WO2015072351A1 - 再結像光学系 - Google Patents

再結像光学系 Download PDF

Info

Publication number
WO2015072351A1
WO2015072351A1 PCT/JP2014/079023 JP2014079023W WO2015072351A1 WO 2015072351 A1 WO2015072351 A1 WO 2015072351A1 JP 2014079023 W JP2014079023 W JP 2014079023W WO 2015072351 A1 WO2015072351 A1 WO 2015072351A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
imaging optical
image
group
imaging
Prior art date
Application number
PCT/JP2014/079023
Other languages
English (en)
French (fr)
Inventor
あかり 金澤
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to JP2015528743A priority Critical patent/JP5792421B1/ja
Publication of WO2015072351A1 publication Critical patent/WO2015072351A1/ja
Priority to US14/922,111 priority patent/US9366854B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2453Optical details of the proximal end
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/24Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes

Definitions

  • the present invention relates to a re-imaging optical system, and more particularly to an endoscope re-imaging optical system that re-images a subject image transmitted by an image guide onto a small solid-state imaging device.
  • a hybrid endoscope in which an image guide and a solid-state image sensor are combined is known (for example, see Patent Document 1).
  • This endoscope includes an image guide that passes through the insertion portion, a re-imaging optical system and a solid-state image sensor installed in the operation portion, and transmits an object image formed by the objective optical system by the image guide.
  • the subject is imaged by re-imaging the subject image formed on the solid-state imaging device by the re-imaging optical system.
  • the hybrid endoscope has an advantage that the distal end of the insertion portion can be reduced in size as compared with the endoscope in which the solid-state imaging device is disposed at the distal end of the insertion portion.
  • it is easier to use than a fiberscope that must be equipped with a camera.
  • Patent Documents 1 and 2 are not suitable for combination with a small solid-state image sensor that has been developed in recent years.
  • the demand for miniaturization of the operation unit cannot be met by downsizing.
  • Since the re-imaging optical system has a relatively large magnification, when combined with a small solid-state image sensor, an image is not projected with a size suitable for diagnosis and treatment.
  • many small solid-state imaging devices have oblique incidence characteristics for receiving light that is obliquely incident on the imaging surface in order to reduce the overall length of the optical system. Since the re-imaging optical system is not assumed to be combined with a small solid-state imaging device having oblique incidence characteristics, shading may occur. Furthermore, since the re-imaging optical system has a long overall length, the operation unit becomes large, and there is a problem that it is difficult for the user to operate the operation unit.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a small re-imaging optical system suitable for a small solid-state imaging device having oblique incidence characteristics.
  • One aspect of the present invention is a re-imaging optical system that is provided between an image guide and a solid-state image sensor and re-images the image transmitted by the image guide onto the solid-state image sensor.
  • a front group, a stop, and a rear group are provided in order, and the front group has a positive refractive power as a whole, and the rear group has a positive refractive power as a whole and is most negative on the image side.
  • This is a re-imaging optical system that has a lens and satisfies the following conditional expression (1). (1) -2.2 ⁇ fR1 / f ⁇ -0.79
  • fR1 is the focal length of the negative lens
  • f is the focal length of the entire system.
  • the light emitted from the end face of the image guide arranged on the object plane is imaged on the imaging surface of the solid-state imaging device arranged on the image plane by the positive refractive power of the front group and the rear group. Is done. At this time, light is incident obliquely on the imaging surface by the action of the negative lens located closest to the image side.
  • the total length can be shortened by using positive, aperture, and positive lens configurations in order from the object side. Furthermore, when the focal length fR1 of the negative lens and the focal length f of the entire system satisfy the conditional expression (1), it is possible to secure an oblique incident angle suitable for the solid-state imaging device while further shortening the overall length. .
  • conditional expression (2) may be satisfied.
  • L is the total length from the object plane to the image plane.
  • the overall length can be further reduced while ensuring an oblique incident angle on the solid-state imaging device.
  • fR / L is ⁇ 0.5 or less
  • the oblique incident angle to the solid-state image sensor becomes small, and it becomes difficult to deal with a small solid-state image sensor having oblique incidence characteristics.
  • fR / L is ⁇ 0.15 or more, it is difficult to shorten the overall length.
  • conditional expression (3) 0.25 ⁇
  • FB is the distance from the image plane to the rear focal position of the entire system
  • FF is the distance from the object plane to the front focal position of the entire system.
  • the said solid-state image sensor whose length dimension of the short-axis direction of an imaging region is 1.5 mm or less.
  • a small solid-state imaging device having a short dimension in the short axis direction of the imaging region is generally sensitive to light having an incident angle with respect to the imaging surface of ⁇ 15 ° to ⁇ 4 °.
  • the present invention can also be suitably applied to a solid-state imaging device having such oblique incidence characteristics.
  • the front group includes a first group and a second group in order from the object side, and at least one of the first group and the second group has a positive refractive power. It may consist of By doing so, the lateral chromatic aberration can be corrected favorably by the cemented lens. It is more preferable that both the first group and the second group are made of a cemented lens having a positive refractive power.
  • FIG. 9 is a lens cross-sectional view showing the overall configuration of a re-imaging optical system according to Example 5 of the present invention.
  • a re-imaging optical system 1 according to an embodiment of the present invention will be described below with reference to FIG.
  • the re-imaging optical system 1 according to the present embodiment is mounted on an operation unit of a hybrid endoscope.
  • the hybrid endoscope includes an elongated insertion portion that is inserted into an inspection object such as a living body, and an operation portion that is provided on the proximal end side of the insertion portion.
  • the insertion unit includes an objective optical system provided at the tip and an image guide 2 extending substantially over the entire length thereof, and a subject image formed by the objective optical system is re-imaged by the image guide 2 in the operation unit. Transmit up to.
  • the re-imaging optical system 1 according to the present embodiment is provided between the image guide 2 and the solid-state image sensor 3 and forms an object image received from the image guide 2 on the imaging surface 3 a of the solid-state image sensor 3. Is.
  • the re-imaging optical system 1 includes, in order from the object side, a front group FG, a diaphragm S, and a rear group RG, and constitutes an object side telecentric optical system. ing.
  • Symbol FL indicates an optical filter
  • symbol CG indicates a cover glass.
  • Reference numeral OBJ denotes an object plane of the re-imaging optical system 1, and the base end face 2a of the image guide 2 is disposed at the position of the object plane OBJ.
  • a symbol IMG indicates an image plane of the re-imaging optical system 1, and the imaging plane 3a of the solid-state imaging device 3 is disposed at the position of the image plane IMG.
  • the front group FG is composed of a first group G1 and a second group G2 in order from the object side, and has a positive refractive power as a whole.
  • At least one of the first group G1 and the second group G2 is preferably a cemented lens Lc having a positive refractive power, and both are cemented lenses Lc having a positive refractive power as in this example. More preferably.
  • the rear group RG is composed of a positive lens Lp and a negative lens Ln in order from the object side, and has a positive refractive power as a whole.
  • FIG. 1 shows a positive lens Lp and a negative lens Ln each made of a single lens, the positive lens Lp and the negative lens Ln may each be composed of a cemented lens.
  • the re-imaging optical system 1 satisfies the following conditional expressions (1) to (3).
  • fR1 is the focal length (mm) of the negative lens Ln
  • f is the focal length (mm) of the entire system
  • L is the distance (mm) from the object plane OBJ to the image plane IMG
  • FB is the entire system from the image plane IMG.
  • FF is the distance (mm) from the object plane OBJ to the front focal position of the entire system.
  • the subject image formed by the objective optical system is transmitted by the image guide 2 and is incident on the re-imaging optical system 1 from the base end surface 2a of the image guide 2, and has a positive refractive power possessed by the front group FG and the rear group RG.
  • An image is formed on the imaging surface 3 a of the solid-state imaging device 3 by the action.
  • each light beam is obliquely incident on the imaging surface 3a by the action of the negative lens Ln positioned closest to the image side.
  • the total length of the re-imaging optical system 1 can be shortened and a small configuration can be achieved.
  • the oblique incident angle (angle formed by the light beam and the optical axis) of the light beam on the imaging surface 3a can be sufficiently secured, and can be suitably applied to a small solid-state imaging device 3 having oblique incidence characteristics.
  • the allowable range of the incident angle of the small solid-state imaging device 3 in which the length dimension in the minor axis direction of the imaging region is 1.5 mm or less is generally ⁇ 15 ° to ⁇ 4 °.
  • an oblique incident angle of ⁇ 15 ° to ⁇ 4 ° with respect to the imaging surface 3a can be realized. Furthermore, by satisfying conditional expression (3), the subject image received from the image guide 2 can be formed on the solid-state imaging device 3 at an appropriate magnification, specifically, 0.5 to 2 times. .
  • the subject image transmitted by the image guide 2 can be formed on the solid-state imaging device 3 by 0.5 to 1.62 times.
  • r is a radius of curvature (mm)
  • d is a surface separation (mm)
  • ne is a refractive index with respect to e-line
  • Vd is an Abbe number with respect to d-line
  • IMG is the image plane
  • S is the aperture stop.
  • FIG. 2 shows the overall configuration of the re-imaging optical system according to Example 1 of the present invention
  • FIG. The re-imaging optical system according to the present example has the same lens configuration as the above-described re-imaging optical system of FIG.
  • FIG. 4 shows the overall configuration of the re-imaging optical system according to Example 2 of the present invention
  • FIG. The re-imaging optical system according to the present embodiment is the re-image of FIG. 1 described above in that the order of the negative lens and the positive lens constituting the cemented lens Lc on the object side of the front group FG is reversed. Different from the lens configuration of the optical system.
  • FIG. 6 shows the overall configuration of the re-imaging optical system according to Example 3 of the present invention
  • FIG. 7 shows various aberration diagrams thereof.
  • the re-imaging optical system according to this example is different from the lens configuration of the re-imaging optical system of FIG. 1 described above in that the positive lens Lp of the rear group RG is a cemented lens.
  • FIG. 8 shows the entire configuration of the re-imaging optical system according to Example 4 of the present invention
  • FIG. 9 shows various aberration diagrams thereof.
  • the re-imaging optical system according to the present example differs from the lens configuration of the re-imaging optical system of FIG. 1 described above in that the negative lens Ln of the rear group RG is a cemented lens.
  • FIG. 10 shows the overall configuration of the re-imaging optical system according to Example 5 of the present invention
  • FIG. 11 shows various aberration diagrams thereof.
  • the re-imaging optical system according to the present example has the same lens configuration as the above-described re-imaging optical system of FIG.
  • FIG. 12 shows the overall configuration of the re-imaging optical system according to Example 6 of the present invention
  • FIG. 13 shows various aberration diagrams thereof.
  • the re-imaging optical system according to the present example is different from the lens configuration of the re-imaging optical system of FIG. 1 described above in that the first group G1 of the front group FG includes two single lenses.
  • the values of conditional expressions (1) to (3), the incident angle (degrees) on the imaging surface, and the size (mm) of the imaging area of the assumed solid-state imaging device Table 1 shows.
  • the incident angle is an angle having the maximum absolute value among the angles formed by the light beam incident on the imaging surface and the optical axis.
  • the dimension of the imaging area is the dimension in the short axis direction of the rectangular imaging area.
  • the focal length fF (mm) of the front group FG, the focal length fR (mm) of the rear group RG, and the magnification of the re-imaging optical system 1 are also shown.

Abstract

斜入射特性を有する小型の固体撮像素子に好適である小型の再結像光学系を提供する。物体側から順に、前群(FG)と、絞り(S)と、後群(RG)とを備え、前群(FG)は、全体として正の屈折力を有し、後群(RG)は、全体として正の屈折力を有すると共に、最も像側に負レンズ(Ln)を有し、下記条件式(1)を満足する再結像光学系(1)を提供する。ただし、fR1は負レンズ(Ln)の焦点距離、fは全系の焦点距離である。 (1) -2.2<fR1/f<-0.79

Description

再結像光学系
 本発明は、再結像光学系に関し、特に、イメージガイドによって伝送された被写体像を小型の固体撮像素子に再結像させる内視鏡用の再結像光学系に関するものである。
 従来、イメージガイドと固体撮像素子とを組み合わせたハイブリッド型の内視鏡が知られている(例えば、特許文献1参照。)。この内視鏡は、挿入部内を通るイメージガイドと、操作部内に設置された再結像光学系及び固体撮像素子とを備え、対物光学系で結像した被写体像をイメージガイドによって伝送し、伝送した被写体像を再結像光学系によって固体撮像素子に再結像させることで被写体を撮像している。ハイブリッド型内視鏡には、挿入部先端に固体撮像素子が配置されている内視鏡と比較して、挿入部先端を小型化できるというメリットがある。また、画像をモニタに表示して複数人で観察したい場合には、カメラを装着しなければならないファイバスコープと比較して使い勝手がよいというメリットがある。
特許第4290923号公報 特許第4588077号公報
 しかしながら、特許文献1,2に記載の再結像光学系は、近年開発が進んでいる小型の固体撮像素子との組み合わせには適しておらず、ハイブリッド型内視鏡に搭載する固体撮像素子を小型化することで操作部も小型化したいという要望に応えられない。前記の再結像光学系は倍率が比較的大きく設定されているため、小型の固体撮像素子と組み合わせた場合は診断や処置に適切な大きさで像が投影されない。
 また、小型の固体撮像素子には、光学系の全長短縮のために、撮像面に対して斜めに入射する光を受光する斜入射特性を有するものが多く存在する。前記の再結像光学系は斜入射特性を有する小型の固体撮像素子と組み合わせることを想定していないため、シェーディングが発生することがある。さらに、前記の再結像光学系の全長が長いため操作部が大型化してしまい、ユーザが操作部を操作しづらいという問題もある。
 本発明は、上述した事情に鑑みてなされたものであって、斜入射特性を有する小型の固体撮像素子に好適である小型の再結像光学系を提供することを目的とする。
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明の一態様は、イメージガイドと固体撮像素子との間に設けられ、前記イメージガイドによって伝送された像を前記固体撮像素子に再結像する再結像光学系であって、物体側から順に、前群と、絞りと、後群とを備え、前記前群は、全体として正の屈折力を有し、前記後群は、全体として正の屈折力を有すると共に、最も像側に負レンズを有し、下記条件式(1)を満足する再結像光学系である。
(1)    -2.2 < fR1/f < -0.79
 ただし、fR1は前記負レンズの焦点距離、fは全系の焦点距離である。
 本態様によれば、物体面に配置されたイメージガイドの端面から出射された光は、前群および後群の正の屈折力によって、像面に配置された固体撮像素子の撮像面に結像される。このときに、最も像側に位置する負レンズの作用によって、光は撮像面に対して斜入射する。
 この場合に、物体側から順に、正、絞り、正のレンズ構成とすることで、全長を短くすることができる。さらに、負レンズの焦点距離fR1と全系の焦点距離fとが条件式(1)を満たすことによって、全長のさらなる短縮を図りつつ、固体撮像素子に適した斜入射角を確保することができる。
 上記態様においては、下記条件式(2)を満足していてもよい。
(2)    -0.5 < fR1/L < -0.15
 ただし、Lは物体面から像面までの全長である。
 このようにすることで、固体撮像素子への斜入射角を確保しつつ、全長をさらに小さくすることができる。fR/Lが-0.5以下である場合には、固体撮像素子への斜入射角が小さくなり、斜入射特性を有する小型の固体撮像素子に対応することが困難になる。一方、fR/Lが-0.15以上である場合には、全長の短縮が困難になる。
 上記態様においては、下記条件式(3)を満足していてもよい。
(3)    0.25 < |FB|/|FF| < 4
 ただし、FBは像面から全系の後側焦点位置までの距離、FFは物体面から全系の前側焦点位置までの距離である。
 このようにすることで、イメージガイドから伝送された被写体像を適切な倍率(具体的には、0.5倍から2倍)で固体撮像素子に結像することができる。
 上記態様においては、撮像領域の短軸方向の長さ寸法が1.5mm以下である前記固体撮像素子に適用されてもよい。
 撮像領域の短軸方向の長さ寸法が1.5mm以下である小型の固体撮像素子は、一般に、撮像面に対する入射角が-15°から-4°である光に対して感度を有する。このような斜入射特性を有する固体撮像素子に対しても、好適に適用することができる。
 上記態様においては、前記前群が、物体側から順に、第1群と、第2群とからなり、前記第1群および前記第2群のうち少なくとも一方が、正の屈折力を有する接合レンズからなっていてもよい。
 このようにすることで、接合レンズによって倍率色収差を良好に補正することができる。なお、第1群および第2群の両方が正の屈折力を有する接合レンズからなることが、さらに好ましい。
 本発明によれば、斜入射特性を有する小型の固体撮像素子に好適である小型の再結像光学系を提供することができるという効果を奏する。
本発明の一実施形態に係る再結像光学系の全体構成を示すレンズ断面図である。 本発明の実施例1に係る再結像光学系の全体構成を示すレンズ断面図である。 図2の再結像光学系の(a)球面収差、(b)非点収差、(c)倍率色収差、(d)歪曲収差、(e)コマ収差(最大像高)、(f)コマ収差(中間像高)である。 本発明の実施例2に係る再結像光学系の全体構成を示すレンズ断面図である。 図4の再結像光学系の(a)球面収差、(b)非点収差、(c)倍率色収差、(d)歪曲収差、(e)コマ収差(最大像高)、(f)コマ収差(中間像高)である。 本発明の実施例3に係る再結像光学系の全体構成を示すレンズ断面図である。 図6の再結像光学系の(a)球面収差、(b)非点収差、(c)倍率色収差、(d)歪曲収差、(e)コマ収差(最大像高)、(f)コマ収差(中間像高)である。 本発明の実施例4に係る再結像光学系の全体構成を示すレンズ断面図である。 図8の再結像光学系の(a)球面収差、(b)非点収差、(c)倍率色収差、(d)歪曲収差、(e)コマ収差(最大像高)、(f)コマ収差(中間像高)である。 本発明の実施例5に係る再結像光学系の全体構成を示すレンズ断面図である。 図10の再結像光学系の(a)球面収差、(b)非点収差、(c)倍率色収差、(d)歪曲収差、(e)コマ収差(最大像高)、(f)コマ収差(中間像高)である。 本発明の実施例6に係る再結像光学系の全体構成を示すレンズ断面図である。 図12の再結像光学系の(a)球面収差、(b)非点収差、(c)倍率色収差、(d)歪曲収差、(e)コマ収差(最大像高)、(f)コマ収差(中間像高)である。
 以下に、本発明の一実施形態に係る再結像光学系1について図1を参照して説明する。
 本実施形態に係る再結像光学系1は、ハイブリッド型内視鏡の操作部に搭載される。ハイブリッド型内視鏡は、生体のような被検査物内に挿入される細長い挿入部と、該挿入部の基端側に設けられた操作部とを備える。挿入部は、先端に設けられた対物光学系と、そのほぼ全長にわたって延びるイメージガイド2とを備え、対物光学系によって形成された被写体像を、イメージガイド2によって操作部内の再結像光学系1まで伝送する。本実施形態に係る再結像光学系1は、イメージガイド2と固体撮像素子3との間に設けられ、イメージガイド2から受け取った被写体像を、固体撮像素子3の撮像面3aに結像するものである。
 具体的には、再結像光学系1は、図1に示されるように、物体側から順に、前群FGと、絞りSと、後群RGとを備え、物体側テレセントリック光学系を構成している。
 符号FLは光学フィルタを示し、符号CGはカバーガラスを示している。また、符号OBJは、再結像光学系1の物体面を示し、物体面OBJの位置にイメージガイド2の基端面2aが配置される。符号IMGは、再結像光学系1の像面を示し、像面IMGの位置に固体撮像素子3の撮像面3aが配置される。
 前群FGは、物体側から順に、第1群G1と第2群G2とから構成され、全体として正の屈折力を有している。第1群G1と第2群G2とのうち、少なくとも1つが正の屈折力を有する接合レンズLcであることが好ましく、本例のように、両方が正の屈折力を有する接合レンズLcであることがさらに好ましい。接合レンズLcを備えることによって、倍率色収差を良好に補正することができる。
 後群RGは、物体側から順に、正レンズLpと、負レンズLnとからなり、全体として正の屈折力を有している。図1には、それぞれ単レンズからなる正レンズLpおよび負レンズLnが示されているが、これに代えて、正レンズLpおよび負レンズLnはそれぞれ接合レンズから構成されていてもよい。
 再結像光学系1は、下記条件式(1)から(3)を満足している。
(1)    -2.2 < fR1/f < -0.79
(2)    -0.5 < fR1/L < -0.15
(3)    0.25 < |FB|/|FF| < 4
 ただし、fR1は負レンズLnの焦点距離(mm)、fは全系の焦点距離(mm)、Lは物体面OBJから像面IMGまでの距離(mm)、FBは像面IMGから全系の後側焦点位置までの距離(mm)、FFは物体面OBJから全系の前側焦点位置までの距離(mm)である。
 次に、このように構成された再結像光学系1の作用について説明する。
 対物光学系によって形成された被写体像は、イメージガイド2によって伝送され、イメージガイド2の基端面2aから再結像光学系1に入射され、前群FGおよび後群RGが有する正の屈折力の作用によって固体撮像素子3の撮像面3aに結像される。このときに、最も像側に位置する負レンズLnの作用によって、各光線は、撮像面3aに対して斜めに入射する。
 この場合に、本実施形態によれば、条件式(1),(2)を満たすことによって、再結像光学系1の全長を短くし、小型の構成とすることができる。さらに、撮像面3aへの光線の斜入射角(光線と光軸とが成す角度)を十分に確保でき、斜入射特性を有する小型の固体撮像素子3にも好適に適用することができる。具体的には、撮像領域の短軸方向の長さ寸法が1.5mm以下である小型の固体撮像素子3が有する入射角の許容範囲は、一般に、-15°から-4°である。再結像光学系1によれば、撮像面3aに対する-15°から-4°の斜入射角を実現することができる。さらに、条件式(3)を満たすことによって、イメージガイド2から受光した被写体像を適切な倍率、具体的には、0.5倍から2倍で、固体撮像素子3に結像することができる。
 本実施形態に係る再結像光学系1においては、以下の条件式(3’)を満たしていることがより好ましい。
(3’)    0.25 < |FB|/|FF| < 2.65
 画像をモニタに表示する場合に、画像が小さい方が画質はより良く見えるので、画質の観点から被写体像を再結像光学系1で拡大しすぎない方がよい。(3’)を満たすことで、イメージガイド2によって伝送された被写体像を0.5倍から1.62倍で固体撮像素子3に結像することができる。
 次に、上述した本実施形態の実施例1から6について、図2から図13を参照して以下に説明する。
 各実施例に記載のレンズデータにおいて、rは曲率半径(mm)、dは面間隔(mm)、neはe線に対する屈折率、Vdはd線に対するアッベ数、OBJ(面番号=0)は物体面、IMGは像面、Sは明るさ絞りを示している。
(実施例1)
 本発明の実施例1に係る再結像光学系の全体構成を図2に示し、その収差図を図3に示す。本実施例に係る再結像光学系は、上述した図1の再結像光学系と同様のレンズ構成を有している。
レンズデータ
面番号     r       d       ne     Vd
OBJ     ∞  0.6000  1.       
 1      ∞  0.4000  1.51825  64.14
 2      ∞  1.0000  1.            
 3      ∞  0.5600  1.55098  45.79
 4      ∞  0.5600  1.55098  45.79
 5      ∞  0.5600  1.55098  45.79
 6      ∞  2.8000  1.            
 7  9.748  1.1100  1.85504  23.78
 8  3.281  2.9300  1.67340  47.23
 9 -6.202  0.2000  1.            
10  2.920  1.4000  1.48915  70.23
11 -4.846  0.5000  1.88815  40.76
