WO2013027614A1 - 超音波発生装置の製造方法、超音波処置装置の製造方法、超音波発生装置及び超音波処置装置 - Google Patents

超音波発生装置の製造方法、超音波処置装置の製造方法、超音波発生装置及び超音波処置装置 Download PDF

Info

Publication number
WO2013027614A1
WO2013027614A1 PCT/JP2012/070555 JP2012070555W WO2013027614A1 WO 2013027614 A1 WO2013027614 A1 WO 2013027614A1 JP 2012070555 W JP2012070555 W JP 2012070555W WO 2013027614 A1 WO2013027614 A1 WO 2013027614A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
temporary
ultrasonic
ultrasonic vibration
element mounting
Prior art date
Application number
PCT/JP2012/070555
Other languages
English (en)
French (fr)
Inventor
庸高 銅
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to JP2013512677A priority Critical patent/JP5363682B2/ja
Priority to EP12826343.1A priority patent/EP2695681B1/en
Priority to CN201280024308.9A priority patent/CN103547380B/zh
Publication of WO2013027614A1 publication Critical patent/WO2013027614A1/ja
Priority to US13/837,681 priority patent/US9184373B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0611Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/057Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by stacking bulk piezoelectric or electrostrictive bodies and electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00526Methods of manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320069Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for ablating tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320071Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with articulating means for working tip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320089Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic node location
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B17/320092Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
    • A61B2017/320093Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw additional movable means performing cutting operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B17/320092Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
    • A61B2017/320095Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw with sealing or cauterizing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0651Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element of circular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B3/02Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency involving a change of amplitude
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49004Electrical device making including measuring or testing of device or component part

Definitions

  • the present invention relates to an ultrasonic generator that generates ultrasonic vibration when supplied with an electric current, and an ultrasonic treatment apparatus using the ultrasonic generator. Moreover, it is related with the manufacturing method of an ultrasonic generator, and the manufacturing method of an ultrasonic treatment apparatus.
  • an ultrasonic generator (ultrasonic transducer unit) including an ultrasonic transducer composed of a plurality of piezoelectric elements and an ultrasonic transducer connected to the ultrasonic transducer unit and generated by the ultrasonic transducer are disclosed.
  • an ultrasonic surgical apparatus including a probe that transmits a sound wave vibration and treats a living tissue with a treatment portion formed at a distal end portion.
  • a predetermined constant current is supplied from the power supply unit to the ultrasonic transducer, so that the probe (treatment section) is ultrasonically vibrated with a constant amplitude. That is, the ultrasonic transducer is driven by constant current control, and the amplitude of ultrasonic vibration in the probe (treatment section) is kept constant.
  • the amplitude of the generated ultrasonic vibration is proportional to the current value of the supplied current.
  • the proportionality constant between the current value and the amplitude of the ultrasonic vibration includes at least a first electromechanical coupling factor in the thickness direction of each piezoelectric element and a second electromechanical coupling coefficient in the radial direction ( It depends on the second (electromechanical (coupling) factor).
  • the first electromechanical coupling coefficient in the thickness direction and the second electromechanical coupling coefficient in the radial direction cannot be set to desired values. For this reason, in the manufactured piezoelectric element, the first electromechanical coupling coefficient in the thickness direction and the second electromechanical coupling coefficient in the radial direction are different for each piezoelectric element.
  • the proportionality constant between the current value and the amplitude of the ultrasonic vibration differs for each ultrasonic generator. Therefore, when a current of a predetermined current value is supplied from the power supply unit, a difference occurs in the amplitude of the generated ultrasonic vibration for each ultrasonic generator.
  • an ultrasonic treatment apparatus such as a medical device that includes a treatment unit that performs ultrasonic treatment using ultrasonic vibration generated by the ultrasonic generator, the amplitude of the ultrasonic vibration has a great influence on the treatment performance. Therefore, the difference in the amplitude of the ultrasonic vibration generated for each ultrasonic generator causes a difference in the treatment performance of the ultrasonic treatment apparatus depending on the ultrasonic generator used.
  • the present invention has been made paying attention to the above-mentioned problems, and an object of the present invention is to provide an ultrasonic generator capable of stabilizing the amplitude of the generated ultrasonic vibration and a method for manufacturing the ultrasonic generator. Is to provide. Another object of the present invention is to provide an ultrasonic treatment apparatus using the ultrasonic generator and a method for manufacturing the ultrasonic treatment apparatus.
  • a method of manufacturing an ultrasonic generator includes a first electromechanical coupling coefficient in the thickness direction and a second electric machine in the radial direction for each of a plurality of existing piezoelectric elements. Calculating a performance value based on a coupling coefficient, and a corresponding reference piezoelectric element in which the performance value becomes a reference value in each of a plurality of element mounting portions arranged at different positions with respect to the transmission direction of the ultrasonic vibration Is set, and a target state in which ultrasonic vibration with a target amplitude is generated by supplying a current of a predetermined current value is set, and the performance value is set only in one element mounting unit from the target state.
  • a provisional piezoelectric element different from the reference value is mounted instead of the reference piezoelectric element, and for each element mounting portion on which the provisional piezoelectric element is mounted and for each performance value of the provisional piezoelectric element.
  • a temporary influence value is calculated based on a deviation of the temporary amplitude of the ultrasonic vibration generated by supplying the current of the predetermined current value with respect to the target amplitude in the target state.
  • the provisional influence value in the provisional state where the provisional piezoelectric element having the same performance value as that of the actually mounted piezoelectric element is mounted as the substantial influence value of each of the element mounting portions.
  • the mounting piezoelectric elements mounted on the respective element mounting portions in a state in which the sum of the substantial influence values of all the element mounting portions is within a predetermined range with respect to the target amplitude are changed to the existing piezoelectric elements.
  • the ultrasonic generator includes a plurality of element mounting portions arranged at different positions with respect to the transmission direction of the ultrasonic vibration, and a first electromechanical coupling coefficient in the thickness direction. And a performance value based on a second electromechanical coupling coefficient in the radial direction, the thickness direction is parallel to the transmission direction of the ultrasonic vibration, and the radial direction is the transmission of the ultrasonic vibration.
  • a plurality of mounting piezoelectric elements each mounted on the corresponding element mounting portion in a state perpendicular to the direction, and each of the mounting piezoelectric elements has a performance value that is a reference value in each of the element mounting portions.
  • a target state in which ultrasonic vibration with a target amplitude is generated when a corresponding reference piezoelectric element is mounted and a current having a predetermined current value is supplied is set from the target state by one element mounting unit.
  • a temporary piezoelectric element whose performance value is different from the reference value is mounted instead of the reference piezoelectric element, for each element mounting portion on which the temporary piezoelectric element is mounted, and for each performance value of the temporary piezoelectric element.
  • For each of the temporary states set to a temporary influence value based on a deviation of the temporary amplitude of the ultrasonic vibration generated by supplying the current of the predetermined current value with respect to the target amplitude in the target state.
  • an ultrasonic generator capable of stabilizing the amplitude of ultrasonic vibrations generated and the ultrasonic generator regardless of the initial setting of the power supply units to be combined and without complicating the configuration of the power supply units.
  • a method of manufacturing a sound wave generator can be provided.
  • an ultrasonic treatment apparatus using the ultrasonic generator and a method for manufacturing the ultrasonic treatment apparatus can be provided.
  • FIG. 3 is a cross-sectional view schematically showing configurations of an ultrasonic transducer, a sheath, and a probe of the ultrasonic treatment apparatus according to the first embodiment.
  • 1 is a perspective view schematically showing an ultrasonic generator according to a first embodiment. The perspective view which shows schematically the ultrasonic generator which concerns on 1st Embodiment in the state decomposed
  • FIG. 1 is a diagram showing an ultrasonic treatment apparatus 1 of the present embodiment.
  • the ultrasonic treatment apparatus 1 includes an ultrasonic transducer 2, a handle unit 3 to which the ultrasonic transducer 2 is connected from the proximal direction side, and a treatment connected to the handle unit 3 from the distal direction side.
  • a unit 5 One end of a cable 6 is connected to the ultrasonic transducer 2. The other end of the cable 6 is connected to the power supply unit 7.
  • the handle unit 3 includes a cylindrical case 11, a fixed handle 12 formed integrally with the cylindrical case 11, and a movable handle 13 that can be opened and closed with respect to the fixed handle 12.
  • a rotation operation knob 15 is provided on the distal direction side of the cylindrical case 11. The rotation operation knob 15 is attached to the cylindrical case 11 so as to be rotatable around the longitudinal axis C.
  • the ultrasonic transducer 2 is inserted into the handle unit 3 from the proximal direction side and connected to the cylindrical case 11 of the handle unit 3.
  • the treatment unit 5 includes a sheath 17 that extends along the longitudinal axis C from the inside of the handle unit 3 toward the distal direction.
  • the distal end of the sheath 17 is located on the distal direction side with respect to the rotation operation knob 15. That is, the sheath 17 is provided in a state protruding from the rotation operation knob 15 in the distal direction.
  • the treatment unit 5 includes a probe 19 inserted through the sheath 17.
  • the probe 19 is supported by the sheath 17 via a support member (not shown).
  • the distal end of the probe 19 is located on the distal direction side with respect to the distal end of the sheath 17. That is, the probe 19 is provided in a state protruding from the distal end of the sheath 17 in the distal direction.
  • the sheath 17 and the probe 19 are inserted into the handle unit 3.
  • a sheath 17 is connected to the rotation operation knob 15 of the handle unit 3 inside the handle unit 3. Further, the sheath 17 and the probe 19 are connected to the ultrasonic transducer 2 inside the handle unit 3.
  • a jaw 21 is connected to the tip of the sheath 17.
  • the jaw 21 is rotatable with respect to the sheath 17 around the connecting portion with the sheath 17.
  • the jaw 21 opens and closes with respect to the distal end portion of the probe 19.
  • the jaw 21 performs an opening / closing operation, the living tissue can be grasped between the distal end portion of the probe 19 and the jaw 21.
  • the sheath 17, the probe 19, and the jaw 21 can rotate about the longitudinal axis C with respect to the cylindrical case 11 together with the rotation operation knob 15.
  • FIG. 2 is a diagram showing the configuration of the ultrasonic transducer 2, the sheath 17, and the probe 19.
  • the ultrasonic transducer 2 includes a transducer case 23 and an ultrasonic generator 25 provided inside the transducer case 23. By fitting the proximal end portion of the sheath 17 to the transducer case 23, the transducer case 23 and the sheath 17 are connected. The ultrasonic generator 25 is connected to the probe 19.
  • the ultrasonic generator 25 includes an ultrasonic oscillator 26 that generates ultrasonic vibration when supplied with current, and a distal direction side of the ultrasonic oscillator 26. And a horn 27 provided in the. The amplitude of ultrasonic vibration is expanded by the horn 27.
  • a female screw portion 28 is formed at the tip of the horn 27.
  • a male screw portion 29 is formed at the proximal end portion of the probe 19. When the male screw portion 29 is screwed into the female screw portion 28, the ultrasonic generator 25 and the probe 19 are connected.
  • the ultrasonic vibration generated by the ultrasonic transducer 26 is transmitted to the tip of the probe 19 through the horn 27 and the probe 19. That is, ultrasonic vibration is transmitted along the longitudinal axis C from the proximal end to the distal end of the probe 19.
  • the distal end of the probe 19 and the proximal end of the ultrasonic generator 25 are antinode positions of ultrasonic vibration.
  • the ultrasonic vibration is a longitudinal vibration in which the transmission direction of the ultrasonic vibration and the vibration direction coincide with each other, and the transmission direction and the vibration direction of the ultrasonic vibration are parallel to the longitudinal axis C.
  • the probe 19 When the probe 19 is vibrated ultrasonically while the living tissue such as a blood vessel is gripped between the distal end portion of the probe 19 and the jaw 21, frictional heat is generated between the distal end portion of the probe 19 and the biological tissue. Due to the generated frictional heat, a coagulation incision (cutting and coagulation) of the living tissue is performed between the tip of the probe 19 and the jaw 21.
  • the distal end portion of the probe 19 serves as a treatment portion 22 to which ultrasonic vibration generated by the ultrasonic generator 25 is transmitted and performs treatment using the transmitted ultrasonic vibration.
  • the ultrasonic generator 25 is provided with a columnar portion 31 along the longitudinal axis C on the proximal direction side of the horn 27.
  • the columnar portion 31 is provided integrally with the horn 27 or connected to the proximal direction side of the horn 27.
  • the ultrasonic transducer 26 of the ultrasonic generator 25 includes a plurality (six in this embodiment) of ring-shaped piezoelectric elements (mounting piezoelectric elements) 33A to 33F.
  • the supplied current is converted into ultrasonic vibration by the piezoelectric elements 33A to 33F.
  • the columnar portion 31 is formed with the same number of element mounting portions 35A to 35F as the piezoelectric elements 33A to 33F.
  • the element mounting portions 35A to 35F are arranged at different positions with respect to each other in the transmission direction of the ultrasonic vibration.
  • the piezoelectric elements 33A to 33F are mounted on the corresponding element mounting portions 35A to 35F.
  • the piezoelectric element 33A is mounted on the element mounting portion 35A.
  • Each of the piezoelectric elements 33A to 33F is mounted with the thickness direction parallel to the ultrasonic vibration transmission direction and the radial direction perpendicular to the ultrasonic vibration transmission direction.
  • the first electrode 37 and the second electrode 38 are mounted on the columnar portion 31.
  • the first electrode 37 includes a ring portion 41A positioned on the distal end side of the piezoelectric element 33A, a ring portion 41B positioned between the piezoelectric elements 33B and 33C, and the piezoelectric elements 33D and 33E. And a ring portion 41D located on the proximal direction side of the piezoelectric element 33F.
  • the first electrode 37 includes a link part 42A that electrically connects the ring part 41A and the ring part 41B, and a link part 42B that electrically connects the ring part 41B and the ring part 41C.
  • the link part 42C which electrically connects between the ring part 41C and the ring part 41D is provided.
  • One end of an electric signal line 43 is connected to the first electrode 37.
  • the other end of the electric signal line 43 is connected to the power supply unit 7 through the inside of the cable 6.
  • the second electrode 38 includes a ring portion 45A positioned between the piezoelectric elements 33A and 33B, a ring portion 45B positioned between the piezoelectric elements 33C and 33D, and the piezoelectric elements 33E and 33F. And a ring part 45C positioned between the two.
  • the second electrode 38 includes a link portion 46A that electrically connects the ring portion 45A and the ring portion 45B, and a link portion 46B that electrically connects the ring portion 45B and the ring portion 45C.
  • One end of an electric signal line 47 is connected to the second electrode 38. The other end of the electric signal line 47 is connected to the power supply unit 7 through the inside of the cable 6.
  • the fixed handle 12 of the handle unit 3 is provided with a button portion 49.
  • the button part 49 is electrically connected to the power supply unit 7 via an electric signal line (not shown) or the like.
  • an electric signal is input to the power supply unit 7.
  • a current of a predetermined current value is supplied from the power supply unit 7 to the piezoelectric elements 33A to 33F via the electric signal lines 43 and 47, the first electrode 37, and the second electrode 38.
  • the supplied current is converted into ultrasonic vibration.
  • ultrasonic vibration is generated in the ultrasonic transducer 26.
  • the base end of the ultrasonic generator 25 (the base end of the columnar portion 31) and the front end of the ultrasonic generator 25 (the front end of the horn 27) become the antinode position of the ultrasonic vibration.
  • the dimension of the ultrasonic generator 25 along the longitudinal axis C (with respect to the transmission direction of the ultrasonic vibration) is equal to the half wavelength of the ultrasonic vibration.
  • the element mounting portion 35A has the smallest (closer) distance from the node position of the ultrasonic vibration in the transmission direction of the ultrasonic vibration.
  • the element mounting portion 35F has the largest (far) distance from the node position of the ultrasonic vibration in the transmission direction of the ultrasonic vibration.
  • insulating rings 51 ⁇ / b> A and 51 ⁇ / b> B are mounted on the columnar portion 31.
  • the insulating ring 51 ⁇ / b> A is located on the tip direction side of the ring portion 41 ⁇ / b> A of the first electrode 37.
  • the insulating ring 51 ⁇ / b> B is located on the proximal direction side of the ring portion 41 ⁇ / b> D of the first electrode 37.
  • a back mass 53 is mounted on the columnar portion 31.
  • the back mass 53 is located on the proximal direction side of the insulating ring 51B.
  • the piezoelectric elements 33A to 33F, the first electrode 37, the second electrode 38, and the insulating rings 51A and 51B are pressed in the distal direction.
  • the piezoelectric elements 33A to 33F, the first electrode 37, the second electrode 38, and the insulating rings 51A and 51B are sandwiched between the horn 27 and the back mass 53.
  • the piezoelectric elements 33A to 33F, the first electrode 37, the second electrode 38, and the insulating rings 51A and 51B are mounted on the columnar portion 31 while being firmly fixed between the horn 27 and the back mass 53. Is done.
  • FIG. 6 is a diagram showing an ultrasonic adjustment device 60 used when manufacturing the ultrasonic generator 25.
  • the ultrasonic adjustment device 60 includes the above-described piezoelectric elements 33A to 33F and element mounting portions 35A to 35F on which the corresponding piezoelectric elements 33A to 33F are mounted.
  • the ultrasonic adjustment device 60 includes a plurality (50 in the present embodiment) of existing piezoelectric elements P1 to P50 which are existing piezoelectric elements at the time of manufacture.
  • the respective piezoelectric elements (mounting piezoelectric elements) 33A to 33F mounted on the corresponding element mounting portions 35A to 35F are selected from the existing piezoelectric elements P1 to P50.
  • Each of the existing piezoelectric elements P1 to P50 has a first electromechanical coupling factor Kt in the thickness direction and a second electromechanical coupling factor Kp in the radial direction, respectively.
  • the first electromechanical coupling coefficient Kt is a coefficient indicating the relationship between electrical energy and vibration energy in the thickness direction when current is supplied to each of the existing piezoelectric elements P1 to P50.
  • the second electromechanical coupling coefficient Kp is a coefficient indicating the relationship between electric energy and vibration energy in the radial direction when current is supplied to each of the existing piezoelectric elements P1 to P50.
  • Each of the piezoelectric elements 33A to 33F selected from the existing piezoelectric elements P1 to P50 has a thickness direction parallel to the ultrasonic vibration transmission direction and a radial direction perpendicular to the ultrasonic vibration transmission direction.
  • the proportional constant between the current value of the supplied current and the amplitude of the ultrasonic vibration is determined by the values of the first electromechanical coupling coefficient Kt and the second electromechanical coupling coefficient Kp of each of the piezoelectric elements 33A to 33F. Changes.
  • the amplitude of the ultrasonic vibration when a current of a predetermined current value is supplied varies depending on the values of the first electromechanical coupling coefficient Kt and the second electromechanical coupling coefficient Kp of each of the piezoelectric elements 33A to 33F. .
  • the ultrasonic adjustment device 60 includes a calculation unit 61 such as a computer.
  • the calculation unit 61 includes an input unit 62, a performance value calculation unit 63, and a recording unit 65.
  • FIG. 7 is a diagram illustrating a method for manufacturing the ultrasonic generator 25.
  • the performance value calculation unit 63 calculates the performance values of the existing piezoelectric elements P1 to P50 (step S101). At this time, performance values based on the first electromechanical coupling coefficient Kt and the second electromechanical coupling coefficient Kp are calculated for each of the existing piezoelectric elements P1 to P50.
  • the performance value Kt / Kp is calculated based on the first electromechanical coupling coefficient Kt and the second electromechanical coupling coefficient Kp.
  • , and Kt ⁇ Kp may be calculated for each of the existing piezoelectric elements P1 to P50.
  • the first electromechanical coupling coefficient Kt in the thickness direction and the second electromechanical coupling coefficient Kp in the radial direction cannot be set to desired values. For this reason, the first electromechanical coupling coefficient Kt in the thickness direction and the second electromechanical coupling coefficient Kp in the radial direction are different for each of the existing piezoelectric elements P1 to P50. Therefore, the performance value Kt / Kp differs for each of the existing piezoelectric elements P1 to P50.
  • first electromechanical coupling coefficient Kt and the second electromechanical coupling coefficient Kp of each of the existing piezoelectric elements P1 to P50 are input by the input unit 62.
  • first electromechanical coupling coefficient Kt and the second electromechanical coupling coefficient Kp of each of the existing piezoelectric elements P1 to P50 may be recorded in the recording unit 65.
  • the calculation unit 61 includes a piezoelectric element classification unit 67.
  • the existing piezoelectric elements P1 to P50 are classified by the piezoelectric element classification unit 67 based on the performance value Kt / Kp (step S102). For example, existing piezoelectric elements (for example, P3 and P33) having a performance value Kt / Kp of 0.7875 or more and less than 0.7925 are classified into types having a performance value Kt / Kp of 0.79.
  • existing piezoelectric elements for example, P10 and P41
  • a performance value Kt / Kp of 0.7925 or more and less than 0.7975 are classified into types having a performance value Kt / Kp of 0.795.
  • the existing piezoelectric elements P1 to P50 are classified into several types based on the performance value Kt / Kp.
  • the number of existing piezoelectric elements (P1 to P50) belonging to each type is recorded in the recording unit 65.
  • the performance value Kt / Kp of the existing piezoelectric elements P3 and P33 is 0.7875 or more and less than 0.7925
  • the number of existing piezoelectric elements (P1 to P50) belonging to the type having the performance value Kt / Kp of 0.79 is There will be two.
  • the calculation unit 61 includes a target state setting unit 68. As shown in FIG. 7, the target state setting unit 68 sets a target state in which ultrasonic vibration having a target amplitude is generated when a current having a predetermined current value is supplied (step S103).
  • FIG. 8 shows respective element mounting portions 35A to 35F in the target state, the first temporary state, and the second temporary state (details of the target state, the first temporary state, and the second temporary state will be described later).
  • FIG. 8 in the target state, corresponding reference piezoelectric elements 81A to 81F having the performance value Kt / Kp as a reference value are mounted on the element mounting portions 35A to 35F, respectively.
  • the performance value Kt / Kp of the reference piezoelectric elements 81A to 81F is the reference value 0.8.
  • the corresponding reference piezoelectric elements 81A to 81F having the performance value Kt / Kp of the reference value 0.8 are mounted on the element mounting portions 35A to 35F, when a current of a predetermined current value is supplied, The sound wave generator 25 generates ultrasonic vibrations having a target amplitude.
  • the performance values Kt / Kp (reference values) of the corresponding reference piezoelectric elements 81A to 81F mounted on the element mounting portions 35A to 35F in the target state are recorded in the recording unit 65.
  • the performance value Kt / Kp (reference value) of all the reference piezoelectric elements 81A to 81F is 0.8, but is not limited thereto.
  • the target amplitude of the ultrasonic vibration generated by the ultrasonic generator 25 differs depending on the type and application of the ultrasonic treatment apparatus 1.
  • the performance value Kt / Kp (reference value) of the reference piezoelectric elements 81A to 81C is 0.7 and the performance value Kt / Kp (reference value) of the reference piezoelectric elements 81D to 81F is 0.8, Good.
  • the corresponding reference piezoelectric elements 81A to 81F having the performance value Kt / Kp as the reference value are mounted on the element mounting portions 35A to 35F, and a current having a predetermined current value is supplied. It suffices to generate ultrasonic vibration with a target amplitude.
  • the reference values of the respective reference piezoelectric elements 81A to 81F change corresponding to the predetermined current value supplied from the power supply unit 7. That is, in the present embodiment, the set target state changes according to the performance of the selected power supply unit 7.
  • the target amplitude can be exceeded. It is thought that sonic vibration occurs.
  • the first electromechanical coupling coefficient Kt in the thickness direction and the second electromechanical coupling coefficient Kp in the radial direction cannot be set to desired values. .
  • Piezoelectric elements) 33A to 33F are not necessarily mounted.
  • the number of existing piezoelectric elements (P1 to P50) belonging to a type having a performance value Kt / Kp of 0.8 is five or less, at least one element mounting portion (for example, 35A, 35B) Piezoelectric elements (33A, 33B) having / Kp different from the reference value (0.8) are mounted.
  • the amplitude of the ultrasonic vibration generated by the ultrasonic generator 25 is different from the target amplitude.
  • the calculation unit 61 includes a temporary influence value calculation unit 69.
  • the temporary influence value calculation unit 69 calculates a temporary influence value for each temporary state (step S104).
  • FIG. 8 shows a first temporary state and a second temporary state as an example of the temporary state.
  • the temporary piezoelectric element 81′A having a performance value Kt / Kp different from the reference value (0.8) only in the element mounting portion 35A from the target state is the reference piezoelectric element. It is mounted instead of 81A.
  • the performance value Kt / Kp of the temporary piezoelectric element 81′A is 0.79.
  • reference piezoelectric elements 81B to 81F having the performance value Kt / Kp of the reference value (0.8) are mounted on the respective element mounting portions 35B to 35F other than the element mounting portion 35A.
  • the temporary piezoelectric element 81′C whose performance value Kt / Kp is different from the reference value (0.8) only in the element mounting portion 35C from the target state is It is mounted instead of the reference piezoelectric element 81C.
  • the performance value Kt / Kp of the temporary piezoelectric element 81′C is 0.81.
  • the reference piezoelectric elements 81A, 81B, 81D to 81F having the performance value Kt / Kp of the reference value (0.8) are mounted on the respective element mounting parts 35A, 35B, 35D to 35F other than the element mounting part 35C. Has been.
  • the performance value Kt / Kp is different from the reference value (0.8) only in one element mounting portion (for example, 35A, 35C) from the target state (for example, 81 ′ A, 81′C) is mounted instead of the reference piezoelectric elements (81A, 81C). For this reason, in each temporary state, an ultrasonic vibration having a temporary amplitude different from the target amplitude is generated by supplying a current having a predetermined current value.
  • Each temporary state is set for each of the element mounting portions 35A to 35F on which the temporary piezoelectric element is mounted and for each performance value Kt / Kp of the temporary piezoelectric element.
  • the temporary influence value calculation unit 69 calculates a temporary influence value for each temporary state (step S104).
  • a temporary influence value is calculated based on a deviation of the temporary amplitude of ultrasonic vibration generated by supplying a current having a predetermined current value with respect to the target amplitude in the target state.
  • the temporary amplitude of the ultrasonic vibration generated in the first temporary state is A1
  • the target amplitude in the target state is A0
  • the temporary influence value in the first temporary state is E1 (%).
  • the temporary influence value in the first temporary state is
  • the temporary influence value Ek in each temporary state other than the first temporary state is calculated by substituting Ak in place of A1 in Equation (1).
  • FIG. 9 is a diagram showing a table that summarizes the temporary influence values in each temporary state.
  • a temporary piezoelectric element 81′A having a performance value Kt / Kp of 0.79 is mounted instead of the reference piezoelectric element 81A only in the element mounting portion 35A from the target state. Therefore, as shown in FIG. 9, the temporary influence value in the first temporary state is ⁇ 0.514 (%).
  • the temporary piezoelectric element 81′C having a performance value Kt / Kp of 0.81 is mounted instead of the reference piezoelectric element 81C only in the element mounting portion 35C from the target state. Therefore, as shown in FIG. 9, the temporary influence value in the second temporary state is 0.447 (%).
  • the temporary influence value is ⁇ 1.028 (%)
  • the performance on the element mounting portion 35C is In a provisional state where a provisional piezoelectric element having a value Kt / Kp of 0.78 is mounted, the provisional influence value is ⁇ 0.894 (%).
  • the distance from the node position of the ultrasonic vibration is smaller in the element mounting part 35A than in the element mounting part 35C in the transmission direction of the ultrasonic vibration. That is, the change in the temporary influence value increases as the distance from the node position of the ultrasonic vibration to each of the element mounting portions 35A to 35F decreases in the ultrasonic vibration transmission direction.
  • the calculation unit 61 includes a piezoelectric element selection unit 71.
  • the piezoelectric element selection section 71 selects the piezoelectric elements (mounting piezoelectric elements) 33A to 33F to be mounted on the respective element mounting sections 35A to 35F from the existing piezoelectric elements P1 to P50 (steps). S105).
  • the piezoelectric elements (mounting piezoelectric elements) 33A to 33F are selected from the existing piezoelectric elements P1 to P50, temporary piezoelectric elements having the same performance value Kt / Kp as the actually mounted piezoelectric elements 33A to 33F are mounted.
  • the provisional influence value in the provisional state is set as the implementation influence value of each of the element mounting portions 35A to 35F.
  • a piezoelectric element (mounting piezoelectric element) 33A having a performance value Kt / Kp of 0.79 is mounted on the element mounting portion 35A, a temporary influence value ⁇ 0.514 in the first temporary state (see FIG. 8). (%) Is a substantial influence value of the element mounting portion 35A.
  • a piezoelectric element (mounting piezoelectric element) 33C having a performance value Kt / Kp of 0.81 is mounted on the element mounting portion 35C, a temporary influence value of 0.447 (see FIG. 8). %) Is a substantial influence value of the element mounting portion 35C.
  • the piezoelectric element selection unit 71 is a piezoelectric element mounted on each of the element mounting units 35A to 35F so that the sum of the substantial influence values of all the element mounting units 35A to 35F is within a predetermined range with respect to the target amplitude. Select 33A-33F.
  • the piezoelectric elements 33A to 33F mounted on the respective element mounting portions 35A to 35F are selected so that the sum of the substantial influence values of all the element mounting portions 35A to 35F is in the range of ⁇ 2% to + 2%. .
  • the difference between the actual amplitude of the ultrasonic vibration and the target amplitude when a current of a predetermined current value is supplied by setting the total of the real influence values of all the element mounting portions 35A to 35F in the range of -2% to + 2%. Does not grow. For this reason, in each manufactured ultrasonic generator 25, the amplitude of the generated ultrasonic vibration is stabilized. Therefore, in the ultrasonic treatment apparatus 1 using each ultrasonic generator 25, the difference in treatment performance is effectively prevented.
  • the piezoelectric elements 33A and 33B having a performance value Kt / Kp of 0.84
  • the piezoelectric element 33C having a performance value Kt / Kp of 0.8
  • the piezoelectric elements 33D, 33E and 33F having a performance value kt / Kp of 0.765. Is selected by the piezoelectric element selection unit 71.
  • the real influence value of the element mounting portion 35A is 2.056 (%)
  • the real influence value of the element mounting portion 35B is 1.922 (%)
  • the real influence value of the element mounting portion 35C is 0 (%)
  • the element The real influence value of the mounting part 35D is -1.448 (%)
  • the real influence value of the element mounting part 35E is -1.331 (%)
  • the real influence value of the element mounting part 35F is -1.214 (%). Become. Therefore, the total of the real influence values of all the element mounting portions 35A to 35F is
  • the set target state changes according to the performance of the selected power supply unit 7.
  • the real influence values of the respective element mounting portions 35A to 35F are calculated based on the set target state
  • the piezoelectric elements 33A to 33F are calculated based on the sum of the real influence values of all the element mounting portions 35A to 35F. Selected. Accordingly, the piezoelectric elements (mounting piezoelectric elements) 33A to 33F are selected in accordance with the performance of the power supply unit 7 such as a predetermined current value of the current supplied to the ultrasonic generator 25, and the performance of the ultrasonic generator 25 is selected. Is set.
  • the performance of the power supply unit 7 and the performance of the treatment unit 22 are not set corresponding to the performance of the ultrasonic generator 25. For this reason, it is not necessary to provide the power supply unit 7 with a control system that adjusts the current value of the current supplied to the ultrasonic generator 25 in accordance with the performance of the ultrasonic generator 25. Further, it is not necessary to select the power supply unit 7 and the treatment unit 22 that are initially set in a state suitable for the performance of the ultrasonic generator 25.
  • the piezoelectric element selection unit 71 preferentially selects the piezoelectric elements (from the large number of existing ones among the existing piezoelectric elements P1 to P50 whose types are classified by the piezoelectric element classification unit 67 based on the performance value Kt / Kp.
  • Mounting piezoelectric elements) 33A to 33F are selected. For example, it is assumed that there are a plurality of combinations of selection of the piezoelectric elements 33A to 33F in which the total of the substantial influence values of all the element mounting portions 35A to 35F is within a predetermined range with respect to the target amplitude.
  • the types (for example, P20 to P29) having the performance value Kt / Kp of 0.76 are larger in number than the other types.
  • a combination having many types of performance values Kt / Kp of 0.76 in the mounted piezoelectric elements 33A to 33F is selected from a plurality of combinations. That is, the existing piezoelectric element P1 whose type is classified based on the performance value Kt / Kp on the condition that the total of the real influence values of all the element mounting portions 35A to 35F is within a predetermined range with respect to the target amplitude.
  • the piezoelectric elements 33A to 33F are preferentially selected from the types having a large existing number among P50. Accordingly, the piezoelectric elements (mounting piezoelectric elements) 33A to 33F are efficiently selected from the existing piezoelectric elements P1 to P50 having different existing numbers for each type.
  • step S106 when the ultrasonic generator 25 is manufactured, members such as the columnar portion 31 and the back mass 53 are cleaned in parallel with steps S101 to S105 (step S106). By cleaning the member, performance deterioration of the ultrasonic generator 25 and the ultrasonic treatment apparatus 1 due to dirt or the like is prevented. Further, the first electrode 37 and the second electrode 38 are formed by bending (step S107). However, as a modified example, a configuration in which the link portions 42A to 42C are not provided in the first electrode 37 and electrical signal lines (not shown) are connected to the respective ring portions 41A to 41D can be considered. In this case, bending is not used to form the first electrode 37.
  • step S108 an adhesive is applied between each member (step S108).
  • the members such as the piezoelectric elements 33A to 33F selected in step S105 are mounted on the columnar portion 31 (step 109).
  • the respective piezoelectric elements 33A to 33F are mounted on the corresponding element mounting portions 35A to 35F.
  • the piezoelectric elements 33A to 33F are mounted in a state where the thickness direction is parallel to the transmission direction of ultrasonic vibration and the radial direction is perpendicular to the transmission direction of ultrasonic vibration.
  • the back mass 53 is mounted (step S110). By the back mass 53, members such as the piezoelectric elements 33A to 33F are pressed in the distal direction.
  • the piezoelectric elements 33A to 33F and the like are mounted in a state where the horn 27 and the back mass 53 are firmly fixed. Then, the adhesive applied in step S108 is cured (step S111), and the respective members are firmly bonded. Note that the bonding may be performed only between the horn 27 and the back mass 53, and only to prevent loosening after the production.
  • the ultrasonic generator 25 is manufactured through steps S101 to S111. Further, when the ultrasonic treatment apparatus 1 is manufactured, the power supply unit 7 is electrically connected to the piezoelectric elements 33A to 33F via the electric signal lines 43, 47 and the like. Then, the probe 19 is connected to the horn 27 of the ultrasonic generator 25. As a result, the ultrasonic vibration generated by the ultrasonic generator 25 is transmitted, and the treatment section 22 that performs treatment using the transmitted ultrasonic vibration is formed.
  • the ultrasonic generator 25 and the method for manufacturing the ultrasonic generator 25 having the above-described configuration have the following effects. That is, when the ultrasonic generator 25 is manufactured, the substantial influence value of each of the element mounting portions 35A to 35F is obtained using the temporary influence value in each temporary state. Then, the piezoelectric element selection unit 71 sets each element in a state where the sum of the substantial influence values of all the element mounting units 35A to 35F is within a predetermined range (eg, ⁇ 2% to + 2%) with respect to the target amplitude. The piezoelectric elements 33A to 33F to be mounted on the mounting portions 35A to 35F are selected.
  • a predetermined range eg, ⁇ 2% to + 2
  • the ultrasonic treatment apparatus 1 using the respective ultrasonic generators 25 By making the sum of the substantial influence values of all the element mounting portions 35A to 35F within a predetermined range with respect to the target amplitude, the actual amplitude of the ultrasonic vibration when the current of the predetermined current value is supplied with respect to the target amplitude. The difference does not increase. For this reason, in each manufactured ultrasonic generator 25, the amplitude of the generated ultrasonic vibration is stabilized. That is, the difference in the amplitude of the generated ultrasonic vibration can be reduced in each ultrasonic generator 25. Therefore, in the ultrasonic treatment apparatus 1 using the respective ultrasonic generators 25, occurrence of differences in treatment performance can be effectively prevented.
  • the target state set when manufacturing the ultrasonic generator 25 changes according to the performance of the selected power supply unit 7.
  • the real influence values of the respective element mounting portions 35A to 35F are calculated based on the set target state
  • the piezoelectric elements 33A to 33F are calculated based on the sum of the real influence values of all the element mounting portions 35A to 35F. Selected. Accordingly, the piezoelectric elements (mounting piezoelectric elements) 33A to 33F are selected in accordance with the performance of the power supply unit 7 such as a predetermined current value of the current supplied to the ultrasonic generator 25, and the performance of the ultrasonic generator 25 is selected. Is set.
  • the performance of the power supply unit 7 and the performance of the treatment unit 22 are not set corresponding to the performance of the ultrasonic generator 25. For this reason, it is not necessary to provide the power supply unit 7 with a control system that adjusts the current value of the current supplied to the ultrasonic generator 25 in accordance with the performance of the ultrasonic generator 25. Further, it is not necessary to select the power supply unit 7 and the treatment unit 22 that are initially set in a state suitable for the performance of the ultrasonic generator 25. Therefore, the amplitude of the generated ultrasonic vibration can be stabilized regardless of the initial settings of the power supply unit 7 and the treatment unit 22 to be combined and without complicating the configuration of the power supply unit 7.
  • the reference value (0.8) is reduced as the distance from the ultrasonic vibration node position to each of the element mounting portions 35A to 35F in the ultrasonic vibration transmission direction becomes smaller.
  • the change of the temporary influence value with respect to the change of the performance value Kt / Kp is calculated to be large.
  • the change in the performance value of the mounted piezoelectric elements 33A to 33F is the ultrasonic vibration.
  • the effect on the amplitude is large. Therefore, the accuracy of the calculated temporary influence value can be increased.
  • the performance value Kt / Kp is set on condition that the sum of the substantial influence values of all the element mounting portions 35A to 35F is within a predetermined range with respect to the target amplitude.
  • the piezoelectric elements 33A to 33F are preferentially selected from the types having a large existing number. Accordingly, the piezoelectric elements (mounting piezoelectric elements) 33A to 33F can be efficiently selected from the existing piezoelectric elements P1 to P50 having different numbers for each type.
  • the proximal end of the ultrasonic generator 25 (the proximal end of the columnar portion 31) and the distal end of the ultrasonic generator 25 (the distal end of the horn 27) are antinode positions of ultrasonic vibration.
  • the tip of the ultrasonic generator 25 (tip of the horn 27) may not be the antinode position of ultrasonic vibration.
  • the proximal end of the ultrasonic generator 25 (the proximal end of the columnar portion 31) and the distal end of the probe 19 are antinode positions of ultrasonic vibration.
  • the size of the ultrasonic generator 25 is equal to the half wavelength of the ultrasonic vibration in the transmission direction of the ultrasonic vibration, but is not limited thereto. Further, the positions of the respective element mounting portions 35A to 35F in the transmission direction of the ultrasonic vibration are not limited to the positions in the first embodiment. For example, as shown in FIG. 11 as a second modification, the size of the ultrasonic generator 25 in the transmission direction of the ultrasonic vibration may be equal to one wavelength of the ultrasonic vibration. In this modification, element mounting portions 82A to 82F are provided instead of the element mounting portions 35A to 35F. The piezoelectric elements 33A to 33F corresponding to the element mounting portions 82A to 82F are mounted.
  • a columnar portion 83 having a diameter larger than that of the columnar portion 31 is formed between the element mounting portion 82A and the horn 27.
  • Each of the piezoelectric elements 33A to 33F is mounted in a state of being fixed between the back mass 53 and the columnar portion 83.
  • the temporary influence value calculation unit 69 performs the performance value from the reference value as the distance from the node position of the ultrasonic vibration to each of the element mounting parts 82A to 82F decreases in the transmission direction of the ultrasonic vibration.
  • Each temporary influence value is calculated in a state where the change of the temporary influence value with respect to the change of Kt / Kp becomes large.
  • the distance from the ultrasonic vibration node position to the element mounting portions 82B and 82E in the ultrasonic vibration transmission direction is the distance from the ultrasonic vibration node position to the element mounting portion in the first embodiment in the ultrasonic vibration transmission direction.
  • the distance up to 35A is substantially the same.
  • the change in the temporary influence value with respect to the change in the performance value Kt / Kp from the reference value in the element mounting portions 82B and 82E is the temporary influence on the change in the performance value Kt / Kp from the reference value in the element mounting portion 35A.
  • the change is substantially the same as the change in value (see FIG. 9).
  • the size of the ultrasonic generator 25 is equal to one wavelength of ultrasonic vibration in the transmission direction of ultrasonic vibration, and instead of the element mounting portions 35A to 35F.
  • Element mounting portions 85A to 85F may be provided.
  • a cylindrical member 86 is mounted between the element mounting portion 85B and the element mounting portion 85C.
  • Each of the piezoelectric elements 33A to 33F and the cylindrical member 86 are mounted in a state of being fixed between the back mass 53 and the horn 27.
  • the temporary influence value calculation unit 69 performs the performance value from the reference value as the distance from the node position of the ultrasonic vibration to each of the element mounting parts 85A to 85F decreases in the transmission direction of the ultrasonic vibration.
  • Each temporary influence value is calculated in a state where the change of the temporary influence value with respect to the change of Kt / Kp becomes large.
  • the distance from the ultrasonic vibration node position to the element mounting portions 85A, 85C, 85F in the ultrasonic vibration transmission direction is the same as that of the first embodiment from the ultrasonic vibration node position in the ultrasonic vibration transmission direction.
  • the distance to the mounting portion 35A substantially coincides with the distance.
  • the change in the temporary influence value with respect to the change in the performance value Kt / Kp from the reference value in the element mounting portions 85A, 85C, and 85F corresponds to the change in the performance value Kt / Kp from the reference value in the element mounting portion 35A. It has substantially the same characteristics as the change of the temporary influence value (see FIG. 9).
  • the size of the ultrasonic generator 25 in the transmission direction of the ultrasonic vibration may be equal to 1.5 wavelengths of the ultrasonic vibration.
  • eight element mounting portions 91A to 91H are provided instead of the element mounting portions 35A to 35F.
  • Corresponding piezoelectric elements (mounting piezoelectric elements) 33A to 33H are mounted on the respective element mounting portions 91A to 91H.
  • a columnar portion 92 having a larger diameter than the columnar portion 31 is formed between the element mounting portion 91 ⁇ / b> A and the horn 27.
  • a cylindrical member 93 is mounted between the element mounting portion 91D and the element mounting portion 91E.
  • the respective piezoelectric elements 33A to 33H and the cylindrical member 93 are mounted in a state of being fixed between the back mass 53 and the columnar portion 92.
  • the temporary influence value calculation unit 69 performs the performance value from the reference value as the distance from the node position of the ultrasonic vibration to each of the element mounting portions 91A to 91H becomes smaller in the transmission direction of the ultrasonic vibration.
  • Each temporary influence value is calculated in a state where the change of the temporary influence value with respect to the change of Kt / Kp becomes large.
  • the distance from the ultrasonic vibration node position to the element mounting portions 91A, 91D, 91E, 91H in the ultrasonic vibration transmission direction is the same as that in the first embodiment from the ultrasonic vibration node position in the ultrasonic vibration transmission direction.
  • the distance to the element mounting portion 35A is substantially the same.
  • the change of the temporary influence value with respect to the change of the performance value Kt / Kp from the reference value in the element mounting portions 91A, 91D, 91E, 91H is the performance value Kt / Kp from the reference value in the element mounting portion 35A.
  • the characteristic is almost the same as the change of the temporary influence value with respect to the change (see FIG. 9).
  • the ultrasonic generator 25 is provided inside the transducer case 23, but the present invention is not limited to this.
  • the vibrator case 23 may not be provided.
  • an ultrasonic generator 25 is provided inside the cylindrical case 11 of the handle unit 3.
  • One end of the cable 6 is connected to the cylindrical case 11.
  • the electric signal lines 43 and 47 having one end connected to the ultrasonic generator 25 pass through the inside of the cylindrical case 11 and the cable 6 and the other end is connected to the power supply unit 7.
  • a target state setting section to be set; For each of the element mounting portions on which the temporary piezoelectric element is mounted instead of the reference piezoelectric element, the temporary piezoelectric element whose performance value is different from the reference value only in one of the element mounting portions from the target state And, for each temporary state set for each performance value of the temporary piezoelectric element, the temporary amplitude of the ultrasonic vibration generated when the current of the predetermined current value is supplied in the target state.
  • a temporary influence value calculation unit for calculating a temporary influence value based on a deviation with respect to the target amplitude;
  • the temporary influence value calculation unit is configured to reduce the performance value from the reference value as the distance from the node position of the ultrasonic vibration to the element mounting unit decreases in the transmission direction of the ultrasonic vibration.
  • the piezoelectric element selection unit is categorized based on the performance value on the condition that a total of the substantial influence values of all the element mounting units is within a predetermined range with respect to the target amplitude.
  • Appendix 4 A method for manufacturing an ultrasonic generator formed by mounting a plurality of piezoelectric elements at predetermined mounting positions, Calculating a performance value based on the electromechanical coupling coefficient in the thickness direction and the electromechanical coupling coefficient in the spreading direction for each of the piezoelectric elements; For each performance value, calculating an influence value for a target amplitude at each mounting position of the piezoelectric element; Selecting and mounting the piezoelectric element such that the sum of the influence values is within a predetermined range;
  • the manufacturing method of the ultrasonic generator which comprises.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Mechanical Engineering (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgical Instruments (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Surgery (AREA)
  • Dentistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)

Abstract

 超音波発生装置の製造方法は、複数の既存圧電素子のそれぞれについて、厚み方向の第1の電気機械結合係数及び径方向の第2の電気機械結合係数に基づく性能値を算出することと、それぞれの仮状態について、所定電流値の電流が供給されることにより発生する超音波振動の仮振幅の目標状態での目標振幅に対する偏差に基づいて仮影響値を算出することと、を備える。前記超音波発生装置の前記製造方法は、全ての素子実装部の実質影響値の合計が前記目標振幅に対して所定の範囲内となる状態に、それぞれの前記素子実装部に実装される前記実装圧電素子を前記既存圧電素子の中から選択することを備える。

Description

超音波発生装置の製造方法、超音波処置装置の製造方法、超音波発生装置及び超音波処置装置
 本発明は、電流が供給されることにより超音波振動を発生する超音波発生装置及び超音波発生装置を用いた超音波処置装置に関する。また、超音波発生装置の製造方法及び超音波処置装置の製造方法に関する。
 特許文献1には、複数の圧電素子で構成された超音波振動子を備える超音波発生装置(超音波振動子ユニット)と、超音波振動子ユニットと接続され、超音波振動子で発生した超音波振動を伝達するとともに、先端部に形成された処置部で生体組織を処置するプローブと、を備えた超音波手術装置が開示されている。この超音波手術装置は、電源ユニットから超音波振動子に対して予め定められた一定の電流が供給されることによって、プローブ(処置部)を一定の振幅で超音波振動させている。すなわち、超音波振動子は定電流制御により駆動され、プローブ(処置部)における超音波振動の振幅を一定に保っている。
特開2010-000336号公報
 前記特許文献1に示すような超音波発生装置では、発生する超音波振動の振幅は、供給される電流の電流値に比例する。電流値と超音波振動の振幅との間の比例定数は、少なくともそれぞれの圧電素子の厚み方向の第1の電気機械結合係数(first electromechanical coupling factor)及び径方向の第2の電気機械結合係数(second electromechanical coupling factor)によって変化する。ここで、それぞれの圧電素子を製造する際には、厚み方向の第1の電気機械結合係数及び径方向の第2の電気機械結合係数を所望の値に設定することはできない。このため、製造された圧電素子では、厚み方向の第1の電気機械結合係数及び径方向の第2の電気機械結合係数が、圧電素子ごとに異なる。
 これにより、電流値と超音波振動の振幅との間の比例定数は、超音波発生装置ごとに異なる。したがって、電源ユニットから所定電流値の電流が供給された場合に、超音波発生装置ごとに、発生する超音波振動の振幅に差異が生じる。超音波発生装置によって発生する超音波振動を用いて超音波処置を行う処置部を備える医療機器等の超音波処置装置では、超音波振動の振幅が処置性能に与える影響が大きい。したがって、超音波発生装置ごとに発生する超音波振動の振幅に差異が生じることにより、用いられる超音波発生装置によって超音波処置装置の処置性能に差異が生じてしまう。
 本発明は、前記課題に着目してなされたものであり、その目的とするところは、発生する超音波振動の振幅を安定させることが可能な超音波発生装置及びこの超音波発生装置の製造方法を提供することにある。また、本発明の目的とするところは、その超音波発生装置を用いた超音波処置装置及びその超音波処置装置の製造方法を提供することにある。
 前記目的を達成するため、本発明のある態様の超音波発生装置の製造方法は、複数の既存圧電素子のそれぞれについて、厚み方向の第1の電気機械結合係数及び径方向の第2の電気機械結合係数に基づく性能値を算出することと、前記超音波振動の伝達方向について互いに対して異なる位置に配置される複数の素子実装部のそれぞれに前記性能値が基準値となる対応する基準圧電素子が実装され、かつ、所定電流値の電流が供給されることにより目標振幅の超音波振動が発生する目標状態を設定することと、前記目標状態から1つの前記素子実装部でのみ前記性能値が前記基準値とは異なる仮圧電素子が前記基準圧電素子の代わりに実装され、前記仮圧電素子が実装される前記素子実装部ごとに、かつ、前記仮圧電素子の前記性能値ごとに設定されるそれぞれの仮状態について、前記所定電流値の前記電流が供給されることにより発生する前記超音波振動の仮振幅の前記目標状態での前記目標振幅に対する偏差に基づいて仮影響値を算出することと、実際に実装される実装圧電素子と前記性能値が同一の前記仮圧電素子が実装される前記仮状態での前記仮影響値をそれぞれの前記素子実装部の実質影響値とした場合に、全ての前記素子実装部の前記実質影響値の合計が前記目標振幅に対して所定の範囲内となる状態に、それぞれの前記素子実装部に実装される前記実装圧電素子を前記既存圧電素子の中から選択することと、前記厚み方向が前記超音波振動の前記伝達方向に平行で、かつ、前記径方向が前記超音波振動の前記伝達方向に垂直な状態で、それぞれの前記素子実装部に選択された前記実装圧電素子を実装することと、を備える。
 また、本発明の別のある態様の超音波発生装置は、前記超音波振動の伝達方向について互いに対して異なる位置に配置される複数の素子実装部と、厚み方向の第1の電気機械結合係数及び径方向の第2の電気機械結合係数に基づく性能値をそれぞれが有し、前記厚み方向が前記超音波振動の前記伝達方向に平行で、かつ、前記径方向が前記超音波振動の前記伝達方向に垂直な状態で、対応する前記素子実装部にそれぞれが実装される複数の実装圧電素子と、を備え、それぞれの前記実装圧電素子は、それぞれの前記素子実装部に前記性能値が基準値となる対応する基準圧電素子が実装され、かつ、所定電流値の電流が供給されることにより目標振幅の超音波振動が発生する目標状態を設定し、前記目標状態から1つの前記素子実装部でのみ前記性能値が前記基準値とは異なる仮圧電素子が前記基準圧電素子の代わりに実装され、前記仮圧電素子が実装される前記素子実装部ごとに、かつ、前記仮圧電素子の前記性能値ごとに設定されるそれぞれの仮状態について、前記所定電流値の前記電流が供給されることにより発生する前記超音波振動の仮振幅の前記目標状態での前記目標振幅に対する偏差に基づいて仮影響値を算出し、かつ、前記実装圧電素子と前記性能値が同一の前記仮圧電素子が実装される前記仮状態での前記仮影響値をそれぞれの前記素子実装部の実質影響値とした場合に、全ての前記素子実装部の前記実質影響値の合計が前記目標振幅に対して所定の範囲内となる状態に、既存圧電素子の中から選択される。
 本発明によれば、組み合わせる電源ユニットの初期設定に関係なく、かつ、電源ユニットの構成を複雑化することなく、発生する超音波振動の振幅を安定させることが可能な超音波発生装置及びこの超音波発生装置の製造方法を提供することができる。また、その超音波発生装置を用いた超音波処置装置及びその超音波処置装置の製造方法を提供することができる。
本発明の第1の実施形態に係る超音波処置装置を示す概略図。 第1の実施形態に係る超音波処置装置の超音波トランスデューサ、シース及びプローブの構成を概略的に示す断面図。 第1の実施形態に係る超音波発生装置を概略的に示す斜視図。 第1の実施形態に係る超音波発生装置を、部材ごとに分解した状態で概略的に示す斜視図。 第1の実施形態に係る超音波発生装置を示す概略図。 第1の実施形態に係る超音波発生装置を製造する際に用いられる超音波調整装置を示す概略図。 第1の実施形態に係る超音波発生装置の製造方法を示すフローチャート。 第1の実施形態に係る超音波発生装置のそれぞれの素子実装部の目標状態、第1の仮状態及び第2の仮状態を示す概略図。 第1の実施形態に係る超音波発生装置のそれぞれの仮状態での仮影響値を示す概略図。 第1の実施形態の第1の変形例に係る超音波発生装置を示す概略図。 第1の実施形態の第2の変形例に係る超音波発生装置を示す概略図。 第1の実施形態の第3の変形例に係る超音波発生装置を示す概略図。 第1の実施形態の第4の変形例に係る超音波発生装置を示す概略図。 第1の実施形態の第5の変形例に係る超音波処置装置のハンドルユニットの内部構成を概略的に示す断面図。
 (第1の実施形態) 
 本発明の第1の実施形態について図1乃至図9を参照して説明する。図1は、本実施形態の超音波処置装置1を示す図である。図1に示すように、超音波処置装置1は、超音波トランスデューサ2と、基端方向側から超音波トランスデューサ2が連結されるハンドルユニット3と、先端方向側からハンドルユニット3に連結される処置ユニット5と、を備える。超音波トランスデューサ2には、ケーブル6の一端が接続されている。ケーブル6の他端は、電源ユニット7に接続されている。
 ハンドルユニット3は、筒状ケース11と、筒状ケース11と一体に形成される固定ハンドル12と、固定ハンドル12に対して開閉可能な可動ハンドル13と、を備える。筒状ケース11の先端方向側には、回転操作ノブ15が設けられている。回転操作ノブ15は、長手軸C回りに筒状ケース11に対して回転可能に取付けられている。
 超音波トランスデューサ2は、基端方向側からハンドルユニット3の内部に挿入され、ハンドルユニット3の筒状ケース11に連結されている。また、処置ユニット5は、ハンドルユニット3の内部から先端方向に向かって、長手軸Cに沿って延設されるシース17を備える。シース17の先端は、回転操作ノブ15より先端方向側に位置している。すなわち、シース17は、回転操作ノブ15から先端方向に突出する状態で、設けられている。
 処置ユニット5は、シース17に挿通されるプローブ19を備える。プローブ19は、支持部材(図示しない)を介して、シース17によって支持されている。プローブ19の先端は、シース17の先端より、先端方向側に位置している。すなわち、プローブ19は、シース17の先端から先端方向に突出する状態で、設けられている。シース17及びプローブ19は、ハンドルユニット3の内部に挿入される。そして、ハンドルユニット3の内部で、シース17がハンドルユニット3の回転操作ノブ15に連結されている。また、ハンドルユニット3の内部で、シース17及びプローブ19が超音波トランスデューサ2に連結されている。
 シース17の先端部には、ジョー21が連結されている。ジョー21は、シース17との連結部を中心として、シース17に対して回動可能である。シース17に対してジョー21が回動することにより、プローブ19の先端部に対してジョー21が開閉動作を行う。ジョー21が開閉動作を行うことにより、プローブ19の先端部とジョー21との間で生体組織を把持することが可能となる。また、シース17、プローブ19及びジョー21は、回転操作ノブ15と一体に、筒状ケース11に対して長手軸C回りに回転可能である。
 図2は、超音波トランスデューサ2、シース17及びプローブ19の構成を示す図である。図2に示すように、超音波トランスデューサ2は、振動子ケース23と、振動子ケース23の内部に設けられる超音波発生装置25と、を備える。振動子ケース23にシース17の基端部が嵌合することにより、振動子ケース23とシース17との間が連結される。また、超音波発生装置25は、プローブ19に連結されている。
 図3乃至図5は、超音波発生装置25の構成を示す図である。図3乃至図5に示すように、超音波発生装置25は、電流が供給されることにより超音波振動を発生する超音波振動子(ultrasonic oscillator)26と、超音波振動子26の先端方向側に設けられるホーン27と、を備える。ホーン27により、超音波振動の振幅が拡大される。図2に示すように、ホーン27の先端部には、雌ネジ部28が形成されている。また、プローブ19の基端部には、雄ネジ部29が形成されている。雌ネジ部28に雄ネジ部29が螺合することにより、超音波発生装置25とプローブ19との間が連結される。
 超音波発生装置25のホーン27にプローブ19が連結された状態では、超音波振動子26で発生した超音波振動が、ホーン27、プローブ19を介して、プローブ19の先端まで伝達される。すなわち、プローブ19の基端から先端へ、長手軸Cに沿って超音波振動が伝達される。この際、プローブ19の先端及び超音波発生装置25の基端は、超音波振動の腹位置となる。また、超音波振動は、超音波振動の伝達方向と振動方向とが一致する縦振動であり、超音波振動の伝達方向及び振動方向は長手軸Cに平行である。
 プローブ19の先端部とジョー21との間で血管等の生体組織を把持した状態でプローブ19を超音波振動することにより、プローブ19の先端部と生体組織との間に摩擦熱が発生する。発生した摩擦熱により、プローブ19の先端部とジョー21との間で生体組織の凝固切開(cutting and coagulation)が行われる。以上のように、プローブ19の先端部が、超音波発生装置25により発生した超音波振動が伝達され、伝達された超音波振動を用いて処置を行う処置部22となっている。
 図3乃至図5に示すように、超音波発生装置25には、ホーン27の基端方向側に長手軸Cに沿って柱状部31が設けられている。柱状部31は、ホーン27と一体に、又は、ホーン27の基端方向側に連結された状態で、設けられている。
 超音波発生装置25の超音波振動子26は、複数(本実施形態では6つ)のリング状の圧電素子(実装圧電素子)33A~33Fを備える。圧電素子33A~33Fにより、供給された電流が超音波振動に変換される。柱状部31には、圧電素子33A~33Fと同一の数だけ素子実装部35A~35Fが形成されている。素子実装部35A~35Fは、超音波振動の伝達方向について、互いに対して異なる位置に配置されている。それぞれの圧電素子33A~33Fは、対応する素子実装部35A~35Fに実装されている。例えば、圧電素子33Aは、素子実装部35Aに実装される。それぞれの圧電素子33A~33Fは、厚み方向が超音波振動の伝達方向に平行で、かつ、径方向が超音波振動の伝達方向に垂直な状態で、実装されている。
 また、柱状部31には、第1の電極37及び第2の電極38が実装されている。第1の電極37は、圧電素子33Aの先端方向側に位置するリング部41Aと、圧電素子33Bと圧電素子33Cとの間に位置するリング部41Bと、圧電素子33Dと圧電素子33Eとの間に位置するリング部41Cと、圧電素子33Fの基端方向側に位置するリング部41Dと、を備える。また、第1の電極37は、リング部41Aとリング部41Bとの間を電気的に接続するリンク部42Aと、リング部41Bとリング部41Cとの間を電気的に接続するリンク部42Bと、リング部41Cとリング部41Dとの間を電気的に接続するリンク部42Cと、を備える。第1の電極37には、電気信号線43の一端が接続されている。電気信号線43は、ケーブル6の内部を通って、他端が電源ユニット7に接続されている。
 第2の電極38は、圧電素子33Aと圧電素子33Bとの間に位置するリング部45Aと、圧電素子33Cと圧電素子33Dとの間に位置するリング部45Bと、圧電素子33Eと圧電素子33Fとの間に位置するリング部45Cと、を備える。また、第2の電極38は、リング部45Aとリング部45Bとの間を電気的に接続するリンク部46Aと、リング部45Bとリング部45Cとの間を電気的に接続するリンク部46Bと、を備える。第2の電極38には、電気信号線47の一端が接続されている。電気信号線47は、ケーブル6の内部を通って、他端が電源ユニット7に接続されている。
 図1に示すように、ハンドルユニット3の固定ハンドル12には、ボタン部49が設けられている。ボタン部49は、電気信号線(図示しない)等を介して、電源ユニット7に電気的に接続されている。ボタン部49を押圧することにより、電気信号が電源ユニット7に入力される。これにより、電源ユニット7から、電気信号線43,47、第1の電極37及び第2の電極38を介して、圧電素子33A~33Fに所定電流値の電流が供給される。この際、それぞれの圧電素子33A~33Fでは、供給された電流が超音波振動に変換される。これにより、超音波振動子26で超音波振動が発生する。
 超音波振動が発生した際には、超音波発生装置25の基端(柱状部31の基端)及び超音波発生装置25の先端(ホーン27の先端)が、超音波振動の腹位置となる。そして、長手軸Cに沿った(超音波振動の伝達方向について)超音波発生装置25の寸法は、超音波振動の半波長に等しくなる。また、素子実装部35A~35Fの中で素子実装部35Aが、超音波振動の伝達方向について超音波振動の節位置からの距離が最も小さくなる(近くなる)。そして、素子実装部35A~35Fの中で素子実装部35Fが、超音波振動の伝達方向について超音波振動の節位置からの距離が最も大きくなる(遠くなる)。
 図3乃至図5に示すように、柱状部31には、絶縁リング51A,51Bが実装されている。絶縁リング51Aは、第1の電極37のリング部41Aの先端方向側に位置している。絶縁リング51Bは、第1の電極37のリング部41Dの基端方向側に位置している。絶縁リング51Aを設けることにより、電源ユニット7から供給された電流が絶縁リング51Aより先端方向側に伝達されない状態となる。また、絶縁リング51Bを設けることにより、電源ユニット7から供給された電流が絶縁リング51Bより基端方向側に伝達されない状態となる。
 また、柱状部31には、バックマス53が実装されている。バックマス53は、絶縁リング51Bの基端方向側に位置している。バックマス53により、圧電素子33A~33F、第1の電極37、第2の電極38及び絶縁リング51A,51Bは、先端方向に押圧されている。これにより、圧電素子33A~33F、第1の電極37、第2の電極38及び絶縁リング51A,51Bは、ホーン27とバックマス53との間で挟持される。したがって、ホーン27とバックマス53との間に強固に固定された状態で、圧電素子33A~33F、第1の電極37、第2の電極38及び絶縁リング51A,51Bは、柱状部31に実装される。
 次に、超音波発生装置25及び超音波処置装置1の製造方法について説明する。図6は、超音波発生装置25を製造する際に用いられる超音波調整装置60を示す図である。超音波調整装置60を用いることにより、超音波発生装置25によって発生する超音波振動の振幅が調整される。図6に示すように、超音波調整装置60は、前述した圧電素子33A~33Fと、対応する圧電素子33A~33Fがそれぞれに実装される素子実装部35A~35Fと、を備える。また、超音波調整装置60は、製造時に既存する圧電素子である複数の(本実施形態では50個)の既存圧電素子P1~P50を備える。対応する素子実装部35A~35Fに実装されるそれぞれの圧電素子(実装圧電素子)33A~33Fは、既存圧電素子P1~P50の中から選択される。
 それぞれの既存圧電素子P1~P50は、それぞれ厚み方向の第1の電気機械結合係数(first electromechanical coupling factor)Ktと、径方向の第2の電気機械結合係数(second electromechanical coupling factor)Kpと、を有する。ここで、第1の電気機械結合係数Ktは、それぞれの既存圧電素子P1~P50に電流が供給された際の、電気エネルギーと厚み方向への振動エネルギーとの関係を示す係数である。また、第2の電気機械結合係数Kpは、それぞれの既存圧電素子P1~P50に電流が供給された際の、電気エネルギーと径方向への振動エネルギーとの関係を示す係数である。
 既存圧電素子P1~P50の中から選択されたそれぞれの圧電素子33A~33Fは、厚み方向が超音波振動の伝達方向に平行で、かつ、径方向が超音波振動の伝達方向に垂直な状態で、実装される。したがって、それぞれの圧電素子33A~33Fの第1の電気機械結合係数Kt及び第2の電気機械結合係数Kpの値によって、供給される電流の電流値と超音波振動の振幅との間の比例定数が変化する。すなわち、それぞれの圧電素子33A~33Fの第1の電気機械結合係数Kt及び第2の電気機械結合係数Kpの値によって、所定電流値の電流が供給された際の超音波振動の振幅が変化する。
 図6に示すように、超音波調整装置60は、コンピュータ等の計算ユニット61を備える。計算ユニット61は、入力部62と、性能値算出部63と、記録部65と、を備える。図7は、超音波発生装置25の製造方法を示す図である。図7に示すように、超音波発生装置25を製造する際には、性能値算出部63により、それぞれの既存圧電素子P1~P50の性能値が算出される(ステップS101)。この際、それぞれの既存圧電素子P1~P50について、第1の電気機械結合係数Kt及び第2の電気機械結合係数Kpに基づく性能値が算出される。本実施形態では、それぞれの既存圧電素子P1~P50について、性能値Kt/Kpが、第1の電気機械結合係数Kt及び第2の電気機械結合係数Kpに基づいて算出される。また、変形例として、それぞれの既存圧電素子P1~P50について性能値|Kt-Kp|や|Kt+Kp|やKt×Kpが、算出されてもよい。
 それぞれの既存圧電素子P1~P50を製造する際には、厚み方向の第1の電気機械結合係数Kt及び径方向の第2の電気機械結合係数Kpを所望の値に設定することはできない。このため、厚み方向の第1の電気機械結合係数Kt及び径方向の第2の電気機械結合係数Kpは、既存圧電素子P1~P50ごとに異なる。したがって、既存圧電素子P1~P50ごとに、性能値Kt/Kpが異なる。
 なお、それぞれの既存圧電素子P1~P50の第1の電気機械結合係数Kt及び第2の電気機械結合係数Kpは、入力部62により入力される。また、変形例として、それぞれの既存圧電素子P1~P50の第1の電気機械結合係数Kt及び第2の電気機械結合係数Kpが、記録部65に記録されていてもよい。
 図6に示すように、計算ユニット61は、圧電素子分類部67を備える。図7に示すように、圧電素子分類部67により、それぞれの既存圧電素子P1~P50が、性能値Kt/Kpに基づいて分類される(ステップS102)。例えば、性能値Kt/Kpが0.7875以上0.7925未満の既存圧電素子(例えばP3,P33)は、性能値Kt/Kpが0.79の種類に分類される。また、性能値Kt/Kpが0.7925以上0.7975未満の既存圧電素子(例えばP10,P41)は、性能値Kt/Kpが0.795の種類に分類される。以上のように、性能値Kt/Kpに基づいて、既存圧電素子P1~P50がいくつかの種類に分類される。
 それぞれの種類に属する既存圧電素子(P1~P50)の数は、記録部65に記録される。例えば、既存圧電素子P3,P33の性能値Kt/Kpが0.7875以上0.7925未満の場合、性能値Kt/Kpが0.79の種類に属する既存圧電素子(P1~P50)の数は2つとなる。
 図6に示すように、計算ユニット61は、目標状態設定部68を備える。図7に示すように、目標状態設定部68により、所定電流値の電流が供給された際に目標振幅の超音波振動が発生する目標状態が設定される(ステップS103)。
 図8は、目標状態、第1の仮状態及び第2の仮状態(目標状態、第1の仮状態及び第2の仮状態の詳細は後述する)での、それぞれの素子実装部35A~35Fを示す図である。図8に示すように、目標状態では、ぞれぞれの素子実装部35A~35Fに、性能値Kt/Kpが基準値となる対応する基準圧電素子81A~81Fが実装される。本実施形態では、基準圧電素子81A~81Fの性能値Kt/Kpは、基準値0.8である。それぞれの素子実装部35A~35Fに性能値Kt/Kpが基準値0.8となる対応する基準圧電素子81A~81Fが実装されることにより、所定電流値の電流が供給された際に、超音波発生装置25で目標振幅の超音波振動が発生する。ここで、目標状態においてそれぞれの素子実装部35A~35Fに実装される対応する基準圧電素子81A~81Fの性能値Kt/Kp(基準値)は、記録部65に記録される。
 なお、本実施形態では、すべての基準圧電素子81A~81Fの性能値Kt/Kp(基準値)は0.8であるが、これに限るものではない。実際に、超音波処置装置1の種類、用途等に対応して、超音波発生装置25によって発生させる超音波振動の目標振幅は異なる。変形例として、基準圧電素子81A~81Cの性能値Kt/Kp(基準値)が0.7で、基準圧電素子81D~81Fの性能値Kt/Kp(基準値)が0.8であってもよい。すなわち、目標状態では、それぞれの素子実装部35A~35Fに性能値Kt/Kpが基準値となる対応する基準圧電素子81A~81Fが実装され、かつ、所定電流値の電流が供給されることにより目標振幅の超音波振動が発生すればよい。
 また、目標振幅が同一の場合でも、電源ユニット7から供給される所定電流値に対応して、それぞれの基準圧電素子81A~81Fの基準値が変化する。すなわち、本実施形態では、選択された電源ユニット7の性能に応じて、設定される目標状態が変化する。
 ここで、それぞれの素子実装部35A~35Fに実装される対応する圧電素子(実装圧電素子)33A~33Fの性能値Kt/Kpを基準値(0.8)とすることにより、目標振幅の超音波振動が発生すると考えられる。しかし、それぞれの既存圧電素子P1~P50を製造する際には、厚み方向の第1の電気機械結合係数Kt及び径方向の第2の電気機械結合係数Kpを所望の値に設定することはできない。このため、それぞれの種類に属する既存圧電素子(P1~P50)の数の影響で、それぞれの素子実装部35A~35Fに性能値Kt/Kpが基準値(0.8)になる圧電素子(実装圧電素子)33A~33Fが実装されるとは限らない。例えば、性能値Kt/Kpが0.8の種類に属する既存圧電素子(P1~P50)の数が5つ以下の場合は、少なくとも1つの素子実装部(例えば35A,35B)で、性能値Kt/Kpが基準値(0.8)とは異なる圧電素子(33A,33B)が実装される。この場合、超音波発生装置25で発生する超音波振動の振幅が目標振幅とは異なる。
 そこで、超音波発生装置25を製造する際には、以下の処理が必要となる。以下の処理を行うことにより、製造されるそれぞれの超音波発生装置25において、発生する超音波振動の振幅の目標振幅に対する差異が小さくなる。図6に示すように、計算ユニット61は、仮影響値算出部69を備える。図7に示すように、仮影響値算出部69により、それぞれの仮状態について仮影響値が算出される(ステップS104)。
 図8には、仮状態の一例として第1の仮状態及び第2の仮状態が示されている。図8に示すように、第1の仮状態では、目標状態から素子実装部35Aでのみ性能値Kt/Kpが基準値(0.8)とは異なる仮圧電素子81´Aが、基準圧電素子81Aの代わりに実装されている。仮圧電素子81´Aの性能値Kt/Kpは、0.79である。また、素子実装部35A以外のそれぞれの素子実装部35B~35Fには、性能値Kt/Kpが基準値(0.8)となる基準圧電素子81B~81Fが実装されている。
 また、第1の仮状態とは異なる第2の仮状態では、目標状態から素子実装部35Cでのみ性能値Kt/Kpが基準値(0.8)とは異なる仮圧電素子81´Cが、基準圧電素子81Cの代わりに実装されている。仮圧電素子81´Cの性能値Kt/Kpは、0.81である。また、素子実装部35C以外のそれぞれの素子実装部35A,35B,35D~35Fには、性能値Kt/Kpが基準値(0.8)となる基準圧電素子81A,81B,81D~81Fが実装されている。
 以上のように、それぞれの仮状態では、目標状態から1つの素子実装部(例えば35A,35C)でのみ性能値Kt/Kpが基準値(0.8)とは異なる仮圧電素子(例えば81´A,81´C)が基準圧電素子(81A,81C)の代わりに実装されている。このため、それぞれの仮状態では、所定電流値の電流が供給されることにより、目標振幅とは異なる仮振幅の超音波振動が発生する。また、それぞれの仮状態は、仮圧電素子が実装される素子実装部35A~35Fごとに、かつ、仮圧電素子の性能値Kt/Kpごとに設定される。
 仮影響値算出部69は、それぞれの仮状態について仮影響値を算出する(ステップS104)。それぞれの仮状態では、所定電流値の電流を供給することにより発生する超音波振動の仮振幅の目標状態での目標振幅に対する偏差に基づいて、仮影響値が算出される。ここで、例えば第1の仮状態で発生する超音波振動の仮振幅をA1、目標状態での目標振幅をA0、第1の仮状態での仮影響値をE1(%)とする。第1の仮状態での仮影響値は、 
Figure JPOXMLDOC01-appb-M000001
となる。また、第1の仮状態以外のそれぞれの仮状態で発生する超音波振動の仮振幅をAk(k=2,3,4,…)とする。第1の仮状態以外のそれぞれの仮状態での仮影響値Ekは、式(1)でA1の代わりにAkを代入することにより算出される。
 図9は、それぞれの仮状態での仮影響値をまとめたテーブルを示す図である。第1の仮状態では、目標状態から素子実装部35Aでのみ性能値Kt/Kpが0.79の仮圧電素子81´Aが、基準圧電素子81Aの代わりに実装される。したがって、図9に示すように、第1の仮状態での仮影響値は-0.514(%)となる。また、第2の仮状態では、目標状態から素子実装部35Cでのみ性能値Kt/Kpが0.81の仮圧電素子81´Cが、基準圧電素子81Cの代わりに実装される。したがって、図9に示すように、第2の仮状態での仮影響値は0.447(%)となる。
 また、図9に示すように、素子実装部35Cより素子実装部35Aに仮圧電素子が実装される場合の方が、仮圧電素子の性能値Kt/Kpの基準値からの変化に対する仮影響値の変化が大きくなる。例えば、素子実装部35Aに性能値Kt/Kpが0.78の仮圧電素子が実装される仮状態では仮影響値が-1.028(%)であるのに対し、素子実装部35Cに性能値Kt/Kpが0.78の仮圧電素子が実装される仮状態では仮影響値が-0.894(%)である。ここで、素子実装部35Cより素子実装部35Aのほうが、超音波振動の伝達方向について超音波振動の節位置からの距離が小さい。すなわち、超音波振動の伝達方向について超音波振動の節位置からそれぞれの素子実装部35A~35Fまでの距離が小さくなるほど、仮影響値の変化が大きくなる。
 実際に、超音波振動の伝達方向について超音波振動の節位置からそれぞれの素子実装部35A~35Fまでの距離が小さいほど、実装される圧電素子33A~33Fの性能値の変化が超音波振動の振幅に与える影響は大きい。
 図6に示すように、計算ユニット61は、圧電素子選択部71を備える。図7に示すように、圧電素子選択部71により、それぞれの素子実装部35A~35Fに実装される圧電素子(実装圧電素子)33A~33Fを既存圧電素子P1~P50の中から選択する(ステップS105)。圧電素子(実装圧電素子)33A~33Fを既存圧電素子P1~P50の中から選択する際には、実際に実装される圧電素子33A~33Fと性能値Kt/Kpが同一の仮圧電素子が実装される仮状態での仮影響値を、それぞれの素子実装部35A~35Fの実施影響値とする。例えば、素子実装部35Aに性能値Kt/Kpが0.79の圧電素子(実装圧電素子)33Aが実装される場合、第1の仮状態(図8参照)での仮影響値-0.514(%)が、素子実装部35Aの実質影響値になる。また、素子実装部35Cに性能値Kt/Kpが0.81の圧電素子(実装圧電素子)33Cが実装される場合、第2の仮状態(図8参照)での仮影響値0.447(%)が、素子実装部35Cの実質影響値になる。
 以上のようにして、それぞれの素子実装部35A~35Fの実質影響値が求められる。圧電素子選択部71は、全ての素子実装部35A~35Fの実質影響値の合計が目標振幅に対して所定の範囲内となる状態に、それぞれの素子実装部35A~35Fに実装される圧電素子33A~33Fを選択する。
 例えば、全ての素子実装部35A~35Fの実質影響値の合計が-2%~+2%の範囲となる状態に、それぞれの素子実装部35A~35Fに実装される圧電素子33A~33Fを選択する。全ての素子実装部35A~35Fの実質影響値の合計を-2%~+2%の範囲とすることにより、所定電流値の電流を供給した際の超音波振動の実際の振幅の目標振幅に対する差異が大きくならない。このため、製造されたそれぞれの超音波発生装置25において、発生する超音波振動の振幅が安定する。したがって、それぞれの超音波発生装置25を用いた超音波処置装置1において、処置性能の差異が有効に防止される。
 ここで、性能値Kt/Kpが0.84の圧電素子33A,33B、性能値Kt/Kpが0.8の圧電素子33C、性能値kt/Kpが0.765の圧電素子33D,33E,33Fが、圧電素子選択部71により選択される。この場合、素子実装部35Aの実質影響値は2.056(%)、素子実装部35Bの実質影響値は1.922(%)、素子実装部35Cの実質影響値は0(%)、素子実装部35Dの実質影響値は-1.448(%)、素子実装部35Eの実質影響値は-1.331(%)、素子実装部35Fの実質影響値は-1.214(%)となる。したがって、全ての素子実装部35A~35Fの実質影響値の合計は、 
Figure JPOXMLDOC01-appb-M000002
となる。全ての素子実装部35A~35Fの実質影響値の合計が-0.015(%)であるため、所定電流値を供給した際に、目標振幅に対してほとんど差異のない実際の振幅の超音波振動が発生する。
 また、設定される目標状態は、選択された電源ユニット7の性能に応じて変化する。そして、設定された目標状態に基づいてそれぞれの素子実装部35A~35Fの実質影響値を算出し、全ての素子実装部35A~35Fの実質影響値の合計に基づいて、圧電素子33A~33Fを選択している。したがって、超音波発生装置25に供給する電流の所定電流値等の電源ユニット7の性能に対応して、それぞれの圧電素子(実装圧電素子)33A~33Fが選択され、超音波発生装置25の性能が設定される。すなわち、超音波発生装置25の性能に対応して、電源ユニット7の性能及び処置部22の性能が設定されるわけではない。このため、超音波発生装置25の性能に対応させて超音波発生装置25に供給する電流の電流値を調整する制御システムを、電源ユニット7に設ける必要はない。また、超音波発生装置25の性能に適合する状態に初期設定された電源ユニット7及び処置部22を、選択する必要もない。
 また、圧電素子選択部71は、性能値Kt/Kpに基づいて圧電素子分類部67よって種類が分類される既存圧電素子P1~P50の中で、既存個数の多い種類から優先的に圧電素子(実装圧電素子)33A~33Fとして選択する。例えば、全ての素子実装部35A~35Fの実質影響値の合計が目標振幅に対して所定の範囲内となる圧電素子33A~33Fの選択の組み合わせが、複数組あるとする。また、既存圧電素子P1~P50の中で性能値Kt/Kpが0.76の種類(例えばP20~P29)が、他の種類より既存個数が多いとする。この場合、実装される圧電素子33A~33Fにおいて性能値Kt/Kpが0.76の種類が多い組み合わせが、複数の組み合わせの中から選択される。すなわち、全ての素子実装部35A~35Fの実質影響値の合計が目標振幅に対して所定の範囲内となることを条件に、性能値Kt/Kpに基づいて種類が分類される既存圧電素子P1~P50の中で既存個数の多い種類から優先的に、圧電素子33A~33Fとして選択される。これにより、種類ごとに既存個数が異なる既存圧電素子P1~P50の中から、効率よく圧電素子(実装圧電素子)33A~33Fが選択される。
 図7に示すように、超音波発生装置25を製造する際には、ステップS101~105と並行して柱状部31、バックマス53等の部材が洗浄される(ステップS106)。部材を洗浄することにより、汚れ等を原因とする超音波発生装置25及び超音波処置装置1の性能劣化が防止される。また、曲げ加工により、第1の電極37及び第2の電極38が形成される(ステップS107)。ただし、変形例として、第1の電極37にリンク部42A~42Cが設けられず、それぞれのリング部41A~41Dに電気信号線(図示しない)が接続される構成が考えられる。この場合、第1の電極37の形成に、曲げ加工は用いられない。同様に、第2の電極38にリンク部46A,46Bが設けられず、それぞれのリング部45A~45Cに電気信号線(図示しない)が接続される構成が考えられる。この場合、第2の電極38の形成に、曲げ加工は用いられない。
 そして、それぞれの部材の間に接着材を塗布する(ステップS108)。そして、ステップS105で選択された圧電素子33A~33F等の部材を柱状部31に実装する(ステップ109)。この際、それぞれの圧電素子33A~33Fは、対応する素子実装部35A~35Fに実装される。また、それぞれの圧電素子33A~33Fは、厚み方向が超音波振動の伝達方向に平行で、かつ、径方向が超音波振動の伝達方向に垂直な状態で、実装される。そして、バックマス53を実装する(ステップS110)。バックマス53により、圧電素子33A~33F等の部材が、先端方向に押圧される。これにより、ホーン27とバックマス53との間に強固に固定された状態で、圧電素子33A~33F等が実装される。そして、ステップS108で塗布された接着材を硬化させ(ステップS111)、それぞれの部材の間を強固に接着する。なお、接着は、ホーン27とバックマス53との間のみ行われ、作成後のゆるみを防止するだけであってもよい。
 以上のように、ステップS101~S111により超音波発生装置25が製造される。また、超音波処置装置1を製造する際には、圧電素子33A~33Fに電気信号線43,47等を介して電源ユニット7を電気的に接続する。そして、超音波発生装置25のホーン27にプローブ19を連結する。これにより、超音波発生装置25よって発生した前記超音波振動が伝達され、伝達された超音波振動を用いて処置を行う処置部22が形成される。
 そこで、前記構成の超音波発生装置25及び超音波発生装置25の製造方法では、以下の効果を奏する。すなわち、超音波発生装置25を製造する際には、それぞれの仮状態での仮影響値を用いて、それぞれの素子実装部35A~35Fの実質影響値が求められる。そして、圧電素子選択部71は、全ての素子実装部35A~35Fの実質影響値の合計が目標振幅に対して所定の範囲内(例えば-2%~+2%)となる状態に、それぞれの素子実装部35A~35Fに実装される圧電素子33A~33Fを選択する。全ての素子実装部35A~35Fの実質影響値の合計を目標振幅に対して所定の範囲内とすることにより、所定電流値の電流を供給した際の超音波振動の実際の振幅の目標振幅に対する差異が大きくならない。このため、製造されたそれぞれの超音波発生装置25において、発生する超音波振動の振幅を安定する。すなわち、それぞれの超音波発生装置25において、発生する超音波振動の振幅の差異を、軽減することができる。したがって、それぞれの超音波発生装置25を用いた超音波処置装置1において、処置性能の差異の発生を有効に防止することができる。
 また、超音波発生装置25を製造する際に設定される目標状態は、選択された電源ユニット7の性能に応じて変化する。そして、設定された目標状態に基づいてそれぞれの素子実装部35A~35Fの実質影響値を算出し、全ての素子実装部35A~35Fの実質影響値の合計に基づいて、圧電素子33A~33Fを選択している。したがって、超音波発生装置25に供給する電流の所定電流値等の電源ユニット7の性能に対応して、それぞれの圧電素子(実装圧電素子)33A~33Fが選択され、超音波発生装置25の性能が設定される。すなわち、超音波発生装置25の性能に対応して、電源ユニット7の性能及び処置部22の性能が設定されるわけではない。このため、超音波発生装置25の性能に対応させて超音波発生装置25に供給する電流の電流値を調整する制御システムを、電源ユニット7に設ける必要はない。また、超音波発生装置25の性能に適合する状態に初期設定された電源ユニット7及び処置部22を、選択する必要もない。したがって、組み合わせる電源ユニット7及び処置部22の初期設定に関係なく、かつ、電源ユニット7の構成を複雑化することなく、発生する超音波振動の振幅を安定させることができる。
 また、超音波発生装置25を製造する際には、超音波振動の伝達方向について超音波振動の節位置からそれぞれの素子実装部35A~35Fまでの距離が小さくなるほど、基準値(0.8)からの性能値Kt/Kpの変化に対する仮影響値の変化が大きく算出される。実際に、超音波振動の伝達方向について超音波振動の節位置からそれぞれの素子実装部35A~35Fまでの距離が小さいほど、実装される圧電素子33A~33Fの性能値の変化が超音波振動の振幅に与える影響は大きい。したがって、算出される仮影響値の精度を高くすることができる。
 さらに、超音波発生装置25を製造する際には、全ての素子実装部35A~35Fの実質影響値の合計が目標振幅に対して所定の範囲内となることを条件に、性能値Kt/Kpに基づいて種類が分類される既存圧電素子P1~P50の中で既存個数の多い種類から優先的に、圧電素子33A~33Fとして選択される。これにより、種類ごとに既存個数が異なる既存圧電素子P1~P50の中から、効率よく圧電素子(実装圧電素子)33A~33Fを選択することができる。
 (第1の実施形態の変形例) 
 なお、第1の実施形態では、超音波発生装置25の基端(柱状部31の基端)及び超音波発生装置25の先端(ホーン27の先端)が、超音波振動の腹位置となるが、これに限るものではない。例えば、第1の変形例として図10に示すように、超音波発生装置25の先端(ホーン27の先端)が、超音波振動の腹位置でなくてもよい。ただし、本変形例においても、超音波発生装置25の基端(柱状部31の基端)及びプローブ19の先端は、超音波振動の腹位置となる。
 また、第1の実施形態では、超音波振動の伝達方向について超音波発生装置25の寸法は超音波振動の半波長に等しくなるが、これに限るものではない。また、超音波振動の伝達方向についてのそれぞれの素子実装部35A~35Fの位置は、第1の実施形態の位置に限るものではない。例えば、第2の変形例として図11に示すように、超音波振動の伝達方向について超音波発生装置25の寸法が、超音波振動の1波長に等しくてもよい。本変形例では、素子実装部35A~35Fの代わりに、素子実装部82A~82Fが設けられている。そして、それぞれの素子実装部82A~82Fに対応する圧電素子33A~33Fが実装されている。
 本変形例では、素子実装部82Aとホーン27との間に、柱状部31より大径な柱状部83が形成されている。それぞれの圧電素子33A~33Fは、バックマス53と柱状部83との間に固定された状態で、実装されている。
 また、本変形例でも、仮影響値算出部69は、超音波振動の伝達方向について超音波振動の節位置からそれぞれの素子実装部82A~82Fまでの距離が小さくなるほど、基準値からの性能値Kt/Kpの変化に対する仮影響値の変化が大きくなる状態に、それぞれの仮影響値を算出する。例えば、超音波振動の伝達方向について超音波振動の節位置から 素子実装部82B,82Eまでの距離は、超音波振動の伝達方向について超音波振動の節位置から第1の実施形態の素子実装部35Aまでの距離と、略一致する。このため、素子実装部82B,82Eでの基準値からの性能値Kt/Kpの変化に対する仮影響値の変化は、素子実装部35Aでの基準値からの性能値Kt/Kpの変化に対する仮影響値の変化(図9参照)と、略同一の特性となる。
 また、例えば、第3の変形例として図12に示すように、超音波振動の伝達方向について超音波発生装置25の寸法が超音波振動の1波長に等しく、素子実装部35A~35Fの代わりに素子実装部85A~85Fが設けられてもよい。本変形例では、素子実装部85Bと素子実装部85Cとの間に、筒状部材86が実装されている。それぞれの圧電素子33A~33F及び筒状部材86は、バックマス53とホーン27との間に固定された状態で、実装されている。
 また、本変形例でも、仮影響値算出部69は、超音波振動の伝達方向について超音波振動の節位置からそれぞれの素子実装部85A~85Fまでの距離が小さくなるほど、基準値からの性能値Kt/Kpの変化に対する仮影響値の変化が大きくなる状態に、それぞれの仮影響値を算出する。例えば、超音波振動の伝達方向について超音波振動の節位置から 素子実装部85A,85C,85Fまでの距離は、超音波振動の伝達方向について超音波振動の節位置から第1の実施形態の素子実装部35Aまでの距離と、略一致する。このため、素子実装部85A,85C,85Fでの基準値からの性能値Kt/Kpの変化に対する仮影響値の変化は、素子実装部35Aでの基準値からの性能値Kt/Kpの変化に対する仮影響値の変化(図9参照)と、略同一の特性となる。
 また、例えば、第4の変形例として図13に示すように、超音波振動の伝達方向について超音波発生装置25の寸法が超音波振動の1.5波長に等しくてもよい。本変形例では、素子実装部35A~35Fの代わりに、8つの素子実装部91A~91Hが設けられている。そして、それぞれの素子実装部91A~91Hに、対応する圧電素子(実装圧電素子)33A~33Hが実装される。本変形例では、素子実装部91Aとホーン27との間に、柱状部31より大径な柱状部92が形成されている。また、素子実装部91Dと素子実装部91Eとの間に、筒状部材93が実装されている。それぞれの圧電素子33A~33H及び筒状部材93は、バックマス53と柱状部92との間に固定された状態で、実装されている。
 また、本変形例でも、仮影響値算出部69は、超音波振動の伝達方向について超音波振動の節位置からそれぞれの素子実装部91A~91Hまでの距離が小さくなるほど、基準値からの性能値Kt/Kpの変化に対する仮影響値の変化が大きくなる状態に、それぞれの仮影響値を算出する。例えば、超音波振動の伝達方向について超音波振動の節位置から 素子実装部91A,91D,91E,91Hまでの距離は、超音波振動の伝達方向について超音波振動の節位置から第1の実施形態の素子実装部35Aまでの距離と、略一致する。このため、素子実装部91A,91D,91E,91Hでの基準値からの性能値Kt/Kpの変化に対する仮影響値の変化は、素子実装部35Aでの基準値からの性能値Kt/Kpの変化に対する仮影響値の変化(図9参照)と、略同一の特性となる。
 また、第1の実施形態の超音波処置装置1では、超音波発生装置25が振動子ケース23の内部に設けられているが、これに限るものではない。例えば、第5の変形例として図14に示すように、振動子ケース23が設けなくてもよい。本変形例では、ハンドルユニット3の筒状ケース11の内部に超音波発生装置25が設けられている。また、筒状ケース11に、ケーブル6の一端が接続されている。超音波発生装置25に一端が接続される電気信号線43,47は、筒状ケース11の内部、ケーブル6の内部を通って、他端が電源ユニット7に接続されている。
 以上、本発明の実施形態について説明したが、本発明は前記の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形ができることは勿論である。
 以下、本発明の他の特徴的な技術事項を下記の通り付記する。 
                記  
(付記項1) 
 前記超音波振動の伝達方向について互いに対して異なる位置に配置される複数の素子実装部と、 
 厚み方向が前記超音波振動の前記伝達方向に平行で、かつ、径方向が前記超音波振動の前記伝達方向に垂直な状態で、対応する前記素子実装部にそれぞれが実装される複数の実装圧電素子を含む既存圧電素子と、 
 それぞれの前記既存圧電素子について、前記厚み方向の第1の電気機械結合係数及び前記径方向の第2の電気機械結合係数に基づく性能値を算出する性能値算出部と、 
 それぞれの前記素子実装部に前記性能値が基準値となる対応する基準圧電素子が実装され、かつ、所定電流値の電流が供給されることにより目標振幅の前記超音波振動が発生する目標状態を設定する目標状態設定部と、 
 前記目標状態から1つの前記素子実装部でのみ前記性能値が前記基準値とは異なる仮圧電素子が前記基準圧電素子の代わりに実装され、前記仮圧電素子が実装される前記素子実装部ごとに、かつ、前記仮圧電素子の前記性能値ごとに設定されるそれぞれの仮状態について、前記所定電流値の前記電流が供給されることにより発生する前記超音波振動の仮振幅の前記目標状態での前記目標振幅に対する偏差に基づいて仮影響値を算出する仮影響値算出部と、 
 実際に実装される前記実装圧電素子と前記性能値が同一の前記仮圧電素子が実装される前記仮状態での前記仮影響値をそれぞれの前記素子実装部の実質影響値とした場合に、全ての前記素子実装部の前記実質影響値の合計が前記目標振幅に対して所定の範囲内となる状態に、それぞれの前記素子実装部に実装される前記実装圧電素子を前記既存圧電素子の中から選択する圧電素子選択部と、 
 を具備する超音波調整装置。
(付記項2) 
 前記仮影響値算出部は、前記超音波振動の前記伝達方向について前記超音波振動の節位置からそれぞれの前記素子実装部までの距離が小さくなるほど、前記基準値からの前記性能値の変化に対する前記仮影響値の変化が大きくなる状態に、前記仮影響値を算出する、付記項1の超音波調整装置。
(付記項3) 
 前記圧電素子選択部は、全ての前記素子実装部の前記実質影響値の合計が前記目標振幅に対して所定の範囲内となることを条件に、前記性能値に基づいて種類が分類される前記既存圧電素子の中で既存個数の多い前記種類から優先的に前記実装圧電素子として選択する、付記項1の超音波調整装置。
(付記項4) 
 複数の圧電素子をそれぞれ所定の実装位置に実装することによって形成される超音波発生装置の製造方法であって、 
 それぞれの前記圧電素子について厚み方向の電気機械結合係数及び広がり方向の電気機械結合係数に基づいて性能値を算出することと、 
 前記性能値毎に、前記圧電素子の各前記実装位置での目標振幅に対する影響値を算出することと、 
 前記影響値の合算が所定範囲内となるように前記圧電素子を選定し、実装することと、 
 を具備する超音波発生装置の製造方法。

Claims (6)

  1.  複数の既存圧電素子のそれぞれについて、厚み方向の第1の電気機械結合係数及び径方向の第2の電気機械結合係数に基づく性能値を算出することと、
     前記超音波振動の伝達方向について互いに対して異なる位置に配置される複数の素子実装部のそれぞれに前記性能値が基準値となる対応する基準圧電素子が実装され、かつ、所定電流値の電流が供給されることにより目標振幅の超音波振動が発生する目標状態を設定することと、
     前記目標状態から1つの前記素子実装部でのみ前記性能値が前記基準値とは異なる仮圧電素子が前記基準圧電素子の代わりに実装され、前記仮圧電素子が実装される前記素子実装部ごとに、かつ、前記仮圧電素子の前記性能値ごとに設定されるそれぞれの仮状態について、前記所定電流値の前記電流が供給されることにより発生する前記超音波振動の仮振幅の前記目標状態での前記目標振幅に対する偏差に基づいて仮影響値を算出することと、
     実際に実装される実装圧電素子と前記性能値が同一の前記仮圧電素子が実装される前記仮状態での前記仮影響値をそれぞれの前記素子実装部の実質影響値とした場合に、全ての前記素子実装部の前記実質影響値の合計が前記目標振幅に対して所定の範囲内となる状態に、それぞれの前記素子実装部に実装される前記実装圧電素子を前記既存圧電素子の中から選択することと、
     前記厚み方向が前記超音波振動の前記伝達方向に平行で、かつ、前記径方向が前記超音波振動の前記伝達方向に垂直な状態で、それぞれの前記素子実装部に選択された前記実装圧電素子を実装することと、
     を具備する超音波発生装置の製造方法。
  2.  それぞれの前記仮状態について前記仮影響値を算出することは、前記超音波振動の前記伝達方向について前記超音波振動の節位置からそれぞれの前記素子実装部までの距離が小さくなるほど、前記基準値からの前記性能値の変化に対する前記仮影響値の変化が大きくなる状態に、前記仮影響値を算出することを備える、請求項1の超音波発生装置の製造方法。
  3.  それぞれの前記素子実装部に実装される前記実装圧電素子を選択することは、全ての前記素子実装部の前記実質影響値の合計が前記目標振幅に対して所定の範囲内となることを条件に、前記性能値に基づいて種類が分類される前記既存圧電素子の中で既存個数の多い前記種類から優先的に前記実装圧電素子として選択することを備える、請求項1の超音波発生装置の製造方法。
  4.  請求項1の前記製造方法によって前記超音波発生装置を形成することと、
     前記所定電流値の前記電流を前記超音波発生装置に供給する電源ユニットを、前記実装圧電素子に電気的に接続することと、
     前記超音波発生装置よって発生した前記超音波振動が伝達され、伝達された前記超音波振動を用いて処置を行う処置部を形成することと、
     を具備する超音波処置装置の製造方法。
  5.  前記超音波振動の伝達方向について互いに対して異なる位置に配置される複数の素子実装部と、
     厚み方向の第1の電気機械結合係数及び径方向の第2の電気機械結合係数に基づく性能値をそれぞれが有し、前記厚み方向が前記超音波振動の前記伝達方向に平行で、かつ、前記径方向が前記超音波振動の前記伝達方向に垂直な状態で、対応する前記素子実装部にそれぞれが実装される複数の実装圧電素子と、
     を具備し、
     それぞれの前記実装圧電素子は、
     それぞれの前記素子実装部に前記性能値が基準値となる対応する基準圧電素子が実装され、かつ、所定電流値の電流が供給されることにより目標振幅の超音波振動が発生する目標状態を設定し、
     前記目標状態から1つの前記素子実装部でのみ前記性能値が前記基準値とは異なる仮圧電素子が前記基準圧電素子の代わりに実装され、前記仮圧電素子が実装される前記素子実装部ごとに、かつ、前記仮圧電素子の前記性能値ごとに設定されるそれぞれの仮状態について、前記所定電流値の前記電流が供給されることにより発生する前記超音波振動の仮振幅の前記目標状態での前記目標振幅に対する偏差に基づいて仮影響値を算出し、かつ、
     前記実装圧電素子と前記性能値が同一の前記仮圧電素子が実装される前記仮状態での前記仮影響値をそれぞれの前記素子実装部の実質影響値とした場合に、
     全ての前記素子実装部の前記実質影響値の合計が前記目標振幅に対して所定の範囲内となる状態に、既存圧電素子の中から選択される、超音波発生装置。
  6.  請求項5の前記超音波発生装置と、
     前記超音波発生装置に前記所定電流値の前記電流を供給する電源ユニットと、
     前記超音波発生装置によって発生した前記超音波振動が伝達され、伝達された前記超音波振動を用いて処置を行う処置部と、
     を具備する超音波処置装置。
PCT/JP2012/070555 2011-08-19 2012-08-10 超音波発生装置の製造方法、超音波処置装置の製造方法、超音波発生装置及び超音波処置装置 WO2013027614A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013512677A JP5363682B2 (ja) 2011-08-19 2012-08-10 超音波発生装置の製造方法、超音波処置装置の製造方法、超音波発生装置及び超音波処置装置
EP12826343.1A EP2695681B1 (en) 2011-08-19 2012-08-10 Manufacturing method of ultrasonic generating device and manufacturing method of ultrasonic treatment device
CN201280024308.9A CN103547380B (zh) 2011-08-19 2012-08-10 超声波产生装置及其制造方法、超声波处理装置及其制造方法
US13/837,681 US9184373B2 (en) 2011-08-19 2013-03-15 Manufacturing method of an ultrasonic generating device, and manufacturing method of an ultrasonic treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161525502P 2011-08-19 2011-08-19
US61/525,502 2011-08-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/837,681 Continuation US9184373B2 (en) 2011-08-19 2013-03-15 Manufacturing method of an ultrasonic generating device, and manufacturing method of an ultrasonic treatment device

Publications (1)

Publication Number Publication Date
WO2013027614A1 true WO2013027614A1 (ja) 2013-02-28

Family

ID=47746361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070555 WO2013027614A1 (ja) 2011-08-19 2012-08-10 超音波発生装置の製造方法、超音波処置装置の製造方法、超音波発生装置及び超音波処置装置

Country Status (5)

Country Link
US (1) US9184373B2 (ja)
EP (1) EP2695681B1 (ja)
JP (1) JP5363682B2 (ja)
CN (1) CN103547380B (ja)
WO (1) WO2013027614A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072326A1 (ja) * 2013-11-15 2015-05-21 オリンパスメディカルシステムズ株式会社 振動発生ユニット、振動体ユニット及び超音波処置装置
JP2020130078A (ja) * 2019-02-21 2020-08-31 三菱ケミカルエンジニアリング株式会社 超音波消泡手段を備えた微生物培養装置、およびこの微生物培養装置を用いた微生物培養方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103999483B (zh) * 2012-04-19 2017-03-01 奥林巴斯株式会社 超声波产生装置的制造方法及超声波产生装置的组装系统
US9700382B2 (en) * 2013-12-27 2017-07-11 Inter-Med, Inc. Piezoelectric device and circuitry
US9283113B2 (en) * 2014-05-22 2016-03-15 Novartis Ag Ultrasonic hand piece
WO2016047241A1 (ja) * 2014-09-22 2016-03-31 オリンパス株式会社 振動発生ユニット、振動体ユニット及び超音波処置具
EP3406354B1 (en) 2016-01-19 2023-02-22 Olympus Corporation Vibration transmission member, ultrasonic treatment instrument and vibration body unit
CN112638293A (zh) * 2018-08-30 2021-04-09 奥林巴斯株式会社 超声波振子、超声波处置器具及超声波振子的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004048985A (ja) * 2002-05-13 2004-02-12 Seiko Epson Corp アクチュエータ装置及び液体噴射ヘッド並びにそれらの検査方法
WO2009008282A1 (ja) * 2007-07-11 2009-01-15 Hitachi Medical Corporation 超音波探触子及び超音波診断装置
JP2009227534A (ja) * 2008-03-25 2009-10-08 Panasonic Corp 圧電性磁器組成物
JP2010000336A (ja) 2008-06-19 2010-01-07 Olympus Medical Systems Corp 超音波手術装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371429A (en) * 1993-09-28 1994-12-06 Misonix, Inc. Electromechanical transducer device
JP3514506B2 (ja) * 1994-05-11 2004-03-31 アロカ株式会社 ボルト締め超音波振動子
AU6357298A (en) * 1997-04-28 1998-10-29 Ethicon Endo-Surgery, Inc. Methods and devices for controlling the vibration of ultrasonic transmission components
DE60040788D1 (de) 1999-04-15 2008-12-24 Ethicon Endo Surgery Verfahren zum abstimmen von ultraschallwandlern
US7273483B2 (en) * 2000-10-20 2007-09-25 Ethicon Endo-Surgery, Inc. Apparatus and method for alerting generator functions in an ultrasonic surgical system
JP2007227534A (ja) * 2006-02-22 2007-09-06 Juki Corp テープ式部品供給装置
FR2906165B1 (fr) * 2006-09-27 2009-01-09 Corneal Ind Soc Par Actions Si Systeme d'emission d'ultrasons et machine de traitement par ultrasons integrant ledit systeme
CN101259465B (zh) * 2008-04-15 2010-06-30 北京航空航天大学 一种弯扭模式转换型超声波扭转振动换能器
US8663220B2 (en) * 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
CN101628283B (zh) * 2009-08-12 2011-01-05 北京航空航天大学 一种切向伸缩式超声波扭转换能器
US8531064B2 (en) * 2010-02-11 2013-09-10 Ethicon Endo-Surgery, Inc. Ultrasonically powered surgical instruments with rotating cutting implement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004048985A (ja) * 2002-05-13 2004-02-12 Seiko Epson Corp アクチュエータ装置及び液体噴射ヘッド並びにそれらの検査方法
WO2009008282A1 (ja) * 2007-07-11 2009-01-15 Hitachi Medical Corporation 超音波探触子及び超音波診断装置
JP2009227534A (ja) * 2008-03-25 2009-10-08 Panasonic Corp 圧電性磁器組成物
JP2010000336A (ja) 2008-06-19 2010-01-07 Olympus Medical Systems Corp 超音波手術装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2695681A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072326A1 (ja) * 2013-11-15 2015-05-21 オリンパスメディカルシステムズ株式会社 振動発生ユニット、振動体ユニット及び超音波処置装置
JP5865558B2 (ja) * 2013-11-15 2016-02-17 オリンパス株式会社 振動発生ユニット、振動体ユニット及び超音波処置装置
US10046362B2 (en) 2013-11-15 2018-08-14 Olympus Corporation Vibration generating unit, vibrating body unit, and ultrasonic treatment apparatus
JP2020130078A (ja) * 2019-02-21 2020-08-31 三菱ケミカルエンジニアリング株式会社 超音波消泡手段を備えた微生物培養装置、およびこの微生物培養装置を用いた微生物培養方法
JP7278097B2 (ja) 2019-02-21 2023-05-19 三菱ケミカルエンジニアリング株式会社 超音波消泡手段を備えた微生物培養装置、およびこの微生物培養装置を用いた微生物培養方法

Also Published As

Publication number Publication date
JPWO2013027614A1 (ja) 2015-03-19
EP2695681A1 (en) 2014-02-12
CN103547380A (zh) 2014-01-29
US20130274637A1 (en) 2013-10-17
EP2695681A4 (en) 2015-02-18
JP5363682B2 (ja) 2013-12-11
EP2695681B1 (en) 2016-03-02
US9184373B2 (en) 2015-11-10
CN103547380B (zh) 2015-10-07

Similar Documents

Publication Publication Date Title
WO2013027614A1 (ja) 超音波発生装置の製造方法、超音波処置装置の製造方法、超音波発生装置及び超音波処置装置
CN110167467B (zh) 超声变幅杆
JP5172684B2 (ja) 医療用超音波システム、ハンドピース、ならびに、形成および同調のための方法
EP3636180B1 (en) Ultrasonic transducer to waveguide joining
JP5587300B2 (ja) 超音波組織解剖器具
Zhang et al. Optimal path planning for robotic insertion of steerable electrode arrays in cochlear implant surgery
WO2013183714A1 (ja) 超音波プローブ及び超音波プローブの製造方法
AU3619100A (en) Apparatus and method for tuning ultrasonic transducers
JP2000506431A (ja) 伝送用構成要素の接続の方法及び装置
JP6091712B1 (ja) 超音波振動子の製造方法および超音波振動子
JP2023029830A (ja) 複数のモードで振動可能な超音波式手術用ツール及びツール先端部の非線形振動をもたらす駆動システム
CN106457310B (zh) 驱动装置以及驱动装置的控制方法
CN105307584A (zh) 用于将超声能量输送到身体组织的系统和方法
JP6099832B2 (ja) 振動発生ユニット、振動体ユニット及び超音波処置具
JP5485481B1 (ja) 超音波プローブ
US20110046521A1 (en) Ultra-Sonic and Vibratory Treatment Devices and Methods
US11903603B2 (en) Ultrasonic transducer
WO2014038272A1 (ja) 超音波伝達ユニット及び超音波処置装置
CN106457308A (zh) 振动产生单元、振动体单元以及超声波处置器具
CN118042998A (zh) 超声换能器
WO2022185414A1 (ja) 超音波処置具及び振動伝達部材
WO2018087841A1 (ja) 振動伝達部材及び超音波処置具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013512677

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826343

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012826343

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE