (en) 2013-11-13 2014-11-10 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
CN201480053487.8A CN105579898B (en) 2013-11-13 2014-11-10 Sealing material for liquid crystal display device, up and down conductive material and liquid crystal display cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013235157 2013-11-13
JP2013-235157 2013-11-13

Publications (1)

Publication Number Publication Date
WO2015072415A1 true WO2015072415A1 (en) 2015-05-21

Family

ID=53057349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079685 WO2015072415A1 (en) 2013-11-13 2014-11-10 Liquid-crystal-display-element sealant, vertical conductive material, and liquid-crystal display element

Country Status (5)

Country Link
JP (1) JP5759638B1 (en)
KR (1) KR102240965B1 (en)
CN (1) CN105579898B (en)
TW (1) TWI625384B (en)
WO (1) WO2015072415A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104391A1 (en) * 2015-12-17 2017-06-22 三井化学株式会社 Photocurable resin composition, display element sealing agent, liquid crystal sealing agent, and liquid crystal display panel and method for producing same
KR20180082530A (en) 2016-01-25 2018-07-18 미쓰이 가가쿠 가부시키가이샤 Photo-curing resin composition, display element sealing agent, liquid crystal display element sealing agent, liquid crystal display panel and manufacturing method thereof
KR20180084941A (en) 2016-02-22 2018-07-25 미쓰이 가가쿠 가부시키가이샤 Display element sealing agent, liquid crystal sealing agent and cured product thereof, and liquid crystal display panel and manufacturing method thereof
WO2019013065A1 (en) * 2017-07-14 2019-01-17 積水化学工業株式会社 Sealing agent for liquid crystal display elements, vertical conduction material, and liquid crystal display element
WO2021074363A1 (en) * 2019-10-17 2021-04-22 Lambson Limited Amine co-initiator mixture

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102255550B1 (en) * 2013-11-13 2021-05-24 세키스이가가쿠 고교가부시키가이샤 Liquid-crystal-display-element sealant, vertical conductive material, and liquid-crystal display element
WO2018110552A1 (en) * 2016-12-16 2018-06-21 積水化学工業株式会社 Polymerizable compound, sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
CN112457434B (en) * 2020-09-25 2023-03-31 苏州润邦半导体材料科技有限公司 Nanocrystal composite material and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108790A1 (en) * 2003-06-04 2004-12-16 Sekisui Chemical Co., Ltd. Curing resin composition, sealing material for liquid crystal display device and liquid crystal display device
JP2005060651A (en) * 2003-07-31 2005-03-10 Sekisui Chem Co Ltd Curable resin composition, sealing agent for liquid crystal display element, mouth-sealing agent for liquid crystal display element, vertical conduction material for liquid crystal display element and liquid crystal display element
WO2014192880A1 (en) * 2013-05-31 2014-12-04 積水化学工業株式会社 Sealing agent for display elements

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583326B2 (en) 1999-11-01 2004-11-04 協立化学産業株式会社 Sealant for dripping method of LCD panel
US7253131B2 (en) 2001-05-16 2007-08-07 Sekisui Chemical Co., Ltd. Curing resin composition and sealants and end-sealing materials for displays
US7148382B2 (en) * 2001-08-21 2006-12-12 Ciba Specialty Chemicals Corporation Bathochromic mono- and bis-acylphosphine oxides and sulfides and their use as photoinitiators
JP3838637B2 (en) * 2002-06-10 2006-10-25 日東電工株式会社 Glass substrate dicing adhesive sheet and glass substrate dicing method
US20060240198A1 (en) * 2003-06-04 2006-10-26 Sekisui Chemical Co., Ltd. Curing resin composition, sealing material for liquid crystal display device and liquid crystal display device
CN100454116C (en) * 2004-03-22 2009-01-21 日本化药株式会社 Sealing material for liquid crystal and method for producing same
US20060223937A1 (en) * 2005-04-04 2006-10-05 Herr Donald E Radiation curable cycloaliphatic barrier sealants
CN101253250A (en) * 2005-09-02 2008-08-27 大日本油墨化学工业株式会社 Photocurable composition for sealing agent, liquid crystal sealing agent, and liquid crystal panel
JP4954569B2 (en) * 2006-02-16 2012-06-20 日東電工株式会社 Manufacturing method of semiconductor device
JP2008004691A (en) * 2006-06-21 2008-01-10 Toppan Printing Co Ltd Sheet for sealing backside of solar battery
KR20100016082A (en) * 2007-04-17 2010-02-12 후지필름 가부시키가이샤 Color filter, liquid crystal display device and hardening composition to be used in the production of the same
WO2009019979A1 (en) * 2007-08-09 2009-02-12 Sekisui Chemical Co., Ltd. Photocurable composition
KR101242774B1 (en) * 2008-11-11 2013-03-12 금호석유화학 주식회사 Amine-based curing agent, curable resin composition and flat panel display having cured product thereof
JP5152868B2 (en) 2009-06-11 2013-02-27 日本化薬株式会社 Visible light curable liquid crystal sealant and liquid crystal display cell using the same
JP5598948B2 (en) 2009-07-01 2014-10-01 独立行政法人産業技術総合研究所 Method for manufacturing piezoelectric thin film and piezoelectric thin film manufactured by the manufacturing method
WO2012077720A1 (en) * 2010-12-09 2012-06-14 協立化学産業株式会社 Compound suitable for photopolymerization initiator, photopolymerization initiator, and photocurable resin composition
WO2013024762A1 (en) * 2011-08-17 2013-02-21 積水化学工業株式会社 Sealing agent for liquid crystal display element and liquid crystal display element
KR101860356B1 (en) * 2011-11-25 2018-05-24 금호석유화학 주식회사 Composition of a sealant resin for the contamination of liquid crystal improved and sealant formed by curing thereof
KR101283474B1 (en) * 2011-12-23 2013-07-12 금호석유화학 주식회사 Black sealing agent composition for liquid crystal display materials
KR20130098909A (en) * 2012-02-28 2013-09-05 후지필름 가부시키가이샤 Photo-curable resin composition, method for manufacturing cured film, cured film, organic el device and liquid crystal display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108790A1 (en) * 2003-06-04 2004-12-16 Sekisui Chemical Co., Ltd. Curing resin composition, sealing material for liquid crystal display device and liquid crystal display device
JP2005060651A (en) * 2003-07-31 2005-03-10 Sekisui Chem Co Ltd Curable resin composition, sealing agent for liquid crystal display element, mouth-sealing agent for liquid crystal display element, vertical conduction material for liquid crystal display element and liquid crystal display element
WO2014192880A1 (en) * 2013-05-31 2014-12-04 積水化学工業株式会社 Sealing agent for display elements