12      ∞  1.8000  1.            
13      ∞  0.3000  1.52300  66.54
14(S)   ∞  0.0300  1.            
15      ∞  0.1900  1.            
16  3.853  1.9000  1.88815  40.76
17      ∞  0.5300  1.            
18 -2.762  0.5000  1.88815  40.76
19      ∞  0.7300  1.            
20      ∞  0.4500  1.51825  64.14
21      ∞  0.0200  1.51190  64.05
22      ∞  0.4000  1.61350  50.49
23      ∞  0.0073  1.            
IMG     ∞  0.0000   
(実施例2)
 本発明の実施例2に係る再結像光学系の全体構成を図4に示し、その収差図を図5に示す。本実施例に係る再結像光学系は、前群FGの物体側の接合レンズLcを構成する負レンズと正レンズとの順番が逆になっている点において、上述した図1の再結像光学系のレンズ構成と異なる。
レンズデータ
面番号     r       d       ne     Vd
OBJ     ∞  0.6000  1.       
 1      ∞  0.4000  1.51825  64.14
 2      ∞  1.0000  1.            
 3      ∞  0.5600  1.55098  45.79
 4      ∞  0.5600  1.55098  45.79
 5      ∞  0.5600  1.55098  45.79
 6      ∞  2.7125  1.            
 7  7.589  2.0453  1.67340  47.23
 8 -2.182  0.5626  1.81264  25.42
 9 -4.340  0.2371  1.            
10  5.258  2.1354  1.48915  70.23
11 -3.579  1.2224  1.88815  40.76
12 -39.690 0.8056  1.            
13      ∞  0.3000  1.52300  66.54
14(S)   ∞  0.0300  1.            
15      ∞  1.7368  1.            
16  7.000  2.0090  1.88815  40.76
17 -6.754  0.6373  1.            
18 -2.633  0.9805  1.88815  40.76
19 -28.069 1.5354  1.            
20      ∞  0.4500  1.51825  64.14
21      ∞  0.0200  1.51190  64.05
22      ∞  0.4000  1.61350  50.49
23      ∞  0.0002  1.            
IMG     ∞  0.00 
(実施例3)
 本発明の実施例3に係る再結像光学系の全体構成を図6に示し、その各種収差図を図7に示す。本実施例に係る再結像光学系は、後群RGの正レンズLpが接合レンズである点において、上述した図1の再結像光学系のレンズ構成と異なる。
レンズデータ
面番号     r       d       ne     Vd
OBJ     ∞  0.6000  1.       
 1      ∞  0.4000  1.51825  64.14
 2      ∞  1.0000  1.            
 3      ∞  0.5600  1.55098  45.79
 4      ∞  0.5600  1.55098  45.79
 5      ∞  0.5600  1.55098  45.79
 6      ∞  1.6984  1.            
 7  6.693  3.3439  1.85504  23.78
 8  3.130  1.6007  1.67340  47.23
 9 -6.940  0.2000  1.            
10  3.222  2.3802  1.48915  70.23
11 -2.725  1.6046  1.88815  40.76
12 -6.216  0.1500  1.            
13      ∞  0.3000  1.52300  66.54
14(S)   ∞  0.0300  1.            
15      ∞  1.3136  1.            
16  3.227  1.5533  1.88815  40.76
17  5.003  0.6479  1.48915  70.23
18 35.520  0.1983  1.            
19 -1.993  0.2111  1.88815  40.76
20 -2.758  0.1299  1.            
21      ∞  0.4500  1.51825  64.14
22      ∞  0.0200  1.51190  64.05
23      ∞  0.4000  1.61350  50.49
24      ∞  0.0000  1.            
IMG     ∞  0.0000  
(実施例4)
 本発明の実施例4に係る再結像光学系の全体構成を図8に示し、その各種収差図を図9に示す。本実施例に係る再結像光学系は、後群RGの負レンズLnが接合レンズである点において、上述した図1の再結像光学系のレンズ構成と異なる。
レンズデータ
面番号     r       d       ne     Vd
OBJ     ∞  0.6000  1.       
 1      ∞  0.4000  1.51825  64.14
 2      ∞  1.0000  1.            
 3      ∞  0.5600  1.55098  45.79
 4      ∞  0.5600  1.55098  45.79
 5      ∞  0.5600  1.55098  45.79
 6      ∞  0.2434  1.            
 7  4.394  3.0001  1.85504  23.78
 8  2.615  2.0718  1.67340  47.23
