WO2015068341A1 - 太陽電池 - Google Patents

太陽電池 Download PDF

Info

Publication number
WO2015068341A1
WO2015068341A1 PCT/JP2014/005294 JP2014005294W WO2015068341A1 WO 2015068341 A1 WO2015068341 A1 WO 2015068341A1 JP 2014005294 W JP2014005294 W JP 2014005294W WO 2015068341 A1 WO2015068341 A1 WO 2015068341A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
crystal substrate
type semiconductor
thickness
type
Prior art date
Application number
PCT/JP2014/005294
Other languages
English (en)
French (fr)
Inventor
浩一 廣瀬
義宏 松原
訓裕 川本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2015546284A priority Critical patent/JPWO2015068341A1/ja
Priority to EP14859500.2A priority patent/EP3067936A4/en
Publication of WO2015068341A1 publication Critical patent/WO2015068341A1/ja
Priority to US15/142,967 priority patent/US20160322522A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This disclosure relates to solar cells.
  • Patent Document 1 in order to reduce the deterioration of characteristics due to the semiconductor layers on the front and back surfaces of the photovoltaic element wrapping around the end surface, the semiconductor layer on the front surface side is formed on the substantially entire surface of the substrate, and the semiconductor layer on the back surface side is A structure formed in a smaller area than the substrate is disclosed.
  • Patent Document 2 in a photovoltaic device, for example, when an n-type semiconductor layer is formed on a first main surface of an n substrate and a p-type semiconductor layer is formed on a second main surface, semiconductor layers having different conductivity types are formed. Depending on the order of formation, an n substrate-n layer-p layer rectifying junction or an n substrate-p layer-n layer reverse junction is formed on the side surface and peripheral edge of the n substrate. According to the former, it is stated that a rectifying junction is provided on the entire surface of the substrate, and there is no adverse effect such as suppression of carrier movement due to reverse bonding.
  • JP 2001-044461 A Japanese Patent Laid-Open No. 11-251609
  • the side surface of the substrate is exposed and there is no protective film. If the semiconductor layer on the light-receiving surface side or the semiconductor layer on the back surface wraps around the side surface of the substrate, the side surface of the substrate is covered. However, as described in Patent Documents 1 and 2, there is a possibility that the characteristics of the solar cell may deteriorate. .
  • a solar cell which is one embodiment of the present disclosure includes a crystal substrate having one conductivity type, a first semiconductor layer having one conductivity type formed on one main surface of the crystal substrate, and on the other main surface of the crystal substrate.
  • the thickness in the normal direction is less than the thickness in the normal direction of the first semiconductor layer on one main surface, and the thickness in the normal direction of the second semiconductor layer on the side surface is the second semiconductor layer on the other main surface. It is thinner than the thickness in the normal direction.
  • the protective film can be formed on the side surface of the crystal substrate without causing deterioration of the characteristics of the solar cell.
  • FIG. 1 is a diagram showing a solar cell 10.
  • an n-type amorphous semiconductor layer wraps around the side surface of the crystal substrate from one main surface side
  • a p-type amorphous semiconductor layer wraps around the side surface of the crystal substrate from the other main surface side. It is based on the knowledge that experimentally confirmed that leaks hardly occur if only repeated. As described above, if no leakage occurs even if the n-type amorphous semiconductor layer on one main surface and the p-type amorphous semiconductor layer on the other main surface are overlapped on the side surface of the crystal substrate, this is used to protect the side surface. We thought it could be used for membranes. The following configuration is based on this finding.
  • FIG. 1A is a cross-sectional view.
  • the upper side is the light receiving surface side
  • the lower side is the back side.
  • (B) is a plan view showing the light receiving surface side
  • (c) is a plan view showing the back surface side
  • (d) is a cross-sectional view taken along the line DD in (b). Note that (d) shows the arrangement direction opposite to (a), the upper side being the back side, and the lower side being the light receiving side.
  • the vertical direction of the arrangement is defined as the Y direction
  • the upper side of the page is defined as the + Y direction in (b), and the -Y direction in (c), and is distinguished by a sign. .
  • the sectional view changes depending on where to cut, (a) corresponds to the sectional view taken along line AA in (b).
  • the “light receiving surface” means a surface in the solar cell 10 on which light mainly enters from the outside. For example, more than 50% to 100% of the light incident on the solar cell 10 enters from the light receiving surface side.
  • the “back surface” means a surface opposite to the light receiving surface.
  • Solar cell 10 receives light such as sunlight, generates carriers and electrons and holes, collects the generated carriers, collects the collected carriers, and takes them out.
  • a portion that generates carriers is called a photoelectric conversion portion, and is composed of an n-type single crystal silicon substrate 11, an n-type semiconductor layer 12, and a p-type semiconductor layer 13.
  • the carriers are collected by the transparent conductive film 14 on the light receiving surface side and the transparent conductive film 15 on the back surface side. It is the current collecting electrode 16 on the light receiving surface side and the current collecting electrode 17 on the back surface side that collects the collected carriers.
  • the n-type single crystal silicon substrate 11 is simply referred to as a crystal substrate 11.
  • the current collecting electrode 16 on the light receiving surface side is a carrier current collecting electrode provided on the transparent conductive film 14 on the light receiving surface side.
  • the back-side collecting electrode 17 is a carrier collecting electrode provided on the back-side transparent conductive film 15.
  • These are, for example, fine wire electrode portions formed by screen printing a conductive paste in which conductive particles such as silver (Ag) are dispersed in a binder resin in a desired pattern on the transparent conductive films 14 and 15. It is.
  • the collecting electrodes 16 and 17 may be formed by using various sputtering methods, various vapor deposition methods, various plating methods, or the like instead of screen printing. As shown in FIGS. 1A and 1D, a plurality of current collecting electrodes 16 and 17 may be provided.
  • the present disclosure relates to the configuration of the photoelectric conversion unit and the transparent conductive films 14 and 15, the current collecting electrodes 16 and 17 are limited to the above description, and those illustrations are illustrated in FIGS. Only shown in d). Hereinafter, each configuration will be described in detail.
  • the crystal substrate 11 constituting the photoelectric conversion part is a single crystal semiconductor substrate having one conductivity type.
  • one conductivity type is n-type
  • a single crystal semiconductor is single crystal silicon.
  • the planar shape of the crystal substrate 11 has an octagonal shape in which the four corners 18, 19, 20, and 21 of the outer edge of the rectangular shape are cut out.
  • one side is about 100 mm to about 200 mm, and the four corners are cut out with a length of about 5 mm to about 16 mm along the side direction.
  • the thickness is, for example, about 75 ⁇ m to about 200 ⁇ m. These dimensions are merely examples, and other values may be used.
  • the surface of the crystal substrate 11, that is, the light receiving surface, the back surface, and the side surfaces each have a texture structure. 1 and 2, the texture structure is not shown, but will be described in detail later with reference to FIG. 3.
  • the “texture structure” is an uneven structure that suppresses surface reflection and increases the light absorption amount of the photoelectric conversion unit.
  • the thickness of the crystal substrate 11 along the direction in which the various films are stacked is several tens to several hundreds ⁇ m, and the unevenness height of the texture structure is several ⁇ m.
  • the n-type semiconductor layer 12 is a one-conductivity-type semiconductor layer provided on one main surface of the crystal substrate 11. Assuming that one main surface is a light receiving surface, one conductivity type is the conductivity type of the crystal substrate 11, and thus here is an n-type semiconductor layer provided on the light receiving surface.
  • the n-type semiconductor layer 12 includes an i-type amorphous silicon layer 22 and an n-type amorphous silicon layer 23 stacked thereon.
  • the p-type semiconductor layer 13 is a semiconductor layer of another conductivity type provided on the other main surface of the crystal substrate 11.
  • the other main surface is a main surface facing one main surface of the crystal substrate 11, and is the back surface of the crystal substrate 11 in this embodiment.
  • the one conductivity type is a conductivity type of the crystal substrate 11 and the other conductivity type is a conductivity type other than the one conductivity type, and thus is a p-type semiconductor layer.
  • the p-type semiconductor layer 13 includes an i-type amorphous silicon layer 24 and a p-type amorphous silicon layer 25 stacked thereon. When the n-type semiconductor layer 12 and the p-type semiconductor layer 13 are distinguished, the former is called a first semiconductor layer and the latter is called a second semiconductor layer.
  • the amorphous silicon layers 25 are stacked in this order.
  • the former is called a first i-type amorphous silicon layer and the latter is called a second i-type amorphous silicon layer.
  • the thickness of these laminated amorphous semiconductor thin layers is several nm to several tens of nm. For example, it can be about 5 to 20 nm.
  • the i-type amorphous silicon layers 22 and 24 are intrinsic amorphous silicon thin layers having a lower concentration of dopant that generates carriers than the n-type amorphous silicon layer 23 and the p-type amorphous silicon layer 25.
  • the first i-type amorphous silicon layer 22 and the second i-type amorphous silicon layer 24 can have the same composition.
  • the n-type amorphous silicon layer 23 is an amorphous silicon thin layer containing a group V metal atom at a predetermined concentration. P (phosphorus) is used as the group V metal atom.
  • the p-type amorphous silicon layer 25 is an amorphous silicon thin layer containing a group III metal atom at a predetermined concentration. B (boron) is used as the group III metal atom.
  • the photoelectric conversion part which has the n-type semiconductor layer 12 in the light-receiving surface side of the crystal substrate 11, and has the p-type semiconductor layer 13 in the back surface side can be manufactured with the following method as an example.
  • the crystal substrate 11 is placed in a vacuum chamber, and the i-type amorphous silicon layer 22 is laminated on the light receiving surface of the crystal substrate 11 by, for example, plasma CVD (chemical vapor deposition). Subsequently, an n-type amorphous silicon layer 23 is stacked on the i-type amorphous silicon layer 22. In this way, the n-type semiconductor layer 12 is formed on the light receiving surface.
  • plasma CVD chemical vapor deposition
  • the i-type amorphous silicon layer 24 and the p-type amorphous silicon layer 25 are sequentially laminated on the back surface of the crystal substrate 11 by, for example, a plasma CVD method.
  • a plasma CVD method instead of the plasma CVD method, another low pressure CVD method may be used.
  • a catalytic CVD method can be used.
  • silane gas SiH 4
  • hydrogen H 2
  • phosphine PH 3
  • diborane B 2 H 6
  • the n-type semiconductor layer 12 is formed on the entire light receiving surface of the crystal substrate 11 except for portions corresponding to the four corners 18, 19, 20, and 21 of the outer edge of the crystal substrate 11.
  • the crystal substrate 11 is held at a predetermined position of the plasma CVD apparatus.
  • the four light receiving surface sides of the four corners 18, 19, 20, and 21 of the crystal substrate 11 are separated from each other.
  • the holders 26, 27, 28, and 29 are pressed and held.
  • Four holders 26, 27, 28, and 29 may be used as one holder.
  • the locations corresponding to the four corners 18, 19, 20, and 21 of the crystal substrate 11 are shaded by the holders 26, 27, 28, and 29, and the non-film-formation regions 30, 31, 32, where the n-type semiconductor layer 12 is not formed. 33.
  • one of the four holders 29 is provided with an identification hole, and the n-type semiconductor layer 12 is formed at a location corresponding to the identification hole to form the identification mark 34.
  • the identification mark 34 can be omitted.
  • FIG. 1B shows the wraparound n-type semiconductor layers 35, 36, 37 and 38 formed on the side surface of the crystal substrate 11.
  • the p-type semiconductor layer 13 is formed on the entire back surface of the crystal substrate 11 except for portions corresponding to the four corners 18, 19, 20, and 21 of the outer edge of the crystal substrate 11.
  • the crystal substrate 11 is held at a predetermined position of the plasma CVD apparatus for forming the p-type semiconductor layer 13.
  • four holders 26, 27, 28, used for forming the n-type semiconductor layer 12 are used. 29 is used as it is, and the back side of the four corners 18, 19, 20, 21 of the crystal substrate 11 is pressed.
  • the locations corresponding to the four corners 18, 19, 20, and 21 of the crystal substrate 11 are shaded by the holders 26, 27, 28, and 29, and the non-deposited regions 39, 40, 41, where the p-type semiconductor layer 13 is not formed. 42.
  • An identification mark 43 is formed by the p-type semiconductor layer 13 corresponding to the identification hole provided in the holder 29. The identification mark 43 can be omitted.
  • FIG. 1C shows the wraparound p-type semiconductor layers 44, 45, 46 and 47 formed on the side surface of the crystal substrate 11.
  • the latter When distinguishing the non-deposition regions 39, 40, 41, and 42 of the p-type semiconductor layer 13 from the non-deposition regions 30, 31, 32, and 33 of the n-type semiconductor layer 12, the latter is designated as the first non-deposition region, and the former This is called a second non-film formation region.
  • the non-deposited regions 30, 31, 32, 33 of the n-type semiconductor layer 12 and the non-deposited regions 39, 40, 41, 42 of the p-type semiconductor layer 13 are When the manufacturing error is eliminated with respect to the crystal substrate 11, the positional relationship is reversed.
  • the n-type semiconductor layers 35, 36, 37, and 38 are formed on the side surface of the crystal substrate 11 from the light receiving surface side, and the p-type semiconductor layers 44, 45, 46, and 47 are formed from the back surface side. . Therefore, on the side surface of the crystal substrate 11, the overlap layer in which the wraparound n-type semiconductor layer 35 and the wraparound p-type semiconductor layer 44 overlap, the overlap layer in which the wraparound n-type semiconductor layer 36 and the wraparound p-type semiconductor layer 45 overlap, An overlapping layer in which the wraparound n-type semiconductor layer 38 and the wraparound p-type semiconductor layer 47 are overlapped is formed.
  • 1A illustrates a superposition layer 48 in which the wraparound n-type semiconductor layer 36 and the wraparound p-type semiconductor layer 45 overlap, and a superposition layer 49 in which the wraparound n-type semiconductor layer 38 and the wraparound p-type semiconductor layer 47 overlap.
  • the transparent conductive film 14 on the light receiving surface side is laminated on the first semiconductor layer on one main surface of the crystal substrate 11.
  • the transparent conductive film 14 on the light receiving surface side is formed on the light receiving surface of the crystal substrate 11.
  • the n-type semiconductor layer 12 is laminated on the n-type amorphous silicon layer 23 in detail.
  • the transparent conductive film 15 on the back surface side is stacked on the second semiconductor layer on the other main surface of the crystal substrate 11, and here, on the p-type semiconductor layer 13 on the back surface of the crystal substrate 11, in detail, p It is laminated on the type amorphous silicon layer 25.
  • the former is referred to as a first transparent conductive film
  • the latter is referred to as a second conductive film.
  • the transparent conductive film 14 on the light-receiving surface side is disposed on the inner side by an appropriate dimension from the outer edge of the crystal substrate 11. This dimension is set to a minimum value as long as it does not coincide with the outer shape of the crystal substrate 11 even if all manufacturing errors are included. That is, the transparent conductive film 14 is arranged regardless of the non-deposition regions 30, 31, 32, 33 of the n-type semiconductor layer 12. Therefore, when the undeposited regions 30, 31, 32, 33 are wide, the transparent conductive film 14 is provided on the undeposited regions 30, 31, 32, 33. In the example of FIG. 1B, the transparent conductive film 14 is provided on the non-film formation regions 32 and 33.
  • the transparent conductive film 15 on the back side is the same as the planar shape of the crystal substrate 11. That is, the transparent conductive film 15 is formed over the entire back surface of the crystal substrate 11.
  • the transparent conductive films 14 and 15 are made of, for example, metal oxides such as indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), and titanium oxide (TiO 2 ) having a polycrystalline structure. Is a thin layer (TCO layer) configured to include at least one of them, and functions as a light-transmissive electrode unit. These metal oxides contain dopants such as tin (Sn), zinc (Zn), tungsten (W), antimony (Sb), titanium (Ti), aluminum (Al), cerium (Ce), and gallium (Ga). It may be doped. The concentration of the dopant can be 0 to 20% by mass.
  • the thickness of the transparent conductive films 14 and 15 is, for example, about 50 nm to 200 nm.
  • the transparent conductive films 14 and 15 can be formed using a sputtering apparatus.
  • FIG. 2 is a diagram in which the crystal substrate 11, the n-type semiconductor layer 12, and the p-type semiconductor layer 13 are extracted from the structure of the solar cell 10.
  • 2A is an enlarged sectional view of the side surface of the crystal substrate 11
  • FIG. 2B is an enlarged sectional view of the overlapping layer 49
  • FIG. 2C is an n-type semiconductor layer 12 and a p-type semiconductor on the side surface of the crystal substrate 11.
  • FIG. 6 is a diagram showing a thickness distribution of a layer 13.
  • the illustration of the texture structure on the surface of the crystal substrate 11 is omitted. Since the influence of the texture structure on the thickness distribution of the n-type semiconductor layer 12 and the p-type semiconductor layer 13 will be described with reference to FIG. 3, the influence of the texture structure on the thickness distribution is not considered here.
  • the n-type semiconductor layer 12 is formed from the direction of the light receiving surface side of the crystal substrate 11, the n-type semiconductor layer 12 is formed so as to go around the side surface of the crystal substrate 11. That is the wraparound n-type semiconductor layer 38.
  • the thickness t n is the thickest on the light receiving surface side of the side surface of the crystal substrate 11 and gradually decreases toward the back surface side. Assuming that the thickness of the n-type semiconductor layer 12 formed on the light-receiving surface is t n0 , the thickness t n of the wrap-around n-type semiconductor layer 38 on the side of the light-receiving surface on the side surface of the crystal substrate 11 is as shown in FIG. As shown in FIG. 2, the light receiving surface end is substantially t n0 and the back surface end is substantially zero (0).
  • the p-type semiconductor layer 13 is formed by film formation from the direction of the back surface side of the crystal substrate 11, the p-type semiconductor layer 13 is also formed so as to wrap around the side surface of the crystal substrate 11. That is the wraparound p-type semiconductor layer 47.
  • the thickness t p is thickest on the back surface side of the side surface of the crystal substrate 11 and gradually decreases toward the light receiving surface side. Assuming that the thickness of the p-type semiconductor layer 13 formed on the light receiving surface is t p0 , the thickness t p of the wraparound p-type semiconductor layer 47 on the back surface side of the side surface of the crystal substrate 11 is shown in FIG. As shown, it is approximately t p0 at the back surface end and approximately zero (0) at the light receiving surface end.
  • FIG. 2C shows the distribution of (t n + t p ) along the side surface of the crystal substrate 11.
  • the thickness t n of the n-type semiconductor layer 38 wraparound at the side surface is slightly thinner than t n0 at the light receiving surface end, wraparound thickness t p of the p-type semiconductor layer 47 is slightly thinner than t p0 at the back side end. Therefore, the thickness t n of the n-type semiconductor layer 38 wraparound at the side surface is thinner than t n0, the thickness t p of the wraparound p-type semiconductor layer 47 is thinner than t p0. Further, the total thickness (t n + t p ) of the semiconductor layer that has been wrapped is thicker than both t n0 and t p0 , but is thinner than (t n0 + t p0 ). Thus, the side surface of the crystal substrate 11 is covered with the wraparound semiconductor layer, and the crystal substrate 11 is not exposed.
  • the side surface of the crystal substrate 11 is covered with a semiconductor layer having a thickness in the range of about 20 to 40 nm. From the viewpoint of protecting the side surface of the crystal substrate 11, this thickness is not too thin and not too thick, and is an appropriate thickness. That is, the wraparound semiconductor layer can be used as it is as a protective film on the side surface of the crystal substrate 11.
  • FIG. 3 corresponds to FIG. 2 and is a view when the texture structure 50 formed on the surface of the crystal substrate 11 is taken into consideration.
  • 3A is an enlarged cross-sectional view of the side surface of the crystal substrate 11
  • FIG. 3B is a diagram illustrating the texture structure 50
  • FIG. 3C is an n-type semiconductor layer 12 and a p-type semiconductor layer on the side surface of the crystal substrate 11.
  • 13 is a diagram showing a thickness distribution of 13.
  • the n-type semiconductor layer 12 has a laminated structure of an i-type amorphous layer silicon layer 22 and an n-type amorphous layer silicon layer 23, and the p-type semiconductor layer 13 includes an i-type amorphous layer silicon layer 24 and a p-type layer.
  • the laminated amorphous silicon layer 25 has a laminated structure, the laminated structure is not shown in FIG.
  • the texture structure 50 is minute irregularities formed on the surface of the crystal substrate 11 by treating the crystal substrate 11 with an anisotropic etching solution such as KOH.
  • the convex portion has a quadrangular pyramid shape as shown in FIG. The extending direction of one side of the bottom surface of the quadrangular pyramid is parallel to the Y direction of the crystal substrate 11 or parallel to the direction perpendicular thereto. The same applies to the side surface of the crystal substrate 11.
  • the length of one side of the base of the quadrangular pyramid is about 2 to 5 ⁇ m
  • the angle between the base of the quadrangular pyramid and the slope is 60 degrees
  • the vertical height of the apex with the base of the quadrangular pyramid as the reference plane The length is (3 0.5 ) times the length of one side of the bottom surface.
  • the texture structure 50 has a slope inclined at a constant angle with respect to the surface of the crystal substrate 11, the n-type semiconductor layer 12 and the p-type semiconductor layer 13 are formed on the slope. Therefore, the film thicknesses t n and t p are values measured along the normal direction of the slope of the texture structure 50.
  • the n-type semiconductor layer 12 is formed from the direction of the light receiving surface side of the crystal substrate 11, the n-type semiconductor layer 12 is also formed so as to go around the side surface of the crystal substrate 11. Since the texture structure 50 has a quadrangular pyramid shape, the n-type semiconductor layer 12 is formed so as to cover the entire surface of the quadrangular pyramid shape on the light receiving surface of the crystal substrate 11. On the side surface of the crystal substrate 11, one of the four slopes of the quadrangular pyramid shape of the texture structure 50 faces the light receiving surface side, the other one faces the back surface side, and the remaining two face the intermediate direction. Therefore, the n-type semiconductor layer 12 is formed on the surface facing the light receiving surface side of the texture structure 50 and is not formed on the surface facing the back surface side.
  • the p-type semiconductor layer 13 is formed from the direction of the back side of the crystal substrate 11, the p-type semiconductor layer 13 is also formed around the side surface of the crystal substrate 11. Since the texture structure 50 has a quadrangular pyramid shape, the p-type semiconductor layer 13 is formed on the back surface of the crystal substrate 11 so as to cover the entire surface of the quadrangular pyramid shape. On the side surface of the crystal substrate 11, one of the four slopes of the quadrangular pyramid shape of the texture structure 50 faces the back surface side, the other one faces the light receiving surface side, and the other two face the intermediate direction. Therefore, the p-type semiconductor layer 13 is formed on the surface facing the back surface side of the texture structure 50 and is not formed on the surface facing the back surface side.
  • FIG. 3B shows a region 51 where the n-type semiconductor layer 12 is formed and a region 52 where the p-type semiconductor layer 13 is formed in the texture structure 50 on the side surface of the crystal substrate 11.
  • the texture structure 50 is divided into two regions: a region 51 where the n-type semiconductor layer 12 is formed and a region 52 where the p-type semiconductor layer 13 is formed.
  • the two regions are distinguished, and the region 51 is referred to as a first region 51 and the region 52 is referred to as a second region 52.
  • the thickness t n in the normal direction of the wraparound n-type semiconductor layer 38 that wraps around the side surface of the crystal substrate 11 is the thickest on the light receiving surface side of the side surface of the crystal substrate 11 and gradually increases toward the back surface side. getting thin. If the thickness in the normal direction of the n-type semiconductor layer 12 formed on the light receiving surface is t n0 , the thickness t n in the normal direction of the wrap-around n-type semiconductor layer 38 on the side surface of the crystal substrate 11 is As shown in FIG. 3C, it is substantially t n0 at the light receiving surface end face and substantially zero (0) at the back face end face.
  • the thickness t p in the normal direction of the wraparound p-type semiconductor layer 47 that wraps around the side surface of the crystal substrate 11 is thickest on the back surface side of the side surface of the crystal substrate 11 and gradually decreases toward the light receiving surface side. Assuming that the thickness in the normal direction of the p-type semiconductor layer 13 formed on the light receiving surface is t p0 , the thickness t p of the wraparound p-type semiconductor layer 47 from the back surface side on the side surface of the crystal substrate 11 is As shown in FIG. 3 (c), it is substantially t p0 at the back surface end and substantially zero (0) at the light receiving surface end.
  • FIG. 3C shows the thickness distribution of the wraparound semiconductor layer along the side surface of the crystal substrate 11.
  • the first region 51 where the n-type semiconductor layer 12 is formed and the p-type semiconductor layer 13 where the p-type semiconductor layer 13 is formed are formed from the light receiving surface end toward the back surface end. Two regions 52 are alternately repeated.
  • the thickness t n in the normal direction of the wraparound n-type semiconductor layer 38 on the side surface is slightly thinner than t n0 at the end of the light receiving surface, and the thickness t p in the normal direction of the wraparound p-type semiconductor layer 47 is t at the end of the back surface. Slightly thinner than p0 . Therefore, the thickness t n in the normal direction of the wrap-around n-type semiconductor layer 38 on the side surface is smaller than t n0 , and the thickness t p in the normal direction of the wrap-around p-type semiconductor layer 47 is smaller than t p0 .
  • the total value (t n + t p ) of the thicknesses in the normal direction of the semiconductor layers formed around one texture structure 50 is thicker than t n0 and thicker than t p0 , but (t n0 + T p0 ).
  • the side surface of the crystal substrate 11 is covered with the wraparound semiconductor layer, and the crystal substrate 11 is not exposed.
  • the total value of the thicknesses in the normal direction of the semiconductor layers formed around one texture structure 50 on the side surface of the crystal substrate 11 is about 20 It is covered with a semiconductor layer having a thickness in the range of ⁇ 40 nm. From the viewpoint of protecting the side surface of the crystal substrate 11, this thickness is not too thin and not too thick, and is an appropriate thickness. That is, the wraparound semiconductor layer can be used as it is as a protective film on the side surface of the crystal substrate 11.
  • the photoelectric conversion part having a structure in which the amorphous silicon thin layers are laminated on both surfaces of the crystal substrate 11 is illustrated, but the structure of the photoelectric conversion part is not limited thereto.
  • the photoelectric conversion unit has, for example, a structure having no i-type amorphous silicon layer, n-type amorphous silicon layer, or p-type amorphous silicon layer, or a structure using a semiconductor other than silicon (for example, gallium arsenide). It can also be.
  • the amorphous silicon in this embodiment includes amorphous silicon including crystal grains.
  • the one conductivity type is n-type and the other conductivity type is p-type.
  • the one conductivity type may be p-type and the other conductivity type may be n-type.
  • one main surface is the light receiving surface and the other main surface is the back surface, this may be reversed so that one main surface is the back surface and the other main surface is the light receiving surface.
  • the crystal substrate is an octagon with four corners cut off, it may have a rectangular shape with four corners not cut, a polygon other than an octagon, a round shape other than a rectangular shape, or an elliptical shape. Good.
  • the crystal substrate 11 may be configured to hold at least one location. It is good also as a structure which hold

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 太陽電池10は、一導電型としてn型の導電型を有する結晶基板11と、結晶基板11の一主面としての受光面上に形成されるn型半導体層12と、結晶基板11の一主面としての裏面上に形成されるp型半導体層13と、を有し、n型半導体層12とp型半導体層13は、結晶基板11の主面と交差する側面の一部を覆い、側面におけるn型半導体層の法線方向の厚さは受光面上のn型半導体層12の法線方向の厚さよりも薄く、側面におけるp型半導体層13の法線方向の厚さは裏面上のp型半導体層13の法線方向の厚さよりも薄い。

Description

太陽電池
 本開示は、太陽電池に関する。
 特許文献1には、光起電力素子において表裏面の半導体層が端面に回り込むことによる特性低下を低減するために、表面側の半導体層は基板の略全面に形成され、裏面側の半導体層は基板より小面積に形成される構造を開示している。
 特許文献2には、光起電力素子において、例えばn基板の第一主面にn型半導体層を形成し、第二主面にp型半導体層を形成するとき、導電型の異なる半導体層の形成順序によって、n基板の側面及び周端部には、n基板-n層-p層の整流接合か、n基板-p層-n層の逆接合かが形成される。前者のように形成することで、基板の全面に整流接合が備えられることになり、逆接合によるキャリア移動の抑制等の悪影響が生じないと述べている。
特開2001-044461号公報 特開平11-251609号公報
 太陽電池において、受光面や裏面と異なり、基板の側面は露出していて、保護膜がない状態である。基板の側面に受光面側の半導体層や裏面側の半導体層が回り込めば基板の側面が覆われるが、特許文献1,2に記載されるように、太陽電池の特性低下が生じる恐れがある。
 即ち、太陽電池の特性低下を生じさせないで、結晶基板の側面に保護膜を形成することが求められる。
 本開示の一態様である太陽電池は、一導電型を有する結晶基板と、結晶基板の一主面上に形成された一導電型を有する第1半導体層と、結晶基板の他主面上に形成された他導電型を有する第2半導体層と、を有し、第1半導体層と第2半導体層は、結晶基板の主面と交差する側面の一部を覆い、側面における第1半導体層の法線方向の厚さは一主面上の第1半導体層の法線方向の厚さよりも薄く、側面における第2半導体層の法線方向の厚さは他主面上の第2半導体層の法線方向の厚さよりも薄い。
 本開示の一態様によれば、太陽電池の特性低下を生じさせないで、結晶基板の側面に保護膜を形成することができる。
実施の形態における太陽電池を示す図で、(a)は断面図、(b)は受光面側を示す平面図、(c)は裏面側を示す平面図、(d)は(b)のD-D線における断面図である。(b),(c)では集電電極の図示を省略した。 実施の形態の太陽電池における側面の拡大図である。(a)は断面図、(b)は(a)の一部拡大図、(c)は(a)における半導体層の膜厚分布を示す図である。 実施の形態の太陽電池において、結晶基板にテクスチャ構造を有するときの図2に対応する図である。(a)は断面図、(b)はテクスチャ構造の拡大図、(c)は(a)における半導体層の膜厚分布を示す図である。
 以下に図面を用いて、実施形態の一例について詳細に説明する。以下で述べる形状、寸法、材質等は、説明のための例示であって、これらに限定するものではない。以下の図面は、説明のための模式図であり、縦横高さに関する縮尺は、実際の太陽電池等の縦横高さと異なる場合がある。具体的な縦横高さに関する縮尺は、以下の説明を参酌して判断される。
 図1は、太陽電池10を示す図である。この太陽電池10は、一主面側からn型非晶質半導体層を結晶基板の側面に回り込ませ、その上に他主面側からp型非晶質半導体層を結晶基板の側面に回り込ませて重ねただけでは、リークがほとんど発生しないことを実験的に確かめた知見に基づくものである。このように、結晶基板の側面において、一主面のn型非晶質半導体層と他主面のp型非晶質半導体層を重ねてもリークが発生しないのであれば、これを側面の保護膜に用いることができると考えた。以下の構成は、この知見に基づくものである。
 図1(a)は断面図である。(a)において上方側が受光面側、下方側が裏面側である。(b)は受光面側を示す平面図、(c)は裏面側を示す平面図、(d)は(b)のD-D線における断面図である。なお(d)は、(a)と配列方向を逆とし、上方側を裏面側、下方側を受光面側として示した。また、(b)と(c)も表裏反転となるので、配列の上下方向をY方向とし、紙面の上方側を(b)では+Y方向、(c)では-Y方向として、符号で区別した。
 このように、断面図はどこで切断するかで変わるが、(a)は(b)のA-A線における断面図に相当する。ここで、「受光面」とは、太陽電池10において外部から光が主に入射する面を意味する。例えば、太陽電池10に入射する光のうち50%超過~100%が受光面側から入射する。また、「裏面」とは、受光面とは反対側の面を意味する。
 太陽電池10は、太陽光等の光を受光してキャリアである電子および正孔を生成し、生成されたキャリアを収集し、収集したキャリアを集電して外部へ取り出す。キャリアを生成する部分は光電変換部と呼ばれ、n型単結晶シリコン基板11と、n型半導体層12と、p型半導体層13で構成される。キャリアを収集するのは、受光面側の透明導電膜14と裏面側の透明導電膜15である。収集したキャリアを集電するのは、受光面側の集電電極16と裏面側の集電電極17である。以下では、n型単結晶シリコン基板11を、単に結晶基板11と呼ぶ。
 受光面側の集電電極16は受光面側の透明導電膜14上に設けられるキャリアの集電電極である。裏面側の集電電極17は裏面側の透明導電膜15上に設けられるキャリアの集電電極である。これらは、例えば、バインダー樹脂中に銀(Ag)等の導電性粒子を分散させた導電性ペーストを透明導電膜14,15上に所望のパターンでスクリーン印刷して形成される細線状の電極部である。または、スクリーン印刷の代わりに、各種スパッタ法、各種蒸着法、各種メッキ法等を用いて集電電極16,17を形成してもよい。図1(a),(d)に示すように集電電極16,17をそれぞれ、複数設けてもよい。
 本開示は、光電変換部と透明導電膜14,15の構成に関するものであるので、集電電極16,17については、上記の説明に止め、またそれらの図示は、図1(a),(d)に示すのみとした。以下に、各構成について詳細に説明を行う。
 光電変換部を構成する結晶基板11は、一導電型を有する単結晶半導体基板である。ここでは、一導電型をn型とし、単結晶半導体を単結晶シリコンとする。結晶基板11の平面形状は、図1(b),(c)に示すように、矩形形状の外縁の4隅部18,19,20,21を切り欠いた8角形状を有する。寸法の一例を述べると、一辺が約100mmから約200mmで、各4隅において辺方向に沿って約5mmから約16mm程度の長さで切り欠かれる。薄型の太陽電池10の場合、厚さは、例えば、約75μmから約200μm程度である。これらの寸法は一例であって、これ以外の値であってもよい。
 結晶基板11の表面、すなわち、受光面、裏面、側面は、それぞれテクスチャ構造を有する。図1、図2では、テクスチャ構造の図示を省略するが、後述する図3において詳述する。ここで、「テクスチャ構造」とは、表面反射を抑制し、光電変換部の光吸収量を増大させる凹凸構造である。各種の膜が積層される方向に沿った結晶基板11の厚さは、数十~数百μmであり、テクスチャ構造の凹凸高さは、数μmである。
 n型半導体層12は、結晶基板11の一主面に設けられる一導電型の半導体層である。一主面を受光面とすると、一導電型は、結晶基板11の導電型であるので、ここでは、受光面に設けられるn型の半導体層である。n型半導体層12は、i型非晶質シリコン層22と、その上に積層されたn型非晶質シリコン層23で構成される。
 p型半導体層13は、結晶基板11の他主面に設けられる他導電型の半導体層である。他主面は結晶基板11の一主面と対向する主面であり、本実施形態の場合、結晶基板11の裏面である。また、一導電型は、結晶基板11の導電型であり、他導電型は一導電型でない導電型であるため、p型の半導体層である。p型半導体層13は、i型非晶質シリコン層24と、その上に積層されたp型非晶質シリコン層25で構成される。n型半導体層12とp型半導体層13を区別するときは、前者を第1半導体層、後者を第2半導体層と呼ぶ。
 図1(a)では、受光面側から裏面側に向かって、n型非晶質シリコン層23、i型非晶質シリコン層22、結晶基板11、i型非晶質シリコン層24、p型非晶質シリコン層25の順に積層される。i型非晶質シリコン層22,24を区別するときは、前者を第一i型非晶質シリコン層、後者を第二i型非晶質シリコン層と呼ぶ。これらの積層された非晶質半導体薄層の厚さは、数nm~数十nmである。例えば、約5~20nmとすることができる。
 i型非晶質シリコン層22,24は、n型非晶質シリコン層23およびp型非晶質シリコン層25よりもキャリアを発生させるドーパントの濃度が低い真性非晶質シリコン薄層である。第一i型非晶質シリコン層22と第二i型非晶質シリコン層24は、同一の組成を有するものとできる。n型非晶質シリコン層23は、V族の金属原子を所定の濃度で含む非晶質シリコン薄層である。V族の金属原子としては、P(リン)が用いられる。p型非晶質シリコン層25は、III族の金属原子を所定の濃度で含む非晶質シリコン薄層である。III族の金属原子としては、B(ボロン)が用いられる。
 結晶基板11の受光面側にn型半導体層12を有し、裏面側にp型半導体層13を有する光電変換部は、一例として、以下の方法で製造できる。
 まず、結晶基板11を真空チャンバ内に設置し、例えば、プラズマCVD(化学気相成長法)法により、結晶基板11の受光面上にi型非晶質シリコン層22を積層する。続いて、i型非晶質シリコン層22上にn型非晶質シリコン層23を積層する。このようにしてn型半導体層12が受光面上に形成される。
 一方、結晶基板11の裏面上にも、例えば、プラズマCVD法でi型非晶質シリコン層24およびp型非晶質シリコン層25を順に積層する。このようにして、p型半導体層13が裏面状に形成される。プラズマCVD法に代えて、他の減圧CVD法を用いてもよい。例えば、触媒CVD法を用いることができる。
 i型非晶質シリコン層22,24の積層工程では、例えば、シランガス(SiH4)を原料ガスとして使用する。n型非晶質シリコン層23の積層工程では、シラン(SiH4)、水素(H2)、およびホスフィン(PH3)を原料ガスとする。p型非晶質シリコン層25の積層工程では、ジボラン(B26)を原料ガスとする。
 n型半導体層12は、結晶基板11の外縁の4隅部18,19,20,21に対応する箇所を除き、結晶基板11の受光面の全面に形成される。n型半導体層12の形成のためにプラズマCVD装置の所定の位置に結晶基板11を保持するが、ここでは、結晶基板11の4隅部18,19,20,21の受光面側を4つの保持具26,27,28,29(図2参照)で押えて保持するものとした。4つの保持具26,27,28,29を1つの保持具としてもよい。
 結晶基板11の4隅部18,19,20,21に対応する箇所は、保持具26,27,28,29の陰となり、n型半導体層12が形成されない未成膜領域30,31,32,33となる。なお、4つの内の1つの保持具29に識別穴が設けられ、その識別穴に対応する箇所にはn型半導体層12が形成され、識別マーク34となる。識別マーク34は省略することができる。
 それ以外は保持具26,27,28,29の陰にならないので、n型半導体層12は、結晶基板11の受光面から連続して側面にも回り込んで形成される。図1(b)に、結晶基板11の側面に形成された回り込みn型半導体層35,36,37,38を示した。
 p型半導体層13は、結晶基板11の外縁の4隅部18,19,20,21に対応する箇所を除き、結晶基板11の裏面の全面に形成される。p型半導体層13の形成のためにプラズマCVD装置の所定の位置に結晶基板11を保持するが、ここでは、n型半導体層12形成の際に用いられる4つの保持具26,27,28,29をそのまま用いて、結晶基板11の4隅部18,19,20,21の裏面側を押えるものとした。結晶基板11の4隅部18,19,20,21に対応する箇所は、保持具26,27,28,29の陰となり、p型半導体層13が形成されない未成膜領域39,40,41,42となる。なお、保持具29に設けられる識別穴に対応して、識別マーク43がp型半導体層13によって形成される。識別マーク43は省略することができる。
 それ以外は保持具の陰にならないので、p型半導体層13は、結晶基板11の受光面から連続して側面にも回り込んで形成される。図1(c)に、結晶基板11の側面に形成された回り込みp型半導体層44,45,46,47を示した。
 p型半導体層13の未成膜領域39,40,41,42と、n型半導体層12の未成膜領域30,31,32,33を区別するときは、後者を第1未成膜領域、前者を第2未成膜領域と呼ぶ。
 図1(b),(c)に示されるように、n型半導体層12の未成膜領域30,31,32,33と、p型半導体層13の未成膜領域39,40,41,42は、結晶基板11に対し、製造誤差をなくした場合、表裏反転の位置関係を有することになる。
 一方で、結晶基板11の側面には、受光面側から回り込みn型半導体層35,36,37,38が形成され、裏面側から回り込みp型半導体層44,45,46,47が形成される。したがって、結晶基板11の側面には、回り込みn型半導体層35と回り込みp型半導体層44が重なった重畳層、回り込みn型半導体層36と回り込みp型半導体層45が重なった重畳層、回り込みn型半導体層37と回り込みp型半導体層46が重なった重畳層、回り込みn型半導体層38と回り込みp型半導体層47が重なった重畳層が形成される。図1(a)には、回り込みn型半導体層36と回り込みp型半導体層45が重なった重畳層48と回り込みn型半導体層38と回り込みp型半導体層47が重なった重畳層49を図示した。実験結果によれば、これらの重畳層が形成されても、リークには影響を及ぼさないことが確認された。
 受光面側の透明導電膜14は、結晶基板11の一主面上において第一半導体層に積層されるもので、ここでは、受光面側の透明導電膜14は、結晶基板11の受光面において、n型半導体層12上、詳しくは、n型非晶質シリコン層23上に積層される。裏面側の透明導電膜15は、結晶基板11の他主面上において第二半導体層に積層されるもので、ここでは、結晶基板11の裏面において、p型半導体層13上、詳しくは、p型非晶質シリコン層25上に積層される。受光面側の透明導電膜14と裏面側の透明導電膜15を区別するときは、前者を第1透明導電膜、後者を第2導電膜と呼ぶ。
 受光面側の透明導電膜14は、図1(c)に示すように、結晶基板11の外縁から適当な寸法だけ内側に配置される。この寸法は、製造上の誤差を全部含めても結晶基板11の外形と一致しない限度で最小の値に設定される。すなわち、n型半導体層12の未成膜領域30,31,32,33とは無関係に透明導電膜14の配置が行われる。したがって、未成膜領域30,31,32,33が広い場合には、透明導電膜14は、未成膜領域30,31,32,33上に設けられる。図1(b)の例では、未成膜領域32,33上に透明導電膜14が設けられる。一方、裏面側の透明導電膜15は、結晶基板11の平面形状と同じである。つまり、結晶基板11の裏面全面に渡って、透明導電膜15が形成される。
 かかる透明導電膜14,15は、例えば、多結晶構造を有する酸化インジウム(In23)、酸化亜鉛(ZnO)、酸化錫(SnO2)、および酸化チタン(TiO2)等の金属酸化物のうちの少なくとも1つを含んで構成される薄層(TCO層)であって、光透過性の電極部として機能する。これらの金属酸化物に、錫(Sn)、亜鉛(Zn)、タングステン(W)、アンチモン(Sb)、チタン(Ti)、アルミニウム(Al)、セリウム(Ce)、ガリウム(Ga)などのドーパントがドープされていてもよい。ドーパントの濃度は、0~20質量%とすることができる。透明導電膜14,15の厚さは、例えば、50nm~200nm程度である。透明導電膜14,15は、スパッタ装置を用いて形成できる。
 図2は、太陽電池10の構造のなかで、結晶基板11とn型半導体層12とp型半導体層13を抜き出した図である。図2(a)は、結晶基板11の側面の拡大断面図、(b)は、重畳層49の拡大断面図、(c)は、結晶基板11の側面におけるn型半導体層12とp型半導体層13の厚さ分布を示す図である。なお、ここでは、結晶基板11の表面におけるテクスチャ構造の図示を省略した。テクスチャ構造によるn型半導体層12とp型半導体層13の厚さ分布への影響は、次の図3で説明するので、ここでは、テクスチャ構造による厚さ分布への影響を考慮していない。
 n型半導体層12は、結晶基板11の受光面側の方向から成膜されるので、結晶基板11の側面にも回り込んで成膜される。それが回り込みn型半導体層38である。その厚さtnは、結晶基板11の側面の受光面側が最も厚く、裏面側に向かうにつれて次第に薄くなる。受光面上に成膜されるn型半導体層12の厚さをtn0とすると、結晶基板11の側面における受光面側の回り込みn型半導体層38の厚さtnは、図2(c)に示すように、受光面端においてほぼtn0で、裏面端においてほぼ零(0)である。
 p型半導体層13は、結晶基板11の裏面側の方向からの成膜によって形成されるので、結晶基板11の側面にも回り込んで形成される。それが回り込みp型半導体層47である。その厚さtpは、結晶基板11の側面の裏面側が最も厚く、受光面側に向かうにつれて次第に薄くなる。受光面上に成膜されるp型半導体層13の厚さをtp0とすると、結晶基板11の側面における裏面側の回り込みp型半導体層47の厚さtpは、図2(c)に示すように、裏面端においてほぼtp0で、受光面端においてほぼ零(0)である。
 結晶基板11の側面には、n型半導体層12もp型半導体層13も回り込むので、回り込んだ半導体層の全体の厚さは、(回り込みn型半導体層38の厚さtn+回り込みp型半導体層47の厚さtp)である。図2(c)に結晶基板11の側面に沿った(tn+tp)の分布を示した。
 側面における回り込みn型半導体層38の厚さtnは、受光面端においてtn0よりやや薄く、回り込みp型半導体層47の厚さtpは、裏面端においてtp0よりやや薄い。したがって、側面における回り込みn型半導体層38の厚さtnは、tn0より薄く、回り込みp型半導体層47の厚さtpは、tp0より薄い。また、回り込んだ半導体層の全体の厚さ(tn+tp)は、tn0およびtp0のいずれよりも厚いが、(tn0+tp0)よりは薄い。このように、結晶基板11の側面は、回り込み半導体層で覆われ、結晶基板11が露出しない。
 例えば、tn0とtp0を、それぞれ約20nmとすると、結晶基板11の側面は、約20~40nmの範囲の厚さの半導体層で覆われることになる。この厚さは、結晶基板11の側面の保護の観点から見て、薄すぎず、厚すぎず、適切な厚さである。すなわち、回り込み半導体層を、結晶基板11の側面の保護膜としてそのまま用いることができる。
 図3は、図2に対応し、結晶基板11の表面に形成されるテクスチャ構造50を考慮したときの図である。図3(a)は、結晶基板11の側面の拡大断面図、(b)は、テクスチャ構造50を示す図、(c)は、結晶基板11の側面におけるn型半導体層12とp型半導体層13の厚さ分布を示す図である。なお、n型半導体層12は、i型非晶層シリコン層22とn型非晶層シリコン層23の積層構造を有し、p型半導体層13は、i型非晶層シリコン層24とp型非晶層シリコン層25の積層構造を有するが、図3では、これらの積層構造の図示を省略した。
 テクスチャ構造50は、結晶基板11を、例えばKOHのような異方性エッチング液で処理することで結晶基板11の表面に形成される微小凹凸である。凸部は、図3(b)に示すように四角錐の形状を有する。四角錐の底面の一辺の延びる方向は、結晶基板11のY方向に平行、またはこれに直交する方向に平行である。結晶基板11の側面においても同様である。四角錐の寸法の一例を挙げると、四角錐の底面の一辺の長さが約2~5μm、四角錐の底面と斜面のなす角度は60度、四角錐の底面を基準面として頂点の垂直高さは、底面の一辺の長さの(30.5)倍である。
 テクスチャ構造50は、結晶基板11の表面に対し一定角度で傾斜する斜面を有するので、n型半導体層12、p型半導体層13は、その斜面上に形成される。そこで、その膜厚tn,tpは、テクスチャ構造50の斜面の法線方向に沿って測った値とする。
 n型半導体層12は、結晶基板11の受光面側の方向から成膜されるので、結晶基板11の側面にも回り込んで成膜される。テクスチャ構造50は四角錐形状であるので、結晶基板11の受光面上では、n型半導体層12は四角錐形状の全面を覆って形成される。結晶基板11の側面では、テクスチャ構造50の四角錐形状の4つの斜面のうち1つは受光面側を向くが、他の1つは裏面側を向き、残る2つはその中間方向を向く。したがって、n型半導体層12は、テクスチャ構造50の受光面側を向く面に形成され、その裏面側を向く面には形成されない。
 同様に、p型半導体層13は、結晶基板11の裏面側の方向から成膜されるので、結晶基板11の側面にも回り込んで成膜される。テクスチャ構造50は四角錐形状であるので、結晶基板11の裏面上では、p型半導体層13は四角錐形状の全面を覆って形成される。結晶基板11の側面では、テクスチャ構造50の四角錐形状の4つの斜面のうち1つは裏面側を向くが、他の1つは受光面側を向き、残る2つはその中間方向を向く。したがって、p型半導体層13は、テクスチャ構造50の裏面側を向く面に形成され、その裏面側を向く面には形成されない。
 図3(b)に、結晶基板11の側面におけるテクスチャ構造50において、n型半導体層12が形成される領域51と、p型半導体層13が形成される領域52を示した。このように、結晶基板11の側面において、テクスチャ構造50は、n型半導体層12が形成される領域51と、p型半導体層13が形成される領域52の2つの領域に分けられる。2つの領域を区別して、以下では、領域51を第1領域51、領域52を第2領域52と呼ぶ。
 図2の説明と同様に、結晶基板11の側面に回り込む回り込みn型半導体層38の法線方向の厚さtnは、結晶基板11の側面の受光面側が最も厚く、裏面側に向かうにつれて次第に薄くなる。受光面上に成膜されるn型半導体層12の法線方向の厚さをtn0とすると、結晶基板11の側面における回り込みn型半導体層38の法線方向の厚さtnは、図3(c)に示すように、受光面端面においてほぼtn0で、裏面端面においてほぼ零(0)である。
 また、結晶基板11の側面に回り込む回り込みp型半導体層47の法線方向の厚さtpは、結晶基板11の側面の裏面側が最も厚く、受光面側に向かうにつれて次第に薄くなる。受光面上に成膜されるp型半導体層13の法線方向の厚さをtp0とすると、結晶基板11の側面における裏面側からの回り込みp型半導体層47の厚さtpは、図3(c)に示すように、裏面端においてほぼtp0で、受光面端においてほぼ零(0)である。
 結晶基板11の側面には、n型半導体層12もp型半導体層13も回り込むが、回り込みn型半導体層38はテクスチャ構造50の領域2には形成されず、回り込みp型半導体層38はテクスチャ構造50の領域1には形成されない。図3(c)に結晶基板11の側面に沿った回り込み半導体層の厚さ分布を示す。この図に示されるように、結晶基板11の側面において、受光面端から裏面端に向かって、n型半導体層12が形成される第1領域51と、p型半導体層13が形成される第2領域52が交互に繰り返される。
 側面における回り込みn型半導体層38の法線方向の厚さtnは、受光面端においてtn0よりやや薄く、回り込みp型半導体層47の法線方向の厚さtpは、裏面端においてtp0よりやや薄い。したがって、側面における回り込みn型半導体層38の法線方向の厚さtnは、tn0より薄く、回り込みp型半導体層47の法線方向の厚さtpは、tp0より薄い。また、1つのテクスチャ構造50に回り込んで形成される半導体層の法線方向の厚さの合計値(tn+tp)は、tn0よりも厚く、tp0よりも厚いが、(tn0+tp0)よりは薄い。このように、結晶基板11の側面は、回り込み半導体層で覆われ、結晶基板11が露出しない。
 例えば、tn0とtp0を、それぞれ約20nmとすると、結晶基板11の側面において、1つのテクスチャ構造50に回り込んで形成される半導体層の法線方向の厚さの合計値は、約20~40nmの範囲の厚さの半導体層で覆われることになる。この厚さは、結晶基板11の側面の保護の観点から見て、薄すぎず、厚すぎず、適切な厚さである。すなわち、回り込み半導体層を、結晶基板11の側面の保護膜としてそのまま用いることができる。
 上記では、結晶基板11の両面に非晶質シリコン薄層が積層された構造の光電変換部を例示したが、光電変換部の構造はこれに限定されない。光電変換部は、例えば、i型非晶質シリコン層やn型非晶質シリコン層、p型非晶質シリコン層を有さない構造、シリコン以外の半導体(例えば、ガリウムヒ素)を用いた構造とすることもできる。なお、本実施形態における非晶質シリコンとは、結晶粒を含んだ非晶質シリコンをも含む。
 また、上記では、一導電型をn型、他導電型をp型としたが、これを逆にして、一導電型をp型、他導電型をn型としてもよい。また、一主面を受光面、他主面を裏面としたが、これを逆にして、一主面を裏面、他主面を受光面としてもよい。
 また、結晶基板を4隅が切り欠かれた8角形としたが、4隅が切り欠かれない矩形形状、8角形以外の多角形形状、矩形形状以外の丸形形状や楕円形状であってもよい。
 加えて上記実施形態では、結晶基板11の4隅部18,19,20,21を保持する構成としたが、結晶基板11の少なくとも1箇所を保持する構成とすればよく、例えば、結晶基板11の隅部18,19の2箇所を保持する構成としてもよい。
 10 太陽電池、11 結晶基板、12 n型半導体層、13 p型半導体層、14,15 透明導電膜、16,17 集電電極、18,19,20,21 隅部、22,24 i型非晶質シリコン層、23 n型非晶質シリコン層、25 p型非晶質シリコン層、26,27,28,29 保持具、30,31,32,33,39,40,41,42 未成膜領域、34,43 識別マーク、35,36,37,38 回り込みn型半導体層、44,45,46,47 回り込みp型半導体層、48,49 重畳層、50 テクスチャ構造、51 (第1)領域、52 (第2)領域。