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108368190B (en) * 2015-12-17 2019-12-31 三井化学株式会社 Photocurable resin composition, display element sealant, liquid crystal display panel, and method for producing same
JP2017110120A (en) * 2015-12-17 2017-06-22 三井化学株式会社 Photocurable resin composition, display element sealing agent and liquid crystal display panel and method for manufacturing the same
KR20180082529A (en) * 2015-12-17 2018-07-18 미쓰이 가가쿠 가부시키가이샤 Photo-curable resin composition, display element sealing agent, liquid crystal sealing agent, liquid crystal display panel and manufacturing method thereof
CN108368190A (en) * 2015-12-17 2018-08-03 三井化学株式会社 Photocurable resin composition, display element sealant, liquid crystal sealing agent and liquid crystal display panel and its manufacturing method
KR101962082B1 (en) 2015-12-17 2019-03-25 미쓰이 가가쿠 가부시키가이샤 Photo-curable resin composition, display element sealing agent, liquid crystal sealing agent, liquid crystal display panel and manufacturing method thereof
WO2017104391A1 (en) * 2015-12-17 2017-06-22 三井化学株式会社 Photocurable resin composition, display element sealing agent, liquid crystal sealing agent, and liquid crystal display panel and method for producing same
KR20180082530A (en) 2016-01-25 2018-07-18 미쓰이 가가쿠 가부시키가이샤 Photo-curing resin composition, display element sealing agent, liquid crystal display element sealing agent, liquid crystal display panel and manufacturing method thereof
KR20180084941A (en) 2016-02-22 2018-07-25 미쓰이 가가쿠 가부시키가이샤 Display element sealing agent, liquid crystal sealing agent and cured product thereof, and liquid crystal display panel and manufacturing method thereof
WO2019013065A1 (en) * 2017-07-14 2019-01-17 積水化学工業株式会社 Sealing agent for liquid crystal display elements, vertical conduction material, and liquid crystal display element
CN110168442A (en) * 2017-07-14 2019-08-23 积水化学工业株式会社 Sealing material for liquid crystal display device, upper and lower conductive material and liquid crystal display element
JPWO2019013065A1 (en) * 2017-07-14 2020-05-07 積水化学工業株式会社 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7184647B2 (en) 2017-07-14 2022-12-06 積水化学工業株式会社 Liquid crystal display element sealant, vertical conduction material, and liquid crystal display element
WO2021074363A1 (en) * 2019-10-17 2021-04-22 Lambson Limited Amine co-initiator mixture

Also Published As

Publication number Publication date
CN105579898B (en) 2017-07-21
JPWO2015072415A1 (en) 2017-03-16
KR102240965B1 (en) 2021-04-15
CN105579898A (en) 2016-05-11
KR20160082940A (en) 2016-07-11
TW201522593A (en) 2015-06-16
JP5759638B1 (en) 2015-08-05
TWI625384B (en) 2018-06-01

Similar Documents

Publication Publication Date Title
JP5759638B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6730133B2 (en) Liquid crystal display element sealant, vertical conduction material and liquid crystal display element
JP5736096B1 (en) Sealant for liquid crystal dropping method
JP6434901B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6454217B2 (en) Modified dialkylaminobenzoic acid-based compound, modified thioxanthone derivative, photocurable resin composition, liquid crystal display element sealing agent, vertical conduction material, and liquid crystal display element
JP2016056361A (en) Polymerizable compound, curable resin composition, sealing agent for liquid crystal display element, vertical conducting material, and liquid crystal display element
JP6408983B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP6313698B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP5340502B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP6460797B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6216260B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6126756B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6046868B1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
WO2016194871A1 (en) Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
JP5337318B1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP5340505B1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP6609164B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP6378970B2 (en) Curable resin composition, liquid crystal display element sealing agent, vertical conduction material, and liquid crystal display element
JP6046533B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP5337294B1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP6031215B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP2017003989A (en) Sealant for liquid crystal display elements, vertical conduction material, and liquid crystal display element
JPWO2019225376A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480053487.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014556282

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157031377

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861923

Country of ref document: EP

Kind code of ref document: A1