 9 -5.176  0.2002  1.            
10  3.127  1.4781  1.48915  70.23
11 -2.597  2.0013  1.88815  40.76
12 -12.195 0.1000  1.            
13(S)   ∞  0.0300  1.            
14      ∞  0.3000  1.52300  66.54
15      ∞  2.2556  1.            
16 12.376  0.7065  1.88815  40.76
17 -4.700  1.0451  1.            
18 -2.222  1.2465  1.88815  40.76
19 14.581  1.4187  1.85504  23.78
20 -10.007 1.3433  1.            
21      ∞  0.4500  1.51825  64.14
22      ∞  0.0200  1.51190  64.05
23      ∞  0.4000  1.61350  50.49
24      ∞ -0.0007  1.            
IMG     ∞  0.0000  
(実施例5)
 本発明の実施例5に係る再結像光学系の全体構成を図10に示し、その各種収差図を図11に示す。本実施例に係る再結像光学系は、上述した図1の再結像光学系と同様のレンズ構成を有している。
レンズデータ
面番号     r       d       ne     Vd
OBJ     ∞  0.6000  1.       
 1      ∞  0.4000  1.51825  64.14
 2      ∞  1.0000  1.            
 3      ∞  0.5600  1.55098  45.79
 4      ∞  0.5600  1.55098  45.79
 5      ∞  0.5600  1.55098  45.79
 6      ∞  1.7384  1.            
 7 13.157  3.0014  1.85504  23.78
 8  3.480  3.0012  1.88815  40.76
 9 -6.193  0.2612  1.            
10  4.093  2.4289  1.64254  60.08
11 -3.075  2.3560  1.88815  40.76
12  8.542  0.1500  1.            
13(S)   ∞  0.0300  1.            
14      ∞  0.3000  1.52300  66.54
15      ∞  2.3364  1.            
16 -3.500  1.8072  1.88815  40.76
17 -1.937  0.6716  1.            
18 -0.989  0.1813  1.64268  44.87
19 -1.845  0.5179  1.            
20      ∞  0.4500  1.51825  64.14
21      ∞  0.0200  1.51190  64.05
22      ∞  0.4000  1.61350  50.49
23      ∞ -0.0003  1.            
IMG     ∞  0.0000  
(実施例6)
 本発明の実施例6に係る再結像光学系の全体構成を図12に示し、その各種収差図を図13に示す。本実施例に係る再結像光学系は、前群FGの第1群G1が、2つの単レンズからなる点において、上述した図1の再結像光学系のレンズ構成と異なる。
レンズデータ
面番号     r       d       ne     Vd
OBJ     ∞  0.6000  1.       
 1      ∞  0.4000  1.51825  64.14
 2      ∞  1.0000  1.            
 3      ∞  0.5600  1.55098  45.79
 4      ∞  0.5600  1.55098  45.79
 5      ∞  0.5600  1.55098  45.79
 6      ∞  1.6510  1.            
 7  6.267  2.0660  1.65222  33.79
 8  2.727  0.5000  1.            
 9  3.427  4.0851  1.73234  54.68
10 -9.226  0.3895  1.            
11  2.674  2.0850  1.48915  70.23
12 -2.582  0.6619  1.88815  40.76
13 -29.581 0.6000  1.            
14      ∞  0.3000  1.52300  66.54
15(S)   ∞  0.0300  1.            
16      ∞  1.0138  1.            
17  3.948  2.2918  1.88815  40.76
18 -178.534 0.3300 1.           
19 -1.989  0.5059  1.88815  40.76
20 -5.478  0.1366  1.            
21      ∞  0.4500  1.51825  64.14
22      ∞  0.0200  1.51190  64.05
23      ∞  0.4000  1.61350  50.49
24      ∞  0.0000  1.            
IMG     ∞  0.0000   
 上述した実施例1から6について、条件式(1)から(3)の値と、撮像面への入射角(度)と、想定している固体撮像素子の撮像領域の寸法(mm)とを表1に示す。入射角は、撮像面に入射する光線が光軸となす角度のうち、絶対値が最大となる角度である。撮像領域の寸法は、長方形の撮像領域の短軸方向の寸法である。さらに、参考として、前群FGの焦点距離fF(mm)、後群RGの焦点距離fR(mm)、および再結像光学系1の倍率も示す。
Figure JPOXMLDOC01-appb-T000001
1 再結像光学系
2 イメージガイド
3 固体撮像素子
3a 撮像面
FG 前群
RG 後群
G1 第1群
G2 第2群
Lc 接合レンズ
Lp 正レンズ
Ln 負レンズ
S 絞り
OBJ 物体面
IMG 像面

Claims (5)

  1.  イメージガイドと固体撮像素子との間に設けられ、前記イメージガイドによって伝送された像を前記固体撮像素子に再結像する再結像光学系であって、
     物体側から順に、前群と、絞りと、後群とを備え、
     前記前群は、全体として正の屈折力を有し、
     前記後群は、全体として正の屈折力を有すると共に、最も像側に負レンズを有し、
     下記条件式(1)を満足する再結像光学系。
    (1)    -2.2 < fR1/f < -0.79
     ただし、
     fR1;前記負レンズの焦点距離、
     f;全系の焦点距離
     である。
  2.  下記条件式(2)を満足する請求項1に記載の再結像光学系。
    (2)    -0.5 < fR1/L < -0.15
     ただし、
     L;物体面から像面までの全長
     である。
  3.  下記条件式(3)を満足する請求項1または請求項2に記載の再結像光学系。
    (3)    0.25 < |FB|/|FF| < 4
     ただし、
     FB;像面から全系の後側焦点位置までの距離、
     FF;物体面から全系の前側焦点位置までの距離
     である。
  4.  撮像領域の短軸方向の長さ寸法が1.5mm以下である前記固体撮像素子に適用される請求項1から請求項3のいずれかに記載の再結像光学系。
  5.  前記前群が、物体側から順に、第1群と、第2群とからなり、
     前記第1群および前記第2群のうち少なくとも一方が、正の屈折力を有する接合レンズからなる請求項1から請求項4のいずれかに記載の再結像光学系。
PCT/JP2014/079023 2013-11-14 2014-10-31 再結像光学系 WO2015072351A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015528743A JP5792421B1 (ja) 2013-11-14 2014-10-31 再結像光学系
US14/922,111 US9366854B2 (en) 2013-11-14 2015-10-23 Re-imaging optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-235950 2013-11-14
JP2013235950 2013-11-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/922,111 Continuation US9366854B2 (en) 2013-11-14 2015-10-23 Re-imaging optical system

Publications (1)

Publication Number Publication Date
WO2015072351A1 true WO2015072351A1 (ja) 2015-05-21

Family

ID=53057287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079023 WO2015072351A1 (ja) 2013-11-14 2014-10-31 再結像光学系

Country Status (3)

Country Link
US (1) US9366854B2 (ja)
JP (1) JP5792421B1 (ja)
WO (1) WO2015072351A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108254863A (zh) * 2017-12-18 2018-07-06 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108254886A (zh) * 2017-12-18 2018-07-06 瑞声科技(新加坡)有限公司 摄像光学镜头
JP6374081B1 (ja) * 2017-11-18 2018-08-15 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
JP6374124B1 (ja) * 2017-11-18 2018-08-15 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
JP6374123B1 (ja) * 2017-11-18 2018-08-15 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
JP6374082B1 (ja) * 2017-11-18 2018-08-15 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮影光学レンズ
CN108732720A (zh) * 2018-04-16 2018-11-02 上海大学 一种可应用于摄影的大相对孔径鱼眼镜头
JP6419998B1 (ja) * 2017-12-29 2018-11-07 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
JP6419996B1 (ja) * 2017-11-18 2018-11-07 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮影光学レンズ
JP6420005B1 (ja) * 2017-12-18 2018-11-07 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
JP2019095756A (ja) * 2017-11-18 2019-06-20 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮影光学レンズ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9851542B2 (en) * 2016-04-08 2017-12-26 Young Optics Inc. Imaging lens
TWI611208B (zh) 2016-06-04 2018-01-11 大立光電股份有限公司 拾像光學系統鏡組、取像裝置及電子裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337271A (ja) * 2000-03-21 2001-12-07 Fuji Photo Optical Co Ltd 画像読取用レンズおよび画像読取装置
JP2003084214A (ja) * 2001-06-25 2003-03-19 Olympus Optical Co Ltd 内視鏡装置
JP2009103874A (ja) * 2007-10-23 2009-05-14 Olympus Medical Systems Corp 撮影光学系
JP2009204997A (ja) * 2008-02-28 2009-09-10 Fujinon Corp 画像読取レンズ及び画像読取装置
JP2009251520A (ja) * 2008-04-10 2009-10-29 Olympus Medical Systems Corp カメラヘッド光学系

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4344366C2 (de) 1993-12-24 1997-05-28 Zeiss Carl Jena Gmbh Optisches System mit variablem Abbildungsmaßstab
JP4867356B2 (ja) 2006-01-18 2012-02-01 株式会社ニコン テレセントリック対物レンズ
JP4588077B2 (ja) 2008-02-12 2010-11-24 オリンパスメディカルシステムズ株式会社 再結像光学系及びそれを用いた内視鏡
JP5143595B2 (ja) 2008-03-10 2013-02-13 富士フイルム株式会社 撮像レンズおよび撮像装置
JP5345823B2 (ja) 2008-10-28 2013-11-20 富士フイルム株式会社 撮像レンズおよびこの撮像レンズを用いた撮像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337271A (ja) * 2000-03-21 2001-12-07 Fuji Photo Optical Co Ltd 画像読取用レンズおよび画像読取装置
JP2003084214A (ja) * 2001-06-25 2003-03-19 Olympus Optical Co Ltd 内視鏡装置
JP2009103874A (ja) * 2007-10-23 2009-05-14 Olympus Medical Systems Corp 撮影光学系
JP2009204997A (ja) * 2008-02-28 2009-09-10 Fujinon Corp 画像読取レンズ及び画像読取装置
JP2009251520A (ja) * 2008-04-10 2009-10-29 Olympus Medical Systems Corp カメラヘッド光学系

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6419996B1 (ja) * 2017-11-18 2018-11-07 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮影光学レンズ
JP2019095743A (ja) * 2017-11-18 2019-06-20 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮影光学レンズ
JP2019095747A (ja) * 2017-11-18 2019-06-20 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
JP6374124B1 (ja) * 2017-11-18 2018-08-15 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
JP6374123B1 (ja) * 2017-11-18 2018-08-15 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
JP6374082B1 (ja) * 2017-11-18 2018-08-15 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮影光学レンズ
JP2019095758A (ja) * 2017-11-18 2019-06-20 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮影光学レンズ
JP2019095742A (ja) * 2017-11-18 2019-06-20 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
JP6374081B1 (ja) * 2017-11-18 2018-08-15 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
JP2019095756A (ja) * 2017-11-18 2019-06-20 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮影光学レンズ
JP2019095748A (ja) * 2017-11-18 2019-06-20 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
CN108254886A (zh) * 2017-12-18 2018-07-06 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108254863A (zh) * 2017-12-18 2018-07-06 瑞声科技(新加坡)有限公司 摄像光学镜头
JP2019109484A (ja) * 2017-12-18 2019-07-04 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
JP6420005B1 (ja) * 2017-12-18 2018-11-07 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
JP6419998B1 (ja) * 2017-12-29 2018-11-07 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
JP2019120907A (ja) * 2017-12-29 2019-07-22 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
CN108732720B (zh) * 2018-04-16 2021-01-12 上海大学 一种可应用于摄影的大相对孔径鱼眼镜头
CN108732720A (zh) * 2018-04-16 2018-11-02 上海大学 一种可应用于摄影的大相对孔径鱼眼镜头

Also Published As

Publication number Publication date
US20160041382A1 (en) 2016-02-11
JP5792421B1 (ja) 2015-10-14
JPWO2015072351A1 (ja) 2017-03-16
US9366854B2 (en) 2016-06-14

Similar Documents

Publication Publication Date Title
JP5792421B1 (ja) 再結像光学系
US10898061B2 (en) Endoscope magnification optical system, endoscope, and endoscope system
US9645383B2 (en) Objective lens for endoscope and endoscope
US10082642B2 (en) Imaging lens and imaging apparatus
JP4732480B2 (ja) 内視鏡用対物光学系
JP5372261B2 (ja) 内視鏡用光学系
WO2012008312A1 (ja) 対物光学系
US9696526B2 (en) Imaging lens and imaging apparatus
US20070188892A1 (en) Objective lens for endoscope
US20170049305A1 (en) Oblique-viewing objective optical system and endoscope for oblique viewing using the same
JPWO2017043351A1 (ja) 内視鏡用変倍光学系、及び内視鏡
WO2016208367A1 (ja) 内視鏡用対物光学系
US8902515B2 (en) Objective optical system and endoscope using same
JP6062137B1 (ja) 内視鏡対物光学系
JP7113783B2 (ja) 内視鏡用対物光学系および内視鏡
US10809520B2 (en) Objective optical system for endoscope and endoscope
JP2018138983A (ja) 撮像装置
JP6774811B2 (ja) 内視鏡用対物光学系及び内視鏡
JP6877309B2 (ja) 内視鏡用対物光学系および内視鏡
JP6807818B2 (ja) 内視鏡用対物光学系および内視鏡
JP6754916B2 (ja) 内視鏡用変倍光学系及び内視鏡
JP2005148508A (ja) 内視鏡用対物レンズ
WO2016114082A1 (ja) 対物レンズ及びそれを備えた撮像装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015528743

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862471

Country of ref document: EP

Kind code of ref document: A1