Claims (8)

  1.  一導電型を有する結晶基板と、
     前記結晶基板の一主面上に形成された前記一導電型を有する第1半導体層と、
     前記結晶基板の他主面上に形成された他導電型を有する第2半導体層と、
     を有し、
     前記第1半導体層と前記第2半導体層は、前記結晶基板の主面と交差する側面の一部を覆い、前記側面における前記第1半導体層の法線方向の厚さは前記一主面上の前記第1半導体層の法線方向の厚さよりも薄く、前記側面における前記第2半導体層の法線方向の厚さは前記他主面上の前記第2半導体層の法線方向の厚さよりも薄い、太陽電池。
  2.  前記第1半導体層または前記第2半導体層の少なくとも一方が非晶質半導体層である、請求項1に記載の太陽電池。
  3.  前記第1半導体層と前記結晶基板との間、または前記第2半導体層と前記結晶基板との間の少なくとも一方にi型非晶質半導体層が形成された、請求項1または2に記載の太陽電池。
  4.  前記一導電型はn型、前記他導電型はp型である、請求項1から3のいずれか1項に記載の太陽電池。
  5.  前記側面に、前記一導電型の第1領域と前記他導電型の第2領域を有する、請求項1から4のいずれか1項に記載の太陽電池。
  6.  前記結晶基板は、前記一主面と前記他主面と前記側面に複数の凹凸を有するテクスチャ構造を含み、
     前記側面上に、前記テクスチャ構造の凹凸形状に応じて区画された前記第1領域と前記第2領域を形成した、請求項5に記載の太陽電池。
  7.  前記側面において、前記第1半導体層と前記第2半導体層が重畳し、前記結晶基板が露出しない、請求項1から6のいずれか1に記載の太陽電池。
  8.  前記側面において、前記第1半導体層と前記第2半導体層が重畳して形成された層の法線方向の厚さは、前記一主面上の前記第1半導体層の法線方向の厚さと前記他主面上の前記第2半導体層の法線方向の厚さのそれぞれよりも厚く、前記一主面上の前記第1半導体層の法線方向の厚さと前記他主面上の前記第2半導体層の法線方向の厚さを加算した値よりも薄い、太陽電池。
PCT/JP2014/005294 2013-11-08 2014-10-20 太陽電池 WO2015068341A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015546284A JPWO2015068341A1 (ja) 2013-11-08 2014-10-20 太陽電池
EP14859500.2A EP3067936A4 (en) 2013-11-08 2014-10-20 SOLAR CELL
US15/142,967 US20160322522A1 (en) 2013-11-08 2016-04-29 Solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-232410 2013-11-08
JP2013232410 2013-11-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/142,967 Continuation US20160322522A1 (en) 2013-11-08 2016-04-29 Solar cell

Publications (1)

Publication Number Publication Date
WO2015068341A1 true WO2015068341A1 (ja) 2015-05-14

Family

ID=53041139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005294 WO2015068341A1 (ja) 2013-11-08 2014-10-20 太陽電池

Country Status (4)

Country Link
US (1) US20160322522A1 (ja)
EP (1) EP3067936A4 (ja)
JP (1) JPWO2015068341A1 (ja)
WO (1) WO2015068341A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12002899B2 (en) 2023-05-16 2024-06-04 Trina Solar Co., Ltd Method for manufacturing solar cell
US12125937B2 (en) 2023-05-16 2024-10-22 Trina Solar Co., Ltd. Solar cell, method for manufacturing the same, photovoltaic module, and photovoltaic system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118016739A (zh) * 2024-04-09 2024-05-10 浙江晶科能源有限公司 分片电池及其形成方法、光伏组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129904A (ja) * 1995-10-26 1997-05-16 Sanyo Electric Co Ltd 光起電力素子およびその製造方法
JPH11251609A (ja) 1998-03-05 1999-09-17 Sanyo Electric Co Ltd 光起電力素子及びその製造方法
JP2001044461A (ja) 1999-07-26 2001-02-16 Sanyo Electric Co Ltd 光起電力素子及びその製造方法
JP2006286820A (ja) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd 光起電力装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145490A (ja) * 1997-09-03 1999-05-28 Sanyo Electric Co Ltd 光起電力素子用基板及びその製造方法並びにその基板を用いた光起電力素子
JP5421701B2 (ja) * 2009-09-09 2014-02-19 株式会社カネカ 結晶シリコン太陽電池及びその製造方法
JP2011023759A (ja) * 2010-11-02 2011-02-03 Sanyo Electric Co Ltd 光起電力素子の製造方法
US8875653B2 (en) * 2012-02-10 2014-11-04 Palo Alto Research Center Incorporated Micro-extrusion printhead with offset orifices for generating gridlines on non-square substrates

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129904A (ja) * 1995-10-26 1997-05-16 Sanyo Electric Co Ltd 光起電力素子およびその製造方法
JPH11251609A (ja) 1998-03-05 1999-09-17 Sanyo Electric Co Ltd 光起電力素子及びその製造方法
JP2001044461A (ja) 1999-07-26 2001-02-16 Sanyo Electric Co Ltd 光起電力素子及びその製造方法
JP2006286820A (ja) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd 光起電力装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3067936A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12002899B2 (en) 2023-05-16 2024-06-04 Trina Solar Co., Ltd Method for manufacturing solar cell
JP7553680B2 (ja) 2023-05-16 2024-09-18 トリナ・ソーラー・カンパニー・リミテッド 太陽電池及びその製造方法、太陽光発電モジュール及び太陽光発電システム
US12125937B2 (en) 2023-05-16 2024-10-22 Trina Solar Co., Ltd. Solar cell, method for manufacturing the same, photovoltaic module, and photovoltaic system

Also Published As

Publication number Publication date
US20160322522A1 (en) 2016-11-03
EP3067936A4 (en) 2016-11-16
EP3067936A1 (en) 2016-09-14
JPWO2015068341A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
US10903375B2 (en) Solar cell
US20130269771A1 (en) Solar cell
US20130037086A1 (en) Photovoltaic device
EP2682990B1 (en) Hetero-junction solar cells with edge isolation and methods of manufacturing same
US20140034119A1 (en) Photoelectric device
US20140130857A1 (en) Photoelectric converter and method for producing same
EP2380205B1 (en) Solar cell
WO2012105146A1 (ja) 光電変換装置及び光電変換モジュール
JP2020167243A (ja) 太陽電池セル集合体、及び、太陽電池セルの製造方法
US11056601B2 (en) Solar cell
JP7270607B2 (ja) 太陽電池セルの製造方法、太陽電池モジュールの製造方法、および、太陽電池モジュール
CN113659045B (zh) 一种异质结太阳能电池及其制作方法、异质结光伏组件
WO2015068341A1 (ja) 太陽電池
WO2019087590A1 (ja) 両面電極型太陽電池および太陽電池モジュール
JP6726890B2 (ja) 太陽電池の製造方法、及び太陽電池
WO2015045263A1 (ja) 太陽電池及び太陽電池モジュール
WO2011125922A1 (ja) 光電変換装置
WO2015050161A1 (ja) 光発電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859500

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015546284

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014859500

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014859500

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE