WO2015072326A1 - 振動発生ユニット、振動体ユニット及び超音波処置装置 - Google Patents

振動発生ユニット、振動体ユニット及び超音波処置装置 Download PDF

Info

Publication number
WO2015072326A1
WO2015072326A1 PCT/JP2014/078625 JP2014078625W WO2015072326A1 WO 2015072326 A1 WO2015072326 A1 WO 2015072326A1 JP 2014078625 W JP2014078625 W JP 2014078625W WO 2015072326 A1 WO2015072326 A1 WO 2015072326A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
ultrasonic
unit
proximal
cross
Prior art date
Application number
PCT/JP2014/078625
Other languages
English (en)
French (fr)
Inventor
庸高 銅
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to EP14861721.0A priority Critical patent/EP3069676B1/en
Priority to CN201480062189.5A priority patent/CN105722470B/zh
Priority to JP2015527379A priority patent/JP5865558B2/ja
Publication of WO2015072326A1 publication Critical patent/WO2015072326A1/ja
Priority to US15/074,192 priority patent/US10046362B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B3/02Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency involving a change of amplitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0476Array electrodes (including any electrode arrangement with more than one electrode for at least one of the polarities)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0484Garment electrodes worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36025External stimulators, e.g. with patch electrodes for treating a mental or cerebral condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00026Conductivity or impedance, e.g. of tissue
    • A61B2017/0003Conductivity or impedance, e.g. of tissue of parts of the instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00106Sensing or detecting at the treatment site ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B2017/22014Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being outside patient's body; with an ultrasound transmission member; with a wave guide; with a vibrated guide wire
    • A61B2017/22015Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being outside patient's body; with an ultrasound transmission member; with a wave guide; with a vibrated guide wire with details of the transmission member
    • A61B2017/22018Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being outside patient's body; with an ultrasound transmission member; with a wave guide; with a vibrated guide wire with details of the transmission member segmented along its length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320069Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for ablating tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/32007Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with suction or vacuum means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320071Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with articulating means for working tip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320082Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for incising tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320089Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic node location
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B17/320092Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
    • A61B2017/320095Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw with sealing or cauterizing means

