WO2015068329A1 - 細胞分析システム、細胞分析プログラム及び細胞分析方法 - Google Patents

細胞分析システム、細胞分析プログラム及び細胞分析方法 Download PDF

Info

Publication number
WO2015068329A1
WO2015068329A1 PCT/JP2014/004804 JP2014004804W WO2015068329A1 WO 2015068329 A1 WO2015068329 A1 WO 2015068329A1 JP 2014004804 W JP2014004804 W JP 2014004804W WO 2015068329 A1 WO2015068329 A1 WO 2015068329A1
Authority
WO
WIPO (PCT)
Prior art keywords
movement
cell
motion
analysis system
amount
Prior art date
Application number
PCT/JP2014/004804
Other languages
English (en)
French (fr)
Inventor
和博 中川
拓哉 岸本
松居 恵理子
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/033,089 priority Critical patent/US10163203B2/en
Priority to EP14859938.4A priority patent/EP3037514B1/en
Priority to JP2015546279A priority patent/JP6942925B2/ja
Priority to CN201480059529.9A priority patent/CN105683355B/zh
Publication of WO2015068329A1 publication Critical patent/WO2015068329A1/ja
Priority to US16/188,151 priority patent/US10482598B2/en
Priority to US16/656,428 priority patent/US10861154B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5029Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on cell motility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5035Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on sub-cellular localization
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6872Intracellular protein regulatory factors and their receptors, e.g. including ion channels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro

Definitions

  • the present technology relates to a cell analysis system, a cell analysis program, and a cell analysis method suitable for analyzing movement of ions or molecules through a cell membrane.
  • ion transport between cell membranes The movement of molecules and ions through the cell membrane (hereinafter referred to as ion transport between cell membranes) is related to the formation and fluctuation of membrane potential important for cell function. Ion transport between cell membranes is performed by specific molecules (proteins) such as ion pumps and ion channels provided in the cell membrane.
  • An ion pump is a molecule that consumes energy and moves ions, and an ion channel opens and closes due to membrane potential or the binding of specific molecules, and moves ions according to the concentration difference inside and outside the cell.
  • Intercellular membrane ion transport is very important for cell function, and if it can be understood, various applications are possible.
  • ion channels are important as targets for drug discovery.
  • ion transport between cell membranes is generally evaluated by a method using a patch clamp (for example, see Patent Document 1) or a method for measuring an extracellular electric field (for example, see Patent Document 2).
  • a method of measuring intracellular ion concentration using fluorescent staining is also used.
  • the spatial resolution depends on the electrode size and the number of electrodes.
  • the electrode size is large and the number of electrodes is small, the spatial resolution is low.
  • the number of electrodes is large, a complicated device configuration is required. Necessary.
  • an object of the present technology is to provide a cell analysis system, a cell analysis program, and a cell analysis method suitable for analyzing the movement of ions or molecules through a cell membrane.
  • a cell analysis system includes a motion information extraction unit and a motion characteristic calculation unit.
  • the motion information extraction unit extracts motion information resulting from the movement of ions or molecules through the cell membrane from a cell image obtained by imaging a cell over time.
  • the motion characteristic calculation unit calculates a motion characteristic of the motion information.
  • a cell analysis program operates an information processing apparatus as a motion information extraction unit and a motion characteristic calculation unit.
  • the motion information extraction unit extracts motion information resulting from the movement of ions or molecules through the cell membrane from a cell image obtained by imaging a cell over time.
  • the motion characteristic calculation unit calculates a motion characteristic of the motion information.
  • a cell analysis method is such that the motion information extraction unit performs a motion caused by movement of ions or molecules through a cell membrane from a cell image obtained by imaging a cell over time. Extract information.
  • a motion characteristic calculator calculates a motion characteristic of the motion information.
  • the present technology it is possible to provide a cell analysis system, a cell analysis program, and a cell analysis method suitable for analyzing movement of ions or molecules through a cell membrane.
  • the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
  • a cell analysis system includes a motion information extraction unit and a motion characteristic calculation unit.
  • the motion information extraction unit extracts motion information resulting from the movement of ions or molecules through the cell membrane from a cell image obtained by imaging a cell over time.
  • the motion characteristic calculation unit calculates a motion characteristic of the motion information.
  • the movement information extracted from the cell image includes information resulting from the movement of ions or molecules. Yes. Therefore, it is possible to evaluate the movement of ions or molecules through the cell membrane (hereinafter, ion transport between cell membranes) based on the motion characteristics that are the characteristics of motion information. According to the above configuration, it is not necessary to stain cells, and it is possible to prevent the stain from affecting the cells. Furthermore, since the cell analysis system can evaluate ion transport between cell membranes by image processing on a cell image, it can analyze a wide area with high resolution.
  • the cell analysis system is You may further comprise the image generation part which superimposes the said motion characteristic and the said cell image, and produces
  • the cell analysis system can display the motion characteristics in a form that is easy to visually grasp for the user, and the user can refer to the motion characteristics display image to determine the ions or molecules through the cell membrane. It is possible to evaluate movement.
  • the cell analysis system is An evaluation unit that evaluates the movement of ions or molecules through the cell membrane based on the motion characteristics may be further provided.
  • the evaluation unit can evaluate the movement of ions or molecules through the cell membrane based on the movement characteristics. is there.
  • the motion characteristic calculation unit calculates a motion amount as the motion characteristic,
  • the evaluation unit may evaluate the movement amount of ions or molecules based on the movement amount.
  • the amount of movement increases or decreases depending on the amount of ions or molecules flowing into the cell or the amount flowing out of the cell. For this reason, it is possible to evaluate the amount of movement of ions or molecules based on the amount of movement.
  • the motion characteristic calculation unit calculates a motion amount as the motion characteristic,
  • the evaluation unit may evaluate the activity of an ion channel or an ion channel receptor based on the amount of movement.
  • the activity of an ion channel or ion channel receptor that allows ions or molecules to pass through is evaluated based on the amount of movement. It becomes possible.
  • the movement characteristic calculation unit calculates a movement change before and after the administration of the activator or inhibitor of the ion channel or ion channel receptor as the movement characteristic,
  • the evaluation unit may evaluate the presence or absence of an ion channel or an ion channel type receptor based on the movement change.
  • the ion channel or ion channel receptor activator or inhibitor When an ion channel or ion channel receptor activator or inhibitor is administered to a cell, the ion channel or ion channel receptor is suppressed or activated. Thereby, since the inflow amount of ions or molecules into the cell or the outflow amount to the outside of the cell varies, the movement of the cell membrane changes. Therefore, it is possible to evaluate the presence / absence or abundance of an ion channel or an ion channel type receptor based on a change in motion.
  • the movement characteristic calculation unit calculates a movement change before and after administration of the inhibitor of the ion channel receptor as the movement characteristic,
  • the evaluation unit may evaluate the type or strength of a synapse formed between cells based on the movement change.
  • the synapse (intercellular connection) formed between cells stimulates connected cells using a specific chemical substance (neurotransmitter) and transmits signals. Therefore, if migration of a neurotransmitter through a cell membrane is suppressed by administration of an inhibitor to a receptor for a specific neurotransmitter, it can be evaluated that a synapse using the neurotransmitter is formed. . Since the movement of the neurotransmitter through the cell membrane is reflected in the movement of the cell membrane, the type or strength of the synapse can be evaluated from the change in movement before and after the administration of the inhibitor.
  • the motion characteristic calculation unit calculates a motion amount as the motion characteristic,
  • the evaluation unit may evaluate the type of substance acting on the ion channel or the ion channel type receptor or the strength of the effect based on the amount of movement.
  • the movement of ions through the ion channel or the ion channel type receptor can be evaluated based on the amount of movement. Therefore, based on the amount of movement when a specific substance is administered to a cell, it is possible to evaluate the type of substance acting on the ion channel or ion channel receptor or the strength of the effect.
  • the motion characteristic calculation unit calculates a motion amount as the motion characteristic
  • the evaluation unit may evaluate the movement, expansion, contraction, and vibration of the cell membrane due to the movement of ions through the cell membrane or the accompanying movement of water based on the amount of movement.
  • the cell membrane When the ion or water flows into the cell, the cell membrane expands, and when the ion or water flows out of the cell, the cell membrane contracts. Moreover, the cell membrane is vibrated by repeating the inflow and outflow of ions or water in a short time. Since the movement of these cell membranes is reflected in the amount of movement, it is possible to evaluate the movement, expansion, contraction, and vibration of the cell membrane due to the movement of ions or water based on the amount of movement.
  • the motion characteristic calculator calculates a motion direction as a motion characteristic
  • the movement characteristic calculation unit may evaluate the direction of ion or molecule flow through the cell membrane based on the movement direction.
  • the motion information in the cell image has information on the direction of motion, evaluate whether ions or molecules are flowing into the cell or out of the cell from the amount of motion in the specific motion direction. Is possible.
  • the motion characteristic calculation unit calculates the duration or spatial distribution of the motion as the motion characteristic
  • the evaluation unit may evaluate the movement time or spatial distribution of ions or molecules through the cell membrane based on the duration or spatial distribution of the movement.
  • the cell analysis system is In the cell image, further comprising a range designating unit for designating an extraction range using the luminance difference of the cell image,
  • the motion information extraction unit may extract the motion information from the extraction range.
  • the cell included in the cell image is a nerve cell
  • the cell body of the nerve cell and the neurite are greatly different in luminance. Therefore, it is possible to detect the cell body using the luminance difference and set it as the extraction range. For this reason, according to the said structure, it becomes possible to calculate a motion characteristic only for a cell body as an extraction range, and to utilize for an evaluation.
  • a cell analysis program causes an information processing apparatus to operate as a motion information extraction unit and a motion characteristic calculation unit.
  • the motion information extraction unit extracts motion information resulting from the movement of ions or molecules through the cell membrane from a cell image obtained by imaging a cell over time.
  • the motion characteristic calculation unit calculates a motion characteristic of the motion information.
  • the motion information extraction unit extracts motion information resulting from movement of ions or molecules through the cell membrane from a cell image obtained by imaging the cell over time.
  • a motion characteristic calculator calculates a motion characteristic of the motion information.
  • FIG. 1 is a schematic diagram showing a cell analysis system 100 according to the present embodiment.
  • the cell analysis system includes an image acquisition unit 101, a range specification unit 102, a motion information extraction unit 103, a motion characteristic calculation unit 104, an evaluation unit 105, and an image generation unit 106.
  • Each of these configurations is a functional configuration realized by the information processing apparatus.
  • the image acquisition unit 101 acquires a “cell image”.
  • the cell image is an image obtained by imaging a cell or a group of cells to be analyzed over time, and can be a moving image or a plurality of still images taken continuously.
  • the imaging speed can be set to 1 to 30 fps (frame / s), for example.
  • the cell image is a variety of optical imaging such as bright field imaging, dark field imaging, phase difference imaging, fluorescence imaging, confocal imaging, multiphoton excitation fluorescence imaging, absorption light imaging, and irregular light imaging. It can be an image taken using the method.
  • FIG. 2 is an example of a cell image, which is an image including a plurality of nerve cells.
  • the image acquisition unit 101 may acquire a cell image from an imaging device (microscope imaging device) (not shown), or may acquire an image stored in a storage or an image supplied from a network as a cell image. Is possible.
  • the image acquisition unit 101 supplies the acquired cell image to the range specification unit 102.
  • the range designation unit 102 designates an “extraction range” in the cell image.
  • the extraction range is a range in which a motion information extraction unit 103 described later extracts motion information.
  • FIG. 3 is an example of an extraction range (within a square frame in the figure) designated by the range designation unit 102 in the cell image.
  • the range designation unit 102 can designate the extraction range according to the analysis target (cell unit, cell group, etc.) designated by the user.
  • the range designating unit 102 may designate the entire cell image as the extraction range when only the analysis target cell or cell group is included in the cell image. Moreover, the range designation
  • the range specification unit 102 may specify an extraction range upon receiving an instruction input from the user, or may detect cells by image processing and specify the extraction range.
  • the range designation unit 102 can detect cells using the luminance difference of the cell image.
  • the cell included in the cell image is a nerve cell
  • the cell body of the nerve cell and the neurite are greatly different in luminance, so that the cell body can be detected using the luminance difference and set as the extraction range.
  • the range designation unit 102 supplies the extraction range designated together with the cell image to the motion information extraction unit 103.
  • the motion information extraction unit 103 extracts “motion information” from the extraction range specified by the range specification unit 102.
  • the motion information is information on the motion in the cell image captured over time, and specifically, it can be a motion vector with the lapse of time of the feature point in the cell image.
  • the motion information extraction unit 103 can extract motion information by image processing such as block matching for cell images.
  • FIG. 4 is a schematic diagram of ion transport between cell membranes.
  • ions K + , Na + and the like
  • molecules H 2 O and the like
  • the channel C is an ion channel, a molecular channel, or an ion channel type receptor.
  • the channel C may be an ion pump or a molecular pump.
  • ions or molecules transported by ion channels or the like are referred to as ions or the like.
  • the present inventors have found that the cell membrane moves to an observable level due to the ion transport between the cell membranes. This is due to cell expansion caused by inflow of ions or the like into cells, contraction of cells due to outflow of ions or the like out of cells, or vibration due to inflow or outflow of ions or the like. These movements are minute and high-speed movements observed at intervals of several seconds or less, unlike movements due to movement of the cells themselves observed at intervals of several hours.
  • the movement information includes the influence of ion transport between the cell membranes, and it is possible to evaluate the ion transport between the cell membranes by analyzing the motion information.
  • the motion information extraction unit 103 supplies the extracted motion information to the motion characteristic calculation unit 104.
  • the motion characteristic calculation unit 104 calculates a “motion characteristic” from the motion information.
  • the motion characteristics are characteristics of motion information, and are calculated from motion information such as motion speed, motion amount, motion change, motion direction, motion duration, motion spatial distribution, motion suppression ratio, or motion region amount.
  • the motion region amount is a ratio of a region where the amount of motion is equal to or greater than a certain amount in a region where cells exist in the extraction range.
  • the motion characteristic may include an average value of these in the extraction range and a median value of them in a certain time.
  • the motion characteristic calculation unit 104 can calculate a difference in motion before and after administration as a motion characteristic. Specifically, the motion characteristic calculation unit 104 can calculate a change in a motion speed, a motion amount, a motion direction, a spatial distribution of motion, or a motion region amount before and after administration as a motion property.
  • FIG. 5 is a graph showing the change over time in the amount of motion, which is an example of motion characteristics.
  • the vertical axis represents the amount of movement, and the horizontal axis represents time (time for capturing a cell image).
  • the figure is an example of the amount of movement calculated for a cell administered with a specific ion channel inhibitor, and shows that the amount of movement has decreased from the administration time of the ion channel inhibitor (the left end of the horizontal axis).
  • the motion characteristic calculation unit 104 calculates such a motion characteristic.
  • the motion characteristic calculation unit 104 may calculate a plurality of types of motion characteristics from the motion information.
  • the motion information extraction unit 103 supplies the calculated motion characteristics to the evaluation unit 105.
  • the motion information extraction unit 103 may supply the calculated motion characteristics to the image generation unit 106.
  • Evaluation unit 105 evaluates ion transport between cell membranes based on motion characteristics. For example, in the example of FIG. 5, it can be seen from the decrease in the amount of movement immediately after the ion channel inhibitor administration that the function of the ion channel is inhibited by the ion channel inhibitor, and from the increase in the amount of movement over time, It can be seen that the function of the ion channel is gradually recovering. In addition, the evaluation unit 105 can evaluate ion transport between cell membranes based on various motion characteristics.
  • the evaluation unit 105 can evaluate the movement amount of ions and the like based on the movement amount. Since the amount of movement increases or decreases depending on the amount of ions or the like flowing into the cell or the amount of outflow outside the cell, the amount of movement of ions or the like can be evaluated based on the amount of movement.
  • the evaluation unit 105 can evaluate the activity of the ion channel or the like based on the amount of movement. Since the amount of movement increases or decreases depending on the amount of ions flowing into or out of the cell, the activity of the ion channel is high, and if the amount of ions flowing in or out is large, the amount of movement is reflected in the amount of movement. The For this reason, the evaluation unit 105 can evaluate the activity of the ion channel or the like based on the amount of movement.
  • the evaluation unit 105 can evaluate the presence / absence or abundance of an ion channel or the like based on a change in motion before and after administration of an activator or inhibitor such as an ion channel.
  • an activator or inhibitor such as an ion channel
  • the ion channel or the like is suppressed or activated.
  • the inflow amount of ions or the like into the cell or the outflow amount to the outside of the cell changes, so that the movement of the cell membrane changes. Therefore, it is possible to evaluate the presence / absence or abundance of an ion channel or an ion channel-type receptor based on the movement change.
  • the evaluation unit 105 can evaluate the type or strength of the synapse formed between cells based on the movement change before and after the administration of the inhibitor of the ion channel receptor.
  • Synapses cell-cell junctions formed between cells stimulate the connected cells using specific chemical substances (neurotransmitters) and transmit signals. Therefore, if migration of a neurotransmitter through a cell membrane is suppressed by administration of an inhibitor to a receptor for a specific neurotransmitter, it can be evaluated that a synapse using the neurotransmitter is formed. . Since the movement of the neurotransmitter through the cell membrane is reflected in the movement of the cell membrane, it is possible to evaluate the type or strength of the synapse from the movement change before and after the administration of the inhibitor.
  • the evaluation unit 105 can evaluate the type of substance acting on the ion channel or the like or the strength of the effect based on the amount of movement. Since the movement of ions, etc. through ion channels, etc. can be evaluated based on the amount of movement, the type or effect of substances that act on ion channels, etc., based on the amount of movement when a specific substance is administered to cells. It is possible to evaluate the strength of
  • the evaluation unit 105 can evaluate the movement, expansion, contraction, and vibration of the cell membrane due to the movement of ions through the cell membrane or the accompanying movement of water based on the amount of movement.
  • the cell membrane expands, and when ions or water flows out of the cell, the cell membrane contracts. Further, when the inflow / outflow of ions or water is repeated in a short time, the cell membrane vibrates. Since the movement of these cell membranes is reflected in the amount of movement, the movement, expansion, contraction, and vibration of the cell membrane due to the movement of ions or water can be evaluated based on the amount of movement.
  • the evaluation unit 105 can evaluate the direction of ion or molecule flow through the cell membrane based on the movement direction. Since the amount of movement in a specific movement direction is caused by the flow of ions or the like moving in that direction, it is possible to evaluate whether ions or the like are flowing into or out of the cells. For example, to evaluate whether ions etc. flowed into the cell or flowed out of the cell depending on whether the movement direction at a specific point of the cell body detected as the extraction range is toward the center point of the cell body Can do.
  • the evaluation unit 105 can evaluate the movement time or spatial distribution of ions or molecules through the cell membrane based on the duration or spatial distribution of movement. As described above, movement in the cell image is caused by ion transport between the cell membranes, so that the duration of movement can be regarded as the movement time of ions or molecules. From the spatial distribution of movement, ion movement, ion channel, etc. It is possible to estimate the spatial distribution.
  • the evaluation unit 105 can evaluate the ion transport between the cell membranes based on the motion characteristics.
  • the evaluation unit 105 supplies the evaluation result to the image generation unit 106.
  • the image generation unit 106 generates an image for displaying the evaluation result.
  • the image generation unit 106 may generate an image that displays a motion characteristic (for example, the graph of FIG. 5) together with the evaluation result, generates an image that displays only the motion characteristic, and evaluates ion transport between cell membranes. You may leave it to the user.
  • a motion characteristic for example, the graph of FIG. 5
  • the image generation unit 106 may generate a motion characteristic display image by superimposing the cell image and the movement characteristic. Specifically, the image generation unit 106 adds a color according to the magnitude of the motion characteristic, or adds a shade and superimposes it on a corresponding position of the cell image to generate a motion characteristic display image. Is possible.
  • the image generation unit 106 overlaps the cell image with the rate of movement suppression by the ion channel inhibitor as a color map, the user can evaluate the presence / absence and expression level of the ion channel of each cell. Become. Further, the image generation unit 106 overlaps the cell image as a color map with the rate of movement suppression by the ion channel receptor inhibitor, so that the user can input the type and strength of the synapse formed by individual cells. It becomes possible to evaluate the spatial distribution.
  • the cell analysis system 100 is configured as described above. As described above, the cell analysis system 100 can evaluate the ion transport between the cell membranes from the motion characteristics of the cell image. Therefore, the user does not need to stain the cells by using the cell analysis system 100, and can prevent the stain from affecting the cells. Furthermore, since the cell analysis system 100 can evaluate ion transport between cell membranes by image processing on a cell image, it can analyze a wide area with high resolution.
  • the activity of the ion channel or the like is relatively quantified without staining, or the physiologically active substance or drug acting on the ion channel or the like is screened without staining and the effect thereof. Can be quantified relative to each other. Furthermore, by quantifying the presence or absence and expression level of ion channels or the like expressed in individual cells, profiling of cell types becomes possible without staining.
  • nonstaining synaptic connection profiling is possible by relative quantification of the type and amount of synaptic ion channel receptors that are input to individual neurons. It becomes.
  • a voltage-gated ion channel is a molecule that opens and closes depending on the membrane potential and is responsible for ion migration according to the ion concentration gradient between the membranes. In many nerve cells, the membrane potential is not static and vibrates, and voltage-gated channels repeatedly open and close.
  • An ion channel inhibitor inhibits the opening and closing of an ion channel and inhibits ion transfer between membranes.
  • iPS cell-derived neuron iCell Neuron manufactured by Cellular Dynamics International
  • a moving image of 260 frames was imaged with an objective lens 20 times at 7.5 fps (frame / second) to obtain a cell image.
  • Various ion channel inhibitors were added to the cell culture medium.
  • the ion channel inhibitor was any one of Na + channel inhibitor TTX (tetrodotoxin), K + channel inhibitor TEA (tetraethylammonium) and Ca 2+ channel inhibitor Nifedipine.
  • FIG. 6 is calculated from iCellonNeuron added with 100 nm of TTX
  • FIG. 7 is calculated from iCell Neuron added with 1 mM TEA
  • FIG. 8 is calculated from iCell Neuron added with 10 ⁇ M Nifedipine.
  • the amount of movement shown in each figure is an average value of the amount of movement calculated from a plurality (six) nerve details.
  • the horizontal axis 0 min is the addition time of the ion channel inhibitor
  • the vertical axis is the relative value of the amount of movement with 1 (0 min) before administration of the ion channel inhibitor.
  • An ion channel type receptor is a molecule that opens and closes depending on the binding of a ligand (substance that binds to a receptor) and is responsible for ion transfer according to the ion concentration between membranes.
  • Many of the neurotransmitters act as ligands for ion channel receptors, and are released from the presynapse at the tip of the axon of the neuron, and stimulate or inhibit the neuron connected at the synapse via the receptor at the postsynapse. Each neuron releases only one type of neurotransmitter, and only one neurotransmitter is involved in a synapse.
  • An ion channel receptor inhibitor suppresses ion movement between synaptic membranes by inhibiting ligand binding to the ion channel receptor and channel opening / closing.
  • iPS cell-derived neuronal cells iCell Neuron (Cellular Dynamics International) and rat cerebral cortex primary culture cells (Lonza) are set in a microscope with a culture chamber, respectively, and objective lens 20 times, 7.5 fps (iCell Neuron) or A moving image of 260 frames was taken at 5 fps (rat cerebral cortex primary cultured cells) to obtain cell images.
  • Various ion channel receptor inhibitors were added to the culture medium of each cell.
  • An ion channel receptor inhibitor is GABA (gamma-aminobutyrate) receptor inhibitor Bicuculline or Glu (glutamate) receptor (non-NMDA type) inhibitor CNQX (6-cyano-7-nitroquinoxaline-2,3-dione) ).
  • FIG. 9 is calculated from iCell Neuron to which 5 ⁇ M of Bicucullin is added
  • FIG. 10 is calculated from iCell Neuron to which 5 ⁇ M of CNQX is added
  • FIG. 11 is calculated from rat cerebral cortex primary culture cells added with 5 ⁇ M Bicucullin
  • FIG. 12 is calculated from rat cerebral cortex primary culture cells added with 5 ⁇ M CNQX.
  • the amount of movement shown in each figure is an average value of the amount of movement calculated from a plurality of nerve details.
  • the horizontal axis 0 min is the addition time of the ion channel inhibitor
  • the vertical axis is the relative value of the amount of movement with the ion channel receptor inhibitor before administration (0 min) being 1.
  • ICell Neuron is a mixture of cells that release various neurotransmitters, most of which are GABAergic neurons or Gluergic neurons.
  • GABA receptor inhibitor which is an inhibitory neurotransmitter
  • Glu glutamic acid
  • FIG. 11 shows that there is almost no change in the amount of movement due to the addition of the GABA receptor inhibitor, and no synapses via GABA are formed.
  • FIG. 12 shows that the amount of movement is reduced by the addition of a Glu receptor inhibitor, and a synapse via Glu is formed. In this way, by using the cell analysis system, it is possible to evaluate whether or not the analysis target cell has a specific neurotransmitter receptor.
  • FIG. 13 is a graph in which the amount of movement calculated from primary cultured cells of rat cerebral cortex to which 5 ⁇ M of CNQX (Glu receptor inhibitor) is added is plotted for each cell.
  • the primary cultured cells of rat cerebral cortex include cells that are affected by the Glu receptor inhibitor and decreased in movement amount, and cells that are not affected by the inhibitor and do not decrease movement amount. You can see that That is, it can be said that by using a cell analysis system, it is possible to evaluate each cell whether or not it is a cell in which a synapse having a receptor for a specific neurotransmitter is input.
  • Example 3 Evaluation of water movement by osmotic pressure change accompanying ion movement between membranes
  • aquaporin is a passive channel molecule that opens and closes due to osmotic pressure difference and is responsible for water movement.
  • aquaporins open and the cell volume increases or decreases. It has not been clarified so far that the volume of cells increases or decreases due to local and transient osmotic pressure difference due to opening and closing of ion channels and ion channel receptors.
  • Rat primary cerebral cortex cultured cells (manufactured by Lonza) were set in a microscope with a culture chamber, and a moving image of 260 frames was imaged at an objective lens of 20 ⁇ and 5 fps to obtain cell images. A final concentration of 2.5% galactose was added to the cell culture.
  • FIG. 14 shows the median value of the motion amount in the extraction range. The graph on the left is the value when galactose is not added, and the graph on the right is the value when galactose is added.
  • rat cerebral cortex primary culture cells (manufactured by Lonza) are set in a microscope equipped with a culture chamber, and a 260-frame video is obtained with an objective lens 20 times, 7.5 fps (iCell Neuron) or 5 fps (rat cerebral cortex primary culture cells). Images were taken to obtain cell images. 5 ⁇ M of aquaporin inhibitor HgCl 2 was added to the cell culture medium.
  • FIG. 15 is a graph showing the calculation result of the motion amount.
  • the horizontal axis 0 min is the time of addition of the ion channel inhibitor
  • the vertical axis is the relative value of the amount of movement with 1 before administration of HgCl 2 (0 min).
  • HgCl 2 which is an aquaporin inhibitor
  • HgCl 2 which is an aquaporin inhibitor
  • the amount of movement was temporarily suppressed. It has been confirmed that addition of 5 ⁇ M HgCl 2 does not suppress cell metabolism. Therefore, it was confirmed that when water transfer between cell membranes is inhibited by an aquaporin inhibitor, cell movement is suppressed. That is, it can be seen that the movement of water between cell membranes can be evaluated by using a cell analysis system.
  • Example 4 Correlation between amount of movement and extracellular electric field
  • Rat cerebral cortical neurons manufactured by Lonza
  • Rat cerebral cortical neurons were cultured in a multi-electrode array (Alpha Med Scientific), and the extracellular electric field (field potential) was measured at a sampling frequency of 20 kHz.
  • FIG. 16 shows the measured extracellular electric field. After extracting 200 Hz data from the measured value and making it an absolute value, an average of 0.2 seconds was taken to obtain 5 Hz data (Field potential thin line in FIG. 16).
  • a moving image of cells around the electrode was taken at 5 fps and 260 frames to obtain cell images.
  • the cell image was analyzed using the cell analysis system. Specifically, motion information was extracted by block matching using individual nerve cells included in the cell image as an extraction range, and a motion speed average per cell was calculated as motion characteristics from the motion information (Motion thin line in FIG. 16).
  • FIG. 17 is a graph showing the correlation between the extracellular electric field shown in FIG. 16 and the moving average of the amount of motion, and plots the values at the time of the measurement. As shown in the figure, it can be seen that there is a certain correlation between the extracellular electric field and the amount of movement.
  • Example 5 Evaluation of ion inflow into cells
  • Rat cerebral cortical neurons (manufactured by Lonza) were set in a microscope with a chamber, and a moving image of 260 frames was imaged at an objective lens of 20 times and 5 fps (frame / second) to obtain cell images.
  • the culture medium of rat cerebral cortical neurons is a normal culture medium, a HEPES buffer solution containing Na + (containing NaCl, KCl, MgCl 2 CaCl 2 and glucose) or a HEPES buffer solution containing no Na + (instead of NaCl). N-methyl-D-glucamine included).
  • HEPES buffer without Na +, due N- methyl -D- glucamine, are adjusted in HEPES buffer and osmotic pressure comparable containing Na +.
  • FIG. 18 shows the median value of the motion amount in the extraction range. The amount of movement is standardized for each culture solution.
  • the amount of movement was the same as in the case of a normal culture solution (Medium in the figure).
  • the culture solution was a HEPES buffer solution not containing Na + (HEPES-Na in the figure)
  • the amount of movement was greatly reduced. Thereby, it can be said that the movement of the cells is increased by the inflow of Na + into the cells.
  • a movement information extraction unit that extracts movement information resulting from the movement of ions or molecules through the cell membrane from a cell image obtained by imaging cells over time;
  • a cell analysis system comprising: a motion characteristic calculator that calculates a motion characteristic of the motion information.
  • a cell analysis system further comprising: an image generation unit that generates a motion characteristic display image by superimposing the motion characteristic and the cell image.
  • a cell analysis system further comprising an evaluation unit that evaluates the movement of ions or molecules through the cell membrane based on the movement characteristics.
  • the motion characteristic calculation unit calculates a motion amount as the motion characteristic
  • the evaluation unit is a cell analysis system that evaluates the amount of movement of ions or molecules based on the amount of movement.
  • the motion characteristic calculation unit calculates a motion amount as the motion characteristic, The cell evaluation system, wherein the evaluation unit evaluates the activity of an ion channel or an ion channel receptor based on the amount of movement.
  • the movement characteristic calculation unit calculates a movement change before and after the administration of the activator or inhibitor of the ion channel or ion channel receptor as the movement characteristic,
  • the cell evaluation system wherein the evaluation unit evaluates the presence / absence or abundance of an ion channel or an ion channel receptor based on the movement change.
  • the movement characteristic calculation unit calculates a movement change before and after administration of the inhibitor of the ion channel receptor as the movement characteristic
  • the evaluation unit evaluates the type or strength of a synapse formed between cells based on the movement change.
  • the motion characteristic calculation unit calculates a motion amount as the motion characteristic
  • the cell evaluation system wherein the evaluation unit evaluates the type of substance acting on the ion channel or the ion channel receptor based on the amount of movement or the strength of the effect.
  • the motion characteristic calculation unit calculates a motion amount as the motion characteristic
  • the cell evaluation system wherein the evaluation unit evaluates movement, expansion, contraction, and vibration of the cell membrane due to the movement of ions through the cell membrane or the accompanying movement of water based on the amount of movement.
  • the movement characteristic calculation unit calculates a movement direction as the movement characteristic
  • the cell analysis system wherein the motion characteristic calculation unit evaluates a flow direction of ions or molecules through the cell membrane based on the motion direction.
  • the motion characteristic calculation unit calculates a duration or spatial distribution of motion as the motion characteristic
  • the evaluation unit evaluates the movement time or spatial distribution of ions or molecules through the cell membrane based on the duration or spatial distribution of the movement.
  • a movement information extraction unit that extracts movement information resulting from the movement of ions or molecules through the cell membrane from a cell image obtained by imaging cells over time;
  • a cell analysis program for operating an information processing apparatus as a motion characteristic calculation unit that calculates a motion characteristic of the motion information.
  • the movement information extraction unit extracts movement information resulting from the movement of ions or molecules through the cell membrane from the cell image obtained by imaging the cells over time, A cell analysis method in which a motion characteristic calculation unit calculates a motion characteristic of the motion information.
  • DESCRIPTION OF SYMBOLS 100 ... Cell analysis system 101 ... Image acquisition part 102 ... Range designation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Sustainable Development (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Quality & Reliability (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Multimedia (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

【課題】細胞膜を介したイオン又は分子の移動の分析に適した細胞分析システム、細胞分析プログラム及び細胞分析方法提供すること。 【解決手段】本技術に係る細胞分析システムは、動き情報抽出部と、動き特性算出部とを具備する。動き情報抽出部は、細胞を経時的に撮像した細胞画像から、細胞膜を介したイオン又は分子の移動に起因する動き情報を抽出する。動き特性算出部は、動き情報の動き特性を算出する。

Description

細胞分析システム、細胞分析プログラム及び細胞分析方法
 本技術は、細胞膜を介したイオン又は分子の移動の分析に適した細胞分析システム、細胞分析プログラム及び細胞分析方法に関する。
 細胞膜を通しての分子やイオンの移動(以下、細胞膜間イオン輸送)は、細胞機能にとって重要な膜電位の形成や変動に関わる。細胞膜間イオン輸送は、細胞膜が備えるイオンポンプやイオンチャネル等の特定の分子(タンパク質)によって行われる。イオンポンプは、エネルギーを消費してイオンの移動を行う分子であり、イオンチャネルは膜電位や特定の分子の結合により開閉し、細胞内外の濃度差に応じたイオン移動を行う。
 細胞膜間イオン輸送は細胞機能にとって非常に重要であり、これを把握することができれば、各種の応用が可能である。例えばイオンチャネルは創薬のターゲットとしても重要である。細胞膜間イオン輸送の評価は従来、パッチクランプを用いた方法(例えば特許文献1参照)や細胞外電場を測定する方法(例えば特許文献2参照)が一般的である。また、蛍光染色を用いて細胞内のイオン濃度を計測する方法(例えば特許文献3、4参照)も利用されている。
特開2006-184207号公報 特表2008-538287号公報 特表2006-526389号公報 特表2003-527113号公報
 しかしながら、パッチクランプや細胞外電場を利用する方法では、細胞膜において測定用の電極が接触している領域に存在するイオンチャネル等によるイオンの移動しか評価することができない。このため、空間分解能は電極のサイズや電極数に依存することになり、電極サイズが大きく、電極数が少ない場合には空間分解能が低く、一方で電極数が多い場合には複雑な装置構成が必要となる。
 また、蛍光染色を用いる方法では、蛍光物質の導入によるアーチファクト(人的要因によるノイズ)や蛍光の退色が問題となる。このように、従来の測定方法においては、細胞膜間イオン輸送を非染色かつ高分解能で測定することが困難であった。
 以上のような事情に鑑み、本技術の目的は、細胞膜を介したイオン又は分子の移動の分析に適した細胞分析システム、細胞分析プログラム及び細胞分析方法提供することにある。
 上記目的を達成するため、本技術の一形態に係る細胞分析システムは、動き情報抽出部と、動き特性算出部とを具備する。
 上記動き情報抽出部は、細胞を経時的に撮像した細胞画像から、細胞膜を介したイオン又は分子の移動に起因する動き情報を抽出する。
 上記動き特性算出部は、上記動き情報の動き特性を算出する。
 上記目的を達成するため、本技術の一形態に係る細胞分析プログラムは、動き情報抽出部と、動き特性算出部ととして情報処理装置を動作させる。
 上記動き情報抽出部は、細胞を経時的に撮像した細胞画像から、細胞膜を介したイオン又は分子の移動に起因する動き情報を抽出する。
 上記動き特性算出部は、上記動き情報の動き特性を算出する。
 上記目的を達成するため、本技術の一形態に係る細胞分析方法は、上記動き情報抽出部が、細胞を経時的に撮像した細胞画像から、細胞膜を介したイオン又は分子の移動に起因する動き情報を抽出する。
 動き特性算出部が、上記動き情報の動き特性を算出する。
 以上のように、本技術によれば、細胞膜を介したイオン又は分子の移動の分析に適した細胞分析システム、細胞分析プログラム及び細胞分析方法提供することが可能である。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術の実施形態に係る細胞分析システムの構成を示す模式図である。 同細胞分析システムの画像取得部が取得する細胞画像の例である。 同細胞分析システムの抽出範囲指定部が指定する抽出範囲の例である。 細胞膜を介したイオン又は分子の移動を示す模式図である。 同細胞分析システムの動き特性算出部が算出する動き特性の例である。 本技術の実施例1に係る、iPS由来神経細胞へのNaチャネル阻害剤投与後の動き量の変化を表すグラフである。 本技術の実施例1に係る、iPS由来神経細胞へのKチャネル阻害剤投与後の動き量の変化を表すグラフである。 。本技術の実施例1に係る、iPS由来神経細胞へのCa2+チャネル阻害剤投与後の動き量の変化を表すグラフである。 本技術の実施例2に係る、iPS由来神経細胞へのGABAレセプター阻害剤投与後の動き量の変化を表すグラフである。 本技術の実施例2に係る、iPS由来神経細胞へのGluレセプター阻害剤投与後の動き量の変化を表すグラフである。 本技術の実施例2に係る、ラット大脳皮質神経細胞へのGABAレセプター阻害剤投与後の動き量の変化を表すグラフである。 本技術の実施例2に係る、ラット大脳皮質神経細胞へのGluレセプター阻害剤投与後の動き量の変化を表すグラフである。 本技術の実施例2に係る、ラット大脳皮質神経細胞へのGluレセプター阻害剤投与後の個々の細胞についての動き量の変化を表すグラフである。 本技術の実施例3に係る、ラット大脳皮質神経細胞における浸透圧による動き量の変化を表すグラフである。 本技術の実施例3に係る、ラット大脳皮質神経細胞へのアクアポリン阻害剤投与後の動き量の変化を表すグラフである。 本技術の実施例4に係る、動き量と細胞外電場の測定結果を表すグラフである。 本技術の実施例4に係る、動き量と細胞外電場の相関を表すグラフである。 本技術の実施例5に係る、細胞培養液におけるNaイオンの有無による動き量の相違を表すグラフである。
 本技術の一実施形態に係る細胞分析システムは、動き情報抽出部と、動き特性算出部とを具備する。
 上記動き情報抽出部は、細胞を経時的に撮像した細胞画像から、細胞膜を介したイオン又は分子の移動に起因する動き情報を抽出する。
 上記動き特性算出部は、上記動き情報の動き特性を算出する。
 イオン又は分子の細胞内への流入あるいは細胞外への流出によって、細胞膜が観測可能な程度に動くため、細胞画像から抽出される動き情報にはイオン又は分子の移動に起因する情報が含まれている。したがって、動き情報の特性である動き特性に基づいて細胞膜を介したイオン又は分子の移動(以下、細胞膜間イオン輸送)を評価することが可能である。上記構成によれば、細胞に対して染色を施す必要がなく、染色剤による細胞への影響を防止することが可能である。さらに、上記細胞分析システムは、細胞画像に対する画像処理によって細胞膜間イオン輸送を評価することができるため、広い領域に対して高分解能での分析が可能である。
 上記細胞分析システムは、
 上記動き特性と上記細胞画像を重畳させ、動き特性表示画像を生成する画像生成部
 をさらに具備してもよい。
 この構成によれば、細胞分析システムはユーザに、視覚的に把握しやすい形で動き特性を表示することができ、ユーザは、動き特性表示画像を参照して、細胞膜を介したイオン又は分子の移動を評価することが可能となる。
 上記細胞分析システムは、
 上記動き特性に基づいて、細胞膜を介したイオン又は分子の移動を評価する評価部
 をさらに具備してもよい。
 上述のように、動き情報にはイオン又は分子の移動に起因する情報が含まれているため、評価部は、動き特性に基づいて細胞膜を介したイオン又は分子の移動を評価することが可能である。
 上記動き特性算出部は、上記動き特性として動き量を算出し、
 上記評価部は、上記動き量に基づいてイオン又は分子の移動量を評価してもよい。
 動き量は、イオン又は分子の細胞内への流入量又は細胞外への流出量によって増減する。このため、動き量に基づいてイオン又は分子の移動量を評価することが可能となる。
 上記動き特性算出部は、上記動き特性として動き量を算出し、
 上記評価部は、上記動き量に基づいてイオンチャネル又はイオンチャネル型受容体の活性を評価してもよい。
 動き量は、イオン又は分子の細胞内への流入量又は細胞外への流出量によって増減するため、動き量に基づいてイオン又は分子を通過させるイオンチャネル又はイオンチャネル型受容体の活性を評価することが可能となる。
 上記動き特性算出部は、上記動き特性としてイオンチャネル又はイオンチャネル型受容体の活性化剤又は阻害剤の投与前後における動き変化を算出し、
 上記評価部は、上記動き変化に基づいてイオンチャネル又はイオンチャネル型受容体の有無又は存在量を評価してもよい。
 細胞にイオンチャネル又はイオンチャネル型受容体の活性化剤又は阻害剤を投与すると、イオンチャネル又はイオンチャネル型受容体が抑制され、あるいは活性化される。これにより、イオン又は分子の細胞内への流入量又は細胞外への流出量が変動するため、細胞膜の動きが変化する。したがって、動き変化に基づいてイオンチャネル又はイオンチャネル型受容体の有無又は存在量を評価することが可能となる。
 上記動き特性算出部は、上記動き特性としてイオンチャネル型受容体の阻害剤の投与前後における動き変化を算出し、
 上記評価部は、上記動き変化に基づいて細胞間で形成されているシナプスの種類又は強さを評価してもよい。
 細胞間で形成されるシナプス(細胞間結合)は、特定の化学物質(神経伝達物質)を利用して接続されている細胞を刺激し、信号を伝達する。したがって、特定の神経伝達物質の受容体に対する阻害剤の投与によって神経伝達物質の細胞膜を介した移動が抑制されれば、その神経伝達物質を利用するシナプスが形成されていると評価することができる。神経伝達物質の細胞膜を介した移動は細胞膜の動きに反映されるため、阻害剤の投与前後の動き変化から、シナプスの種類又は強さを評価することが可能となる。
 上記動き特性算出部は、上記動き特性として動き量を算出し、
 上記評価部は、上記動き量に基づいてイオンチャネル又はイオンチャネル型受容体に作用する物質の種類又は効果の強さを評価してもよい。
 上述のように、イオンチャネル又はイオンチャネル型受容体を介したイオンの移動は動き量に基づいて評価することができる。したがって、特定の物質を細胞に投与した際の動き量に基づいて、イオンチャネル又はイオンチャネル型受容体に作用する物質の種類又は効果の強さを評価することが可能となる。
 上記動き特性算出部は、上記動き特性として動き量を算出し、
 上記評価部は、上記動き量に基づいて細胞膜を介したイオンの移動又はそれに伴なう水の移動による細胞膜の動き、膨張、収縮及び振動を評価してもよい。
 細胞内にイオン又は水が流入すると細胞膜が膨張し、細胞外にイオン又は水が流出すると細胞膜が収縮する。また、イオン又は水の流出入が短時間で繰返されることにより、細胞膜が振動する。これらの細胞膜の動きは動き量に反映されるため、動き量にもとづいてイオン又は水の移動による細胞膜の動き、膨張、収縮及び振動を評価することが可能となる。
 上記動き特性算出部は、動き特性として動き方向を算出し、
 上記動き特性算出部は、上記動き方向に基づいて細胞膜を介したイオン又は分子の流れの方向を評価してもよい。
 細胞画像における動き情報は動きの方向を情報を有しているため、特定の動き方向についての動き量から、イオン又は分子が細胞内へ流入しているか細胞外へ流出しているかを評価することが可能となる。
 上記動き特性算出部は、動き特性として動きの継続時間又は空間的分布を算出し、
 上記評価部は、上記動きの継続時間又は空間的分布に基づいて細胞膜を介したイオン又は分子の移動時間又は空間的分布を評価してもよい。
 上述のようにイオン又は分子の細胞膜を介した移動によって細胞画像における動きが生じるため、動きの継続時間は、イオン又は分子の移動時間とみなすことが可能であり、動きの空間的分布からイオン又は分子の空間的分布を推定することが可能となる。
 上記細胞分析システムは、
 上記細胞画像において、上記細胞画像の輝度差分を利用して抽出範囲を指定する範囲指定部をさらに具備し、
 上記動き情報抽出部は、上記抽出範囲から上記動き情報を抽出してもよい。
 細胞画像に含まれる細胞が神経細胞である場合、神経細胞の細胞体と神経突起は輝度が大きく異なるため、輝度差分を利用して細胞体を検出し、抽出範囲とすることが可能である。このため、上記構成によれば細胞体のみを抽出範囲として動き特性を算出し、評価に利用することが可能となる。
 本技術の一実施形態に係る細胞分析プログラムは、動き情報抽出部と、動き特性算出部ととして情報処理装置を動作させる。
 上記動き情報抽出部は、細胞を経時的に撮像した細胞画像から、細胞膜を介したイオン又は分子の移動に起因する動き情報を抽出する。
 上記動き特性算出部は、上記動き情報の動き特性を算出する。
 本技術の一実施形態に係る細胞分析方法は、上記動き情報抽出部が、細胞を経時的に撮像した細胞画像から、細胞膜を介したイオン又は分子の移動に起因する動き情報を抽出する。
 動き特性算出部が、上記動き情報の動き特性を算出する。
 本実施形態に係る細胞分析システムについて説明する。
 [細胞分析システムの構成]
 図1は、本実施形態に係る細胞分析システム100を示す模式図である。同図に示すように細胞分析システムは、画像取得部101、範囲指定部102、動き情報抽出部103、動き特性算出部104、評価部105及び画像生成部106を有する。これらの各構成は、情報処理装置によって実現されている機能的構成である。
 画像取得部101は、「細胞画像」を取得する。細胞画像は、分析対象の細胞や細胞群を経時的に撮像した画像であり、動画や連続的に撮像された複数の静止画であるものとすることができる。撮像速度は例えば1~30fps(フレーム/s)とすることができる。具体的には、細胞画像は、明視野撮像、暗視野撮像、位相差撮像、蛍光撮像、共焦点撮像、多光子励起蛍光撮像、吸収光撮像、乱光撮像等の各種の光学的な画像撮像方法を利用して撮像された画像であるものとすることができる。
 図2は、細胞画像の例であり、複数の神経細胞を含む画像である。画像取得部101は、図示しない撮像装置(顕微鏡撮像装置)から細胞画像を取得してもよく、ストレージに格納されている画像やネットワークから供給された画像を細胞画像として取得するものとすることも可能である。画像取得部101は、取得した細胞画像を範囲指定部102に供給する。
 範囲指定部102は、細胞画像において「抽出範囲」を指定する。抽出範囲は、後述する動き情報抽出部103が動き情報を抽出する範囲である。図3は、細胞画像において、範囲指定部102によって指定された抽出範囲(図中、四角枠内)の例である。範囲指定部102は、ユーザによって指示された分析対象(細胞単体や細胞群等)にしたがって、抽出範囲を指定するものとすることができる。
 具体的には、範囲指定部102は、細胞画像に分析対象の細胞や細胞群のみが含まれている場合等には、細胞画像全体を抽出範囲として指定するものとすることができる。また、範囲指定部102は、細胞画像に分析対象以外の細胞や細胞群が含まれている場合には、細胞画像の一部範囲のみを抽出範囲として指定するものとすることができる。
 範囲指定部102は、ユーザによる指示入力を受けて抽出範囲を指定してもよく、画像処理によって細胞を検出し、抽出範囲を指定してもよい。範囲指定部102は、細胞画像の輝度差分を利用して細胞を検出することが可能である。細胞画像に含まれる細胞が神経細胞である場合、神経細胞の細胞体と神経突起は輝度が大きく異なるため、輝度差分を利用して細胞体を検出し、抽出範囲とすることが可能である。範囲指定部102は、細胞画像と共に指定した抽出範囲を動き情報抽出部103に供給する。
 動き情報抽出部103は、範囲指定部102によって指定された抽出範囲から「動き情報」を抽出する。動き情報は、経時的に撮像された細胞画像における動きの情報であり、具体的には、細胞画像における特徴点の時間経過に伴なう動きベクトルであるものとすることができる。動き情報抽出部103は、細胞画像に対するブロックマッチング等の画像処理によって動き情報を抽出することができる。
 ここで、細胞画像における動きは、細胞膜を介したイオン又は分子の移動(以下、細胞膜間イオン輸送)に起因する。図4は、細胞膜間イオン輸送の模式図である。同図に示すように、イオン(K、Na等)や分子(HO等)は、細胞膜MにおけるチャネルCを介して細胞外から細胞内に流入し、又は細胞内から細胞外へ流出する。なお、チャネルCはイオンチャネルや分子チャネルあるいはイオンチャネル型受容体である。また、チャネルCはイオンポンプ又は分子ポンプであってもよい。
 以下、イオンチャネル、分子チャネル、イオンチャネル型受容体、分子ポンプ及びイオンポンプ等の細胞膜間イオン輸送を担う構造をイオンチャネル等と表記する。また、イオンチャネル等によって輸送されるイオンや分子をイオン等と表記する。
 ここで、本発明者らは、上記細胞膜間イオン輸送によって、細胞膜が観測可能な程度に動くことを見出した。これは、細胞内へイオン等が流入することによる細胞の膨張や細胞外へイオン等が流出することによる細胞の収縮、あるいはイオン等の流出入による振動によるものである。なお、これらの動きは、数時間の間隔で観察される細胞自体の移動による動きとは異なり、数秒あるいはそれ以下の間隔で観察される微小かつ高速な動きである。このように上記動き情報には細胞膜間イオン輸送による影響が含まれており、動き情報を解析することにより、細胞膜間イオン輸送を評価することが可能となる。動き情報抽出部103は、抽出した動き情報を、動き特性算出部104に供給する。
 動き特性算出部104は、動き情報から「動き特性」を算出する。動き特性は、動き情報の特性であり、動き速度、動き量、動き変化、動き方向、動きの継続時間、動きの空間的分布、動きの抑制割合又は動き領域量等の動き情報から算出される各種の特性である。なお、動き領域量は、抽出範囲において細胞が存在する領域のうち、動き量が一定以上の領域の割合である。また、動き特性は、抽出範囲におけるこれらの平均値や一定時間におけるこれらの中央値を含んでもよい。
 細胞画像の撮像時間において、イオンチャネル等の活性化剤又は阻害剤を細胞に投与することにより、動き特性算出部104は投与前後の動きの差異を動き特性として算出することが可能である。具体的には、動き特性算出部104は、投与前後における動き速度、動き量、動き方向、動きの空間的分布又は動き領域量等の変化を動き特性として算出することが可能である。
 図5は、動き特性の一例である動き量の時間変化を示すグラフである。縦軸は動き量を示し、横軸は時間(細胞画像の撮像時間)を示す。同図は、特定のイオンチャネル阻害剤を投与した細胞について算出された動き量の例であり、イオンチャネル阻害剤の投与時刻(横軸左端)から動き量が減少していることを示す。動き特性算出部104は、このような動き特性を算出する。また、動き特性算出部104は、動き情報から複数種の動き特性を算出してもよい。動き情報抽出部103は、算出した動き特性を評価部105に供給する。また、動き情報抽出部103は、算出した動き特性を画像生成部106に供給してもよい。
 評価部105は、動き特性に基づいて、細胞膜間イオン輸送を評価する。例えば図5の例では、イオンチャネル阻害剤投与直後の動き量の減少から、イオンチャネル阻害剤によってイオンチャネルの機能が阻害されていることがわかり、時間経過に伴なう動き量の増加から、イオンチャネルの機能が次第に回復していることがわかる。評価部105はこの他にも、各種の動き特性に基づいて、細胞膜間イオン輸送を評価することができる。
 具体的には評価部105は、動き量に基づいてイオン等の移動量を評価することができる。動き量は、イオン等の細胞内への流入量又は細胞外への流出量によって増減するため、動き量に基づいてイオン等の移動量を評価することが可能である。
 また、評価部105は、動き量に基づいてイオンチャネル等の活性を評価することができる。動き量は、イオン等の細胞内への流入量又は細胞外への流出量によって増減するため、イオンチャネル等の活性が高く、イオン等の流入量又は流出量が大きいと、動き量に反映される。このため、評価部105は動き量に基づいてイオンチャネル等の活性を評価することが可能である。
 また、評価部105は、イオンチャネル等の活性化剤又は阻害剤の投与前後における動き変化に基づいてイオンチャネル等の有無又は存在量を評価することができる。細胞にイオンチャネル等の活性化剤又は阻害剤を投与すると、イオンチャネル等が抑制され、あるいは活性化される。これにより、イオン等の細胞内への流入量又は細胞外への流出量が変動するため、細胞膜の動きが変化する。したがって、動き変化に基づいてイオンチャネル又はイオンチャネル型受容体の有無又は存在量を評価することが可能である。
 また、評価部105は、イオンチャネル型受容体の阻害剤の投与前後の動き変化に基づいて、細胞間で形成されているシナプスの種類又は強さを評価することができる。細胞間で形成されるシナプス(細胞間結合)は、特定の化学物質(神経伝達物質)を利用して接続されている細胞を刺激し、信号を伝達する。したがって、特定の神経伝達物質の受容体に対する阻害剤の投与によって神経伝達物質の細胞膜を介した移動が抑制されれば、その神経伝達物質を利用するシナプスが形成されていると評価することができる。神経伝達物質の細胞膜を介した移動は細胞膜の動きに反映されるため、阻害剤の投与前後の動き変化から、シナプスの種類又は強さを評価することが可能である。
 また、評価部105は、動き量に基づいてイオンチャネル等に作用する物質の種類又は効果の強さを評価することができる。イオンチャネル等を介したイオン等の移動は動き量に基づいて評価することができるため、特定の物質を細胞に投与した際の動き量に基づいて、イオンチャネル等に作用する物質の種類又は効果の強さを評価することが可能である。
 また、評価部105は、動き量に基づいて細胞膜を介したイオンの移動又はそれに伴なう水の移動による細胞膜の動き、膨張、収縮及び振動をを評価することができる。細胞内にイオン等が流入すると細胞膜が膨張し、細胞外にイオン又は水が流出すると細胞膜が収縮する。また、イオン又は水の流出入が短時間で繰返されると、細胞膜が振動する。これらの細胞膜の動きは動き量に反映されるため、動き量にもとづいてイオン又は水の移動による細胞膜の動き、膨張、収縮及び振動を評価することが可能である。
 また、評価部105は、動き方向に基づいて細胞膜を介したイオン又は分子の流れの方向を評価することができる。特定の動き方向についての動き量は、その方向に移動するイオン等の流れに起因するため、イオン等が細胞内へ流入しているか細胞外へ流出しているかを評価することが可能である。例えば抽出範囲として検出した細胞体の特定の点における動き方向が、細胞体の中心点に向いているか否かによって、イオン等が細胞内に流入したか、細胞外へ流出したかを評価することができる。
 また、評価部105は、動きの継続時間又は空間的分布に基づいて細胞膜を介したイオン又は分子の移動時間又は空間的分布を評価することができる。上述のように細胞膜間イオン輸送によって細胞画像における動きが生じるため、動きの継続時間は、イオン又は分子の移動時間とみなすことが可能であり、動きの空間的分布からイオン移動やイオンチャネル等の空間的分布を推定することが可能である。
 評価部105は以上のように、動き特性に基づいて細胞膜間イオン輸送を評価することが可能である。評価部105は、評価結果を画像生成部106に供給する。
 画像生成部106は、評価結果を表示する画像を生成する。この際画像生成部106は、評価結果と共に動き特性(例えば図5のグラフ)を表示する画像を生成してもよく、動き特性のみを表示する画像を生成し、細胞膜間イオン輸送の評価についてはユーザに任せてもよい。
 また、画像生成部106は、細胞画像と動き特性を重畳させて動き特性表示画像を生成してもよい。具体的には、画像生成部106は、動き特性の大小に応じて色彩を付し、あるいは濃淡を付して細胞画像の対応する位置に重畳させ、動き特性表示画像を生成するものとすることが可能である。
 例えば、画像生成部106がイオンチャネル阻害剤による動き抑制の割合をカラーマップとして細胞画像に重複させることにより、ユーザは個々の細胞のイオンチャネルの発現の有無や発現量を評価することが可能となる。また、画像生成部106がイオンチャネル型受容体の阻害剤による動き抑制の割合をカラーマップとして細胞画像に重複させることにより、ユーザは個々の細胞が形成しているシナプスの入力の種類や強さ、空間的分布を評価することが可能となる。
 細胞分析システム100は以上のように構成されている。上述のように細胞分析システム100は細胞画像の動き特性から細胞膜間イオン輸送を評価することが可能である。したがって、ユーザは細胞分析システム100を利用することにより、細胞に対して染色を施す必要がなく、染色剤による細胞への影響を防止することが可能である。さらに、細胞分析システム100は、細胞画像に対する画像処理によって細胞膜間イオン輸送を評価することができるため、広い領域に対して高分解能での分析が可能である。
 具体的には、細胞分析システム100を利用することにより、イオンチャネル等の活性を非染色で相対定量し、あるいはイオンチャネル等に作用する生理活性物質や薬剤を、非染色でスクリーニングすると共にその効果を相対定量することが可能となる。さらに、個々の細胞に発現するイオンチャネル等の発現の有無、発現量を相対定量することにより、非染色で細胞種のプロファイリングが可能となる。
 加えて、分析対象が神経細胞である場合には、個々の神経細胞に入力するシナプスのイオンチャネル型受容体の種類や入力量を相対定量することにより、非染色でのシナプス接続のプロファイリングが可能となる。また、イオンチャネルにより形成される細胞の膜電位変動を非染色で相対定量すること、それによる細胞の状態(分化状態や生きのよさ等)を評価することが可能となる。
 [実施例1:電位依存性イオンチャネルによるイオン移動の評価]
 電位依存性イオンチャネルは膜電位に依存して開閉し、膜間のイオン濃度勾配に応じたイオン移動を担う分子である。神経細胞の多くは、膜電位が静止しておらず振動しており、電位依存性チャネルも開閉を繰返している。イオンチャネル阻害剤は、イオンチャネルの開閉を阻害し、膜間のイオン移動を阻害する。
 iPS細胞由来神経細胞iCell Neuron(Cellular Dynamics International社製)をチャンバー付き顕微鏡にセットし、対物レンズ20倍、7.5fps(フレーム/秒)で260フレームの動画を撮像し、細胞画像とした。細胞の培養液には各種のイオンチャネル阻害剤を添加した。イオンチャネル阻害剤はNaチャネル阻害剤であるTTX(tetrodotoxin)、Kチャネル阻害剤であるTEA(tetraethylammonium)及びCa2+チャネル阻害剤であるNifedipineのいずれかとした。
 細胞画像を、上記細胞分析システムを利用して解析した。具体的には細胞画像に含まれる個々の神経細胞を抽出範囲としてブロックマッチングにより動き情報を抽出し、動き情報から動き特性として動き量(動き速度平均)を算出した。図6乃至図8は、動き量の算出結果を示すグラフである。図6はTTXを100nm添加したiCell Neuron、図7はTEAを1mM添加したiCell Neuron、図8はNifedipineを10μM添加したiCell Neuronからそれぞれ算出されたものである。なお、各図に示す動き量は、複数個(6個)の神経細部から算出された動き量の平均値である。
 各グラフにおいて横軸0minはイオンチャネル阻害剤の添加時刻であり、縦軸はイオンチャネル阻害剤の投与前(0min)を1とする動き量の相対値である。
 図6乃至図8に示す各グラフにおいては、イオンチャネル阻害剤の添加後に一過性の動き量抑制がみられる。このことから、細胞分析システムを利用することによって、イオンチャネル阻害剤の添加による膜間の相対的なイオン移動の阻害を定量的に測定できることがわかる。
 [実施例2:イオンチャネル型受容体によるイオン移動の評価]
 イオンチャネル型受容体はリガンド(受容体に結合する物質)の結合に依存して開閉し、膜間のイオン濃度に応じたイオン移動を担う分子である。神経伝達物質の多くはイオンチャネル型受容体のリガンドとなり、神経細胞の軸索先端の前シナプスから放出され、後シナプスの受容体を介してシナプスで接続された神経細胞を刺激、又は抑制する。個々の神経細胞は一種類のみの神経伝達物質を放出し、一つのシナプスで関与する神経伝達物質は一つのみである。
 イオンチャネル型受容体阻害剤は、イオンチャネル型受容体へのリガンドの結合やチャネルの開閉を阻害することで、シナプスを形成した膜間でのイオン移動を抑制する。
 iPS細胞由来神経細胞iCell Neuron(Cellular Dynamics International社製)及びラット大脳皮質初代培養細胞(Lonza社製)をそれぞれ培養チャンバー付き顕微鏡にセットしし、対物レンズ20倍、7.5fps(iCell Neuron)又は5fps(ラット大脳皮質初代培養細胞)で260フレームの動画を撮像し、細胞画像とした。それぞれの細胞の培養液に、各種のイオンチャネル受容体阻害剤を添加した。イオンチャネル受容体阻害剤は、GABA(gamma-aminobutyrate)レセプター阻害剤であるBicuculline又はGlu(グルタミン酸)レセプター(非NMDA型)阻害剤であるCNQX(6-cyano-7-nitroquinoxaline-2,3-dione)である。
 細胞画像を、上記細胞分析システムを利用して解析した。具体的には細胞画像に含まれる個々の神経細胞を抽出範囲としてブロックマッチングにより動き情報を抽出し、動き情報から動き特性として動き量を算出した。図9乃至図12は、動き量の算出結果を示すグラフである。図9はBicucullinを5μM添加したiCell Neuron、図10はCNQXを5μM添加したiCell Neuronからそれぞれ算出されたものである。また、図11はBicucullinを5μM添加したラット大脳皮質初代培養細胞、図12はCNQXを5μM添加したラット大脳皮質初代培養細胞からそれぞれ算出されたものである。なお、各図に示す動き量は、複数個の神経細部から算出された動き量の平均値である。
 各グラフにおいて横軸0minはイオンチャネル阻害剤の添加時刻であり、縦軸はイオンチャネル受容体阻害剤の投与前(0min)を1とする動き量の相対値である。
 iCell Neuronでは、さまざまな神経伝達物質を放出する細胞が混在しており、多くはGABA作動性神経細胞かGlu作動性神経細胞である。図9に示すようにiCell Neuronに抑制性の神経伝達物質であるGABAの受容体阻害剤を添加すると、動き量が一過性に増加した。また、図10に示すように、iCell Neuronに興奮性の神経伝達物質であるGlu(グルタミン酸)の受容体阻害剤を添加すると、動き量が一過性に抑制された。
 即ち、iCell Neuronでは、GABAを介したシナプスも、Gluを介したシナプスも形成されていることを図9及び図10から把握することが可能である。GABA受容体阻害剤により自然発火によるシナプス伝達の確率が増加し、Glu受容体阻害剤により同確率が低下することから、シナプス伝達の頻度が動き量に反映されていると考えられる。
 一方で、ラット大脳皮質初代培養細胞は、そのほとんどがGlu作動性神経細胞であり、GABA作動性神経細胞はほとんど含まれない。このため、ラット大脳皮質初代培養細胞を培養すると、Gluを介したシナプスは形成され得るが、GABAを介したシナプスは形成されない。図11では、GABA受容体阻害剤の添加による動き量の変動がほとんどなく、GABAを介したシナプスが形成されていないことが示されている。また、図12では、Glu受容体阻害剤の添加によって動き量が減少しており、Gluを介したシナプスが形成されていることが示されている。このように、細胞分析システムを利用することによって、分析対象の細胞が特定の神経伝達物質の受容体を有するか否かを評価することが可能である。
 また、図13は、CNQX(Gluレセプター阻害剤)を5μM添加したラット大脳皮質初代培養細胞から算出された動き量を、各細胞毎にプロットしたグラフである。同図に示すように、ラット大脳皮質初代培養細胞には、Gluレセプター阻害剤の影響が生じて動き量が減少した細胞と、同阻害剤の影響が生じず、動き量が減少しない細胞が含まれていることがわかる。即ち、細胞分析システムを利用することによって、特定の神経伝達物質に対する受容体を入力としたシナプスが形成された細胞であるか否かを、個々の細胞について評価することが可能であるといえる。
 [実施例3:膜間のイオン移動に伴なう浸透圧変化による水移動の評価]
 細胞膜間では、水チャネルであるアクアポリンを介してのみ、水の移動が行われる。アクアポリンは浸透圧差により開閉し、水移動を担う受動的なチャネル分子である。細胞全体で内外の浸透圧差が生じた場合、アクアポリンが開き、細胞の体積が増減する。イオンチャネルやイオンチャネル型受容体の開閉等による局所的かつ一過性の浸透圧差により、細胞の体積が増減し、あるいは細胞膜が動くことは、これまで明らかになっていない。
 ラット大脳皮質初代培養細胞(Lonza社製)を培養チャンバー付き顕微鏡にセットし、対物レンズ20倍、5fpsで260フレームの動画を撮像し、細胞画像とした。細胞の培養液に最終濃度2.5%のガラクトースを添加した。
 細胞画像を、上記細胞分析システムを利用して解析した。具体的には細胞画像に含まれる個々の神経細胞を抽出範囲としてブロックマッチングにより動き情報を抽出し、動き情報から動き特性として動き量を算出した。図14は、抽出範囲における動き量の中央値である。左のグラフはガラクトース未添加の場合の値であり、右のグラフはガラクトースを添加した場合の値である。
 同図に示すように、ガラクトースを添加していない場合、細胞へのNaやKの流出入及びそれに伴なう水の流出入により、一定の動き量が発生した。これに対し、ガラクトースを添加し、細胞外の浸透圧を生理的濃度の2倍とすると、動き量がほぼ完全に抑制された。これは、生理的な浸透圧差が崩れたため、イオンの流出入が停止し、それによる浸透圧差が生じなくなったために水の移動が停止したためである。即ち、細胞分析システムを利用することによって、細胞内外の浸透圧差に伴なう水の移動を評価できることがわかる。
 また、ラット大脳皮質初代培養細胞(Lonza社製)を培養チャンバー付き顕微鏡にセットし、対物レンズ20倍、7.5fps(iCell Neuron)又は5fps(ラット大脳皮質初代培養細胞)で260フレームの動画を撮像し、細胞画像とした。細胞の培養液に、アクアポリンの阻害剤であるHgClを5μM添加した。
 細胞画像を、上記細胞分析システムを利用して解析した。具体的には細胞画像に含まれる個々の神経細胞を抽出範囲としてブロックマッチングにより動き情報を抽出し、動き情報から動き特性として動き量を算出した。図15は、動き量の算出結果を示すグラフである。同図において横軸0minはイオンチャネル阻害剤の添加時刻であり、縦軸はHgClの投与前(0min)を1とする動き量の相対値である。
 同図に示すように、ラット大脳皮質初代培養細胞にアクアポリンの阻害剤であるHgClを添加すると、動き量が一過性に抑制された。なお、5μMのHgClの添加では、細胞代謝が抑制されないことが確認されている。したがって、アクアポリン阻害剤によって細胞膜間の水移動を阻害すると、細胞の動きが抑制されることが確認された。即ち、細胞分析システムを利用することによって、細胞膜間の水の移動を評価できることがわかる。
 [実施例4:動き量と細胞外電場の相関]
 多電極アレイ(アルファメッドサイエンティフィック社)にラット大脳皮質神経細胞(Lonza社製)を培養し、20kHzのサンプリング周波数で細胞外電場(field potential)を測定した。図16に測定した細胞外電場を示す。測定値から200Hzのデータを抽出し、絶対値にした後、0.2秒間の平均をとり、5Hzのデータ(図16中Field potential細線)とした。
 電極周縁の細胞の動画像を5fps、260フレームで撮像し、細胞画像とした。この細胞画像を上記細胞分析システムを利用して解析した。具体的には細胞画像に含まれる個々の神経細胞を抽出範囲としてブロックマッチングにより動き情報を抽出し、動き情報から動き特性として細胞一個当たりの動き速度平均を算出した(図16中Motion細線)。
 細胞外電場と動き量の10区間の移動平均を算出した(図16中Field potential太線及びMotion太線)。図17は、図16に示した細胞外電場と動き量の移動平均の相関を示すグラフであり、同測定時点の値をプロットしたものである。同図に示すように、細胞外電場と動き量の間には一定の相関がみられることがわかる。
 [実施例5:細胞内へのイオン流入の評価]
 ラット大脳皮質神経細胞(Lonza社製)をチャンバー付き顕微鏡にセットし、対物レンズ20倍、5fps(フレーム/秒)で260フレームの動画を撮像し、細胞画像とした。ラット大脳皮質神経細胞の培養液は、通常の培養液、Naを含むHEPES緩衝液(NaCl、KCl、MgClCaCl及びグルコースを含む)又はNaを含まないHEPES緩衝液(NaClの代わりにN-メチル-D-グルカミンを含む)とした。Naを含まないHEPES緩衝液は、N-メチル-D-グルカミンにより、Naを含むHEPES緩衝液と同程度の浸透圧に調整されている。
 細胞画像を、上記細胞分析システムを利用して解析した。具体的には細胞画像に含まれる個々の神経細胞を抽出範囲としてブロックマッチングにより動き情報を抽出し、動き情報から動き特性として動き量を算出した。図18は、抽出範囲における動き量の中央値である。なお、動き量は、培養液毎に規格化されている。
 培養液がNaを含むHEPES緩衝液である場合(図中HEPES+Na)、通常の培養液である場合(図中Medium)と同程度の動き量となった。一方で、培養液がNaを含まないHEPES緩衝液である場合(図中HEPES-Na)、動き量は大きく減少した。これにより、Naの細胞への流入によって、細胞の動きが増加しているといえる。
 なお、本技術は以下のような構成もとることができる。
 (1)
 細胞を経時的に撮像した細胞画像から、細胞膜を介したイオン又は分子の移動に起因する動き情報を抽出する動き情報抽出部と、
 上記動き情報の動き特性を算出する動き特性算出部と
 を具備する細胞分析システム。
 (2)
 上記(1)に記載の細胞分析システムであって、
 上記動き特性と上記細胞画像を重畳させ、動き特性表示画像を生成する画像生成部
 をさらに具備する細胞分析システム。
 (3)
 上記(1)又は(2)に記載の細胞分析システムであって、
 上記動き特性に基づいて、細胞膜を介したイオン又は分子の移動を評価する評価部
 をさらに具備する細胞分析システム。
 (4)
 上記(1)から(3)のうちいずれか1つに記載の細胞分析システムであって、
 上記動き特性算出部は、上記動き特性として動き量を算出し、
 上記評価部は、上記動き量に基づいてイオン又は分子の移動量を評価する
 細胞分析システム。
 (5)
 上記(1)から(4)のうちいずれか1つに記載の細胞分析システムであって、
 上記動き特性算出部は、上記動き特性として動き量を算出し、
 上記評価部は、上記動き量に基づいてイオンチャネル又はイオンチャネル型受容体の活性を評価する
 細胞分析システム。
 (6)
 上記(1)から(5)のうちいずれか1つに記載の細胞分析システムであって、
 上記動き特性算出部は、上記動き特性としてイオンチャネル又はイオンチャネル型受容体の活性化剤又は阻害剤の投与前後における動き変化を算出し、
 上記評価部は、上記動き変化に基づいてイオンチャネル又はイオンチャネル型受容体の有無又は存在量を評価する
 細胞分析システム。
 (7)
 上記(1)から(6)のうちいずれか1つに記載の細胞分析システムであって、
 上記動き特性算出部は、上記動き特性としてイオンチャネル型受容体の阻害剤の投与前後における動き変化を算出し、
 上記評価部は、上記動き変化に基づいて細胞間で形成されているシナプスの種類又は強さを評価する
 細胞分析システム。
 (8)
 上記(1)から(7)のうちいずれか1つに記載の細胞分析システムであって、
 上記動き特性算出部は、上記動き特性として動き量を算出し、
 上記評価部は、上記動き量に基づいてイオンチャネル又はイオンチャネル型受容体に作用する物質の種類又は効果の強さを評価する
 細胞分析システム。
 (9)
 上記(1)から(8)のうちいずれか1つに記載の細胞分析システムであって、
 上記動き特性算出部は、上記動き特性として動き量を算出し、
 上記評価部は、上記動き量に基づいて細胞膜を介したイオンの移動又はそれに伴なう水の移動による細胞膜の動き、膨張、収縮及び振動を評価する
 細胞分析システム。
 (10)
 上記(1)から(9)のうちいずれか1つに記載の細胞分析システムであって、
 上記動き特性算出部は、上記動き特性として動き方向を算出し、
 上記動き特性算出部は、上記動き方向に基づいて細胞膜を介したイオン又は分子の流れの方向を評価する
 細胞分析システム。
 (11)
 上記(1)から(10)のうちいずれか1つに記載の細胞分析システムであって、
 上記動き特性算出部は、上記動き特性として動きの継続時間又は空間的分布を算出し、
 上記評価部は、上記動きの継続時間又は空間的分布に基づいて細胞膜を介したイオン又は分子の移動時間又は空間的分布を評価する
 細胞分析システム。
 (12)
 上記(1)から(11)のうちいずれか1つに記載の細胞分析システムであって、
 上記細胞画像において、上記細胞画像の輝度差分を利用して抽出範囲を指定する範囲指定部をさらに具備し、
 上記動き情報抽出部は、上記抽出範囲から上記動き情報を抽出する
 細胞分析システム。
 (13)
 細胞を経時的に撮像した細胞画像から、細胞膜を介したイオン又は分子の移動に起因する動き情報を抽出する動き情報抽出部と、
 上記動き情報の動き特性を算出する動き特性算出部と
 として情報処理装置を動作させる細胞分析プログラム。
 (14)
 動き情報抽出部が、細胞を経時的に撮像した細胞画像から、細胞膜を介したイオン又は分子の移動に起因する動き情報を抽出し、
 動き特性算出部が、上記動き情報の動き特性を算出する
 細胞分析方法。
 100…細胞分析システム
 101…画像取得部
 102…範囲指定部
 103…動き情報抽出部
 104…動き特性算出部
 105…評価部
 106…画像生成部

Claims (14)

  1.  細胞を経時的に撮像した細胞画像から、細胞膜を介したイオン又は分子の移動に起因する動き情報を抽出する動き情報抽出部と、
     前記動き情報の動き特性を算出する動き特性算出部と
     を具備する細胞分析システム。
  2.  請求項1に記載の細胞分析システムであって、
     前記動き特性と前記細胞画像を重畳させ、動き特性表示画像を生成する画像生成部
     をさらに具備する細胞分析システム。
  3.  請求項1に記載の細胞分析システムであって、
     前記動き特性に基づいて、細胞膜を介したイオン又は分子の移動を評価する評価部
     をさらに具備する細胞分析システム。
  4.  請求項3に記載の細胞分析システムであって、
     前記動き特性算出部は、前記動き特性として動き量を算出し、
     前記評価部は、前記動き量に基づいてイオン又は分子の移動量を評価する
     細胞分析システム。
  5.  請求項3に記載の細胞分析システムであって、
     前記動き特性算出部は、前記動き特性として動き量を算出し、
     前記評価部は、前記動き量に基づいてイオンチャネル又はイオンチャネル型受容体の活性を評価する
     細胞分析システム。
  6.  請求項3に記載の細胞分析システムであって、
     前記動き特性算出部は、前記動き特性としてイオンチャネル又はイオンチャネル型受容体の活性化剤又は阻害剤の投与前後における動き変化を算出し、
     前記評価部は、前記動き変化に基づいてイオンチャネル又はイオンチャネル型受容体の有無又は存在量を評価する
     細胞分析システム。
  7.  請求項3に記載の細胞分析システムであって、
     前記動き特性算出部は、前記動き特性としてイオンチャネル型受容体の阻害剤の投与前後における動き変化を算出し、
     前記評価部は、前記動き変化に基づいて細胞間で形成されているシナプスの種類又は強さを評価する
     細胞分析システム。
  8.  請求項3に記載の細胞分析システムであって、
     前記動き特性算出部は、前記動き特性として動き量を算出し、
     前記評価部は、前記動き量に基づいてイオンチャネル又はイオンチャネル型受容体に作用する物質の種類又は効果の強さを評価する
     細胞分析システム。
  9.  請求項3に記載の細胞分析システムであって、
     前記動き特性算出部は、前記動き特性として動き量を算出し、
     前記評価部は、前記動き量に基づいて細胞膜を介したイオンの移動又はそれに伴なう水の移動による細胞膜の動き、膨張、収縮及び振動を評価する
     細胞分析システム。
  10.  請求項3に記載の細胞分析システムであって、
     前記動き特性算出部は、前記動き特性として動き方向を算出し、
     前記動き特性算出部は、前記動き方向に基づいて細胞膜を介したイオン又は分子の流れの方向を評価する
     細胞分析システム。
  11.  請求項3に記載の細胞分析システムであって、
     前記動き特性算出部は、前記動き特性として動きの継続時間又は空間的分布を算出し、
     前記評価部は、前記動きの継続時間又は空間的分布に基づいて細胞膜を介したイオン又は分子の移動時間又は空間的分布を評価する
     細胞分析システム。
  12.  請求項1に記載の細胞分析システムであって、
     前記細胞画像において、前記細胞画像の輝度差分を利用して抽出範囲を指定する範囲指定部をさらに具備し、
     前記動き情報抽出部は、前記抽出範囲から前記動き情報を抽出する
     細胞分析システム。
  13.  細胞を経時的に撮像した細胞画像から、細胞膜を介したイオン又は分子の移動に起因する動き情報を抽出する動き情報抽出部と、
     前記動き情報の動き特性を算出する動き特性算出部と
     として情報処理装置を動作させる細胞分析プログラム。
  14.  動き情報抽出部が、細胞を経時的に撮像した細胞画像から、細胞膜を介したイオン又は分子の移動に起因する動き情報を抽出し、
     動き特性算出部が、前記動き情報の動き特性を算出する
     細胞分析方法。
PCT/JP2014/004804 2013-11-08 2014-09-18 細胞分析システム、細胞分析プログラム及び細胞分析方法 WO2015068329A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/033,089 US10163203B2 (en) 2013-11-08 2014-09-18 Cell analysis system, cell analysis program and cell analysis method
EP14859938.4A EP3037514B1 (en) 2013-11-08 2014-09-18 Cell analysis system, cell analysis program, and cell analysis method
JP2015546279A JP6942925B2 (ja) 2013-11-08 2014-09-18 細胞分析システム、細胞分析プログラム及び細胞分析方法
CN201480059529.9A CN105683355B (zh) 2013-11-08 2014-09-18 细胞分析系统、细胞分析程序和细胞分析方法
US16/188,151 US10482598B2 (en) 2013-11-08 2018-11-12 Cell analysis system, cell analysis program and cell analysis method
US16/656,428 US10861154B2 (en) 2013-11-08 2019-10-17 Cell analysis system, cell analysis program and cell analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-232444 2013-11-08
JP2013232444 2013-11-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/033,089 A-371-Of-International US10163203B2 (en) 2013-11-08 2014-09-18 Cell analysis system, cell analysis program and cell analysis method
US16/188,151 Continuation US10482598B2 (en) 2013-11-08 2018-11-12 Cell analysis system, cell analysis program and cell analysis method

Publications (1)

Publication Number Publication Date
WO2015068329A1 true WO2015068329A1 (ja) 2015-05-14

Family

ID=53041128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004804 WO2015068329A1 (ja) 2013-11-08 2014-09-18 細胞分析システム、細胞分析プログラム及び細胞分析方法

Country Status (5)

Country Link
US (3) US10163203B2 (ja)
EP (1) EP3037514B1 (ja)
JP (1) JP6942925B2 (ja)
CN (1) CN105683355B (ja)
WO (1) WO2015068329A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104884632B (zh) 2012-12-27 2018-01-02 索尼公司 细胞分析系统及细胞分析方法
JP6942925B2 (ja) 2013-11-08 2021-09-29 ソニーグループ株式会社 細胞分析システム、細胞分析プログラム及び細胞分析方法
US10324080B2 (en) * 2015-11-17 2019-06-18 Purdue Research Foundation Systems and methods for automated image-guided patch-clamp electrophysiology in vitro
CN112469991A (zh) 2018-07-24 2021-03-09 索尼公司 信息处理装置、信息处理方法、信息处理系统以及程序
US10854486B2 (en) * 2018-09-19 2020-12-01 Kla Corporation System and method for characterization of buried defects
DE102020210718B3 (de) * 2020-08-24 2021-09-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Vorrichtung und Verfahren zur Detektion von einem Wassertransport durch mindestens eine Schicht biologischer Zellen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003527113A (ja) 2000-03-13 2003-09-16 メルク エンド カムパニー インコーポレーテッド 細胞内カルシウムレベルの測定による高処理能スクリーニング
JP2006184207A (ja) 2004-12-28 2006-07-13 Matsushita Electric Ind Co Ltd 細胞膜の特性および状態の少なくとも一方の電気的測定方法および電気的測定装置
JP2006526389A (ja) 2003-01-07 2006-11-24 ニューロームド テクノロジーズ、インク. 蛍光t型チャネルアッセイ
JP2008538287A (ja) 2005-04-05 2008-10-23 コーニング インコーポレイテッド 標識フリーバイオセンサおよび細胞
JP2011174939A (ja) * 2003-07-14 2011-09-08 Vertex Pharmaceuticals Inc イオンチャネルアッセイ方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6986993B1 (en) 1999-08-05 2006-01-17 Cellomics, Inc. System for cell-based screening
US6686193B2 (en) 2000-07-10 2004-02-03 Vertex Pharmaceuticals, Inc. High throughput method and system for screening candidate compounds for activity against target ion channels
JPWO2003100057A1 (ja) 2002-05-28 2005-09-22 独立行政法人産業技術総合研究所 化学物質センサシステム
JP2004008173A (ja) 2002-06-11 2004-01-15 Sumitomo Bakelite Co Ltd 神経毒性試験方法
SI1475350T1 (sl) 2003-05-07 2005-12-31 Degussa Prevlecene granule natrijevega perkarbonata z izboljsano stabilnostjo pri skladiscenju
EP1646926A2 (en) 2003-07-18 2006-04-19 Cytokinetics, Inc. Characterizing biological stimuli by response curves
EP1800124B1 (en) * 2004-03-16 2011-12-21 Amnis Corporation Image based quantitation of molecular translocation
JP2006329672A (ja) 2005-05-23 2006-12-07 Univ Of Tokyo 抗うつ作用物質のスクリーニング方法
MX2008007654A (es) 2005-12-13 2008-09-26 Univ Kyoto Factor de reprogramacion nuclear.
WO2007109121A2 (en) 2006-03-16 2007-09-27 Adam Rich A zebrafish model for assessing gastrointestinal motility
US7940978B2 (en) * 2007-06-05 2011-05-10 General Electric Company Automatic characterization of cellular motion
EP2201113B1 (en) 2007-10-18 2015-09-16 SNU R & DB Foundation Method of identifying agents which modulate the activity of calcium-activated chloride channel
JP4753094B2 (ja) 2007-11-19 2011-08-17 独立行政法人産業技術総合研究所 神経回路再生機能の解析装置、解析方法およびスクリーニング方法
JP5259207B2 (ja) * 2008-02-05 2013-08-07 オリンパス株式会社 細胞画像解析装置及びその方法並びにそのソフトウェア
US8712139B2 (en) 2008-03-21 2014-04-29 General Electric Company Methods and systems for automated segmentation of dense cell populations
JP2010004261A (ja) * 2008-06-19 2010-01-07 Sony Corp 画像処理装置、及び画像処理方法
EP2278332A1 (en) 2009-07-20 2011-01-26 Fondazione Centro San Raffaele del Monte Tabor Method for optical measuring variations of cell membrane conductance
JP5544474B2 (ja) 2009-12-11 2014-07-09 国立大学法人東北大学 細胞検査用バイオアッセイ用キット
US9786052B2 (en) * 2010-03-29 2017-10-10 Sony Corporation Image processing apparatus and method for evaluating objects in an image
JP5457262B2 (ja) 2010-04-23 2014-04-02 浜松ホトニクス株式会社 膜電位変化検出装置および膜電位変化検出方法
JP5806450B2 (ja) 2010-07-02 2015-11-10 オリンパス株式会社 細胞観察方法
CN103168236B (zh) 2010-08-23 2016-01-20 哈佛大学管理委员会 用于膜电位测定的光遗传学探针
US8668647B2 (en) 2010-10-15 2014-03-11 The University Of British Columbia Bandpass sampling for elastography
JP6078943B2 (ja) * 2011-02-28 2017-02-15 ソニー株式会社 画像処理装置および方法、並びに、プログラム
US20130344559A1 (en) 2012-04-23 2013-12-26 The University Of Akron Device and method for controlling nerve growth
CN104884632B (zh) 2012-12-27 2018-01-02 索尼公司 细胞分析系统及细胞分析方法
KR102147010B1 (ko) 2013-10-30 2020-08-21 밀리차 라디식 3차원 조직 배양을 위한 장치 및 방법
JP6942925B2 (ja) 2013-11-08 2021-09-29 ソニーグループ株式会社 細胞分析システム、細胞分析プログラム及び細胞分析方法
KR20170066432A (ko) 2014-09-15 2017-06-14 사운드 파마슈티칼스 인코퍼레이티드 정신병적 장애를 치료하기 위한 방법 및 조성물
US10910573B2 (en) 2015-09-08 2021-02-02 The University Of Notre Dame Du Lac Cell-based electromechanical biocomputing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003527113A (ja) 2000-03-13 2003-09-16 メルク エンド カムパニー インコーポレーテッド 細胞内カルシウムレベルの測定による高処理能スクリーニング
JP2006526389A (ja) 2003-01-07 2006-11-24 ニューロームド テクノロジーズ、インク. 蛍光t型チャネルアッセイ
JP2011174939A (ja) * 2003-07-14 2011-09-08 Vertex Pharmaceuticals Inc イオンチャネルアッセイ方法
JP2006184207A (ja) 2004-12-28 2006-07-13 Matsushita Electric Ind Co Ltd 細胞膜の特性および状態の少なくとも一方の電気的測定方法および電気的測定装置
JP2008538287A (ja) 2005-04-05 2008-10-23 コーニング インコーポレイテッド 標識フリーバイオセンサおよび細胞

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANDREA ROSSI ET AL.: "Super-resolution imaging of aquaporin-4 orthogonal arrays of particles in cell membranes", JOURNAL OF CELL SCIENCE, vol. 125, no. 18, 2012, pages 4405 - 4412, XP055308829 *
HISAO YAMAMURA: "Imaging analyses of ion channel molecule functions", JOURNAL OF PHARMACOLOGICAL SCIENCE, vol. 121, no. 1, 15 March 2013 (2013-03-15), pages 10, XP008182499 *
HISAO YAMAMURA: "Imaging analyses of ion channel_molecule functions", FOLIA PHARMACOLOGICA JAPONICA, vol. 142, no. 2, 9 August 2013 (2013-08-09), pages 79 - 84, XP008182500 *
See also references of EP3037514A4
SHIORI OSHIMA ET AL.: "Efficacy of motion analysis and visualization of neural cell for functional assessment", THE JOURNAL OF TOXICOLOGICAL SCIENCES, vol. 38, June 2013 (2013-06-01), pages S292, XP008182495 *

Also Published As

Publication number Publication date
US20190080452A1 (en) 2019-03-14
US10163203B2 (en) 2018-12-25
US10482598B2 (en) 2019-11-19
CN105683355B (zh) 2018-07-06
JPWO2015068329A1 (ja) 2017-03-09
EP3037514B1 (en) 2018-12-26
JP6942925B2 (ja) 2021-09-29
EP3037514A1 (en) 2016-06-29
EP3037514A4 (en) 2017-04-26
US20160284081A1 (en) 2016-09-29
CN105683355A (zh) 2016-06-15
US10861154B2 (en) 2020-12-08
US20200098107A1 (en) 2020-03-26

Similar Documents

Publication Publication Date Title
WO2015068329A1 (ja) 細胞分析システム、細胞分析プログラム及び細胞分析方法
Makino et al. AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis
Dzyubenko et al. Colocalization of synapse marker proteins evaluated by STED-microscopy reveals patterns of neuronal synapse distribution in vitro
Ling et al. Full-field interferometric imaging of propagating action potentials
Hernandez et al. Unitary permeability of gap junction channels to second messengers measured by FRET microscopy
Gutierrez et al. Altered synchrony and connectivity in neuronal networks expressing an autism-related mutation of neuroligin 3
Sadovsky et al. Measurement of rapid protein diffusion in the cytoplasm by photo-converted intensity profile expansion
Ranjit et al. Mapping diffusion in a living cell via the phasor approach
Owen et al. Optical techniques for imaging membrane domains in live cells (live-cell palm of protein clustering)
Lau et al. Visualization of neurotransmitter uptake and release in serotonergic neurons
Jin et al. Quantifying spatial and temporal variations of the cell membrane ultra-structure by bimFCS
Bourke et al. zapERtrap: A light-regulated ER release system reveals unexpected neuronal trafficking pathways
Jaafari et al. Using simultaneous voltage and calcium imaging to study fast Ca2+ channels
Varela et al. Trajectory‐Based Co‐Localization Measures for Nanoparticle‐Cell Interaction Studies
WO2014103137A1 (ja) 細胞分析システム、細胞分析プログラム及び細胞分析方法
Pfeiffer et al. Optimized temporally deconvolved Ca2+ imaging allows identification of spatiotemporal activity patterns of CA1 hippocampal ensembles
Díaz et al. Quantitative image mean squared displacement (iMSD) analysis of the dynamics of Aquaporin 2 within the membrane of live cells
Quicke et al. Membrane voltage fluctuations in human breast cancer cells
Welzel et al. Pool-independent labelling of synaptic vesicle exocytosis with single vesicle resolution in rat hippocampal neurons
Winnubst et al. Mapping synaptic inputs of developing neurons using calcium imaging
Lanzano et al. Chromatin Alterations in a Model of Oncogene Activation Studied by Advanced Fluorescence Microscopy
Buljan et al. How calcium controls microtubule anisotropic phase formation in the presence of microtubule-associated proteins in vitro
Pradeep et al. Quantifying Intracellular Mass Generation using Quantitative Phase Microscopy
Galbraith et al. Using Single Molecule Imaging to Explore Intracellular Heterogeneity
Mo et al. Reliably extend superresolution imaging of endoplasmic reticulum morphology in live cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859938

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014859938

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015546279

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15033089

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE