WO2015068340A1 - 太陽電池 - Google Patents

太陽電池 Download PDF

Info

Publication number
WO2015068340A1
WO2015068340A1 PCT/JP2014/005276 JP2014005276W WO2015068340A1 WO 2015068340 A1 WO2015068340 A1 WO 2015068340A1 JP 2014005276 W JP2014005276 W JP 2014005276W WO 2015068340 A1 WO2015068340 A1 WO 2015068340A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal substrate
semiconductor layer
type semiconductor
transparent conductive
conductive film
Prior art date
Application number
PCT/JP2014/005276
Other languages
English (en)
French (fr)
Inventor
浩一 廣瀬
義宏 松原
訓裕 川本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201480061045.8A priority Critical patent/CN105723524B/zh
Priority to EP14860072.9A priority patent/EP3067940B1/en
Priority to JP2015546283A priority patent/JP6524504B2/ja
Publication of WO2015068340A1 publication Critical patent/WO2015068340A1/ja
Priority to US15/146,527 priority patent/US10074763B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • This disclosure relates to solar cells.
  • Patent Document 1 in order to reduce the deterioration of characteristics due to the semiconductor layers on the front and back surfaces of the photovoltaic element wrapping around the end surface, the semiconductor layer on the front surface side is formed on the substantially entire surface of the substrate, and the semiconductor layer on the back surface side is A structure formed in a smaller area than the substrate is disclosed.
  • Patent Document 2 in a photovoltaic device, for example, when an n-type semiconductor layer is formed on a first main surface of an n substrate and a p-type semiconductor layer is formed on a second main surface, semiconductor layers having different conductivity types are formed. Depending on the order of formation, an n substrate-n layer-p layer rectifying junction or an n substrate-p layer-n layer reverse junction is formed on the side surface and peripheral edge of the n substrate. According to the former, it is stated that a rectifying junction is provided on the entire surface of the substrate, and there is no adverse effect such as suppression of carrier movement due to reverse bonding.
  • JP 2001-044461 A Japanese Patent Laid-Open No. 11-251609
  • a solar cell which is one embodiment of the present disclosure includes a crystal substrate having one conductivity type, a first semiconductor layer having one conductivity type stacked successively on one main surface of the crystal substrate and a side surface of the crystal substrate, and a crystal substrate A second semiconductor layer which is continuously stacked on the other main surface and the side surface of the crystal substrate and has another conductivity type and which overlaps at least partly with the first semiconductor layer on the side surface of the crystal substrate;
  • the first transparent conductive film is stacked on the first semiconductor layer and has an area smaller than the planar shape of the crystal substrate, and the second transparent conductive film is stacked on the second semiconductor layer.
  • the present disclosure it is possible to improve the output of the solar cell while suppressing the occurrence of leakage even if a semiconductor layer or the like wraps around the side surface of the crystal substrate.
  • FIG. 1 is a diagram showing a solar cell 10.
  • an n-type amorphous semiconductor layer wraps around the side surface of the crystal substrate from one main surface side
  • a p-type amorphous semiconductor layer wraps around the side surface of the crystal substrate from the other main surface side. It is based on the knowledge that experimentally confirmed that leaks hardly occur if only repeated.
  • the transparent conductive film wraps around the side surface of the crystal substrate from one main surface side, and the transparent conductive film wraps around the side surface of the crystal substrate from the other main surface side, it is short-circuited between the transparent conductive films, It was also confirmed that a leak occurred.
  • the n-type amorphous semiconductor layer on one main surface and the p-type amorphous semiconductor layer on the other main surface may overlap, but the transparent conductive film on one main surface and the other main surface By not overlapping the transparent conductive film, the output can be improved while suppressing the occurrence of leakage.
  • the following configuration is based on this finding.
  • FIG. 1A is a cross-sectional view.
  • the upper side is the light receiving surface side
  • the lower side is the back side.
  • (B) is a plan view showing the light receiving surface side
  • (c) is a plan view showing the back surface side
  • (d) is a cross-sectional view taken along the line DD in (b). Note that (d) shows the arrangement direction opposite to (a), the upper side being the back side, and the lower side being the light receiving side.
  • the vertical direction of the array is defined as the Y direction
  • the upper side is defined as the + Y direction in (b)
  • the sectional view changes depending on where to cut, (a) corresponds to the sectional view taken along line AA in (b).
  • the “light receiving surface” means a surface in the solar cell 10 on which light mainly enters from the outside. For example, more than 50% to 100% of the light incident on the solar cell 10 enters from the light receiving surface side.
  • the “back surface” means a surface opposite to the light receiving surface.
  • Solar cell 10 receives light such as sunlight, generates carriers and electrons and holes, collects the generated carriers, collects the collected carriers, and takes them out.
  • a portion that generates carriers is called a photoelectric conversion portion, and is composed of an n-type single crystal silicon substrate 11, an n-type semiconductor layer 12, and a p-type semiconductor layer 13.
  • the carriers are collected by the transparent conductive film 14 on the light receiving surface side and the transparent conductive film 15 on the back surface side. It is the current collecting electrode 16 on the light receiving surface side and the current collecting electrode 17 on the back surface side that collects the collected carriers.
  • the n-type single crystal silicon substrate 11 is simply referred to as a crystal substrate 11.
  • the current collecting electrode 16 on the light receiving surface side is a carrier current collecting electrode provided on the transparent conductive film 14 on the light receiving surface side.
  • the back-side collecting electrode 17 is a carrier collecting electrode provided on the back-side transparent conductive film 15.
  • These are, for example, fine wire electrode portions formed by screen printing a conductive paste in which conductive particles such as silver (Ag) are dispersed in a binder resin in a desired pattern on the transparent conductive films 14 and 15. It is.
  • the collecting electrodes 16 and 17 may be formed by using various sputtering methods, various vapor deposition methods, various plating methods, or the like instead of screen printing. As shown in FIGS. 1A and 1D, a plurality of current collecting electrodes 16 and 17 may be provided.
  • the present disclosure relates to the configuration of the photoelectric conversion unit and the transparent conductive films 14 and 15, the current collecting electrodes 16 and 17 are limited to the above description, and those illustrations are illustrated in FIGS. Only shown in d). Hereinafter, each configuration will be described in detail.
  • the crystal substrate 11 constituting the photoelectric conversion part is a single crystal semiconductor substrate having one conductivity type.
  • one conductivity type is n-type
  • a single crystal semiconductor is single crystal silicon.
  • the planar shape of the crystal substrate 11 has an octagonal shape in which the four corners 18, 19, 20, and 21 of the outer edge of the rectangular shape are cut out.
  • one side is about 100 mm to about 200 mm, and the four corners are cut out with a length of about 5 mm to about 16 mm along the side direction.
  • the thickness is, for example, about 75 ⁇ m to about 200 ⁇ m. These dimensions are merely examples, and other values may be used.
  • the n-type semiconductor layer 12 is a one-conductivity-type semiconductor layer provided on one main surface of the crystal substrate 11. Assuming that one main surface is a light receiving surface, one conductivity type is the conductivity type of the crystal substrate 11, and therefore the n-type semiconductor layer 12 is an n-type semiconductor layer provided on the light receiving surface.
  • the n-type semiconductor layer 12 includes an i-type amorphous silicon layer 22 and an n-type amorphous silicon layer 23 stacked thereon.
  • the p-type semiconductor layer 13 is a semiconductor layer of another conductivity type provided on the other main surface of the crystal substrate 11.
  • the other main surface is a main surface facing one main surface of the crystal substrate 11, and is the back surface of the crystal substrate 11 in this embodiment.
  • the one conductivity type is a conductivity type of the crystal substrate 11 and the other conductivity type is a conductivity type other than the one conductivity type, and thus is a p-type semiconductor layer.
  • the p-type semiconductor layer 13 includes an i-type amorphous silicon layer 24 and a p-type amorphous silicon layer 25 stacked thereon. When the n-type semiconductor layer 12 and the p-type semiconductor layer 13 are distinguished, the former is called a first semiconductor layer and the latter is called a second semiconductor layer.
  • the amorphous silicon layers 25 are stacked in this order.
  • the former is called a first i-type amorphous silicon layer and the latter is called a second i-type amorphous silicon layer.
  • the thickness of these laminated amorphous semiconductor thin layers is several nm to several tens of nm. For example, it can be about 5 to about 20 nm.
  • the i-type amorphous silicon layers 22 and 24 are intrinsic amorphous silicon thin layers having a lower concentration of dopant that generates carriers than the n-type amorphous silicon layer 23 and the p-type amorphous silicon layer 25.
  • the first i-type amorphous silicon layer 22 and the second i-type amorphous silicon layer 24 can have the same composition.
  • the n-type amorphous silicon layer 23 is an amorphous silicon thin layer containing a group V metal atom at a predetermined concentration. P (phosphorus) is used as the group V metal atom.
  • the p-type amorphous silicon layer 25 is an amorphous silicon thin layer containing a group III metal atom at a predetermined concentration. B (boron) is used as the group III metal atom.
  • the n-type semiconductor layer 12 is formed on the entire light receiving surface of the crystal substrate 11 except for portions corresponding to the four corners 18, 19, 20, and 21 of the outer edge of the crystal substrate 11.
  • the crystal substrate 11 is held at a predetermined position of the film forming apparatus.
  • four light receiving surface sides of the four corners 18, 19, 20, and 21 of the crystal substrate 11 are arranged in four positions.
  • the holders 26, 27, 28, and 29 are pressed and held.
  • Four holders 26, 27, 28, and 29 may be used as one holder.
  • the locations corresponding to the four corners 18, 19, 20, and 21 of the crystal substrate 11 are shaded by the holders 26, 27, 28, and 29, and the non-film-formation regions 30, 31, 32, where the n-type semiconductor layer 12 is not formed. 33.
  • one of the four holders 29 is provided with an identification hole, and the n-type semiconductor layer 12 is formed at a location corresponding to the identification hole to form the identification mark 34.
  • FIG. 1B shows the wraparound n-type semiconductor layers 35, 36, 37 and 38 formed on the side surface of the crystal substrate 11.
  • the p-type semiconductor layer 13 is formed on the entire back surface of the crystal substrate 11 except for portions corresponding to the four corners 18, 19, 20, and 21 of the outer edge of the crystal substrate 11.
  • the crystal substrate 11 is held at a predetermined position of the film forming apparatus.
  • four holders 26, 27, 28, used for forming the n-type semiconductor layer 12 are used. 29 is used as it is, and the back side of the four corners 18, 19, 20, 21 of the crystal substrate 11 is pressed.
  • the locations corresponding to the four corners 18, 19, 20, and 21 of the crystal substrate 11 are shaded by the holders 26, 27, 28, and 29, and the non-deposited regions 39, 40, 41, where the p-type semiconductor layer 12 is not formed. 42.
  • An identification mark 43 is formed by the p-type semiconductor layer 13 corresponding to the identification hole provided in the holder 29.
  • FIG. 1C shows the wraparound p-type semiconductor layers 44, 45, 46 and 47 formed on the side surface of the crystal substrate 11.
  • the latter When distinguishing the non-deposition regions 39, 40, 41, and 42 of the p-type semiconductor layer 13 from the non-deposition regions 30, 31, 32, and 33 of the n-type semiconductor layer 12, the latter is designated as the first non-deposition region, and the former This is called a second non-film formation region.
  • the non-deposited regions 30, 31, 32, 33 of the n-type semiconductor layer 12 and the non-deposited regions 39, 40, 41, 42 of the p-type semiconductor layer 13 are When the manufacturing error is eliminated with respect to the crystal substrate 11, the positional relationship is reversed.
  • the n-type semiconductor layers 35, 36, 37, and 38 are formed on the side surface of the crystal substrate 11 from the light receiving surface side, and the p-type semiconductor layers 44, 45, 46, and 47 are formed from the back surface side. . Therefore, on the side surface of the crystal substrate 11, the overlap layer in which the wraparound n-type semiconductor layer 35 and the wraparound p-type semiconductor layer 44 overlap, the overlap layer in which the wraparound n-type semiconductor layer 36 and the wraparound p-type semiconductor layer 45 overlap, An overlapping layer in which the wraparound n-type semiconductor layer 38 and the wraparound p-type semiconductor layer 47 are overlapped is formed.
  • 1A illustrates a superposition layer 48 in which the wraparound n-type semiconductor layer 36 and the wraparound p-type semiconductor layer 45 overlap, and a superposition layer 49 in which the wraparound n-type semiconductor layer 38 and the wraparound p-type semiconductor layer 47 overlap.
  • the transparent conductive film 14 on the light receiving surface side is laminated on the first semiconductor layer on one main surface of the crystal substrate 11.
  • the transparent conductive film 14 on the light receiving surface side is formed on the light receiving surface of the crystal substrate 11.
  • the n-type semiconductor layer 12 is laminated on the n-type amorphous silicon layer 23 in detail.
  • the transparent conductive film 15 on the back surface side is stacked on the second semiconductor layer on the other main surface of the crystal substrate 11, and here, on the p-type semiconductor layer 13 on the back surface of the crystal substrate 11, in detail, p It is laminated on the type amorphous silicon layer 25.
  • the former is referred to as a first transparent conductive film
  • the latter is referred to as a second conductive film.
  • the two transparent conductive films 14 and 15 do not overlap on the side surface of the crystal substrate 11.
  • the other can have the same planar shape as the planar shape of the crystal substrate 11.
  • the other transparent conductive film has the same planar shape as the planar shape of the crystal substrate 11 and wraps around the side surface of the crystal substrate 11, it does not wrap around the opposite surface of the crystal substrate 11. This is because there is no short circuit with one transparent conductive film having an area smaller than the planar shape.
  • the n-type semiconductor layer 12 has higher carrier mobility than the p-type semiconductor layer 13. Therefore, the area of the transparent conductive film 14 on the light receiving surface side is set smaller than the planar dimension of the crystal substrate 11, and the area of the transparent conductive film 15 on the back surface side is made the same as the planar dimension of the crystal substrate 11. By doing in this way, the output of the solar cell 10 can be improved, preventing a leak.
  • the transparent conductive film 14 on the light receiving surface side is arranged on the inner side by an appropriate dimension from the outer edge of the crystal substrate 11. This dimension is set to a minimum value as long as it does not coincide with the outer shape of the crystal substrate 11 even if all manufacturing errors are included. That is, the transparent conductive film 14 is arranged regardless of the non-deposition regions 30, 31, 32, 33 of the n-type semiconductor layer 12. Therefore, when the undeposited regions 30, 31, 32, 33 are wide, the transparent conductive film 14 is provided on the undeposited regions 30, 31, 32, 33. In the example of FIG. 1B, the transparent conductive film 14 is provided on the non-film formation regions 32 and 33.
  • the transparent conductive film 15 on the back side is the same as the planar shape of the crystal substrate 11. That is, the transparent conductive film 15 is formed over the entire back surface of the crystal substrate 11.
  • the transparent conductive films 14 and 15 are made of, for example, metal oxides such as indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), and titanium oxide (TiO 2 ) having a polycrystalline structure. Is a thin layer (TCO layer) configured to include at least one of them, and functions as a light-transmissive electrode unit. These metal oxides contain dopants such as tin (Sn), zinc (Zn), tungsten (W), antimony (Sb), titanium (Ti), aluminum (Al), cerium (Ce), and gallium (Ga). It may be doped. The concentration of the dopant can be 0 to 20% by mass.
  • the thickness of the transparent conductive films 14 and 15 is, for example, about 50 nm to 200 nm.
  • FIG. 2 shows the solar cell 10 before the collector electrodes 16 and 17 are formed, that is, the crystal substrate 11 is prepared (P1 step), and the n-type semiconductor layer 12 is formed on the light receiving surface of the crystal substrate 11 ( (P2 process), the p-type semiconductor layer 13 is formed on the back surface of the crystal substrate 11 (P3 process), the transparent conductive film 14 is formed on the light receiving surface side (P4 process), and the transparent conductive film 15 is formed on the back surface side ( Processes up to (P5 process) are shown.
  • the horizontal axis of FIG. 2 is each procedure, and the vertical axis is (a) is a sectional view, (b) is a light receiving surface side plan view, (c) is a back side plan view, and FIGS. Corresponding to
  • the crystal substrate 11 is an n-type single crystal silicon substrate having an octagonal shape in which the four corners 18, 19, 20, and 21 of the rectangular outer edge are cut out.
  • the n-type semiconductor layer 12 is formed on the light receiving surface of the crystal substrate 11.
  • the outer edges of the four corners 18, 19, 20, and 21 on the light receiving surface side of the crystal substrate 11 are held by predetermined holders 26, 27, 28, and 29 and installed in the decompression chamber.
  • the i-type amorphous silicon layer 22 is laminated on the light receiving surface of the crystal substrate 11 by plasma CVD (chemical vapor deposition).
  • plasma CVD chemical vapor deposition
  • an n-type amorphous silicon layer 23 is stacked on the i-type amorphous silicon layer 22.
  • another low pressure CVD method may be used.
  • a catalytic CVD method can be used.
  • silane gas SiH 4
  • n-type amorphous silicon layer 23 silane (SiH 4 ), hydrogen (H 2 ), and phosphine (PH 3 ) are used as source gases.
  • the thickness of the laminated amorphous semiconductor thin layer is several nanometers to several tens of nanometers. For example, it can be about 5 to 20 nm.
  • the holding is performed by supporting the crystal substrate 11 with a holder such as a pin or a mask.
  • a holder such as a pin or a mask.
  • the crystal substrate 11 is placed on the sub-tray, the outer edges of the four corners 18, 19, 20, and 21 of the crystal substrate 11 are pressed by the holders 26, 27, 28, and 29, and the sub-tray is inclined at a predetermined angle from the horizontal plane.
  • the predetermined angle may be 90 degrees, that is, vertical.
  • four holders 26, 27, 28, 29 may be attached to one sub-tray, and an integrated unit of four holders 26, 27, 28, 29 may be attached to one sub-tray. Also good.
  • a plurality of sub-trays may be arranged on one large tray, and a plurality of crystal substrates 11 may be processed at a time.
  • the holding amount at the outer edges of the four corners 18, 19, 20, 21 of the crystal substrate 11 may be different.
  • the holding amount at the corners 18 and 19 is preferably larger than the holding amount at the corners 20 and 21 as shown in FIG.
  • the n-type semiconductor layer 12 is formed on the light receiving surface of the crystal substrate 11 at a location that is not in the shadow of the holders 26, 27, 28, and 29.
  • the places behind the holders 26, 27, 28, and 29 are undeposited regions 30, 31, 32, and 33.
  • the n-type semiconductor layer 12 is formed where it is not in the shadow of the holders 26, 27, 28, 29, it is formed continuously on the light receiving surface and the side surface of the crystal substrate 11.
  • wrap-around n-type semiconductor layers 35, 36, 37, and 38 are formed on the side surface of the crystal substrate 11.
  • the holder 29 is provided with, for example, a triangular identification hole, and correspondingly, a triangular area identification mark 34 is formed by the n-type semiconductor layer 12 in the undeposited area 33.
  • the p-type semiconductor layer 13 is then formed in the P3 step.
  • the p-type semiconductor layer 13 is formed by turning over the crystal substrate 11 on which the n-type semiconductor layer 12 is formed, and using a predetermined holder to cover the outer edges of the four corners 18, 19, 20, 21 on the back side of the crystal substrate 11. Hold and place in a vacuum chamber.
  • the decompression chamber the same type of CVD apparatus as in the P2 process can be used.
  • an i-type amorphous silicon layer 24 is laminated on the back surface of the crystal substrate 11.
  • a p-type amorphous silicon layer 25 is stacked on the i-type amorphous silicon layer 24.
  • silane gas (SiH 4 ) is used as a source gas.
  • silane (SiH 4 ), hydrogen (H 2 ), and diborane (B 2 H 6 ) are used as source gases.
  • the thickness of the laminated amorphous semiconductor thin layer is several nanometers to several tens of nanometers. For example, it can be about 5 to 20 nm.
  • the holders 26, 27, 28, and 29 used in the P2 process can be used as they are. Although it is a holder having the same shape and size, a holder different from that used in the P2 process may be used.
  • the holders 26, 27, 28, 29 are arranged with respect to the crystal substrate 11 so as to be reversed from each other.
  • the p-type semiconductor layer 13 is formed on the back surface of the crystal substrate 11 at a location that is not in the shadow of the holders 26, 27, 28, and 29.
  • the places behind the holders 26, 27, 28, 29 are undeposited regions 39, 40, 41, 42.
  • the p-type semiconductor layer 13 Since the p-type semiconductor layer 13 is formed where it is not in the shadow of the holders 26, 27, 28, 29, it is formed continuously on the back surface and side surfaces of the crystal substrate 11. On the side surface of the crystal substrate 11, wraparound p-type semiconductor layers 44, 45, 46, and 47 are formed. In addition, in the undeposited region 42, a triangular region identification mark 43 is formed by the p-type semiconductor layer 13 corresponding to the identification hole provided in the holder 29. The identification mark 43 is formed at a position where the identification mark 34 formed in the P2 step and the crystal substrate 11 are reversed.
  • FIG. 2 shows a superposition layer 48 in which the wraparound n-type semiconductor layer 36 and the wraparound p-type semiconductor layer 45 overlap, and a superposition layer 49 in which the wraparound n-type semiconductor layer 38 and the wraparound p-type semiconductor layer 47 overlap. It is.
  • the transparent conductive film 14 on the light receiving surface side is formed (P4 step).
  • the n-type semiconductor layer 12 on the light receiving surface side of the crystal substrate 11 is disposed so as to face the sputter electrode, and has an opening area smaller than the planar shape of the crystal substrate 11 on the light receiving surface side. This is done by positioning the frame mask. The positioning of the frame-shaped mask is performed so that the inner edge end of the opening of the frame-shaped mask is inside the outer edge of the crystal substrate 11 when the opening of the frame-shaped mask is placed in the center of the crystal substrate 11. .
  • the non-film formation region of the transparent conductive film 14 can be formed in an annular shape on the outer peripheral side of the light receiving surface.
  • the width of the undeposited region is set to a minimum value as long as it does not coincide with the outer shape of the crystal substrate 11 even if all manufacturing errors are included. For example, it is about 1 to 2 mm.
  • the transparent conductive film 15 on the back side is formed.
  • the crystal substrate 11 on which the transparent conductive film 14 on the light receiving surface side is formed is turned over, and the p-type semiconductor layer 13 on the back surface side of the crystal substrate 11 is disposed so as to face the sputtering electrode.
  • the sputtering apparatus having the sputtering electrode the same type as in the P4 process can be used. Unlike the P4 process, no mask is used, and therefore the transparent conductive film 15 is formed on the entire surface of the p-type semiconductor layer 13.
  • the transparent conductive film 15 on the back side may wrap around the side surface of the crystal substrate 11, but the transparent conductive film 14 on the light receiving surface side does not wrap around, so that the transparent conductive film 14 and the transparent conductive film 15 are short-circuited. There is no occurrence of leaks.
  • FIG. 3 is a diagram showing a procedure for manufacturing a conventional solar cell configured to prevent leakage.
  • 3A is a cross-sectional view
  • FIG. 3B is a light-receiving surface side plan view
  • FIG. 3C is a back surface side plan view, and corresponds to FIGS.
  • the horizontal axis represents each procedure, and P1 'to P5' correspond to P1 to P5 in FIG.
  • the film formation conditions for each procedure are the same as those described with reference to FIG. 2, and the difference is the size of the film formation region from P2 to P4. Therefore, in the following, the contents of the film formation region different from FIG. 2 will be described, and the description of the other contents common to FIG. 2 will be omitted.
  • the P2 ′ process is a process for forming the n-type semiconductor layer 50.
  • the n-type semiconductor layer 50 is formed by laminating an i-type amorphous silicon layer 51 on the light receiving surface of the crystal substrate 11, and subsequently, an n-type amorphous silicon layer 52 on the i-type amorphous silicon layer 51. Is performed by laminating. This content is the same as described in FIG. The difference is that the size of the film formation region of the n-type semiconductor layer 50 is smaller than the planar shape of the crystal substrate 11.
  • the n-type semiconductor layer 50 is formed using a frame mask having an opening area smaller than the planar shape of the crystal substrate 11.
  • the part covered with the frame-shaped mask is an undeposited region of the n-type semiconductor layer 50 and can be formed in an annular shape on the outer peripheral side of the light receiving surface.
  • the width dimension of the non-film formation region is uniform from the outer edge of the crystal substrate 11 and is, for example, about 0.3 to 3 mm. This is an example, and other dimensions may be used.
  • the P3 ′ process is a process for forming the p-type semiconductor layer 53.
  • the p-type semiconductor layer 53 is formed by laminating an i-type amorphous silicon layer 54 on the back surface of the crystal substrate 11, and subsequently forming a p-type amorphous silicon layer 55 on the i-type amorphous silicon layer 51. It is done by stacking. This content is the same as described in FIG. The difference is that the size of the film formation region of the p-type semiconductor layer 53 is smaller than the planar shape of the crystal substrate 11. That is, the p-type semiconductor layer 53 is formed using a frame-shaped mask having an opening area smaller than the planar shape of the crystal substrate 11.
  • the frame-shaped mask one having the same opening area as that used in the P2 ′ process can be used.
  • the portion covered with the frame-shaped mask is an undeposited region of the p-type semiconductor layer 53 and can be formed in an annular shape on the outer peripheral side of the back surface.
  • the width of the undeposited region is the same as the width of the undeposited region in the n-type semiconductor layer 50.
  • both the size of the film formation region of the n-type semiconductor layer 50 and the size of the film formation region of the p-type semiconductor layer 53 are set to an area smaller than the planar shape of the crystal substrate 11. Therefore, the n-type semiconductor layer 50 does not wrap around the side surface of the crystal substrate 11, and the p-type semiconductor layer 53 does not wrap around, so that leakage due to the wrap-around of the n-type semiconductor layer 50 or the p-type semiconductor layer 53 does not occur.
  • the P4 ′ step is a step of forming the transparent conductive film 56 on the light receiving surface side.
  • the film forming conditions and the like in this step are the same as those in the P4 step in FIG. The difference is the film formation region of the transparent conductive film 56 on the light receiving surface side.
  • the area of the transparent conductive film 56 on the light receiving surface side is smaller than the planar shape of the crystal substrate 11 and larger than the area of the film formation region of the n-type semiconductor layer 50. That is, the transparent conductive film 56 on the light receiving surface side completely covers the film formation region of the n-type semiconductor layer 50, but the outer edge thereof is inside the outer edge of the crystal substrate 11.
  • the P5 'step is a step of forming the transparent conductive film 57 on the back side.
  • the film forming conditions and the like in this step are the same as those in the P5 step in FIG.
  • the difference is the film formation region of the transparent conductive film 57 on the back surface side.
  • the area of the transparent conductive film 57 on the back surface side is the same as the area of the transparent conductive film 56 on the light receiving surface side. That is, the area of the transparent conductive film 57 on the back surface side is smaller than the planar shape of the crystal substrate 11 and larger than the area of the film formation region of the p-type semiconductor layer 53.
  • the transparent conductive film 57 on the back surface completely covers the film formation region of the p-type semiconductor layer 53, but the outer edge is inside the outer edge of the crystal substrate 11.
  • both the size of the film formation region of the transparent conductive film 56 on the light receiving surface side and the size of the film formation region of the transparent conductive film 57 on the back surface side are set to areas smaller than the planar shape of the crystal substrate 11. Accordingly, the transparent conductive film 56 on the light receiving surface side does not enter the side surface of the crystal substrate 11, and the transparent conductive film 57 on the back surface side does not enter, and the transparent conductive film 56 on the light receiving surface side or the transparent conductive film 57 on the back surface side wraps around. Leakage will not occur.
  • the number of carriers that can be collected depends on the area of the n-type semiconductor layer 50 and the area of the p-type semiconductor layer 53, and thus the crystal substrate 11 having the same size.
  • the number of carriers that can be collected can be maximized while preventing leakage, and the output of the solar cell 10 can be improved.
  • the photoelectric conversion part having a structure in which the amorphous silicon thin layers are laminated on both surfaces of the crystal substrate 11 is illustrated, but the structure of the photoelectric conversion part is not limited thereto.
  • the photoelectric conversion unit has, for example, a structure having no i-type amorphous silicon layer, n-type amorphous silicon layer, or p-type amorphous silicon layer, or a structure using a semiconductor other than silicon (for example, gallium arsenide). It can also be.
  • the amorphous silicon in this embodiment includes amorphous silicon including crystal grains.
  • the one conductivity type is n-type and the other conductivity type is p-type.
  • the one conductivity type may be p-type and the other conductivity type may be n-type.
  • one main surface is the light receiving surface and the other main surface is the back surface, this may be reversed so that one main surface is the back surface and the other main surface is the light receiving surface.
  • the crystal substrate is an octagon with four corners cut off, it may have a rectangular shape with four corners not cut, a polygon other than an octagon, a round shape other than a rectangular shape, or an elliptical shape.
  • one identification mark is provided on each of the front and back surfaces, the identification mark may be provided only on either the light receiving surface or the back surface, and a plurality of identification marks may be provided instead of one.
  • the shape of the identification mark is a triangle, other shapes may be used. For example, it may be a bar code-like multiple elongated hole.
  • the crystal substrate 11 may be configured to hold at least one location. It is good also as a structure which hold

Abstract

 太陽電池(10)は、一導電型としてn型の導電型を有する結晶基板(11)と、結晶基板(11)の一主面としての受光面と結晶基板(11)の側面に連続して積層されるn型半導体層(12)と、結晶基板(11)の他主面としての裏面と結晶基板(11)の側面に連続して積層され結晶基板(11)の側面においてn型半導体層(12)と少なくとも一部が重なるp型半導体層(13)と、結晶基板(11)の受光面上において、n型半導体層に積層され、結晶基板(11)の平面形状よりも小さな面積を有する受光面側の透明導電膜(14)と、p型半導体層(13)に積層される裏面側の透明導電膜(15)とを備える。

Description

太陽電池
 本開示は、太陽電池に関する。
 特許文献1には、光起電力素子において表裏面の半導体層が端面に回り込むことによる特性低下を低減するために、表面側の半導体層は基板の略全面に形成され、裏面側の半導体層は基板より小面積に形成される構造を開示している。
 特許文献2には、光起電力素子において、例えばn基板の第一主面にn型半導体層を形成し、第二主面にp型半導体層を形成するとき、導電型の異なる半導体層の形成順序によって、n基板の側面及び周端部には、n基板-n層-p層の整流接合か、n基板-p層-n層の逆接合かが形成される。前者のように形成することで、基板の全面に整流接合が備えられることになり、逆接合によるキャリア移動の抑制等の悪影響が生じないと述べている。
特開2001-044461号公報 特開平11-251609号公報
 特許文献1,2に示すように、結晶基板の側面において半導体層や透明導電膜の回り込みがあるとリークが発生する恐れがある。リークを防ぐためにマスクを用いて、半導体層や透明導電膜のそれぞれを結晶基板よりも小面積とすると、太陽電池の出力が低下する。
 即ち、結晶基板の側面に半導体層等が回り込んでもリーク発生を抑制しつつ、太陽電池の出力を向上させることが求められる。
 本開示の一態様である太陽電池は、一導電型を有する結晶基板と、結晶基板の一主面と結晶基板の側面に連続して積層され一導電型を有する第1半導体層と、結晶基板の他主面と結晶基板の側面に連続して積層され他導電型を有し、結晶基板の側面において第1半導体層と少なくとも一部が重なる第2半導体層と、結晶基板の一主面上において、第1半導体層に積層され、結晶基板の平面形状よりも小さな面積を有する第1透明導電膜と、第2半導体層に積層される第2透明導電膜と、を備える。
 本開示の一態様によれば、結晶基板の側面に半導体層等が回り込んでもリーク発生を抑制しつつ、太陽電池の出力を向上させることができる。
実施の形態における太陽電池を示す図で、(a)は断面図、(b)は受光面側を示す平面図、(c)は裏面側を示す平面図、(d)は(b)のD-D線における断面図である。(b),(c)では集電電極の図示を省略した。 図1の太陽電池を製造する手順を示す図で、横軸は各手順を示し、縦軸は(a)が断面図、(b)が受光面側平面図、(c)が裏面側平面図である。 従来技術の太陽電池を製造する手順を、図2に対応させて示す図である。
 以下に図面を用いて、実施形態の一例について詳細に説明する。以下で述べる形状、寸法、材質等は、説明のための例示であって、これらに限定するものではない。以下の図面は、説明のための模式図であり、縦横高さに関する縮尺は、実際の太陽電池等の縦横高さと異なる場合がある。具体的な縦横高さに関する縮尺は、以下の説明を参酌して判断される。
 図1は、太陽電池10を示す図である。この太陽電池10は、一主面側からn型非晶質半導体層を結晶基板の側面に回り込ませ、その上に他主面側からp型非晶質半導体層を結晶基板の側面に回り込ませて重ねただけでは、リークがほとんど発生しないことを実験的に確かめた知見に基づくものである。また、一主面側から透明導電膜を結晶基板の側面に回り込ませ、その上に他主面側から透明導電膜を結晶基板の側面に回り込ませて重ねると、透明導電膜同士で短絡し、リークが発生することも確認された。したがって、結晶基板の側面において、一主面のn型非晶質半導体層と他主面のp型非晶質半導体層を重ねてもよいが、一主面の透明導電膜と他主面の透明導電膜を重ねないようにすることで、リーク発生を抑制しつつ、出力を向上させることができる。以下の構成は、この知見に基づくものである。
 図1(a)は断面図である。(a)において上方側が受光面側、下方側が裏面側である。(b)は受光面側を示す平面図、(c)は裏面側を示す平面図、(d)は(b)のD-D線における断面図である。なお(d)は、(a)と配列方向を逆とし、上方側を裏面側、下方側を受光面側として示した。また、(b)と(c)も表裏反転となるので、配列の上下方向をY方向とし、上方側を(b)では+Y方向、(c)では-Y方向として、符号で区別した。
 このように、断面図はどこで切断するかで変わるが、(a)は(b)のA-A線における断面図に相当する。ここで、「受光面」とは、太陽電池10において外部から光が主に入射する面を意味する。例えば、太陽電池10に入射する光のうち50%超過~100%が受光面側から入射する。また、「裏面」とは、受光面とは反対側の面を意味する。
 太陽電池10は、太陽光等の光を受光してキャリアである電子および正孔を生成し、生成されたキャリアを収集し、収集したキャリアを集電して外部へ取り出す。キャリアを生成する部分は光電変換部と呼ばれ、n型単結晶シリコン基板11と、n型半導体層12と、p型半導体層13で構成される。キャリアを収集するのは、受光面側の透明導電膜14と裏面側の透明導電膜15である。収集したキャリアを集電するのは、受光面側の集電電極16と裏面側の集電電極17である。以下では、n型単結晶シリコン基板11を、単に結晶基板11と呼ぶ。
 受光面側の集電電極16は受光面側の透明導電膜14上に設けられるキャリアの集電電極である。裏面側の集電電極17は裏面側の透明導電膜15上に設けられるキャリアの集電電極である。これらは、例えば、バインダー樹脂中に銀(Ag)等の導電性粒子を分散させた導電性ペーストを透明導電膜14,15上に所望のパターンでスクリーン印刷して形成される細線状の電極部である。または、スクリーン印刷の代わりに、各種スパッタ法、各種蒸着法、各種メッキ法等を用いて集電電極16,17を形成してもよい。図1(a),(d)に示すように集電電極16,17をそれぞれ、複数設けてもよい。
 本開示は、光電変換部と透明導電膜14,15の構成に関するものであるので、集電電極16,17については、上記の説明に止め、またそれらの図示は、図1(a),(d)に示すのみとした。以下に、各構成について詳細に説明を行う。
 光電変換部を構成する結晶基板11は、一導電型を有する単結晶半導体基板である。ここでは、一導電型をn型とし、単結晶半導体を単結晶シリコンとする。結晶基板11の平面形状は、図1(b),(c)に示すように、矩形形状の外縁の4隅部18,19,20,21を切り欠いた8角形状を有する。寸法の一例を述べると、一辺が約100mmから約200mmで、各4隅において辺方向に沿って約5mmから約16mm程度の長さで切り欠かれる。薄型の太陽電池10の場合、厚さは、例えば、約75μmから約200μm程度である。これらの寸法は一例であって、これ以外の値であってもよい。
 n型半導体層12は、結晶基板11の一主面に設けられる一導電型の半導体層である。一主面を受光面とすると、一導電型は、結晶基板11の導電型であるので、n型半導体層12は、受光面に設けられるn型の半導体層である。n型半導体層12は、i型非晶質シリコン層22と、その上に積層されたn型非晶質シリコン層23で構成される。
 p型半導体層13は、結晶基板11の他主面に設けられる他導電型の半導体層である。他主面は結晶基板11の一主面と対向する主面であり、本実施形態の場合、結晶基板11の裏面である。また、一導電型は、結晶基板11の導電型であり、他導電型は一導電型でない導電型であるため、p型の半導体層である。p型半導体層13は、i型非晶質シリコン層24と、その上に積層されたp型非晶質シリコン層25で構成される。n型半導体層12とp型半導体層13を区別するときは、前者を第1半導体層、後者を第2半導体層と呼ぶ。
 図1(a)では、受光面側から裏面側に向かって、n型非晶質シリコン層23、i型非晶質シリコン層22、結晶基板11、i型非晶質シリコン層24、p型非晶質シリコン層25の順に積層される。i型非晶質シリコン層22,24を区別するときは、前者を第一i型非晶質シリコン層、後者を第二i型非晶質シリコン層と呼ぶ。これらの積層された非晶質半導体薄層の厚さは、数nm~数十nmである。例えば、約5~約20nmとすることができる。
 i型非晶質シリコン層22,24は、n型非晶質シリコン層23およびp型非晶質シリコン層25よりもキャリアを発生させるドーパントの濃度が低い真性非晶質シリコン薄層である。第一i型非晶質シリコン層22と第二i型非晶質シリコン層24は、同一の組成を有するものとできる。n型非晶質シリコン層23は、V族の金属原子を所定の濃度で含む非晶質シリコン薄層である。V族の金属原子としては、P(リン)が用いられる。p型非晶質シリコン層25は、III族の金属原子を所定の濃度で含む非晶質シリコン薄層である。III族の金属原子としては、B(ボロン)が用いられる。
 n型半導体層12は、結晶基板11の外縁の4隅部18,19,20,21に対応する箇所を除き、結晶基板11の受光面の全面に形成される。n型半導体層12の形成のために成膜装置の所定の位置に結晶基板11を保持するが、ここでは、結晶基板11の4隅部18,19,20,21の受光面側を4つの保持具26,27,28,29(図2参照)で押えて保持するものとした。4つの保持具26,27,28,29を1つの保持具としてもよい。
 結晶基板11の4隅部18,19,20,21に対応する箇所は、保持具26,27,28,29の陰となり、n型半導体層12が形成されない未成膜領域30,31,32,33となる。なお、4つの内の1つの保持具29に識別穴が設けられ、その識別穴に対応する箇所にはn型半導体層12が形成され、識別マーク34となる。
 それ以外は保持具26,27,28,29の陰にならないので、n型半導体層12は、結晶基板11の受光面から連続して側面にも回り込んで形成される。図1(b)に、結晶基板11の側面に形成された回り込みn型半導体層35,36,37,38を示した。
 p型半導体層13は、結晶基板11の外縁の4隅部18,19,20,21に対応する箇所を除き、結晶基板11の裏面の全面に形成される。p型半導体層13の形成のために成膜装置の所定の位置に結晶基板11を保持するが、ここでは、n型半導体層12形成の際に用いられる4つの保持具26,27,28,29をそのまま用いて、結晶基板11の4隅部18,19,20,21の裏面側を押えるものとした。結晶基板11の4隅部18,19,20,21に対応する箇所は、保持具26,27,28,29の陰となり、p型半導体層12が形成されない未成膜領域39,40,41,42となる。なお、保持具29に設けられる識別穴に対応して、識別マーク43がp型半導体層13によって形成される。
 それ以外は保持具の陰にならないので、p型半導体層12は、結晶基板11の受光面から連続して側面にも回り込んで形成される。図1(c)に、結晶基板11の側面に形成された回り込みp型半導体層44,45,46,47を示した。
 p型半導体層13の未成膜領域39,40,41,42と、n型半導体層12の未成膜領域30,31,32,33を区別するときは、後者を第1未成膜領域、前者を第2未成膜領域と呼ぶ。
 図1(b),(c)に示されるように、n型半導体層12の未成膜領域30,31,32,33と、p型半導体層13の未成膜領域39,40,41,42は、結晶基板11に対し、製造誤差をなくした場合、表裏反転の位置関係を有することになる。
 一方で、結晶基板11の側面には、受光面側から回り込みn型半導体層35,36,37,38が形成され、裏面側から回り込みp型半導体層44,45,46,47が形成される。したがって、結晶基板11の側面には、回り込みn型半導体層35と回り込みp型半導体層44が重なった重畳層、回り込みn型半導体層36と回り込みp型半導体層45が重なった重畳層、回り込みn型半導体層37と回り込みp型半導体層46が重なった重畳層、回り込みn型半導体層38と回り込みp型半導体層47が重なった重畳層が形成される。図1(a)には、回り込みn型半導体層36と回り込みp型半導体層45が重なった重畳層48と回り込みn型半導体層38と回り込みp型半導体層47が重なった重畳層49を図示した。実験結果によれば、これらの重畳層が形成されても、リークには影響を及ぼさないことが確認された。
 受光面側の透明導電膜14は、結晶基板11の一主面上において第一半導体層に積層されるもので、ここでは、受光面側の透明導電膜14は、結晶基板11の受光面において、n型半導体層12上、詳しくは、n型非晶質シリコン層23上に積層される。裏面側の透明導電膜15は、結晶基板11の他主面上において第二半導体層に積層されるもので、ここでは、結晶基板11の裏面において、p型半導体層13上、詳しくは、p型非晶質シリコン層25上に積層される。受光面側の透明導電膜14と裏面側の透明導電膜15を区別するときは、前者を第1透明導電膜、後者を第2導電膜と呼ぶ。
 リークを発生させないために、2つの透明導電膜14,15は、結晶基板11の側面において、重ならないことが必要である。例えば、少なくともいずれか一方を結晶基板11の平面形状よりも小さな面積に設定することで、他方を結晶基板11の平面形状と同じ平面形状とできる。すなわち、他方の透明導電膜を結晶基板11の平面形状と同じ平面形状として結晶基板11の側面に回り込むことがあった場合でも、結晶基板11の反対側の面にまでは回り込まず、結晶基板11の平面形状よりも小さな面積を有する一方の透明導電膜と短絡することがないからである。
 2つの透明導電膜14,15のうち、いずれを結晶基板11の平面形状より小さな面積とするかは、それぞれの透明導電膜が配置される半導体膜のキャリア移動度等の性能による。一般的にn型半導体層12の方がp型半導体層13よりもキャリア移動度が高い。そこで、受光面側の透明導電膜14の面積を、結晶基板11の平面寸法よりも小さく設定し、裏面側の透明導電膜15の面積を結晶基板11の平面寸法と同じとする。このようにすることで、リークを防止しつつ、太陽電池10の出力を向上させることができる。
 そこで、受光面側の透明導電膜14は、図1(c)に示すように、結晶基板11の外縁から適当な寸法だけ内側に配置される。この寸法は、製造上の誤差を全部含めても結晶基板11の外形と一致しない限度で最小の値に設定される。すなわち、n型半導体層12の未成膜領域30,31,32,33とは無関係に透明導電膜14の配置が行われる。したがって、未成膜領域30,31,32,33が広い場合には、透明導電膜14は、未成膜領域30,31,32,33上に設けられる。図1(b)の例では、未成膜領域32,33上に透明導電膜14が設けられる。一方、裏面側の透明導電膜15は、結晶基板11の平面形状と同じである。つまり、結晶基板11の裏面全面に渡って、透明導電膜15が形成される。
 かかる透明導電膜14,15は、例えば、多結晶構造を有する酸化インジウム(In23)、酸化亜鉛(ZnO)、酸化錫(SnO2)、および酸化チタン(TiO2)等の金属酸化物のうちの少なくとも1つを含んで構成される薄層(TCO層)であって、光透過性の電極部として機能する。これらの金属酸化物に、錫(Sn)、亜鉛(Zn)、タングステン(W)、アンチモン(Sb)、チタン(Ti)、アルミニウム(Al)、セリウム(Ce)、ガリウム(Ga)などのドーパントがドープされていてもよい。ドーパントの濃度は、0~20質量%とすることができる。透明導電膜14,15の厚さは、例えば、50nm~200nm程度である。
 かかる太陽電池10を製造する手順について、図2を用いて詳細に説明する。図2は、太陽電池10において、集電電極16,17の形成の前まで、つまり、結晶基板11を準備し(P1工程)、結晶基板11の受光面にn型半導体層12を形成し(P2工程)、結晶基板11の裏面にp型半導体層13を形成し(P3工程)、受光面側に透明導電膜14を形成し(P4工程)、裏面側に透明導電膜15を形成する(P5工程)までの工程が示される。図2の横軸は各手順で、縦軸は(a)が断面図、(b)が受光面側平面図、(c)が裏面側平面図で、図1の(a)から(c)に対応する。
 P1工程では、清浄な結晶基板11が準備される。結晶基板11は、矩形形状の外縁の4隅部18,19,20,21が切り欠かれた8角形状を有するn型単結晶シリコン基板である。
 P2工程では、結晶基板11の受光面上に、n型半導体層12が形成される。ここでは、所定の保持具26,27,28,29で、結晶基板11の受光面側の4隅部18,19,20,21の外縁を保持して減圧チャンバ内に設置する。そして、例えば、プラズマCVD(化学気相成長法)法により、結晶基板11の受光面上にi型非晶質シリコン層22を積層する。続いて、i型非晶質シリコン層22上にn型非晶質シリコン層23を積層する。プラズマCVD法に代えて、他の減圧CVD法を用いてもよい。例えば、触媒CVD法を用いることができる。
 i型非晶質シリコン層22の積層工程では、例えば、シランガス(SiH4)を原料ガスとして用いる。n型非晶質シリコン層23の積層工程では、シラン(SiH4)、水素(H2)、およびホスフィン(PH3)を原料ガスとして用いる。積層された非晶質半導体薄層の厚さは、数nm~数十nmである。例えば、約5~20nmとすることができる。
 保持は、結晶基板11にピンやマスク等の保持具で支えるようにして行われる。例えば、サブトレイの上に結晶基板11を置き、結晶基板11の4隅部18,19,20,21の外縁を保持具26,27,28,29で押え、サブトレイを水平面から所定の角度傾ける。所定の角度としては例えば90度、すなわち鉛直とすることができる。また、1つのサブトレイに4つの保持具26,27,28,29を取り付けるようにしてもよく、4つの保持具26,27,28,29を一体化したものを1つのサブトレイに取り付けるようにしてもよい。さらに、複数のサブトレイを1枚の大きなトレイに配置して、複数の結晶基板11を一度に処理するものとしてもよい。
 結晶基板11の4隅部18,19,20,21の外縁における保持の量をそれぞれ異なるものとしてもよい。例えば、結晶基板11を垂直方向に立てる場合、図2に示すように、隅部18,19における保持の量を、隅部20,21における保持の量よりも大きくすることがよい。
 このようにして、結晶基板11の受光面において、保持具26,27,28,29の陰にならないところにn型半導体層12が形成される。保持具26,27,28,29の陰になる所は、未成膜領域30,31,32,33となる。
 n型半導体層12は、保持具26,27,28,29の陰にならないところに、形成されるので、結晶基板11の受光面と側面に連続して形成される。結晶基板11の側面には、回りこみn型半導体層35,36,37,38が形成される。また、保持具29には、例えば三角形の識別穴が設けられ、これに対応して、未成膜領域33において三角形の領域の識別マーク34がn型半導体層12によって形成される。
 P2工程が終了すると、次にP3工程において、p型半導体層13の形成が行われる。p型半導体層13の形成は、n型半導体層12が形成された結晶基板11を裏返し、所定の保持具で、結晶基板11の裏面側の4隅部18,19,20,21の外縁を保持して減圧チャンバ内に設置する。減圧チャンバとしては、P2工程と同じ形式のCVD装置を用いることができる。
 そして結晶基板11の裏面上にi型非晶質シリコン層24を積層する。続いて、i型非晶質シリコン層24上にp型非晶質シリコン層25を積層する。i型非晶質シリコン層24の積層工程では、例えば、シランガス(SiH4)を原料ガスとして用いる。p型非晶質シリコン層25の積層工程では、シラン(SiH4)、水素(H2)、およびジボラン(B26)を原料ガスとして用いる。積層された非晶質半導体薄層の厚さは、数nm~数十nmである。例えば、約5~20nmとすることができる。