Definitions

  • the present invention relates to a vibration generating unit that generates ultrasonic vibration used for treatment in an ultrasonic treatment apparatus in which a treatment unit treats a treatment target using ultrasonic vibration.
  • the present invention also relates to a vibrating body unit including a treatment unit and a vibration generating unit, and an ultrasonic treatment apparatus including the vibrating body unit.
  • Patent Document 1 discloses an ultrasonic treatment apparatus in which a surgical tip is provided at a distal end portion as a treatment portion.
  • This ultrasonic treatment apparatus is provided with a vibration generating unit including a piezoelectric crystal (piezoelectric element) that converts electric current into ultrasonic vibration.
  • a vibration transmission rod is extended on the tip direction side of the vibration generating unit.
  • a surgical tip is attached to the distal end side of the vibration transmission rod.
  • the ultrasonic vibration generated in the piezoelectric crystal is transmitted from the proximal direction to the distal direction through the vibration transmission rod.
  • the surgical chip treats a treatment target such as a living tissue using the transmitted ultrasonic vibration.
  • a vibration transmitting rod and a surgical tip form a distal vibration transmitting portion that is connected to the distal direction side of the vibration generating unit and transmits ultrasonic vibrations from the vibration generating unit.
  • the vibrating body unit is formed by the vibration generating unit, the vibration transmitting rod, and the surgical tip.
  • the distal-side vibration transmission unit (vibration transmission rod and surgical tip) provided with the treatment unit is discarded, and an expensive piezoelectric element ( The vibration generating unit including the piezoelectric crystal is reused.
  • the type of material forming the tip-side vibration transmission unit may be different for each tip-side vibration transmission unit.
  • the aluminum content may be different for each tip-side vibration transmission part. From the above viewpoint, the Young's modulus varies for each tip vibration transmitting portion.
  • the vibrating body unit in response to changes in the tip-side vibration transmission unit connected to the vibration generation unit ( The resonance frequency due to the ultrasonic vibration of the vibration generating unit, the vibration transmitting rod, and the surgical tip changes. That is, the variation in Young's modulus for each tip-side vibration transmission unit affects the resonance frequency of the vibration body unit, and the variation in the Young's modulus for each tip-side vibration transmission unit causes a variation in the resonance frequency of the vibration body unit. .
  • the resonance frequency of the vibrating body unit changes in response to the change in the vibration transmission unit on the front end side connected to the vibration generating unit, which complicates the measurement of the resonance frequency of the vibrating body unit by the power supply unit. Problems such as the current supplied to the sonic vibration being not properly controlled occur. Thereby, the treatment performance in the treatment using ultrasonic vibration is deteriorated.
  • the present invention has been made paying attention to the above-mentioned problems, and the object of the present invention is to reduce the variation in the resonance frequency of the vibrator unit even when the variation in Young's modulus occurs in each tip-side vibration transmitting portion. It is to provide a vibration generating unit. Another object of the present invention is to provide a vibrating body unit including the vibration generating unit and the distal end side vibration transmission unit, and an ultrasonic treatment apparatus including the vibrating body unit.
  • an ultrasonic vibration transmitted to the distal-side vibration transmitting unit by connecting a distal-side vibration transmitting unit provided with a treatment unit at the distal end to the distal direction side.
  • a vibration generating unit that generates ultrasonic vibrations when electric current is supplied; a vibrator mounting unit on which the ultrasonic vibrator is mounted; and A proximal-side vibration transmitting portion that extends along the longitudinal axis on the proximal direction side and transmits the ultrasonic vibration generated by the ultrasonic transducer from the distal direction to the proximal direction,
  • the anti-vibration position closest to the ultrasonic transducer among the anti-vibration anti-vibration positions located on the proximal direction side of the ultrasonic transducer is the reference anti-vibration position
  • a base end side vibration transmitting portion in which the base end is located at a position away from the end direction; and between the base end of the base end side vibration transmitting portion and the reference antinode position in an axis parallel direction parallel to the longitudinal axis
  • a vibration generating unit that can reduce the variation in the resonance frequency of the vibrating body unit even when the variation in Young's modulus occurs in each tip-side vibration transmission unit.
  • a vibrating body unit including the vibration generating unit and the distal end side vibration transmission unit, and an ultrasonic treatment apparatus including the vibrating body unit.
  • FIG. 1 is a schematic view showing an ultrasonic treatment apparatus according to a first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically illustrating a configuration of a vibrator unit according to the first embodiment. It is sectional drawing which shows schematically the vibrating body unit which concerns on 1st Embodiment. It is sectional drawing which shows schematically the vibrating body unit which concerns on a comparative example.
  • FIG. 6 is a cross-sectional view schematically showing a vibrating body unit according to a first modification of the first embodiment. It is sectional drawing which shows roughly the vibrating body unit which concerns on 2nd Embodiment.
  • FIG. 1 is a diagram showing a test vibrator 100 used for verification of a vibration state.
  • the vibration state is verified by simulation or the like, and the relationship between the Young's modulus (E) and the resonance frequency (Fr) is verified using the test vibrator 100.
  • the test vibrating body 100 is extended along the extending axis T.
  • one of the directions parallel to the extending axis T is defined as a first extending direction (the direction of the arrow T1 in FIG. 1), and a direction opposite to the first extending direction is defined as a second extending direction (FIG. 1 (direction of arrow T2).
  • the test vibrator 100 ultrasonic vibration is transmitted from the first extending direction to the second extending direction.
  • the test vibrating body 100 has antinode positions A′1 to A′6 and node positions N′1 to N′5. That is, the test vibrator 100 vibrates in a predetermined vibration state having the antinode positions A′1 to A′6 and the node positions N′1 to N′5 by transmitting ultrasonic vibration.
  • the test vibrator 100 includes, in order from the first extending direction, a first transmission region 101, a second transmission region 102, a third transmission region 103, a fourth transmission region 104, and a fifth transmission region 105. Is extended.
  • the first transmission area 101 extends between the antinode position A′1 and the antinode position A′2, and the second transmission area 102 extends between the antinode position A′2 and the antinode position A′3.
  • the third transmission area 103 extends between the antinode position A′3 and the antinode position A′4, and the fourth transmission area 104 extends between the antinode position A′4 and the antinode position A′5.
  • the fifth transmission region 105 is extended between the antinode position A′5 and the antinode position A′6.
  • the third transmission region 104 includes a cross-sectional area reducing portion 106, a first extending portion 107 extending from the cross-sectional area reducing portion 106 in the first extending direction, and a cross-sectional area reducing portion 106 to the first A second extending portion 108 extending in the extending direction of the second extending portion 108.
  • the node position N ′ 3 where the stress due to the ultrasonic vibration acts is located in the cross-sectional area reducing portion 106.
  • the cross-sectional area reducing portion 106 makes the cross-sectional area perpendicular to the extending axis T of the second extending portion 108 smaller than that of the first extending portion 107.
  • the cross-sectional area reducing unit 106 increases (increases) the amplitude of the ultrasonic vibration.
  • the cross-sectional area perpendicular to the extension axis T is S1.
  • the cross-sectional area perpendicular to the extending axis T is S2, which is smaller than the cross-sectional area S1.
  • a cross-sectional area enlarged portion 109 is provided at the antinode position A′4 between the third transmission region 103 and the fourth transmission region 104. That is, when the test vibrating body 100 vibrates in a predetermined vibration state, the antinode position A ′ 3 is located in the cross-sectional area enlarged portion 109. Due to the cross-sectional area enlarged portion 109, the cross-sectional area perpendicular to the extending axis T of the fourth transmission region 104 becomes larger than that of the second extending portion 108 of the third transmission region 103. However, the stress caused by the ultrasonic vibration is zero at the antinode position A′3 located in the cross-sectional area enlargement portion 109.
  • the cross-sectional area perpendicular to the extending axis T in the fourth transmission region 104 and the fifth transmission region 105 is the same as that of the first transmission region 101 and the second transmission region 102, and is S1.
  • the relationship between the Young's modulus (E) and the resonance frequency (Fr) was verified by changing the transformation ratio (magnification ratio) of the ultrasonic vibration in the cross-sectional area reduction unit 106. That is, the verification was performed by changing the ratio of the sectional area S1 perpendicular to the extending axis T of the first extending part 107 to the sectional area S2 perpendicular to the extending axis T of the second extending part 108. . Then, the change in the resonance frequency (Fr) of the test vibrator 100 with respect to the change in the Young's modulus (E) in the fourth transmission region 104 at each metamorphic ratio was verified.
  • the change in the Young's modulus (E) of the fourth transmission region 104 increases in the resonance frequency (Fr) of the test vibrating body 100 as the transformation ratio of the ultrasonic vibration in the cross-sectional area reduction unit 106 increases. It has been demonstrated to have an effect. That is, as the amplitude of the ultrasonic vibration in the fourth transmission region 104 increases, the influence of the Young's modulus (E) of the fourth transmission region 104 on the resonance frequency (Fr) of the test vibrating body 100 increases. Even when the Young's modulus (E) of the fifth transmission region 105 was changed, the same result as when the Young's modulus (E) of the fourth transmission region 104 was changed was obtained.
  • the Young's modulus (E ) Has a greater effect on the resonance frequency (Fr) of the test vibrator 100. From the above, it was demonstrated that the influence of the Young's modulus (E) on the resonance frequency (Fr) increases as the amplitude of the ultrasonic vibration increases.
  • the change in the resonance frequency (Fr) of the test vibrator 100 with respect to the change in the Young's modulus (E) in the third transmission region 103 was also verified at each transformation ratio.
  • the third transmission region 103 is provided with a second extending portion 108 having a smaller cross-sectional area S2 perpendicular to the extending axis T, so that the third transmission region 103 is compared with the fourth transmission region 104 and the fifth transmission region 105.
  • the volume is reduced. Therefore, when the Young's modulus (E) is changed in the third transmission region 103, compared to the case where the Young's modulus (E) is changed in the fourth transmission region 104 (fifth transmission region 105).
  • the relationship between Young's modulus (E) and resonance frequency (Fr) showed a different tendency.
  • the Young's modulus (E) is changed between the case where the Young's modulus (E) is changed in the third transmission region 103 and the case where the Young's modulus (E) is changed in the fourth transmission region 104.
  • the reason why the tendency of the relationship between the resonance frequency (Fr) and the resonance is different was investigated.
  • the volume of the region where the Young's modulus (E) is changed affects the relationship between the Young's modulus (E) and the resonance frequency (Fr). Has been demonstrated.
  • the volume of the third transmission region 103 (that is, the cross-sectional area S2 perpendicular to the extending axis T in the second extending portion 108) is the relationship between the Young's modulus (E) and the resonance frequency (Fr). Influenced. That is, it was proved that the influence of the Young's modulus (E) on the resonance frequency (Fr) increases as the volume increases.
  • FIG. 2 is a diagram showing a configuration of the ultrasonic treatment apparatus 1 of the present embodiment.
  • the ultrasonic treatment apparatus 1 includes a hand piece (treatment unit) 2 that is an ultrasonic treatment instrument, and a vibrator unit 3 that is coupled to the hand piece 2.
  • the ultrasonic treatment apparatus 1 has a longitudinal axis C that passes through the handpiece 2 and the transducer unit 3.
  • one of the directions parallel to the longitudinal axis C is defined as the distal direction (the direction of the arrow C1 in FIG. 2), and the direction opposite to the distal direction is defined as the proximal direction (the direction of the arrow C2 in FIG. 2).
  • the vibrator unit 3 is coupled to the handpiece 2 from the proximal direction side.
  • the handpiece 2 is an ultrasonic coagulation / incision treatment tool for incising a treatment target such as a living tissue simultaneously with coagulation using ultrasonic vibration.
  • the handpiece 2 includes a holding unit 5, a sheath 6, an ultrasonic probe 7 that is a distal end side vibration transmission unit, and a jaw 8.
  • the holding unit 5 is rotatable with respect to the cylindrical case portion 11 extending along the longitudinal axis C, a fixed handle 12 formed integrally with the cylindrical case portion 11, and the cylindrical case portion 11. And a movable handle 13 to be attached.
  • the holding unit 5 includes a rotation operation knob 15 attached to the distal direction side of the cylindrical case portion 11.
  • the rotation operation knob 15 can rotate around the longitudinal axis C with respect to the cylindrical case portion 11.
  • a supply operation input button 16 that is a supply operation input unit is attached to the fixed handle 12.
  • the sheath 6 extends along the longitudinal axis C.
  • the sheath 6 is attached to the holding unit 5 by being inserted into the inside of the rotation operation knob 15 and the inside of the cylindrical case portion 11 from the distal direction side.
  • the ultrasonic probe 7 that is the distal end side vibration transmission portion extends along the longitudinal axis C from the inside of the cylindrical case portion 11 toward the distal end direction.
  • the ultrasonic probe 7 is inserted through the sheath 6.
  • the ultrasonic probe 7 is provided with a treatment portion 17 that protrudes from the distal end of the sheath 6 toward the distal direction.
  • the jaw 8 is rotatably attached to the distal end portion of the sheath 6.
  • the movable handle 13 is connected to a movable cylindrical portion (not shown) of the sheath 6 inside the cylindrical case portion 11.
  • the tip of the movable cylindrical portion is connected to the jaw 8.
  • the movable tubular portion moves along the longitudinal axis C by opening and closing the movable handle 13 with respect to the fixed handle 12.
  • the jaw 8 rotates around the attachment position to the sheath 6 and opens or closes the treatment portion 17 of the ultrasonic probe 7.
  • the sheath 6, the ultrasonic probe 7, and the jaw 8 are rotatable about the longitudinal axis C with respect to the cylindrical case portion 11 integrally with the rotation operation knob 15.
  • the power supply unit 20 includes a current supply unit 21 that outputs a current and a supply control unit 22 that controls the current supply unit 21.
  • the current supply unit 21 is formed from, for example, a power supply and an amplifier circuit (drive circuit), and the supply control unit 22 is formed from, for example, a CPU (Central Processing Unit) or an ASIC (application specific integrated circuit) and a storage unit such as a memory. Is formed.
  • the power supply unit 20 is a power supply device including components, circuits, and the like that form the current supply unit 21 and the supply control unit 22, for example.
  • FIG. 3 is a diagram showing the configuration of the vibrator unit 3.
  • the vibrator unit includes an outer vibrator case 25 and an inner vibrator case 26 positioned inside the outer vibrator case 25.
  • the outer vibrator case 25 and the inner vibrator case 26 extend along the longitudinal axis C and are inserted into the cylindrical case portion 11 of the holding unit 5 from the proximal direction side.
  • the outer vibrator case 25 and the inner vibrator case 26 are connected to the sheath 6 inside the cylindrical case portion 11.
  • a vibration generation unit 30 that generates ultrasonic vibration is provided inside the inner vibrator case 26.
  • the vibrator unit 3 is formed by the outer vibrator case 25, the inner vibrator case 26 and the vibration generation unit 30.
  • the vibration generating unit 30 includes an ultrasonic transducer 31.
  • the ultrasonic transducer 31 includes piezoelectric elements 32A to 32D (four in the present embodiment) that convert electric current into ultrasonic vibration, and two electrode portions 33A and 33B.
  • the direction away from the longitudinal axis C is defined as the outer peripheral direction (separate axis direction), and the direction opposite to the outer peripheral direction is defined as the inner peripheral direction (axial direction).
  • the inner vibrator case 26 is formed with two through holes 27A and 27B penetrating the inner vibrator case 26 in the radial direction.
  • a gap 28 is formed between the outer vibrator case 25 and the inner vibrator case 26 in the radial direction.
  • 33 A of electrode parts are provided with the protrusion part 35A which protrudes toward the outer peripheral direction in the clearance gap part 28 from 27 A of through-holes.
  • the electrode portion 33B includes a protruding portion 35B that protrudes from the through hole 27B to the gap portion 28 toward the outer peripheral direction.
  • One end of an electrical wiring 36A is connected to the protruding portion 35A of the electrode portion 33A.
  • One end of the electrical wiring 36B is connected to the protrusion 35B of the electrode portion 33B.
  • the electrical wirings 36 ⁇ / b> A and 36 ⁇ / b> B extend through the gap 28 and the inside of the cable 18.
  • the other ends of the electrical wirings 36 ⁇ / b> A and 36 ⁇ / b> B are connected to the current supply unit 21 of the power supply unit 20.
  • the vibration generating unit 30 includes a columnar horn member 37 to which the ultrasonic transducer 31 is attached.
  • the horn member 37 extends along the longitudinal axis C.
  • the horn member 37 includes a transducer mounting portion 38 to which the ultrasonic transducer 31 is mounted.
  • the horn member 37 is formed with a cross-sectional area changing portion 41 on the tip end side from the vibrator mounting portion 38. In the cross-sectional area changing portion 41, the cross-sectional area perpendicular to the longitudinal axis C decreases from the proximal direction toward the distal direction.
  • a female screw portion 42 is formed at the tip of the horn member 38. The female screw portion 42 is located on the distal direction side from the cross-sectional area changing portion 41.
  • a male screw portion 43 is formed at the base end portion of the vibrator mounting portion 38.
  • the vibration generating unit 30 includes a columnar rod-like member 45 that is a base end side vibration transmitting portion extending along the longitudinal axis C on the base end direction side of the vibration mounting portion 38.
  • the ultrasonic probe 7 is connected to the tip direction side of the vibration generating unit 30.
  • the ultrasonic probe 7 is connected to the vibration generating unit 30 inside the cylindrical case portion 11.
  • the vibrating body unit 10 that vibrates by ultrasonic vibration is formed.
  • FIG. 4 is a diagram illustrating a configuration of the vibrating body unit 10.
  • a male screw portion 46 is formed at the proximal end portion of the ultrasonic probe 7.
  • the ultrasonic probe 7 is connected to the distal direction side of the horn member 37 of the vibration generating unit 30.
  • a female screw portion 47 is formed at the tip of the rod-like member 45.
  • the ultrasonic transducer 31 is mounted on the transducer mounting portion 38 while being sandwiched between the cross-sectional area changing portion 41 of the horn member 37 and the rod-shaped member 45.
  • the ultrasonic probe 7, the horn member 37, and the rod-like member 45 are made of a material having high ultrasonic vibration transmission properties such as 64 titanium.
  • the operation signal is transmitted to the inner vibrator case 26 and the electric signal path extending through the cable 18 from the power supply unit 20. It is transmitted to the supply control unit 22. Thereby, the supply control unit 22 controls the current supply unit 21, and current is supplied from the current supply unit 21 to the ultrasonic transducer 31. Then, ultrasonic vibration is generated by the ultrasonic transducer 31.
  • the ultrasonic vibration generated by the ultrasonic transducer 31 is transmitted to the ultrasonic probe 7 through the horn member 37. At this time, the amplitude of the ultrasonic vibration is enlarged at the cross-sectional area changing portion 41 of the horn member 37.
  • ultrasonic vibration is transmitted from the proximal direction to the distal direction.
  • tip part of the ultrasonic probe 7 treats treatment objects, such as a biological tissue, using the transmitted ultrasonic vibration.
  • the ultrasonic vibration generated by the ultrasonic vibrator 31 is transmitted to the rod-shaped member 45. In the rod-shaped member 45, ultrasonic vibration is transmitted from the distal direction to the proximal direction. Note that, depending on the ultrasonic vibration, the vibrating body unit 10 performs longitudinal vibration in which the vibration direction and the transmission direction are parallel to the longitudinal axis C.
  • the vibrating body unit 10 vibrates at a resonance frequency Fr having an antinode position (for example, A1 to A3) and a node position (for example, N1, N2).
  • the tip of the vibrating body unit 10 (tip of the ultrasonic probe 7) is the antinode position A1 of ultrasonic vibration.
  • the base end of the vibrating body unit 10 (the base end of the rod-like member 45) is an antinode position A3 for ultrasonic vibration.
  • the antinode position A1 is the most advanced antinode position located on the most distal direction side among antinode positions (for example, A1 to A3) of ultrasonic vibration.
  • the antinode position A3 is the most proximal antinode position located on the most proximal direction side among ultrasonic antinode positions (for example, A1 to A3).
  • the node position N1 of the ultrasonic vibration is located in the cross-sectional area changing portion 41 of the horn member 37.
  • the node position N ⁇ b> 1 is located on the distal direction side from the ultrasonic transducer 31.
  • the base end of the horn member 37 is the antinode position A2 of the ultrasonic vibration.
  • the antinode position A2 is located closer to the proximal direction than the ultrasonic transducer 31. Further, when the antinode position closest to the ultrasonic transducer 31 among the antinode positions (for example, A2 and A3) of the ultrasonic vibration located on the proximal direction side of the ultrasonic transducer 31 is the antinode position,
  • the position A2 is the reference antinode position.
  • the base end of the rod-like member 45 serving as the base end side transmission portion is located at the abdominal position (reference antinode) by an extension dimension L1 equal to the half wavelength (one half the half wavelength) of the ultrasonic vibration at the resonance frequency Fr. Position) Located at a position away from A2 in the proximal direction. Therefore, in the axis parallel direction parallel to the longitudinal axis C, the antinode position (most proximal antinode position) A3 is separated from the antinode position (reference antinode position) A2 by the extending dimension L1 equal to the half wavelength of the ultrasonic vibration. .
  • the rod-like member 45 that is the proximal-side vibration transmitting portion is provided with a cross-sectional area reducing portion 51 between the proximal end of the rod-like member 45 and the antinode position (reference antinode position) A2 in the direction parallel to the longitudinal axis C. It has been.
  • a first transmission region 52 extends from the cross-sectional area reducing portion 51 in the distal direction
  • a second transmission region 53 extends from the cross-sectional area reducing portion 51 in the proximal direction. Therefore, the cross-sectional area reducing portion 51 is located between the first transmission region 52 and the second transmission region 53 in the axis parallel direction.
  • the cross-sectional area reducing portion 51 Due to the cross-sectional area reducing portion 51, the cross-sectional area of the rod-like member 45 perpendicular to the longitudinal axis C is reduced in the second transmission region 53 compared to the first transmission region 52.
  • the cross-sectional area reducing portion 51 is located at the node position N2 of ultrasonic vibration at the resonance frequency Fr.
  • the stress due to ultrasonic vibration acts at a position different from the antinode position (for example, A1 to A3) of ultrasonic vibration.
  • the amplitude of the ultrasonic vibration increases by reducing the cross-sectional area perpendicular to the longitudinal axis C at the position where the stress due to the ultrasonic vibration acts.
  • the cross-sectional area perpendicular to the longitudinal axis C of the rod-like member 45 (vibrating body unit 10) is reduced in the cross-sectional area reducing portion 51, the amplitude of ultrasonic vibration transmitted from the distal direction to the proximal direction is increased.
  • the cross-sectional area reducing part 51 becomes an amplitude expanding part that expands the amplitude of the ultrasonic vibration transmitted in the proximal direction in the rod-shaped member 45.
  • the stress due to the ultrasonic vibration is larger at the node positions (for example, N1, N2) of the ultrasonic vibration than at positions other than the node positions. Since the cross-sectional area perpendicular to the longitudinal axis C of the rod-like member 45 decreases at the node position N2 where the stress due to ultrasonic vibration is large, the amplitude transformation ratio (magnification ratio) of the ultrasonic vibration at the cross-sectional area reducing portion 51 increases. . The ratio of the amplitude in the second transmission region 53 to the amplitude in the first transmission region 52 is increased by increasing the amplitude transformation ratio of the ultrasonic vibration in the cross-sectional area reducing unit 51.
  • the node position N2 is closest to the abdominal position (reference abdominal position) A2 among the ultrasonic vibration node positions (for example, N2) located on the proximal direction side of the abdominal position (reference abdominal position) A2.
  • the operation and effect of the ultrasonic treatment apparatus 1 will be described.
  • a treatment target such as a living tissue
  • the sheath 6, the ultrasonic probe 7, and the jaw 8 are inserted into the body cavity.
  • the treatment target is positioned between the jaw 8 and the treatment unit 17.
  • the jaw 8 performs the closing operation on the treatment portion 17, and the treatment target is gripped between the jaw 8 and the treatment portion 17.
  • a supply operation is input with the supply operation input button 16 while the treatment target is held, a current is supplied from the current supply unit 21 to the ultrasonic transducer 31.
  • ultrasonic vibration is generated in the ultrasonic transducer 31, and the ultrasonic vibration is transmitted from the proximal direction to the distal direction in the ultrasonic probe 7.
  • the treatment unit 17 performs treatment using the transmitted ultrasonic vibration, and the treatment target is incised simultaneously with coagulation as described above.
  • the generated ultrasonic vibration is transmitted from the distal direction to the proximal direction in the rod-shaped member 45.
  • the ultrasonic probe (tip-side vibration transmission unit) 7 provided with the treatment unit 17 is discarded, and the vibration generating unit 30 (the transducer unit 3) including the expensive piezoelectric elements 32A to 32D is reused. . Therefore, the ultrasonic probe 7 is replaced for each treatment.
  • the type of material forming the ultrasonic probe 7 may be different for each ultrasonic probe 7.
  • the aluminum content may be different for each ultrasonic probe 7. For this reason, variation in Young's modulus Ea occurs for each ultrasonic probe 7.
  • the Young's modulus Ea of the ultrasonic probe 7 affects the resonance frequency Fr of the vibrating body unit 10.
  • the resonance frequency Fr of the vibrating body unit 10 changes corresponding to the change of the ultrasonic probe 7 connected to the vibration generating unit 30. That is, the resonance frequency Fr of the vibrating body unit 10 varies due to variations in the Young's modulus Ea for each ultrasonic probe 7.
  • a vibrating body unit 10 ' is shown in FIG. As shown in FIG. 5, the vibrating body unit 10 ′ is provided with an ultrasonic probe 7 ′, a horn member 37 ′, and an ultrasonic vibrator 31 ′, similarly to the vibrating body unit 10 of the first embodiment. Yes. Further, the vibrating body unit 10 'vibrates at a resonance frequency Fr having an antinode position (for example, A1, A2) and a node position (for example, N1). And antinode position A1 located in the front-end
  • antinode position A1 located in the front-end
  • the vibration body unit 10 ′ (vibration generation unit 30 ′) is provided with a rod-shaped member (base end side vibration transmission unit) 45. Instead, a back mass 45 'is provided instead.
  • the ultrasonic transducer 31 ′ is mounted on the transducer mounting portion 38 ′ while being sandwiched between the cross-sectional area changing portion 41 ′ and the back mass 45 ′ of the horn member 37 ′.
  • the base end of the back mass 45 ′ coincides with the base end of the horn member 37 ′ in the axis parallel direction parallel to the longitudinal axis C. Therefore, the base end of the horn member 37 ′ becomes the base end of the vibrating body unit 10 ′ (base end of the vibration generating unit 30 ′). Further, in the vibrating body unit 10 ′, the antinode position A2 located at the base end of the vibrating body unit 10 ′ is the most proximal antinode position, and only one antinode position A2 is closer to the proximal end side than the ultrasonic transducer 31 ′. To position.
  • the vibration unit 10 ′ (vibration generation unit 30 ′) is half the size of the ultrasonic vibration in the dimension in the axis parallel direction as compared with the vibration unit 10 (vibration generation unit 30) of the first embodiment.
  • the wavelength is reduced.
  • the Young's modulus Eb of the vibration generating unit 30 ′ has less influence on the resonance frequency Fr of the vibrating body unit 10 ′. For this reason, the variation in Young's modulus Ea for each ultrasonic probe 7 'has a great influence on the resonance frequency Fr of the vibrating body unit 10'.
  • a rod-shaped member (base end side vibration transmission unit) 45 is provided. ing.
  • the Young's modulus Ec of the rod-shaped member 45 affects the resonance frequency Fr of the vibrating body unit 10. That is, the vibration of the vibrating body unit 10 to the resonance frequency Fr is obtained by increasing the dimension in the axis parallel direction by a half wavelength of the ultrasonic vibration as compared with the case where the rod-like member 45 is not provided (comparative example in FIG. 5).
  • the influence of the Young's modulus Eb of the generation unit 30 is increased. Therefore, compared with the comparative example of FIG. 5, the influence of the variation of the Young's modulus Ea of each ultrasonic probe 7 on the resonance frequency Fr of the vibrating body unit 10 is reduced.
  • the amplitude of the ultrasonic vibration transmitted from the tip end direction to the base end direction is increased by the cross-sectional area reducing portion 51.
  • the amplitude of an ultrasonic vibration becomes large. From the result of the verification of the vibration state described above, the influence of the Young's modulus (E) on the resonance frequency (Fr) increases as the amplitude of the ultrasonic vibration increases.
  • the influence of the Young's modulus Ec of the rod-shaped member 45 on the resonance frequency Fr of the vibrating body unit 10 is increased.
  • the influence of the Young's modulus Eb of the vibration generating unit 30 on the resonance frequency Fr is further increased. Therefore, the influence of the variation in Young's modulus Ea for each ultrasonic probe 7 on the resonance frequency Fr of the vibrating body unit 10 is further reduced. Thereby, even when the Young's modulus Ea varies for each ultrasonic probe 7 that is the tip-side vibration transmission unit, the variation of the resonance frequency Fr of the vibrating body unit 10 can be reduced.
  • the stress due to the ultrasonic vibration becomes larger than the positions other than the node positions. Since the cross-sectional area reducing portion 51 is provided at the node position N2 where the stress of the ultrasonic vibration becomes large, the amplitude transformation ratio (magnification ratio) of the ultrasonic vibration in the cross-sectional area reducing portion 51 becomes large. As the amplitude transformation ratio of the ultrasonic vibration in the cross-sectional area reducing portion 51 increases, the amplitude in the second transmission region 53 increases.
  • the influence of the Young's modulus Ec of the rod-shaped member 45 on the resonance frequency Fr of the vibrating body unit 10 is further increased, and the influence of the variation of the Young's modulus Ea for each ultrasonic probe 7 on the resonance frequency Fr of the vibrating body unit 10 is increased. Becomes even smaller. Thereby, even when the variation in Young's modulus Ea occurs for each ultrasonic probe 7 that is the tip-side vibration transmission unit, the variation in the resonance frequency Fr of the vibrating body unit 10 can be further effectively reduced.
  • the base end of the rod-shaped member 45 (the base end of the vibrating body unit 10) is located at a position away from the antinode position (reference antinode position) A2 by the half wavelength of the ultrasonic vibration in the base end direction.
  • it is located, it is not limited to this.
  • it is equal to one wavelength of ultrasonic vibration at the resonance frequency Fr from the antinode position (reference antinode position) A2 (twice the half wavelength).
  • the base end of the rod-shaped member 45 (the base end of the vibrating body unit 10) may be located at a position separated in the base end direction by the extending dimension L2.
  • the vibrating body unit 10 of this modification vibrates at a resonance frequency Fr having an antinode position (for example, A1 to A4) and a node position (for example, N1 to N3).
  • the antinode position A1 located at the distal end of the ultrasonic probe 7 is the most distal antinode position
  • the antinode position A4 located at the proximal end of the rod-like member 45 is the most proximal antinode position.
  • the antinode position (reference antinode position) A2 is located at the proximal end of the horn member 37, and is among the antinode positions (for example, A2 to A4) of ultrasonic vibration located on the proximal direction side of the ultrasonic transducer 31.
  • the antinode position closest to the ultrasonic transducer 31 Therefore, in this modification, the dimension of the rod-like member 45 (vibrating body unit 10) in the axis parallel direction parallel to the longitudinal axis C is increased by a half wavelength compared to the first embodiment.
  • a cross-sectional area decreasing portion 51 that is an amplitude expanding portion is provided at the node position N2 between the antinode position A2 and the antinode position A3.
  • the second transmission region 53 extends in the proximal direction through the antinode position A3 to the antinode position (most proximal antinode position) A4.
  • the node position N2 is the most antinode position (reference abdominal position) among ultrasonic vibration node positions (for example, N2 and N3) located on the proximal direction side from the antinode position (reference antinode position) A2. Close to A2.
  • the dimension of the second transmission region 53 in the axial parallel direction is increased by a half wavelength as compared with the first embodiment.
  • the volume of the second transmission region 53 having a large amplitude of ultrasonic vibration is increased.
  • the influence of the Young's modulus (E) on the resonance frequency (Fr) increases as the volume increases. Since the volume of the second transmission region 53 in the rod-shaped member 45 is increased, the influence of the Young's modulus Ec of the rod-shaped member 45 on the resonance frequency Fr of the vibrating body unit 10 is increased as compared with the first embodiment. The influence of the Young's modulus Eb of the vibration generating unit 30 on the resonance frequency Fr of the vibrating body unit 10 is further increased.
  • FIG. 7 is a diagram illustrating a configuration of the vibrating body unit 10 according to the second embodiment.
  • the vibrating body unit 10 of the present embodiment vibrates at a resonance frequency Fr having an antinode position (for example, A1 to A4) and a node position (for example, N1 to N3).
  • the antinode position A1 located at the distal end of the ultrasonic probe 7 is the most distal antinode position
  • the antinode position A4 located at the proximal end of the rod-like member 45 is the most proximal antinode position.
  • the antinode position (reference antinode position) A2 is located at the proximal end of the horn member 37, and is among the antinode positions (for example, A2 to A4) of ultrasonic vibration located on the proximal direction side of the ultrasonic transducer 31.
  • a cross-sectional area decreasing portion 51 that is an amplitude expanding portion is provided at the node position N2 between the antinode position A2 and the antinode position A3.
  • the node position N2 is closest to the abdominal position (reference abdominal position) A2 among the ultrasonic vibration node positions (for example, N2 and N3) located on the proximal direction side of the abdominal position (reference abdominal position) A2.
  • region 55 is following the base end direction side of the 2nd transmission area
  • the first extending region 55 is located on the proximal direction side with respect to the cross-sectional area decreasing portion 51 that is the amplitude expanding portion.
  • the second transmission region 53 and the first extension region 55 are extended between the node position N2 and the antinode position A3.
  • the rod-like member 45 is provided with a second extending region 56 on the proximal direction side from the first extending region 55.
  • the second extending region 56 extends from the antinode position A3 toward the proximal direction.
  • region 56 is extended to the antinode position (most proximal end antinode position) A4 located in the base end (base end of the vibrating body unit 10) of the rod-shaped member 45. As shown in FIG.
  • a cross-sectional area enlarged portion 57 is provided between the first extension region 55 and the second extension region 56 in the axis parallel to the longitudinal axis C.
  • the cross-sectional area enlarged portion 57 enlarges the cross-sectional area of the rod-like member 45 perpendicular to the longitudinal axis C in the second extending region 56 as compared with the first extending region 55. Thereby, the volume of the second extending region 56 is increased.
  • the antinode position (cross-section change antinode position) A3 is located in the cross-sectional area enlarged portion 57.
  • the antinode position (cross sectional area changing antinode position) A3 is one of the antinode positions of the ultrasonic vibration located between the cross sectional area reducing portion 51, which is the amplitude expanding portion, and the base end of the rod-like member 45 in the axis parallel direction. .
  • the antinode position (cross section change antinode position) A3 is the cross section area decreasing portion (amplitude expanding portion) among the antinode positions (for example, A3 and A4) of ultrasonic vibration located on the proximal direction side from the cross sectional area decreasing portion 51. ) Close to 51.
  • the stress due to the ultrasonic vibration becomes zero. Since the stress due to the ultrasonic vibration does not act, the amplitude of the ultrasonic vibration does not decrease (does not change) in the cross-sectional area enlargement portion 57 even if the cross-sectional area perpendicular to the longitudinal axis C increases (changes). Therefore, the ultrasonic vibration is transmitted from the first extending region 55 to the second extending region 56 without reducing the amplitude.
  • the ultrasonic vibration is transmitted to the second extending region 56 in a state where the amplitude expanded by the cross-sectional area reducing portion 51 is maintained. For this reason, in the second extended region 56, the amplitude of the ultrasonic vibration is increased.
  • the second extending region 56 having a large amplitude and a large cross-sectional area (that is, volume) perpendicular to the longitudinal axis C extends in the rod-shaped member 45 over a half wavelength of the ultrasonic vibration.
  • the Young's modulus Ec of the rod-like member 45 is higher than the resonance frequency of the vibrator unit 10 as compared with the first embodiment.
  • the influence on Fr is increased, and the influence of the Young's modulus Eb of the vibration generating unit 30 on the resonance frequency Fr of the vibrating body unit 10 is further increased. Therefore, the influence of the variation in Young's modulus Ea for each ultrasonic probe 7 on the resonance frequency Fr of the vibrating body unit 10 is further reduced. Thereby, even when the variation in Young's modulus Ea occurs for each ultrasonic probe 7 that is the tip-side vibration transmission unit, the variation in the resonance frequency Fr of the vibrating body unit 10 can be further effectively reduced.
  • the antinode position (for example, A3 and A4) of the ultrasonic vibration located on the proximal direction side of the cross-sectional area decreasing portion 51 is the antinode position (the cross-section changing anti-node position) A3 located in the cross-sectional area enlarged portion 55. Close to the cross-sectional area reduction part (amplitude enlargement part) 51.
  • FIG. 8 shows the relationship between the Young's modulus Ea of the ultrasonic probe 7 (7 ′) and the resonance frequency Fr of the vibrating body unit 10 (10 ′) in the comparative example, the first embodiment, and the second embodiment.
  • the Young's modulus Ea of the ultrasonic probe 7 (7 ′) connected to the vibration generating unit 30 (30 ′) varies between the maximum value Eamax and the minimum value Eamin.
  • the resonance frequency Fr of the vibrating body unit 10 varies between the maximum value Fr1max and the minimum value Fr1min.
  • the resonance frequency Fr of the vibration body unit 10 varies between the maximum value Fr2max and the minimum value Fr2min, and the vibration body unit 10 (10 ′) as compared with the comparative example.
  • the variation in the resonance frequency Fr is reduced.
  • the resonance frequency Fr of the vibration body unit 10 varies between the maximum value Fr3max and the minimum value Fr3min, and the resonance frequency of the vibration body unit 10 is compared with that of the first embodiment. Fr variation is further reduced.
  • the Young's modulus Ea of the ultrasonic probe 7 (7 ′) is shown on the horizontal axis, and the resonance frequency Fr of the vibrating body unit 10 (10 ′) is shown on the vertical axis.
  • FIG. 9 is a diagram showing the configuration of the vibrator unit 3 and the power supply unit 20 of the present embodiment.
  • the vibration generating unit 30 is provided with a memory 61 that is a storage unit.
  • the memory 61 stores vibration characteristics of the vibration generating unit 30 due to ultrasonic vibration. For example, information related to the Young's modulus Eb of the vibration generating unit 30, the standard value of the resonance frequency Fr of the vibrating body unit 10, and the like are stored in the memory 61.
  • the Young's modulus Eb varies for each vibration generating unit 30 for the same reason as the ultrasonic probe 7. Even when the influence of the variation of the Young's modulus Ea of each ultrasonic probe 7 on the resonance frequency Fr of the vibrating body unit 10 is small, the variation of the Young's modulus Eb of each vibration generating unit 30 causes the variation of the vibration frequency Fr. Occurs. For this reason, the measurement of the resonance frequency Fr of the vibrating body unit 10 by the supply control unit 22 of the power supply unit 20 becomes complicated.
  • FIG. 10 is a diagram showing the relationship between the frequency f of the ultrasonic vibration and the acoustic impedance Z.
  • the acoustic impedance Z changes corresponding to the vibration state of the vibrating body unit 10. For this reason, as shown in FIG. 10, the acoustic impedance Z changes as the frequency f of the ultrasonic vibration changes.
  • the relationship between the frequency f of the ultrasonic vibration and the acoustic impedance Z changes corresponding to the change in the Young's modulus Eb of the vibration generating unit 30.
  • vibration generating unit 30 when a certain vibration generating unit 30 (vibration generating unit 30 having Young's modulus Eb1) is used for the vibrating body unit 10, the relationship between the frequency f of the ultrasonic vibration and the acoustic impedance Z is indicated by a solid line in FIG. To change.
  • vibration generating unit 30 when another vibration generating unit 30 (vibration generating unit 30 having Young's modulus Eb2) is used for the vibrating body unit 10, the relationship between the frequency f of the ultrasonic vibration and the acoustic impedance Z is indicated by the dotted line in FIG. It changes as shown in.
  • the supply control unit 22 controls the current supplied from the current supply unit 21 to the ultrasonic transducer 31 by PLL (Phase Lock Loop) control, and measures the resonance frequency Fr of the vibrator unit 10. . That is, the frequency f at which the acoustic impedance Z is minimized in a predetermined frequency region (for example, ⁇ f1 and ⁇ f2) of ultrasonic vibration is detected as the resonance frequency Fr.
  • PLL Phase Lock Loop
  • the memory 61 is connected to the supply control unit 22 via the electric signal line 62.
  • the supply control unit 22 controls the current supply state from the current supply unit 21 based on the vibration characteristics of the vibration generation unit 30 stored in the memory 61. Further, the supply control unit 22 measures the resonance frequency Fr of the vibrating body unit 10 in which the ultrasonic probe 7 is connected to the vibration generating unit 30 based on the vibration characteristics of the vibration generating unit 30. Since the resonance frequency Fr of the vibrating body unit 10 is measured based on the vibration characteristics of the vibration generating unit 30, the supply control unit 22 can detect the resonance frequency only in a predetermined frequency region (for example, ⁇ f1, ⁇ f2) in the vicinity of the resonance frequency Fr.
  • a predetermined frequency region for example, ⁇ f1, ⁇ f2
  • the measurement of the resonance frequency Fr of the vibrating body unit 10 is appropriately and easily performed by the supply control unit 22 of the power supply unit 20, and the current is appropriately supplied from the current supply unit 21 of the power supply unit 20 to the ultrasonic transducer 31. Supplied. Therefore, the treatment performance in the treatment using ultrasonic vibration can be effectively ensured.
  • ultrasonic transducer 31 In the above-described embodiment and modification, only one ultrasonic transducer 31 is provided in the vibration generating unit 30, but this is not a limitation.
  • a plurality of (two in this modification) ultrasonic transducers 31A and 31B may be provided in the vibration generating unit 30.
  • the ultrasonic transducers 31 ⁇ / b> A and 31 ⁇ / b> B are located away from each other in the axis parallel direction parallel to the longitudinal axis C.
  • the antinode position A3 is the most proximal antinode position.
  • the ultrasonic transducer 31B is the most proximal transducer located closest to the proximal direction in the ultrasonic vibration (for example, 31A and 31B).
  • the antinode position A2 is located closer to the proximal direction than the ultrasonic transducer (most proximal transducer) 31B.
  • the ultrasonic vibration is among the anti-vibration antinodes (for example, A2 and A3) where the antinode position (reference antinode position) A2 is located on the proximal direction side of the ultrasonic transducer (most proximal transducer) 31B.
  • the abdominal position is closest to the child 31B.
  • the base end of the rod-shaped member 45 (base end of the vibrating body unit 10) has an extension dimension L3 equal to a half wavelength of ultrasonic vibration at the resonance frequency Fr from the antinode position (reference antinode position) A2 toward the base end. Located away. And the cross-sectional area reduction
  • the node position N2 of the ultrasonic vibration at the resonance frequency Fr is located in the cross-sectional area reducing portion 51.
  • the treatment unit 17 of the vibrator unit 10 is used for ultrasonic coagulation and incision, but is not limited thereto.
  • a path portion 65 may be formed along the longitudinal axis C in the vibrating body unit 10 as illustrated in FIG. Since the path portion 65 is formed, the vibrating body unit 10 is formed in a hollow cylindrical shape.
  • the distal end surface 66 of the vibrating body unit 10 is used as a treatment portion. Cavitation occurs in the vicinity of the distal end surface 66 when the vibrating body unit 10 vibrates in a state where a liquid such as physiological saline is supplied to the distal end portion of the ultrasonic probe 7.
  • a treatment target such as a living tissue is crushed and emulsified. Then, the crushed and emulsified treatment target is sucked and collected through the path portion 65.
  • the vibrator unit 10 is used for the ultrasonic suction treatment. Also in this modification, the influence of the variation in Young's modulus Ea for each ultrasonic probe 7 on the resonance frequency Fr of the vibrating body unit 10 is reduced in the same manner as in the above-described embodiment and modification.
  • the Young's modulus Ea of the ultrasonic probe 7 has been described.
  • the Young's modulus Ea of the ultrasonic probe 7 such as the Boisson ratio and density.
  • Other physical properties also affect the resonance frequency Fr of the vibrating body unit 10.
  • the Young's modulus Ea of the ultrasonic probe 7 is obtained by providing the vibration generating unit 30 with the rod-shaped member (base-end side vibration transmitting portion) 45 and the cross-sectional area reducing portion (amplitude expanding portion) 51.
  • the influence on the resonance frequency Fr of the vibrating body unit 10 such as the Boisson ratio and the density is reduced.
  • the proximal-side vibration transmission is performed at a position away from the reference antinode position (A2) in the proximal direction by an extension dimension (L1; L2) equal to an integral multiple of a half wavelength of ultrasonic vibration. It is only necessary that the base end of the portion (45) is located.
  • the reference abdominal position (A2) is the most ultrasonic transducer (31; 31B) among the abdominal positions (A2, A3; A2 to A4) located on the proximal direction side of the ultrasonic transducer (31). The abdominal position is close to.
  • an amplitude expansion unit (51) that expands the amplitude of the ultrasonic vibration transmitted in the proximal direction between the proximal end of the proximal vibration transmission unit (45) and the reference antinode position (A2) in the axis parallel direction. ) May be provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Mechanical Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Psychiatry (AREA)
  • Biophysics (AREA)
  • Hospice & Palliative Care (AREA)
  • Social Psychology (AREA)
  • Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Child & Adolescent Psychology (AREA)
  • Neurology (AREA)
  • Surgical Instruments (AREA)
  • Surgery (AREA)
  • Dentistry (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)

Abstract

 振動発生ユニットは、超音波振動が先端方向から基端方向へ伝達される基端側振動伝達部を備える。超音波振動子より前記基端方向側に位置する腹位置の中で前記超音波振動子に最も近い腹位置を基準腹位置とした場合に、前記超音波振動の半波長の整数倍に等しい延設寸法だけ前記基準腹位置から前記基端方向へ離れた位置に、前記基端側振動伝達部の基端が位置する。前記振動発生ユニットは、前記基端側振動伝達部において前記基端方向へ伝達される前記超音波振動の振幅を拡大する振幅拡大部を備える。

Description

振動発生ユニット、振動体ユニット及び超音波処置装置
 本発明は、超音波振動を用いて処置部が処置対象を処置する超音波処置装置において、処置に用いられる超音波振動を発生する振動発生ユニットに関する。また、処置部及び振動発生ユニットを備える振動体ユニット、及び、振動体ユニットを備える超音波処置装置に関する。
 特許文献1には、処置部として手術チップが先端部に設けられる超音波処置装置が開示されている。この超音波処置装置には、電流を超音波振動に変換する圧電結晶(圧電素子)を備える振動発生ユニットが、設けられている。振動発生ユニットの先端方向側には、振動伝達ロッドが、延設されている。振動伝達ロッドの先端方向側に、手術チップが取付けられる。圧電結晶で発生した超音波振動は、振動伝達ロッドを通して基端方向から先端方向へ伝達される。そして、手術チップが、伝達された超音波振動を用いて、生体組織等の処置対象を処置する。振動伝達ロッド及び手術チップによって、振動発生ユニットの先端方向側に接続され、振動発生ユニットから超音波振動が伝達される先端側振動伝達部が形成される。また、振動発生ユニット、振動伝達ロッド及び手術チップによって、振動体ユニットが形成されている。
特開平7-16254号公報
 前記特許文献1に示すような超音波処置装置では、一般に、処置での使用後において、処置部が設けられる先端側振動伝達部(振動伝達ロッド及び手術チップ)が廃棄され、高価な圧電素子(圧電結晶)を含む振動発生ユニットが再利用される。ここで、先端側振動伝達部を形成する材料の種類が、先端側振動伝達部ごとに異なる場合がある。また、全ての先端側振動伝達部が64チタンから形成される場合でも、アルミの含有率が先端側振動伝達部ごとに異なる場合もある。前述の観点から、先端振動伝達部ごとに、ヤング率のバラツキが発生してしまう。
 先端側振動伝達部ごとにヤング率のバラツキが発生することにより、同一の振動発生ユニットが用いられる場合でも、振動発生ユニットに接続される先端側振動伝達部の変化に対応して振動体ユニット(振動発生ユニット、振動伝達ロッド及び手術チップ)の超音波振動による共振周波数が変化する。すなわち、先端側振動伝達部ごとのヤング率のバラツキが振動体ユニットの共振周波数に影響を与え、先端側振動伝達部ごとのヤング率のバラツキによって振動体ユニットの共振周波数にバラツキが発生してしまう。振動発生ユニットに接続される先端側振動伝達部の変化に対応して振動体ユニットの共振周波数が変化することにより、電源ユニットによる振動体ユニットの共振周波数の測定が複雑になり、電源ユニットから超音波振動に供給される電流が適切に制御されない等の不具合が発生する。これにより、超音波振動を用いた処置での処置性能が低下してしまう。
 本発明は前記課題に着目してなされたものであり、その目的とするところは、先端側振動伝達部ごとにヤング率のバラツキが発生する場合でも、振動体ユニットの共振周波数のバラツキが低減される振動発生ユニットを提供することにある。また、その振動発生ユニット及び先端側振動伝達部を備える振動体ユニット、及び、その振動体ユニットを備える超音波処置装置を提供することにある。
 前記目的を達成するために、本発明のある態様は、先端部に処置部が設けられる先端側振動伝達部が先端方向側に接続され、前記先端側振動伝達部に伝達される超音波振動を発生する振動発生ユニットであって、電流が供給されることにより前記超音波振動を発生する超音波振動子と、前記超音波振動子が装着される振動子装着部と、前記振動子装着部の基端方向側に長手軸に沿って延設され、前記超音波振動子で発生した前記超音波振動が前記先端方向から前記基端方向へ伝達される基端側振動伝達部であって、前記超音波振動子より前記基端方向側に位置する前記超音波振動の腹位置の中で前記超音波振動子に最も近い腹位置を基準腹位置とした場合に、前記超音波振動の半波長の整数倍に等しい延設寸法だけ前記基準腹位置から前記基端方向へ離れた位置に、基端が位置する基端側振動伝達部と、前記長手軸に平行な軸平行方向について前記基端側振動伝達部の前記基端と前記基準腹位置との間に設けられ、前記基端側振動伝達部において前記基端方向へ伝達される前記超音波振動の振幅を拡大する振幅拡大部と、を備える。
 本発明によれば、先端側振動伝達部ごとにヤング率のバラツキが発生する場合でも、振動体ユニットの共振周波数のバラツキが低減される振動発生ユニットを提供することができる。また、その振動発生ユニット及び先端側振動伝達部を備える振動体ユニット、及び、その振動体ユニットを備える超音波処置装置を提供することができる。
本発明の実施形態の参照となる振動状態の検証で用いられる試験振動体を示す概略図である。 本発明の第1の実施形態に係る超音波処置装置を示す概略図である。 第1の実施形態に係る振動子ユニットの構成を概略的に示す断面図である。 第1の実施形態に係る振動体ユニットを概略的に示す断面図である。 比較例に係る振動体ユニットを概略的に示す断面図である。 第1の実施形態の第1の変形例に係る振動体ユニットを概略的に示す断面図である。 第2の実施形態に係る振動体ユニットを概略的に示す断面図である。 比較例、第1の実施形態及び第2の実施形態での超音波プローブのヤング率と振動体ユニットの共振周波数との関係を示す概略図である。 第3の実施形態に係る振動子ユニット及び電源ユニットの構成を示す概略図である。 超音波振動の周波数と音響インピーダンスとの関係の一例を示す概略図である。 第1の実施形態乃至第3の実施形態のある変形例に係る振動発生ユニットを概略的に示す断面図である。 第1の実施形態乃至第3の実施形態の別のある変形例に係る振動体ユニットを概略的に示す断面図である。
 (実施形態の参照となる振動状態の検証) 
 本発明の実施形態を説明する前に、後述の実施形態の参照となる振動状態の検証について、図1を参照して説明する。図1は、振動状態の検証に用いられる試験振動体100を示す図である。振動状態の検証は、シミュレーション等によって行われ、試験振動体100を用いてヤング率(E)と共振周波数(Fr)との関係が検証される。
 図1に示すように、試験振動体100は、延設軸Tに沿って延設されている。ここで、延設軸Tに平行な方向の一方を第1の延設方向(図1の矢印T1の方向)とし、第1の延設方向とは反対方向を第2の延設方向(図1の矢印T2の方向)とする。試験振動体100では、第1の延設方向から第2の延設方向へ超音波振動が伝達される。また、試験振動体100は、腹位置A´1~A´6と、節位置N´1~N´5と、を有する。すなわち、試験振動体100は、超音波振動を伝達することにより、腹位置A´1~A´6及び節位置N´1~N´5を有する所定の振動状態で振動を行う。
 試験振動体100には、第1の延設方向から順に、第1の伝達領域101、第2の伝達領域102、第3の伝達領域103、第4の伝達領域104及び第5の伝達領域105が延設されている。第1の伝達領域101は、腹位置A´1と腹位置A´2との間に延設され、第2の伝達領域102は、腹位置A´2と腹位置A´3との間に延設され、第3の伝達領域103は、腹位置A´3と腹位置A´4との間に延設され、第4の伝達領域104は、腹位置A´4と腹位置A´5との間に延設され、第5の伝達領域105は、腹位置A´5と腹位置A´6との間に延設されている。
 第3の伝達領域104は、断面積減少部106と、断面積減少部106から第1の延設方向へ向かって延設される第1の延設部107と、断面積減少部106から第2の延設方向へ向かって延設される第2の延設部108と、を備える。試験振動体100が所定の振動状態で振動することにより、超音波振動による応力が作用する節位置N´3は、断面積減少部106に位置している。また、断面積減少部106によって、第2の延設部108の延設軸Tに垂直な断面積が、第1の延設部107に比べて小さくなる。超音波振動による応力が作用する位置で延設軸Tに垂直な断面積が減少することにより、断面積減少部106では、超音波振動の振幅が拡大される(増加する)。なお、第1の伝達領域101、第2の伝達領域102、及び、第3の伝達領域103の第1の延設部107では、延設軸Tに垂直な断面積がS1となる。また、第3の伝達領域103の第2の延設部108では、延設軸Tに垂直な断面積がS2となり、断面積S1より小さくなる。
 また、第3の伝達領域103と第4の伝達領域104との間の腹位置A´4には、断面積拡大部109が設けられている。すなわち、試験振動体100が所定の振動状態で振動することにより、腹位置A´3は、断面積拡大部109に位置する。断面積拡大部109によって、第4の伝達領域104の延設軸Tに垂直な断面積が、第3の伝達領域103の第2の延設部108に比べて大きくなる。ただし、断面積拡大部109に位置する腹位置A´3では、超音波振動による応力がゼロとなる。超音波振動による応力が作用しないため、断面積拡大部109では、延設軸Tに垂直な断面積が拡大しても(変化しても)、超音波振動の振幅は減少しない(変化しない)。なお、第4の伝達領域104及び第5の伝達領域105での延設軸Tに垂直な断面積は、第1の伝達領域101及び第2の伝達領域102と同一で、S1となる。
 振動状態の検証では、断面積減少部106での超音波振動の変成比(拡大率)を変化させて、ヤング率(E)と共振周波数(Fr)との関係を検証した。すなわち、第2の延設部108の延設軸Tに垂直な断面積S2に対する第1の延設部107の延設軸Tに垂直な断面積S1の比率を変化させて、検証が行った。そして、それぞれの変成比において、第4の伝達領域104でのヤング率(E)の変化に対する試験振動体100の共振周波数(Fr)の変化を検証した。
 前述の検証の結果、断面積減少部106での超音波振動の変成比が大きくなるほど、第4の伝達領域104のヤング率(E)の変化が試験振動体100の共振周波数(Fr)に大きな影響を及ぼすことが実証された。すなわち、第4の伝達領域104での超音波振動の振幅が大きくなるほど、第4の伝達領域104のヤング率(E)の試験振動体100の共振周波数(Fr)への影響が大きくなる。第5の伝達領域105のヤング率(E)を変化させた場合についても、第4の伝達領域104のヤング率(E)を変化させた場合と同様の結果が得られた。すなわち、第5の伝達領域105での超音波振動の振幅が大きくなるほど(すなわち、断面積減少部106での超音波振動の変成比が大きくなるほど)、第5の伝達領域105のヤング率(E)の試験振動体100の共振周波数(Fr)への影響が大きくなった。以上より、超音波振動の振幅が大きくなる領域ほど、ヤング率(E)が共振周波数(Fr)へ及ぼす影響が大きくなることが、実証された。
 また、振動状態の検証では、それぞれの変成比において、第3の伝達領域103でのヤング率(E)の変化に対する試験振動体100の共振周波数(Fr)の変化も検証した。第3の伝達領域103は、延設軸Tに垂直な断面積S2が小さくなる第2の延設部108が設けられているため、第4の伝達領域104及び第5の伝達領域105に比べて、体積が小さくなる。このため、第3の伝達領域103でヤング率(E)を変化させた場合、第4の伝達領域104(第5の伝達領域105)でヤング率(E)を変化させた場合と比較して、ヤング率(E)と共振周波数(Fr)との関係が、異なる傾向を示した。
 前述の検証では、第3の伝達領域103でヤング率(E)を変化させた場合と第4の伝達領域104でヤング率(E)を変化させた場合との間で、ヤング率(E)と共振周波数(Fr)との関係が示す傾向が異なる原因について、調査した。この結果、ヤング率(E)を変化させる領域の振幅に加えて、ヤング率(E)を変化させる領域の体積が、ヤング率(E)と共振周波数(Fr)との関係に影響を及ぼすことが実証された。実際に、第3の伝達領域103の体積(すなわち、第2の延設部108での延設軸Tに垂直な断面積S2)が、ヤング率(E)と共振周波数(Fr)との関係に影響を及ぼした。すなわち、体積が大きくなる領域ほど、ヤング率(E)が共振周波数(Fr)へ及ぼす影響が大きくなることが、実証された。
 前述の検証の結果を参照として、以下、本発明の実施形態について説明する。
 (第1の実施形態) 
 本発明の第1の実施形態について、図2乃至図5を参照して説明する。図2は、本実施形態の超音波処置装置1の構成を示す図である。図2に示すように、超音波処置装置1は、超音波処置具であるハンドピース(処置ユニット)2と、ハンドピース2に連結される振動子ユニット3と、を備える。超音波処置装置1は、ハンドピース2及び振動子ユニット3を通る長手軸Cを有する。ここで、長手軸Cに平行な方向の一方を先端方向(図2の矢印C1の方向)とし、先端方向とは反対方向を基端方向(図2の矢印C2の方向)とする。また、先端方向及び基端方向が長手軸Cに平行な軸平行方向となる。振動子ユニット3は、基端方向側からハンドピース2に連結される。ハンドピース2は、超音波振動を用いて生体組織等の処置対象を凝固と同時に切開する超音波凝固切開処置具である。
 ハンドピース2は、保持ユニット5と、シース6と、先端側振動伝達部である超音波プローブ7と、ジョー8と、を備える。保持ユニット5は、長手軸Cに沿って延設される筒状ケース部11と、筒状ケース部11と一体に形成される固定ハンドル12と、筒状ケース部11に対して回動可能に取付けられる可動ハンドル13と、を備える。筒状ケース部11への取付け位置を中心として可動ハンドル13が回動することにより、可動ハンドル13が固定ハンドル12に対して開動作又は閉動作を行う。また、保持ユニット5は、筒状ケース部11の先端方向側に取付けられる回転操作ノブ15を備える。回転操作ノブ15は、筒状ケース部11に対して長手軸Cを中心として回転可能である。また、固定ハンドル12には、供給操作入力部である供給操作入力ボタン16が取付けられている。
 シース6は、長手軸Cに沿って延設されている。シース6が先端方向側から回転操作ノブ15の内部及び筒状ケース部11の内部に挿入されることにより、シース6が保持ユニット5に取付けられる。先端側振動伝達部である超音波プローブ7は、筒状ケース部11の内部から先端方向へ向かって、長手軸Cに沿って延設されている。また、超音波プローブ7は、シース6に挿通されている。超音波プローブ7には、シース6の先端から先端方向へ向かって突出する処置部17が、設けられている。
 ジョー8は、シース6の先端部に回動可能に取付けられている。可動ハンドル13は、筒状ケース部11の内部でシース6の可動筒状部(図示しない)に接続されている。可動筒状部の先端は、ジョー8に接続されている。固定ハンドル12に対して可動ハンドル13を開閉することにより、可動筒状部が長手軸Cに沿って移動する。これにより、ジョー8が、シース6への取付け位置を中心として回動し、超音波プローブ7の処置部17に対して開動作又は閉動作する。また、シース6、超音波プローブ7及びジョー8は、回転操作ノブ15と一体に、筒状ケース部11に対して長手軸Cを中心として、回転可能である。
 振動子ユニット3の基端には、ケーブル18の一端が接続されている。ケーブル18の他端は、電源ユニット20に接続されている。電源ユニット20は、電流を出力する電流供給部21と、電流供給部21を制御する供給制御部22と、を備える。電流供給部21は、例えば電源及びアンプ回路(駆動回路)等から形成され、供給制御部22は、例えばCPU(Central Processing Unit)又はASIC(application specific integrated circuit)、及び、メモリ等の記憶部から形成されている。そして、電源ユニットは20は、例えば電流供給部21及び供給制御部22を形成する部品、回路等を備える電源装置である。
 図3は、振動子ユニット3の構成を示す図である。図3に示すように、振動子ユニットは、外側振動子ケース25と、外側振動子ケース25の内部に位置する内側振動子ケース26と、を備える。外側振動子ケース25及び内側振動子ケース26は、長手軸Cに沿って延設され、基端方向側から保持ユニット5の筒状ケース部11の内部に挿入されている。そして、外側振動子ケース25及び内側振動子ケース26は、筒状ケース部11の内部でシース6に連結されている。
 内側振動子ケース26の内部には、超音波振動を発生する振動発生ユニット30が設けられている。外側振動子ケース25、内側振動子ケース26及び振動発生ユニット30によって、振動子ユニット3が形成されている。振動発生ユニット30は、超音波振動子31を備える。超音波振動子31は、電流を超音波振動に変換する(本実施形態では4つの)圧電素子32A~32Dと、2つの電極部33A、33Bと、を備える。
 ここで、長手軸Cに垂直な断面において長手軸Cから離れる方向を外周方向(離軸方向)とし、外周方向とは反対方向を内周方向(向軸方向)とする。そして、外周方向及び周方向を径方向とする。内側振動子ケース26には、径方向について内側振動子ケース26を貫通する2つの貫通孔27A,27Bが形成されている。また、径方向について外側振動子ケース25と内側振動子ケース26との間には、隙間部28が形成されている。電極部33Aは、貫通孔27Aから隙間部28に外周方向へ向かって突出する突出部35Aを備える。また、電極部33Bは、貫通孔27Bから隙間部28に外周方向へ向かって突出する突出部35Bを備える。
 電極部33Aの突起部35Aには、電気配線36Aの一端が接続されている。また、電極部33Bの突起部35Bには、電気配線36Bの一端が接続されている。電気配線36A,36Bは、隙間部28及びケーブル18の内部を通って、延設されている。電気配線36A,36Bの他端は、電源ユニット20の電流供給部21に接続されている。電流供給部21から電気配線36A,36Bを通して超音波振動子31に電流が供給されることにより、超音波振動子31で超音波振動が発生する。
 振動発生ユニット30は、超音波振動子31が取付けられる柱状のホーン部材37を備える。ホーン部材37は、長手軸Cに沿って延設されている。ホーン部材37は、超音波振動子31が装着される振動子装着部38を備える。また、ホーン部材37には、振動子装着部38より先端方向側に断面積変化部41が形成されている。断面積変化部41では、基端方向から先端方向に向かうにつれて、長手軸Cに垂直な断面積が減少する。ホーン部材38の先端部には、雌ネジ部42が形成されている。雌ネジ部42は、断面積変化部41より先端方向側に位置している。振動子装着部38の基端部には、雄ネジ部43が形成されている。また、振動発生ユニット30は、振動装着部38の基端方向側に長手軸Cに沿って延設される基端側振動伝達部である柱状の棒状部材45を備える。
 超音波プローブ7は、振動発生ユニット30の先端方向側に接続される。超音波プローブ7は、筒状ケース部11の内部で振動発生ユニット30に接続される。超音波プローブ7が振動発生ユニット30に接続されることにより、超音波振動によって振動する振動体ユニット10が形成される。
 図4は、振動体ユニット10の構成を示す図である。図4に示すように、超音波プローブ7の基端部には、雄ネジ部46が形成されている。雄ネジ部46がホーン部材37の雌ネジ部42に螺合することにより、振動発生ユニット30のホーン部材37の先端方向側に、超音波プローブ7が接続される。棒状部材45の先端部には、雌ネジ部47が形成されている。振動子装着部38の雄ネジ部43が雌ネジ部47と螺合することにより、ホーン部材37の基端方向側に棒状部材45が接続される。超音波振動子31は、ホーン部材37の断面積変化部41と棒状部材45との間に挟まれた状態で、振動子装着部38に装着されている。なお、超音波プローブ7、ホーン部材37及び棒状部材45は、64チタン等の超音波振動の伝達性が高い材料から形成されている。
 保持ユニット5の供給操作入力ボタン16で供給操作が入力されることにより、内側振動子ケース26及びケーブル18の内部を通って延設される電気信号経路を介して、操作信号が電源ユニット20の供給制御部22に伝達される。これにより、供給制御部22は、電流供給部21を制御し、電流供給部21から超音波振動子31に電流が供給される。そして、超音波振動子31で超音波振動が発生する。
 超音波振動子31で発生した超音波振動は、ホーン部材37を介して超音波プローブ7に伝達される。この際、ホーン部材37の断面積変化部41で、超音波振動の振幅が拡大される。超音波プローブ7では、基端方向から先端方向へ超音波振動が伝達される。そして、超音波プローブ7の先端部に設けられる処置部17が、伝達された超音波振動を用いて生体組織等の処置対象を処置する。また、超音波振動子31で発生した超音波振動は、棒状部材45に伝達される。そして、棒状部材45において、先端方向から基端方向へ超音波振動が伝達される。なお、超音波振動によっては、振動体ユニット10は、振動方向及び伝達方向が長手軸Cに対して平行な縦振動を行う。
 超音波プローブ7の処置部17とジョー8との間で処置対象が把持された状態で振動体ユニット10が振動することにより、処置部17と処置対象との間に摩擦熱が発生する。発生した摩擦熱によって、処置対象が凝固と同時に切開される。
 振動体ユニット10は、腹位置(例えばA1~A3)及び節位置(例えばN1,N2)を有する共振周波数Frで振動する。この際、振動体ユニット10の先端(超音波プローブ7の先端)は、超音波振動の腹位置A1となる。また、振動体ユニット10の基端(棒状部材45の基端)は、超音波振動の腹位置A3となる。腹位置A1は、超音波振動の腹位置(例えばA1~A3)の中で最も先端方向側に位置する最先端腹位置である。また、腹位置A3は、超音波振動の腹位置(例えばA1~A3)の中で最も基端方向側に位置する最基端腹位置である。共振周波数Frの振動では、ホーン部材37の断面積変化部41に、超音波振動の節位置N1が位置している。節位置N1は、超音波振動子31より先端方向側に位置している。
 共振周波数Frの振動では、ホーン部材37の基端は、超音波振動の腹位置A2となる。腹位置A2は、超音波振動子31より基端方向側に位置している。また、超音波振動子31より基端方向側に位置する超音波振動の腹位置(例えばA2,A3)の中で、超音波振動子31に最も近い腹位置を基準腹位置とした場合、腹位置A2が基準腹位置となる。本実施形態では、基端側伝達部である棒状部材45の基端は、共振周波数Frでの超音波振動の半波長(半波長の1倍)に等しい延設寸法L1だけ腹位置(基準腹位置)A2から基端方向へ離れた位置に、位置している。したがって、長手軸Cに平行な軸平行方向について、腹位置(最基端腹位置)A3は、腹位置(基準腹位置)A2から超音波振動の半波長に等しい延設寸法L1だけ離れている。
 基端側振動伝達部である棒状部材45には、長手軸Cに平行な軸平行方向について棒状部材45の基端と腹位置(基準腹位置)A2との間に、断面積減少部51が設けられている。棒状部材45では、断面積減少部51から先端方向へ第1の伝達領域52が延設され、断面積減少部51から基端方向へ第2の伝達領域53が延設されている。したがって、断面積減少部51は、軸平行方向について第1の伝達領域52と第2の伝達領域53との間に位置している。断面積減少部51によって、第2の伝達領域53では、長手軸Cに垂直な棒状部材45の断面積が、第1の伝達領域52に比べて減少する。本実施形態では、断面積減少部51は、共振周波数Frでの超音波振動の節位置N2に位置している。
 超音波振動の腹位置(例えばA1~A3)とは異なる位置では超音波振動による応力が作用する。振動体ユニット10では、超音波振動による応力が作用する位置で長手軸Cに垂直な断面積が減少することにより、超音波振動の振幅が増加する。このため、断面積減少部51で棒状部材45(振動体ユニット10)の長手軸Cに垂直な断面積が減少することにより、先端方向から基端方向へ伝達される超音波振動の振幅が増加する。すなわち、断面積減少部51は、棒状部材45において基端方向へ伝達される超音波振動の振幅を拡大する振幅拡大部となる。
 また、超音波振動の節位置(例えばN1,N2)では、節位置以外の位置に比べて、超音波振動による応力が大きくなる。超音波振動による応力が大きい節位置N2で棒状部材45の長手軸Cに垂直な断面積が減少するため、断面積減少部51での超音波振動の振幅の変成比(拡大率)が大きくなる。断面積減少部51での超音波振動の振幅の変成比が大きくなることにより、第1の伝達領域52での振幅に対する第2の伝達領域53での振幅の比率が大きくなる。ここで、節位置N2は、腹位置(基準腹位置)A2より基端方向側に位置する超音波振動の節位置(例えばN2)の中で、最も腹位置(基準腹位置)A2に近い。
 次に、超音波処置装置1の作用及び効果について説明する。超音波処置装置1を用いて生体組織等の処置対象を処置する際には、シース6、超音波プローブ7及びジョー8を体腔内に挿入する。そして、ジョー8と処置部17との間に処置対象を位置させる。この状態で、可動ハンドル13を固定ハンドル12に対して閉動作させることにより、ジョー8が処置部17に対して閉動作を行い、ジョー8と処置部17との間で処置対象が把持される。処置対象を把持した状態において供給操作入力ボタン16で供給操作が入力されることにより、電流供給部21から超音波振動子31に電流が供給される。そして、超音波振動子31で超音波振動が発生し、超音波プローブ7において基端方向から先端方向へ超音波振動が伝達される。そして、処置部17が、伝達された超音波振動を用いて処置を行い、前述のように処置対象が凝固と同時に切開される。この際、棒状部材45において先端方向から基端方向へ、発生した超音波振動が伝達される。
 処置が終了したら、処置部17が設けられる超音波プローブ(先端側振動伝達部)7は廃棄され、高価な圧電素子32A~32Dを含む振動発生ユニット30(振動子ユニット3)は再利用される。したがって、1回の処置ごとに超音波プローブ7が取替えられる。ここで、超音波プローブ7を形成する材料の種類が、超音波プローブ7ごとに異なる場合がある。また、全ての超音波プローブ7が64チタンから形成される場合でも、アルミの含有率が超音波プローブ7ごとに異なる場合もある。このため、超音波プローブ7ごとに、ヤング率Eaのバラツキが発生してしまう。超音波プローブ7のヤング率Eaは、振動体ユニット10の共振周波数Frに影響を与える。このため、超音波プローブ7ごとにヤング率Eaのバラツキが発生することにより、振動発生ユニット30に接続される超音波プローブ7の変化に対応して振動体ユニット10の共振周波数Frが変化する。すなわち、超音波プローブ7ごとのヤング率Eaのバラツキによって、振動体ユニット10の共振周波数Frにバラツキが発生してしまう。
 ここで、比較例として、振動体ユニット10´を図5に示す。図5に示すように、振動体ユニット10´には、第1の実施形態の振動体ユニット10と同様に、超音波プローブ7´、ホーン部材37´及び超音波振動子31´が設けられている。また、振動体ユニット10´は、腹位置(例えばA1,A2)及び節位置(例えばN1)を有する共振周波数Frで振動する。そして、超音波プローブ7´の先端に位置する腹位置A1が、最先端腹位置となる。ただし、振動体ユニット10´(振動発生ユニット30´)には、第1の実施形態の振動体ユニット10(振動発生ユニット30)とは異なり、棒状部材(基端側振動伝達部)45が設けられてなく、代わりにバックマス45´が設けられている。超音波振動子31´は、ホーン部材37´の断面積変化部41´とバックマス45´との間に挟まれた状態で、振動子装着部38´に装着されている。
 長手軸Cに平行な軸平行方向についてバックマス45´の基端は、ホーン部材37´の基端と位置が一致している。したがって、ホーン部材37´の基端が振動体ユニット10´の基端(振動発生ユニット30´の基端)となる。また、振動体ユニット10´では、振動体ユニット10´の基端に位置する腹位置A2が最基端腹位置となり、1つの腹位置A2のみが超音波振動子31´より基端方向側に位置する。このため、振動体ユニット10´(振動発生ユニット30´)は、第1の実施形態の振動体ユニット10(振動発生ユニット30)と比較して、軸平行方向についての寸法が超音波振動の半波長だけ小さくなる。
 振動体ユニット10´では、振動発生ユニット30´の軸平行方向についての寸法が小さくなるため、振動発生ユニット30´のヤング率Ebの振動体ユニット10´の共振周波数Frへの影響は小さくなる。このため、超音波プローブ7´ごとのヤング率Eaのバラツキが、振動体ユニット10´の共振周波数Frへ大きな影響を及ぼす。
 そこで、本実施形態では、振動体ユニット10の共振周波数Frへの超音波プローブ7ごとのヤング率Eaのバラツキの影響を低減させるために、棒状部材(基端側振動伝達部)45が設けられている。棒状部材45を設けることにより、棒状部材45のヤング率Ecが振動体ユニット10の共振周波数Frへ影響を及ぼす。すなわち、棒状部材45が設けられない場合(図5の比較例)に比べて軸平行方向についての寸法が超音波振動の半波長だけ大きくなることにより、振動体ユニット10の共振周波数Frへの振動発生ユニット30のヤング率Ebの影響が大きくなる。したがって、図5の比較例に比べて、振動体ユニット10の共振周波数Frへの超音波プローブ7ごとのヤング率Eaのバラツキの影響が小さくなる。
 また、基端側振動伝達部である棒状部材45では、断面積減少部51で、先端方向から基端方向へ伝達される超音波振動の振幅が拡大される。このため、断面積減少部51の基端方向側に延設される第2の伝達領域53では、超音波振動の振幅が大きくなる。前述の振動状態の検証の結果から、超音波振動の振幅が大きくなる領域ほど、ヤング率(E)が共振周波数(Fr)へ及ぼす影響が大きくなる。棒状部材45に超音波振動の振幅の大きい第2の伝達領域53が設けられることにより、棒状部材45のヤング率Ecが振動体ユニット10の共振周波数Frへ及ぼす影響が大きくなり、振動体ユニット10の共振周波数Frへの振動発生ユニット30のヤング率Ebの影響がさらに大きくなる。したがって、振動体ユニット10の共振周波数Frへの超音波プローブ7ごとのヤング率Eaのバラツキの影響がさらに小さくなる。これにより、先端側振動伝達部である超音波プローブ7ごとにヤング率Eaのバラツキが発生する場合でも、振動体ユニット10の共振周波数Frのバラツキを低減することができる。
 また、断面積減少部51に位置する節位置N2を含む超音波振動の節位置(例えばN1,N2)では、節位置以外の位置に比べて、超音波振動による応力が大きくなる。超音波振動の応力が大きくなる節位置N2に断面積減少部51が設けられるため、断面積減少部51での超音波振動の振幅の変成比(拡大率)が大きくなる。断面積減少部51での超音波振動の振幅の変成比が大きくなることにより、第2の伝達領域53での振幅が大きくなる。これにより、棒状部材45のヤング率Ecが振動体ユニット10の共振周波数Frへ及ぼす影響がさらに大きくなり、振動体ユニット10の共振周波数Frへの超音波プローブ7ごとのヤング率Eaのバラツキの影響がさらに小さくなる。これにより、先端側振動伝達部である超音波プローブ7ごとにヤング率Eaのバラツキが発生する場合でも、振動体ユニット10の共振周波数Frのバラツキをさらに有効に低減することができる。
 (第1の実施形態の変形例) 
 なお、第1の実施形態では、腹位置(基準腹位置)A2から超音波振動の半波長だけ基端方向へ離れた位置に、棒状部材45の基端(振動体ユニット10の基端)が位置するが、これに限るものではない。例えば、第1の実施形態の第1の変形例として図6に示すように、腹位置(基準腹位置)A2から共振周波数Frでの超音波振動の一波長(半波長の2倍)に等しい延設寸法L2だけ基端方向へ離れた位置に、棒状部材45の基端(振動体ユニット10の基端)が位置してもよい。本変形例の振動体ユニット10は、腹位置(例えばA1~A4)及び節位置(例えばN1~N3)を有する共振周波数Frで振動する。
 超音波プローブ7の先端に位置する腹位置A1が最先端腹位置となり、棒状部材45の基端に位置する腹位置A4が最基端腹位置となる。また、腹位置(基準腹位置)A2は、ホーン部材37の基端に位置し、超音波振動子31より基端方向側に位置する超音波振動の腹位置(例えばA2~A4)の中で、超音波振動子31に最も近い腹位置である。したがって、本変形例では、長手軸Cに平行な軸平行方向についての棒状部材45(振動体ユニット10)の寸法が、第1の実施形態に比べて半波長だけ大きくなる。
 また、本変形例でも、腹位置A2と腹位置A3との間の節位置N2に、振幅拡大部である断面積減少部51が設けられている。本変形例では、第2の伝達領域53は、腹位置A3を通って腹位置(最基端腹位置)A4まで基端方向へ延設されている。本変形例では、節位置N2は、腹位置(基準腹位置)A2より基端方向側に位置する超音波振動の節位置(例えばN2,N3)の中で、最も腹位置(基準腹位置)A2に近い。前述のような構成にすることにより、軸平行方向についての第2の伝達領域53の寸法が、第1の実施形態に比べて半波長だけ大きくなる。
 軸平行方向についての第2の伝達領域53の寸法が大きくなることにより、超音波振動の振幅が大きい第2の伝達領域53の体積が大きくなる。前述の振動状態の検証結果から、体積が大きくなる領域ほど、ヤング率(E)が共振周波数(Fr)へ及ぼす影響が大きくなる。棒状部材45において第2の伝達領域53の体積が大きくなることにより、第1の実施形態と比較して、棒状部材45のヤング率Ecが振動体ユニット10の共振周波数Frへ及ぼす影響が大きくなり、振動体ユニット10の共振周波数Frへの振動発生ユニット30のヤング率Ebの影響がさらに大きくなる。したがって、振動体ユニット10の共振周波数Frへの超音波プローブ7ごとのヤング率Eaのバラツキの影響がさらに小さくなる。これにより、先端側振動伝達部である超音波プローブ7ごとにヤング率Eaのバラツキが発生する場合でも、振動体ユニット10の共振周波数Frのバラツキをさらに有効に低減することができる。
 (第2の実施形態) 
 次に、本発明の第2の実施形態について図7を参照して説明する。第2の実施形態は、第1の実施形態の構成を次の通り変形したものである。なお、第1の実施形態と同一の部分については同一の符号を付して、その説明は省略する。
 図7は、第2の実施形態に係る振動体ユニット10の構成を示す図である。図7に示すように、本実施形態の振動体ユニット10は、腹位置(例えばA1~A4)及び節位置(例えばN1~N3)を有する共振周波数Frで振動する。超音波プローブ7の先端に位置する腹位置A1が最先端腹位置となり、棒状部材45の基端に位置する腹位置A4が最基端腹位置となる。また、腹位置(基準腹位置)A2は、ホーン部材37の基端に位置し、超音波振動子31より基端方向側に位置する超音波振動の腹位置(例えばA2~A4)の中で、超音波振動子31に最も近い腹位置である。したがって、本実施形態例では、長手軸Cに平行な軸平行方向についての棒状部材45(振動体ユニット10)の寸法が、第1の実施形態に比べて半波長だけ大きくなる。
 また、本実施形態でも、腹位置A2と腹位置A3との間の節位置N2に、振幅拡大部である断面積減少部51が設けられている。節位置N2は、腹位置(基準腹位置)A2より基端方向側に位置する超音波振動の節位置(例えばN2,N3)の中で、最も腹位置(基準腹位置)A2に近い。
 そして、本実施形態では、第2の伝達領域53の基端方向側に、第1の延設領域55が連続している。したがって、第1の延設領域55は、振幅拡大部である断面積減少部51より基端方向側に位置している。第2の伝達領域53及び第1の延設領域55は、節位置N2と腹位置A3との間に延設されている。また、棒状部材45には、第1の延設領域55より基端方向側に、第2の延設領域56が設けられている。第2の延設領域56は、腹位置A3から基端方向へ向かって延設されている。そして、棒状部材45の基端(振動体ユニット10の基端)に位置する腹位置(最基端腹位置)A4まで、第2の延設領域56が延設されている。
 長手軸Cに平行な軸平行について第1の延設領域55と第2の延設領域56との間には、断面積拡大部57が設けられている。断面積拡大部57によって、第2の延設領域56での長手軸Cに垂直な棒状部材45の断面積が、第1の延設領域55に比べて拡大される。これにより、第2の延設領域56は、体積が大きくなる。共振周波数Frの振動では、腹位置(断面変化腹位置)A3は、断面積拡大部57に位置している。腹位置(断面積変化腹位置)A3は、軸平行方向について振幅拡大部である断面積減少部51と棒状部材45の基端との間に位置する超音波振動の腹位置の1つである。また、腹位置(断面変化腹位置)A3は、断面積減少部51より基端方向側に位置する超音波振動の腹位置(例えばA3,A4)の中で最も断面積減少部(振幅拡大部)51に近い。
 断面積拡大部57が位置する腹位置A3を含む超音波振動の腹位置(例えばA1~A4)では、超音波振動による応力がゼロとなる。超音波振動による応力が作用しないため、断面積拡大部57では、長手軸Cに垂直な断面積が拡大しても(変化しても)、超音波振動の振幅は減少しない(変化しない)。したがって、超音波振動は、振幅が減少することなく、第1の延設領域55から第2の延設領域56へ伝達される。すなわち、断面積減少部51によって拡大された振幅が保たれた状態で、第2の延設領域56に超音波振動が伝達される。このため、第2の延設領域56では、超音波振動の振幅が大きくなる。
 本実施形態では、振幅が大きく、かつ、長手軸Cに垂直な断面積(すなわち、体積)が大きい第2の延設領域56が、棒状部材45において超音波振動の半波長に渡って延設されている。前述の振動状態の検証結果から、超音波振動の振幅が大きくなる領域ほど、ヤング率(E)が共振周波数(Fr)へ及ぼす影響が大きくなり、体積が大きくなる領域ほど、ヤング率(E)が共振周波数(Fr)へ及ぼす影響が大きくなる。棒状部材45に振幅が大きく、かつ、体積が大きい第2の延設領域56を設けることにより、第1の実施形態と比較して、棒状部材45のヤング率Ecが振動体ユニット10の共振周波数Frへ及ぼす影響が大きくなり、振動体ユニット10の共振周波数Frへの振動発生ユニット30のヤング率Ebの影響がさらに大きくなる。したがって、振動体ユニット10の共振周波数Frへの超音波プローブ7ごとのヤング率Eaのバラツキの影響がさらに小さくなる。これにより、先端側振動伝達部である超音波プローブ7ごとにヤング率Eaのバラツキが発生する場合でも、振動体ユニット10の共振周波数Frのバラツキをさらに有効に低減することができる。
 また、断面積拡大部55に位置する腹位置(断面変化腹位置)A3は、断面積減少部51より基端方向側に位置する超音波振動の腹位置(例えばA3,A4)の中で最も断面積減少部(振幅拡大部)51に近い。前述のような構成にすることにより、軸平行方向についての第2の延設領域56の寸法が大きくなり、第2の延設領域56の体積をさらに大きくすることができる。
 (比較例、第1の実施形態及び第2の実施形態の比較) 
 図8は、比較例、第1の実施形態及び第2の実施形態での超音波プローブ7(7´)のヤング率Eaと振動体ユニット10(10´)の共振周波数Frとの関係を示す図である。図8に示すように、振動発生ユニット30(30´)に接続される超音波プローブ7(7´)のヤング率Eaは、最大値Eamaxと最小値Eaminとの間で、バラツキが発生する。比較例では、振動体ユニット10´の共振周波数Frは、最大値Fr1maxと最小値Fr1minとの間で、バラツキが発生する。これに対し、第1の実施形態では、振動体ユニット10の共振周波数Frは、最大値Fr2maxと最小値Fr2minとの間でバラツキが発生し、比較例に比べて振動体ユニット10(10´)の共振周波数Frのバラツキが、小さくさる。さらに、第2の実施形態では、振動体ユニット10の共振周波数Frは、最大値Fr3maxと最小値Fr3minとの間でバラツキが発生し、第1の実施形態に比べて振動体ユニット10の共振周波数Frのバラツキが、さらに小さくさる。
 なお、図8では、超音波プローブ7(7´)のヤング率Eaを横軸に示し、振動体ユニット10(10´)の共振周波数Frを縦軸に示している。このため、第1の実施形態では、比較例に比べて、直線の傾きが小さくなる。そして、第2の実施形態では、第1の実施形態に比べて、直線の傾きが小さくなる。
 (第3の実施形態) 
 次に、本発明の第3の実施形態について図9及び図10を参照して説明する。第3の実施形態は、第1の実施形態の構成を次の通り変形したものである。なお、第1の実施形態と同一の部分については同一の符号を付して、その説明は省略する。
 図9は、本実施形態の振動子ユニット3及び電源ユニット20の構成を示す図である。図9に示すように、本実施形態では、振動発生ユニット30に、記憶部であるメモリ61が設けられている。メモリ61には、振動発生ユニット30の超音波振動による振動特性が記憶されている。例えば、振動発生ユニット30のヤング率Ebに関する情報、振動体ユニット10の共振周波数Frの標準値等が、メモリ61に記憶されている。
 ホーン部材37、超音波振動子31及び棒状部材45から形成される振動発生ユニット30では、超音波プローブ7と同様の理由により、振動発生ユニット30ごとにヤング率Ebのバラツキが発生する。振動体ユニット10の共振周波数Frへの超音波プローブ7ごとのヤング率Eaのバラツキの影響が小さい場合でも、振動発生ユニット30ごとにヤング率Ebのバラツキが発生することにより、振動周波数Frにバラツキが発生する。このため、電源ユニット20の供給制御部22による振動体ユニット10の共振周波数Frの測定が複雑化してしまう。
 図10は、超音波振動の周波数fと音響インピーダンスZとの関係を示す図である。音響インピーダンスZは、振動体ユニット10の振動状態に対応して変化する。このため、図10に示すように、超音波振動の周波数fが変化することにより、音響インピーダンスZは変化する。また、超音波振動の周波数fと音響インピーダンスZとの関係は、振動発生ユニット30のヤング率Ebの変化に対応して変化する。例えば、ある振動発生ユニット30(ヤング率Eb1の振動発生ユニット30)が振動体ユニット10に用いられた場合は、超音波振動の周波数fと音響インピーダンスZとの関係は、図10の実線で示すように変化する。また、別のある振動発生ユニット30(ヤング率Eb2の振動発生ユニット30)が振動体ユニット10に用いられた場合は、超音波振動の周波数fと音響インピーダンスZとの関係は、図10の点線で示すように変化する。
 処置において、供給制御部22は、PLL(Phase Lock Loop)制御によって、電流供給部21から超音波振動子31へ供給される電流を制御し、振動体ユニット10の共振周波数Frを測定している。すなわち、超音波振動の所定の周波数領域(例えばΔf1,Δf2)において音響インピーダンスZが最小となる周波数fを、共振周波数Frとして検出する。例えば、ヤング率Eb1の振動発生ユニット30が振動体ユニット10に用いられた場合は、周波数f1を共振周波数Frとして検出する。また、ヤング率Eb2の振動発生ユニット30が振動体ユニット10に用いられた場合は、周波数f2を共振周波数Frとして検出する。
 メモリ61は、電気信号線62を介して、供給制御部22に接続されている。供給制御部22は、メモリ61に記憶された振動発生ユニット30の振動特性に基づいて、電流供給部21からの電流の供給状態を制御している。また、供給制御部22は、振動発生ユニット30の振動特性に基づいて、振動発生ユニット30に超音波プローブ7が接続された振動体ユニット10の共振周波数Frを測定する。振動発生ユニット30の振動特性に基づいて振動体ユニット10の共振周波数Frが測定されるため、供給制御部22は、共振周波数Frの近傍の所定の周波数領域(例えばΔf1,Δf2)でのみ共振周波数Frの測定を行い、共振周波数Frから大きく外れた周波数領域では、測定を行わない。このため、電源ユニット20の供給制御部22によって振動体ユニット10の共振周波数Frの測定が、適切かつ容易に行われ、電源ユニット20の電流供給部21から超音波振動子31に電流が適切に供給される。したがって、超音波振動を用いた処置での処置性能を有効に確保することができる。
 (その他の変形例) 
 なお、前述の実施形態及び変形例では、振動発生ユニット30に超音波振動子31が1つのみ設けられているが、これに限るものではない。例えば、前述の実施形態のある変形例として図11に示すように、複数(本変形例では2つ)の超音波振動子31A,31Bが振動発生ユニット30に設けられてもよい。超音波振動子31A,31Bは、長手軸Cに平行な軸平行方向について、互いに対して離れて位置している。本変形例では、腹位置A3が、最基端腹位置となる。また、超音波振動子31Bが、超音波振動(例えば31A,31B)の中で最も基端方向側に位置する最基端振動子となる。腹位置A2は、超音波振動子(最基端振動子)31Bより基端方向側に位置している。そして、腹位置(基準腹位置)A2が、超音波振動子(最基端振動子)31Bより基端方向側に位置する超音波振動の腹位置(例えばA2,A3)の中で超音波振動子31Bに最も近い腹位置となる。
 また、棒状部材45の基端(振動体ユニット10の基端)は、腹位置(基準腹位置)A2から基端方向へ共振周波数Frでの超音波振動の半波長に等しい延設寸法L3だけ離れて、位置している。そして、軸平行方向について棒状部材45の基端(腹位置A3)と腹位置(基準腹位置)A2との間に、振幅拡大部である断面積減少部51が設けられている。本変形例では、第1の実施形態と同様に、共振周波数Frでの超音波振動の節位置N2は、断面積減少部51に位置している。
 また、前述の実施形態及び変形例では、振動体ユニット10の処置部17は、超音波凝固切開に用いられるが、これに限るものではない。例えば、前述の実施形態の別のある変形例として図12に示すように、振動体ユニット10に長手軸Cに沿って経路部65が形成されてもよい。経路部65が形成されるため、振動体ユニット10は中空の筒状に形成される。本変形例では、振動体ユニット10の先端面66が、処置部として用いられる。超音波プローブ7の先端部に生理食塩水等の液体が送液された状態で、振動体ユニット10が振動することにより、先端面66の近傍でキャビテーションが発生する。発生したキャビテーションを用いて、生体組織等の処置対象が破砕及び乳化される。そして、破砕及び乳化された処置対象は、経路部65を通して吸引回収される。前述のようにして、本変形例では、振動体ユニット10は超音波吸引処置に用いられる。本変形例でも、前述の実施形態及び変形例と同様にして、振動体ユニット10の共振周波数Frへの超音波プローブ7ごとのヤング率Eaのバラツキの影響が、低減される。
 また、前述の実施形態及び変形例では、振動体ユニット10の共振周波数Frへの超音波プローブ7のヤング率Eaの影響について説明したが、超音波プローブ7のボアソン比、密度等のヤング率Ea以外の物性も、振動体ユニット10の共振周波数Frへ影響を与える。前述の実施形態及び変形例では、振動発生ユニット30に棒状部材(基端側振動伝達部)45及び断面積減少部(振幅拡大部)51を設けることにより、超音波プローブ7のヤング率Eaに加えてボアソン比、密度等の振動体ユニット10の共振周波数Frへの影響が低減される。
 前述の実施形態及び変形例から、基準腹位置(A2)から超音波振動の半波長の整数倍に等しい延設寸法(L1;L2)だけ基端方向へ離れた位置に、基端側振動伝達部(45)の基端が位置していればよい。ここで、基準腹位置(A2)は、超音波振動子(31)より基端方向側に位置する腹位置(A2,A3;A2~A4)の中で最も超音波振動子(31;31B)に近い腹位置である。そして、軸平行方向について基端側振動伝達部(45)の基端と基準腹位置(A2)との間に、基端方向へ伝達される超音波振動の振幅を拡大する振幅拡大部(51)が設けられていればよい。
 以上、本発明の実施形態等について説明したが、本発明は前述の実施形態等に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形ができることは勿論である。

Claims (9)

  1.  先端部に処置部が設けられる先端側振動伝達部が先端方向側に接続され、前記先端側振動伝達部に伝達される超音波振動を発生する振動発生ユニットであって、
     電流が供給されることにより前記超音波振動を発生する超音波振動子と、
     前記超音波振動子が装着される振動子装着部と、
     前記振動子装着部の基端方向側に長手軸に沿って延設され、前記超音波振動子で発生した前記超音波振動が前記先端方向から前記基端方向へ伝達される基端側振動伝達部であって、前記超音波振動子より前記基端方向側に位置する前記超音波振動の腹位置の中で前記超音波振動子に最も近い腹位置を基準腹位置とした場合に、前記超音波振動の半波長の整数倍に等しい延設寸法だけ前記基準腹位置から前記基端方向へ離れた位置に、基端が位置する基端側振動伝達部と、
     前記長手軸に平行な軸平行方向について前記基端側振動伝達部の前記基端と前記基準腹位置との間に設けられ、前記基端側振動伝達部において前記基端方向へ伝達される前記超音波振動の振幅を拡大する振幅拡大部と、
     を具備する振動発生ユニット。
  2.  前記基端側振動伝達部は、前記振幅拡大部から前記先端方向へ延設される第1の伝達領域と、前記振幅拡大部から前記基端方向へ延設される第2の伝達領域と、を備え、
     前記振幅拡大部は、前記軸平行方向について前記第1の伝達領域と前記第2の伝達領域との間に設けられ、前記第2の伝達領域での前記長手軸に垂直な前記基端側振動伝達部の断面積を前記第1の伝達領域に比べて減少させる断面積減少部であって、前記超音波振動の腹位置とは異なる位置に位置する断面積減少部を備える、
     請求項1の振動発生ユニット。
  3.  前記断面積減少部は、前記基準腹位置より前記基端方向側に位置する前記超音波振動の節位置の中で最も前記基準腹位置に近い節位置に位置している、請求項2の振動発生ユニット。
  4.  前記基端側振動伝達部は、
     前記振幅拡大部より前記基端方向側に設けられる第1の延設領域と、
     前記第1の延設領域より前記基端方向側に設けられる第2の延設領域と、
     前記軸平行方向について前記第1の延設領域と前記第2の延設領域との間に設けられ、前記第2の延設領域での前記長手軸に垂直な前記基端側振動伝達部の断面積を前記第1の延設領域に比べて拡大させる断面積拡大部であって、前記軸平行方向について前記振幅拡大部と前記基端側振動伝達部の前記基端との間に位置する前記超音波振動の前記腹位置の1つである断面変化腹位置に位置する断面積拡大部と、
     を備える、請求項1の振動発生ユニット。
  5.  前記断面変化腹位置は、前記振幅拡大部より前記基端方向側に位置する前記超音波振動の腹位置の中で最も前記振幅拡大部に近い、請求項4の振動発生ユニット。
  6.  前記超音波振動子は、前記軸平行方向について互いに対して離れて位置する複数の超音波振動子であり、
     前記超音波振動子の中で最も前記基端方向側に位置する超音波振動子を最基端振動子とした場合に、前記基準腹位置は、前記最基端振動子より前記基端方向側に位置する前記超音波振動の腹位置の中で前記最基端振動子に最も近い腹位置である、
     請求項1の振動発生ユニット。
  7.  請求項1の振動発生ユニットと、
     前記振動発生ユニットの前記先端方向側に前記長手軸に沿って延設され、前記超音波振動を前記基端方向から前記先端方向へ伝達する前記先端側振動伝達部であって、前記超音波振動が伝達される前記処置部を前記先端部に備える前記先端側振動伝達部と、
     を具備する振動体ユニット。
  8.  請求項7の振動体ユニットと、
     前記超音波振動子に前記電流を供給する電流供給部を備える電源ユニットと、
     を具備する超音波処置装置。
  9.  前記振動発生ユニットは、前記振動発生ユニットの前記超音波振動による振動特性を記憶した記憶部を備え、
     前記電源ユニットは、前記記憶部に記憶された前記振動発生ユニットの前記振動特性に基づいて前記電流供給部からの前記電流の供給状態を制御し、前記振動発生ユニットの前記振動特性に基づいて前記振動発生ユニットに前記先端側振動伝達部が接続された前記振動体ユニットの共振周波数を測定する供給制御部を備える、
     請求項8の超音波処置装置。
PCT/JP2014/078625 2013-11-15 2014-10-28 振動発生ユニット、振動体ユニット及び超音波処置装置 WO2015072326A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14861721.0A EP3069676B1 (en) 2013-11-15 2014-10-28 Vibration generation unit, vibrating body unit, and ultrasonic treatment device
CN201480062189.5A CN105722470B (zh) 2013-11-15 2014-10-28 振动产生单元、振动体单元以及超声波处置装置
JP2015527379A JP5865558B2 (ja) 2013-11-15 2014-10-28 振動発生ユニット、振動体ユニット及び超音波処置装置
US15/074,192 US10046362B2 (en) 2013-11-15 2016-03-18 Vibration generating unit, vibrating body unit, and ultrasonic treatment apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013237252 2013-11-15
JP2013-237252 2013-11-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/074,192 Continuation US10046362B2 (en) 2013-11-15 2016-03-18 Vibration generating unit, vibrating body unit, and ultrasonic treatment apparatus

Publications (1)

Publication Number Publication Date
WO2015072326A1 true WO2015072326A1 (ja) 2015-05-21

Family

ID=53057265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078625 WO2015072326A1 (ja) 2013-11-15 2014-10-28 振動発生ユニット、振動体ユニット及び超音波処置装置

Country Status (5)

Country Link
US (1) US10046362B2 (ja)
EP (1) EP3069676B1 (ja)
JP (1) JP5865558B2 (ja)
CN (1) CN105722470B (ja)
WO (1) WO2015072326A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099142A1 (ja) * 2015-12-07 2017-06-15 オリンパス株式会社 処置具
WO2018070043A1 (ja) * 2016-10-14 2018-04-19 オリンパス株式会社 超音波トランスデューサ
JP2019528896A (ja) * 2016-09-16 2019-10-17 ストライカー・ユーロピアン・ホールディングス・I,リミテッド・ライアビリティ・カンパニー 表面硬化された切刃を有する超音波外科工具用のチップ及び該チップを製造する方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3245967A4 (en) 2015-01-15 2018-08-01 Olympus Corporation Vibrating body unit and ultrasonic probe
JP6418330B2 (ja) * 2015-08-04 2018-11-07 株式会社村田製作所 振動装置及びカメラ
JP6234641B1 (ja) * 2016-09-30 2017-11-22 オリンパス株式会社 超音波トランスデューサ及び超音波トランスデューサの製造方法
WO2019116510A1 (ja) * 2017-12-14 2019-06-20 オリンパス株式会社 超音波処置具
CN110575231B (zh) * 2019-09-25 2021-02-19 哈尔滨优脉雷声科技有限责任公司 一种超声刀的刀杆结构及超声刀

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240473U (ja) * 1988-09-08 1990-03-19
JPH0716254A (ja) 1990-04-03 1995-01-20 Alcon Surgical Inc 身体組織の超音波破砕制御のための方法と装置
JPH11514935A (ja) * 1995-06-19 1999-12-21 ユニール 超音波切断装置
JP2001205189A (ja) * 2000-01-21 2001-07-31 Olympus Optical Co Ltd 超音波駆動回路及び超音波手術装置
JP2002035001A (ja) * 2000-07-28 2002-02-05 Olympus Optical Co Ltd 超音波手術装置
JP2002254044A (ja) * 2001-02-27 2002-09-10 Kao Corp 超音波洗浄装置
JP2008238390A (ja) * 2007-03-23 2008-10-09 Kazumasa Onishi 超音波工具ホルダ
US20120293044A1 (en) * 2008-02-22 2012-11-22 Piezo-Innovations Ultrasonic torsional mode and longitudinal-torsional mode transducer
WO2013027614A1 (ja) * 2011-08-19 2013-02-28 オリンパスメディカルシステムズ株式会社 超音波発生装置の製造方法、超音波処置装置の製造方法、超音波発生装置及び超音波処置装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5516043A (en) * 1994-06-30 1996-05-14 Misonix Inc. Ultrasonic atomizing device
US6077285A (en) * 1998-06-29 2000-06-20 Alcon Laboratories, Inc. Torsional ultrasound handpiece
US6695781B2 (en) * 1999-10-05 2004-02-24 Omnisonics Medical Technologies, Inc. Ultrasonic medical device for tissue remodeling
DE60141878D1 (de) 2000-09-28 2010-06-02 Kao Corp Vorrichtung und Verfahren zum Reinigen mit Ultraschall
JP4129217B2 (ja) * 2003-09-29 2008-08-06 オリンパス株式会社 超音波手術システム、その異常検知方法および異常検知プログラム
US8226675B2 (en) * 2007-03-22 2012-07-24 Ethicon Endo-Surgery, Inc. Surgical instruments
US7901423B2 (en) * 2007-11-30 2011-03-08 Ethicon Endo-Surgery, Inc. Folded ultrasonic end effectors with increased active length

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240473U (ja) * 1988-09-08 1990-03-19
JPH0716254A (ja) 1990-04-03 1995-01-20 Alcon Surgical Inc 身体組織の超音波破砕制御のための方法と装置
JPH11514935A (ja) * 1995-06-19 1999-12-21 ユニール 超音波切断装置
JP2001205189A (ja) * 2000-01-21 2001-07-31 Olympus Optical Co Ltd 超音波駆動回路及び超音波手術装置
JP2002035001A (ja) * 2000-07-28 2002-02-05 Olympus Optical Co Ltd 超音波手術装置
JP2002254044A (ja) * 2001-02-27 2002-09-10 Kao Corp 超音波洗浄装置
JP2008238390A (ja) * 2007-03-23 2008-10-09 Kazumasa Onishi 超音波工具ホルダ
US20120293044A1 (en) * 2008-02-22 2012-11-22 Piezo-Innovations Ultrasonic torsional mode and longitudinal-torsional mode transducer
WO2013027614A1 (ja) * 2011-08-19 2013-02-28 オリンパスメディカルシステムズ株式会社 超音波発生装置の製造方法、超音波処置装置の製造方法、超音波発生装置及び超音波処置装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3069676A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099142A1 (ja) * 2015-12-07 2017-06-15 オリンパス株式会社 処置具
JPWO2017099142A1 (ja) * 2015-12-07 2017-12-07 オリンパス株式会社 処置具
CN108366810A (zh) * 2015-12-07 2018-08-03 奥林巴斯株式会社 处置器具
US10966777B2 (en) 2015-12-07 2021-04-06 Olympus Corporation Treatment device
JP2019528896A (ja) * 2016-09-16 2019-10-17 ストライカー・ユーロピアン・ホールディングス・I,リミテッド・ライアビリティ・カンパニー 表面硬化された切刃を有する超音波外科工具用のチップ及び該チップを製造する方法
US11230758B2 (en) 2016-09-16 2022-01-25 Stryker European Holdings I, Llc Tip for an ultrasonic surgical tool with case hardened cutting edges and method of making same
JP7019677B2 (ja) 2016-09-16 2022-02-15 ストライカー・ユーロピアン・ホールディングス・I,リミテッド・ライアビリティ・カンパニー 表面硬化された切刃を有する超音波外科工具用のチップ及び該チップを製造する方法
WO2018070043A1 (ja) * 2016-10-14 2018-04-19 オリンパス株式会社 超音波トランスデューサ
JPWO2018070043A1 (ja) * 2016-10-14 2019-08-08 オリンパス株式会社 超音波トランスデューサ及び超音波処置システム
US11903603B2 (en) 2016-10-14 2024-02-20 Olympus Corporation Ultrasonic transducer

Also Published As

Publication number Publication date
EP3069676A1 (en) 2016-09-21
CN105722470B (zh) 2018-02-27
US20160199881A1 (en) 2016-07-14
EP3069676B1 (en) 2019-03-27
EP3069676A4 (en) 2017-07-05
JP5865558B2 (ja) 2016-02-17
CN105722470A (zh) 2016-06-29
US10046362B2 (en) 2018-08-14
JPWO2015072326A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
JP5865558B2 (ja) 振動発生ユニット、振動体ユニット及び超音波処置装置
US9693793B2 (en) Ultrasonic probe and ultrasonic treatment instrument
JP5974183B2 (ja) 超音波プローブ及び超音波処置装置
JP2022008434A (ja) 同時の長手方向動作及びねじれ方向動作と、実質的なねじれ方向振動とが可能なチップを備える超音波手術用具システム
US10743902B2 (en) Vibrating body unit and ultrasonic probe
JP5690452B2 (ja) 超音波伝達ユニット及び超音波処置装置
JP6109433B2 (ja) 振動伝達ユニット及び超音波処置具
US10182963B2 (en) Vibration generating unit, vibrating body unit and ultrasonic treatment instrument
JP6099832B2 (ja) 振動発生ユニット、振動体ユニット及び超音波処置具
US20150196782A1 (en) Ultrasonic probe and ultrasonic treatment device
US10064641B2 (en) Ultrasonic probe and ultrasonic treatment instrument
WO2020152790A1 (ja) 超音波処置具、及び超音波手術用装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015527379

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014861721

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014861721

Country of ref document: EP