 保持具は、P2工程に用いた保持具26,27,28,29をそのまま用いることができる。同じ形状寸法の保持具ではあるが、P2工程に用いたものと別の保持具を用いるものとしてもよい。P2工程とP3工程とで同じ保持具26,27,28,29を用いるときは、結晶基板11に対し互いに表裏反転の位置関係で保持具26,27,28,29を配置する。
 このようにして、結晶基板11の裏面において、保持具26,27,28,29の陰にならないところにp型半導体層13が形成される。保持具26,27,28,29の陰になる所は、未成膜領域39,40,41,42となる。
 p型半導体層13は、保持具26,27,28,29の陰にならないところに、形成されるので、結晶基板11の裏面と側面に連続して形成される。結晶基板11の側面には、回りこみp型半導体層44,45,46,47が形成される。また、保持具29に設けられる識別穴に対応して、未成膜領域42において三角形の領域の識別マーク43がp型半導体層13によって形成される。識別マーク43は、P2工程で形成された識別マーク34と、結晶基板11に対し表裏反転の位置に形成される。
 結晶基板11の側面には、P2工程で回りこみn型半導体層35,36,37,38が形成され、次いでP3工程で回りこみp型半導体層44,45,46,47が形成される。したがって、結晶基板11の側面には、回りこみn型半導体層に少なくとも回りこみn型半導体層が一部重なっている。図2では、回りこみn型半導体層36と回りこみp型半導体層45が重なった重畳層48と、回りこみn型半導体層38と回りこみp型半導体層47が重なった重畳層49が示される。
 P3工程の次に、受光面側の透明導電膜14の形成が行われる(P4工程)。ここでは、スパッタ装置を用い、結晶基板11の受光面側のn型半導体層12がスパッタ電極に向かい合うように配置し、その受光面側に、結晶基板11の平面形状よりも小さい開口面積を有する枠状マスクを位置決めして行われる。枠状マスクの位置決めは、枠状マスクの開口部を結晶基板11の中央に置いたときに、枠状マスクの開口部の内縁端部が結晶基板11の外縁端より内側になるように行われる。これによって、透明導電膜14の未成膜領域が受光面の外周側に環状にできる。未成膜領域の幅は、製造上の誤差を全部含めても結晶基板11の外形と一致しない限度で最小の値となるように設定される。例えば、約1~2mm程度である。
 次に、P5工程において、裏面側の透明導電膜15の形成が行われる。ここでは、受光面側の透明導電膜14が形成された結晶基板11を裏返し、結晶基板11の裏面側のp型半導体層13がスパッタ電極に向かい合うように配置して行われる。スパッタ電極を有するスパッタ装置は、P4工程と同じ形式のものを用いることができる。P4工程と異なり、マスクは用いられず、したがって、p型半導体層13上の全面に透明導電膜15が形成される。
 結晶基板11の側面には、裏面側の透明導電膜15が回り込むことがあるが、受光面側の透明導電膜14は回り込むことがないので、透明導電膜14と透明導電膜15が短絡することによるリークの発生がない。
 図3は、リークが発生しないように構成された従来技術の太陽電池を製造する手順を示す図である。図3の縦軸は(a)が断面図、(b)が受光面側平面図、(c)が裏面側平面図で、図2の(a)から(c)に対応する。横軸は各手順で、P1’からP5’はそれぞれ図2のP1からP5に対応する。各手順の成膜条件は、図2で述べたものと同じ内容で、異なるのは、P2からP4における成膜領域の大きさである。そこで、以下では、図2と異なる成膜領域の内容について述べ、それ以外の図2と共通の内容については説明を省略する。
 図3のP1’工程は、図2のP1工程と同じで、結晶基板11を準備する工程である。P2’工程は、n型半導体層50を形成する工程である。n型半導体層50の形成は、結晶基板11の受光面上にi型非晶質シリコン層51を積層し、続いて、i型非晶質シリコン層51上にn型非晶質シリコン層52を積層して行われる。この内容は図2で述べたものと同じである。異なるのは、n型半導体層50の成膜領域の大きさが結晶基板11の平面形状よりも小さい面積であることである。すなわち、結晶基板11の平面形状よりも小さい開口面積を有する枠状マスクを用いて、n型半導体層50の成膜が行われる。枠状マスクで覆われる部分は、n型半導体層50の未成膜領域であり、受光面の外周側に環状にできる。未成膜領域の幅寸法は、結晶基板11の外縁端から一様で、例えば約0.3~3mm程度である。これは一例であって、これ以外の寸法であってもよい。
 P3’工程は、p型半導体層53を形成する工程である。p型半導体層53の形成は、結晶基板11の裏面上にi型非晶質シリコン層54を積層し、続いて、i型非晶質シリコン層51上にp型非晶質シリコン層55を積層して行われる。この内容は図2で述べたものと同じである。異なるのは、p型半導体層53の成膜領域の大きさが結晶基板11の平面形状よりも小さい面積であることである。すなわち、結晶基板11の平面形状よりも小さい開口面積を有する枠状のマスクを用いて、p型半導体層53の成膜が行われる。枠状マスクは、P2’工程で用いられたものと同じ開口面積を有するものを用いることができる。枠状のマスクで覆われる部分は、p型半導体層53の未成膜領域であり、裏面の外周側に環状にできる。未成膜領域の幅は、n型半導体層50における未成膜領域の幅と同じである。
 このように、n型半導体層50の成膜領域の大きさも、p型半導体層53の成膜領域の大きさも、共に結晶基板11の平面形状より小さな面積に設定される。したがって、結晶基板11の側面に、n型半導体層50も回り込まず、p型半導体層53も回り込まず、n型半導体層50やp型半導体層53の回り込みによるリークが発生することがない。
 P4’工程は、受光面側の透明導電膜56を形成する工程である。この工程の成膜条件等は、図2のP4工程のものと同じである。異なるのは、受光面側の透明導電膜56の成膜領域である。受光面側の透明導電膜56の面積は、結晶基板11の平面形状よりは小さく、n型半導体層50の成膜領域の面積よりも大きい。すなわち、受光面側の透明導電膜56は、n型半導体層50の成膜領域を完全に覆うが、その外縁端は、結晶基板11の外縁端よりは内側である。
 P5’工程は、裏面側の透明導電膜57を形成する工程である。この工程の成膜条件等は、図2のP5工程のものと同じである。異なるのは、裏面側の透明導電膜57の成膜領域である。裏面側の透明導電膜57の面積は、受光面側の透明導電膜56の面積と同じである。すなわち、裏面側の透明導電膜57の面積は、結晶基板11の平面形状よりは小さく、p型半導体層53の成膜領域の面積よりも大きい。すなわち、裏面側の透明導電膜57は、p型半導体層53の成膜領域を完全に覆うが、その外縁端は、結晶基板11の外縁端よりは内側である。
 このように、受光面側の透明導電膜56の成膜領域の大きさも、裏面側の透明導電膜57の成膜領域の大きさも、共に結晶基板11の平面形状より小さな面積に設定される。したがって、結晶基板11の側面に、受光面側の透明導電膜56も回り込まず、裏面側の透明導電膜57も回り込まず、受光面側の透明導電膜56や裏面側の透明導電膜57の回り込みによるリークが発生することがない。
 図3で示す構造であれば、リークはまったく発生しないが、収集できるキャリア数はn型半導体層50の面積とp型半導体層53の面積に依存するため、同一の大きさを有する結晶基板11を用いた図2の構造に比較すると、太陽電池としての出力が低下する。これに対し、図2の構造では、リークを防止しながら、収集できるキャリア数を最大化でき、太陽電池10の出力向上を図ることができる。
 上記では、結晶基板11の両面に非晶質シリコン薄層が積層された構造の光電変換部を例示したが、光電変換部の構造はこれに限定されない。光電変換部は、例えば、i型非晶質シリコン層やn型非晶質シリコン層、p型非晶質シリコン層を有さない構造、シリコン以外の半導体(例えば、ガリウムヒ素)を用いた構造とすることもできる。なお、本実施形態における非晶質シリコンとは、結晶粒を含んだ非晶質シリコンをも含む。
 また、上記では、一導電型をn型、他導電型をp型としたが、これを逆にして、一導電型をp型、他導電型をn型としてもよい。また、一主面を受光面、他主面を裏面としたが、これを逆にして、一主面を裏面、他主面を受光面としてもよい。
 また、結晶基板を4隅が切り欠かれた8角形としたが、4隅が切り欠かれない矩形形状、8角形以外の多角形形状、矩形形状以外の丸形形状や楕円形状であってもよい。また、表裏両面にそれぞれ1つの識別マークを設けるものとしたが、受光面または裏面のいずれかの面のみに識別マークを設けてもよく、1つでなく複数の識別マークを設けてもよい。識別マークの形状を三角形としたが、これ以外の形状であっても構わない。例えば、バーコード様の複数長穴であってもよい。
 加えて上記実施形態では、結晶基板11の4隅部18,19,20,21を保持する構成としたが、結晶基板11の少なくとも1箇所を保持する構成とすればよく、例えば、結晶基板11の隅部18,19の2箇所を保持する構成としてもよい。
 10 太陽電池、11 結晶基板、12,50 n型半導体層、13,53 p型半導体層、14,15,56,57 透明導電膜、16,17 集電電極、18,19,20,21 隅部、22,24,51,54 i型非晶質シリコン層、23,52 n型非晶質シリコン層、25,55 p型非晶質シリコン層、26,27,28,29 保持具、30,31,32,33,39,40,41,42 未成膜領域、34,43 識別マーク、35,36,37,38 回り込みn型半導体層、44,45,46,47 回り込みp型半導体層、48,49 重畳層。

Claims (6)

  1.  一導電型を有する結晶基板と、
     前記結晶基板の一主面と前記結晶基板の側面に連続して積層され前記一導電型を有する第1半導体層と、
     前記結晶基板の他主面と前記結晶基板の前記側面に連続して積層され他導電型を有し、前記結晶基板の前記側面において前記第1半導体層と少なくとも一部が重なる第2半導体層と、
     前記結晶基板の一主面上において、前記第1半導体層に積層され、前記結晶基板の平面形状よりも小さな面積を有する第1透明導電膜と、
     前記第2半導体層に積層される第2透明導電膜と、
     を備える太陽電池。
  2.  前記第1半導体層は、前記結晶基板の前記一主面上の外縁部において、複数の第1未成層領域を有し、
     前記第2半導体層は、前記結晶基板の前記他主面上の外縁部において、複数の第2未成層領域を有し、
     前記第1未成層領域と前記第2未成層領域とは、前記結晶基板に対し表裏反転の位置関係と大きさを有する、請求項1に記載の太陽電池。
  3.  前記結晶基板は、矩形形状の4隅部を切り欠いた8角形状を有し、
     前記第1未成層領域と前記第2未成層領域は、それぞれ前記4隅部に設けられる、請求項2に記載の太陽電池。
  4.  前記第1透明導電膜は、前記第1未成層領域上に設けられ、前記第2透明導電膜は、前記第2未成層領域上に設けられる、請求項2または3に記載の太陽電池。
  5.  前記第1半導体層は、第一i型非晶質半導体層と第一導電型非晶質半導体層が順に積層され、
     前記第2半導体層は、第二i型非晶質半導体層と第二導電型非晶質半導体層が順に積層される、請求項1から4のいずれか1項に記載の太陽電池。
  6.  前記第1未成層領域または前記第2未成層領域の少なくとも一方に識別マークが形成された、請求項2から5のいずれか1項に記載の太陽電池。
PCT/JP2014/005276 2013-11-08 2014-10-17 太陽電池 WO2015068340A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480061045.8A CN105723524B (zh) 2013-11-08 2014-10-17 太阳能电池
EP14860072.9A EP3067940B1 (en) 2013-11-08 2014-10-17 Solar cell
JP2015546283A JP6524504B2 (ja) 2013-11-08 2014-10-17 太陽電池
US15/146,527 US10074763B2 (en) 2013-11-08 2016-05-04 Solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013232346 2013-11-08
JP2013-232346 2013-11-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/146,527 Continuation US10074763B2 (en) 2013-11-08 2016-05-04 Solar cell

Publications (1)

Publication Number Publication Date
WO2015068340A1 true WO2015068340A1 (ja) 2015-05-14

Family

ID=53041138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005276 WO2015068340A1 (ja) 2013-11-08 2014-10-17 太陽電池

Country Status (5)

Country Link
US (1) US10074763B2 (ja)
EP (1) EP3067940B1 (ja)
JP (2) JP6524504B2 (ja)
CN (1) CN105723524B (ja)
WO (1) WO2015068340A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129904A (ja) * 1995-10-26 1997-05-16 Sanyo Electric Co Ltd 光起電力素子およびその製造方法
JPH11251609A (ja) 1998-03-05 1999-09-17 Sanyo Electric Co Ltd 光起電力素子及びその製造方法
JP2001044461A (ja) 1999-07-26 2001-02-16 Sanyo Electric Co Ltd 光起電力素子及びその製造方法
JP2011023759A (ja) * 2010-11-02 2011-02-03 Sanyo Electric Co Ltd 光起電力素子の製造方法
JP2011046990A (ja) * 2009-08-26 2011-03-10 Canon Anelva Corp 電圧印加装置及び基板処理装置
JP2011060971A (ja) * 2009-09-09 2011-03-24 Kaneka Corp 結晶シリコン太陽電池及びその製造方法
WO2012059878A1 (en) * 2010-11-05 2012-05-10 Roth & Rau Ag Edge isolation by lift-off
JP2012094861A (ja) * 2010-10-28 2012-05-17 Korea Inst Of Energy Research 太陽電池の薄膜蒸着装置、方法及びシステム
WO2014034677A1 (ja) * 2012-08-29 2014-03-06 三菱電機株式会社 光起電力素子およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4854387B2 (ja) * 2006-05-29 2012-01-18 三洋電機株式会社 光起電力素子
JP2009088203A (ja) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd 太陽電池、太陽電池モジュール及び太陽電池の製造方法
EP2765615B1 (en) * 2012-04-25 2018-05-23 Kaneka Corporation Solar cell, solar cell manufacturing method, and solar cell module
EP2682990B2 (en) * 2012-07-02 2023-11-22 Meyer Burger (Germany) GmbH Methods of manufacturing hetero-junction solar cells with edge isolation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129904A (ja) * 1995-10-26 1997-05-16 Sanyo Electric Co Ltd 光起電力素子およびその製造方法
JPH11251609A (ja) 1998-03-05 1999-09-17 Sanyo Electric Co Ltd 光起電力素子及びその製造方法
JP2001044461A (ja) 1999-07-26 2001-02-16 Sanyo Electric Co Ltd 光起電力素子及びその製造方法
JP2011046990A (ja) * 2009-08-26 2011-03-10 Canon Anelva Corp 電圧印加装置及び基板処理装置
JP2011060971A (ja) * 2009-09-09 2011-03-24 Kaneka Corp 結晶シリコン太陽電池及びその製造方法
JP2012094861A (ja) * 2010-10-28 2012-05-17 Korea Inst Of Energy Research 太陽電池の薄膜蒸着装置、方法及びシステム
JP2011023759A (ja) * 2010-11-02 2011-02-03 Sanyo Electric Co Ltd 光起電力素子の製造方法
WO2012059878A1 (en) * 2010-11-05 2012-05-10 Roth & Rau Ag Edge isolation by lift-off
WO2014034677A1 (ja) * 2012-08-29 2014-03-06 三菱電機株式会社 光起電力素子およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3067940A4

Also Published As

Publication number Publication date
EP3067940A1 (en) 2016-09-14
CN105723524B (zh) 2017-10-03
EP3067940A4 (en) 2016-11-16
JP6726890B2 (ja) 2020-07-22
CN105723524A (zh) 2016-06-29
US10074763B2 (en) 2018-09-11
EP3067940B1 (en) 2023-07-05
JP2019135783A (ja) 2019-08-15
JP6524504B2 (ja) 2019-06-05
JPWO2015068340A1 (ja) 2017-03-09
US20160247954A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
EP3196945B1 (en) Solar cell
US20130269771A1 (en) Solar cell
US20140011314A1 (en) Thin Film Solar Cell and Method of Manufacturing the Same
CN102422434A (zh) 太阳能电池
US20140034119A1 (en) Photoelectric device
US20120048372A1 (en) Solar cell
JPWO2012105155A1 (ja) 光電変換装置及びその製造方法
US20200203540A1 (en) Solar cell and electronic device provided with said solar cell
JP2013131586A (ja) 裏面電極型太陽電池の製造方法
US11056601B2 (en) Solar cell
JP2020167243A (ja) 太陽電池セル集合体、及び、太陽電池セルの製造方法
CN113659045A (zh) 一种异质结太阳能电池及其制作方法、异质结光伏组件
JP6726890B2 (ja) 太陽電池の製造方法、及び太陽電池
JP6792053B2 (ja) 太陽電池セル
US8642881B2 (en) Thin film solar cell and method of manufacturing the same
JPWO2019087590A1 (ja) 両面電極型太陽電池および太陽電池モジュール
WO2015068341A1 (ja) 太陽電池
JP6000315B2 (ja) 光起電力素子の製造方法
WO2019189267A1 (ja) 太陽電池セルの製造方法、太陽電池モジュールの製造方法、太陽電池セル、および、太陽電池モジュール
US20190319153A1 (en) Solar cell including conductive amorphous semiconductor layer and method of manufacturing solar cell
US20120048370A1 (en) Solar cell
US20110265848A1 (en) Thin film solar cell and method of manufacturing the same
KR101276888B1 (ko) 태양 전지
JP2012234856A (ja) 光電変換装置
TW201801339A (zh) 光發電元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860072

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015546283

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014860072

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014860072

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE