WO2015067477A1 - Corps constitué d'une matière de faible résistance mécanique et d'une matière métallique et procédé de fabrication d'une liaison de matière entre une matière de faible résistance mécanique et une matière métallique - Google Patents

Corps constitué d'une matière de faible résistance mécanique et d'une matière métallique et procédé de fabrication d'une liaison de matière entre une matière de faible résistance mécanique et une matière métallique Download PDF

Info

Publication number
WO2015067477A1
WO2015067477A1 PCT/EP2014/072725 EP2014072725W WO2015067477A1 WO 2015067477 A1 WO2015067477 A1 WO 2015067477A1 EP 2014072725 W EP2014072725 W EP 2014072725W WO 2015067477 A1 WO2015067477 A1 WO 2015067477A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
metallic material
intermediate layer
brittle
brittle material
Prior art date
Application number
PCT/EP2014/072725
Other languages
German (de)
English (en)
Inventor
Hauke Esemann
Jörg WITTE
Matthias WÖLFINGER
Roland Dudek
Thomas Kraus
Viktor Wursthorn
Original Assignee
Schott Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott Ag filed Critical Schott Ag
Priority to JP2016550980A priority Critical patent/JP2017501106A/ja
Priority to EP14799680.5A priority patent/EP3066058A1/fr
Publication of WO2015067477A1 publication Critical patent/WO2015067477A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/04Joining glass to metal by means of an interlayer
    • C03C27/042Joining glass to metal by means of an interlayer consisting of a combination of materials selected from glass, glass-ceramic or ceramic material with metals, metal oxides or metal salts
    • C03C27/046Joining glass to metal by means of an interlayer consisting of a combination of materials selected from glass, glass-ceramic or ceramic material with metals, metal oxides or metal salts of metals, metal oxides or metal salts only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/10Tops, e.g. hot plates; Rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/34Elements and arrangements for heat storage or insulation

Definitions

  • Body made of a brittle material and a metallic material and a method for producing a cohesive connection
  • the invention relates to a body comprising at least one brittle material, in particular a glass ceramic, a glass or a ceramic and a metallic material, and a method for producing a material connection of a brittle material and a metallic material.
  • a body comprising at least one brittle material, in particular a glass ceramic, a glass or a ceramic and a metallic material
  • a method for producing a material connection of a brittle material and a metallic material In order to combine brittle materials such as glass, glass ceramic, ceramic with metallic materials, various possibilities are described in the prior art, which always results in the problem that such compounds of the prior art not for the high temperature range a reliable cohesive connection available put.
  • Another problem is when such a compound of a brittle material and a metallic material are exposed to temperature changes with a temperature difference of more than 250 K. In such cases, the bodies tend to break at the junction.
  • balancing connecting materials examples include, for example, silicone adhesives.
  • a disadvantage of such a cohesive connection is that the temperature resistance is usually limited to temperatures less than 250 ° C.
  • connection Another possibility of a cohesive connection is, with the help of intermediate glasses or glass solders resulting in the connection
  • brittle material can be safely avoided.
  • Another disadvantage of a constructive bond of brittle material and metallic material are far-reaching restrictions on the possible geometric design of the compound.
  • solder material by material connection with the aid of a solder material, in particular a glass-based solder material with a further component, for. B. to connect a metal.
  • solder materials are described in DE 10 2005 047 006 A1 inorganic glass-based solder matehals such as Pb-borate glasses or Bi-Zn-borate glasses are discussed.
  • the soldering process is carried out in DE 10 2005 047 006 A1 by combining the components to be joined by diffusion processes between the solder material and the components to be joined.
  • Solder material is below that of the components to be joined
  • stresses occur between the interconnected components, in particular with temperature changes with a ⁇ of more than 250K.
  • the compound according to DE 10 2008 002 959 A1 is a compound which is essentially designed for room temperature.
  • CH 423 294 A From CH 423 294 A a method for attaching a metal strip to a non-metallic, preferably optical element has become known.
  • the use of an intermediate layer is not shown in CH 423 294 A, but rather the metal strip, for example the aluminum strip, is directly connected to the optical element by means of an ultrasonic welded connection.
  • EP 0 262 699 A1 describes a method for connecting a first and a second element, wherein the first element consists at least partly of glass or ceramic and the second element at least partially of metal and the connection of both elements between a glass or ceramic part of the first element and a metal part of the second element is produced.
  • an auxiliary metal element with the mentioned glass or ceramic part of the first element by means of a
  • EP 0 262 699 A1 Element welded by means of a laser beam to the auxiliary element made of metal.
  • the auxiliary element lies between the first and the second element.
  • EP 0 262 699 A1 shows no connection between metal and brittle material with a high thermal shock resistance.
  • the compound according to EP 0 262 699 A1 is one which has a high dimensional stability and in which only slight stresses occur between the connection partners.
  • the US 4,896,816 shows a method for producing a connection between a metal element and a body of glass ceramic material, wherein a metal is used as a bonding material that by means of hot diffusion into the
  • the object of the invention is therefore to solve the aforementioned problems and to provide a body or a material connection between a brittle material and another metallic material which is suitable for the high temperature range and a high
  • a body consists of at least one brittle material, in particular a glass ceramic, a glass or a ceramic and a metallic material, and that
  • brittle material with the metallic material a high-temperature-resistant, cohesive connection for temperatures of more than 250 ° C, in particular more than 350 ° C, preferably more than 400 ° C, in particular more than 500 ° C, provides.
  • connection of brittle material and metallic material comprises an intermediate layer between the brittle material and the metallic material, in particular an intermediate layer of a ductile material, preferably a ductile metal.
  • the intermediate layer ensures that the connection between the brittle material and the metallic material is made. Furthermore, stresses between the brittle material and the metallic material can be at least partially degraded by the intermediate layer.
  • Ductile materials, in particular ductile metals are characterized by a high ductility. You have the
  • Such ductile metals are, for example, aluminum, in particular pure aluminum or pure aluminum, gold or titanium.
  • Preferred ductile materials, preferably ductile metals, in the present application are those having an elongation at break> 1%, preferably> 10%, in particular in the range 1% to 45%, more preferably in the range 1% to 20%, very preferably in the range 2% to 20%, most preferably in the range 2% to 15% understood.
  • the ductility of pure aluminum shows itself in a very great softness of the material.
  • Elongation at break for pure aluminum can be very high and up to 45%.
  • Particularly preferred materials having an elongation at break in the range according to the invention is, for example, the pure aluminum foil AI 99.5 - smooth, soft, bright rolled - ALUJET from ALUJET GmbH, Ahornstrasse 16, D82291 Mammendorf, which has a thickness in the range from 0.05 mm to 0 , 30 mm one
  • the intermediate layer can also be applied to the brittle material or the metallic material by one of the following methods:
  • fire metallizing in particular fire aluminizing
  • the intermediate layer has the following layer thickness:
  • a layer thickness 10 to 70 ⁇ , in particular 10 to 20 ⁇ , for electrodeposited intermediate layers is a layer thickness 10 to 70 ⁇ , in particular 10 to 20 ⁇ , for electrodeposited intermediate layers
  • Metal coating can be deposited largely free of pores.
  • galvanic deposition can take place on the metallic material, for example on steel or stainless steel. Typical layer thicknesses are in the range 10 to 20 ⁇ , but in principle are also possible 70 ⁇ . Galvanically deposited layers are dense, firmly adhering layers with a very high Al purity of, for example, 99.8%. Another advantage is the all-round coatability.
  • An alternative application process is plating or roll cladding. Such a method is possible for sheet metal semi-finished products, for example in the form of rolled-up strips. When plating or plating becomes an inseparable
  • Tool assembly made with a one-sided or two-sided aluminum support.
  • an aluminum overlay is applied to steel, the composition comprising Al 99 wt% and ⁇ 1 wt% Si.
  • typical thicknesses are in the range 50 to 70 ⁇ .
  • Semi-finished sheet metal or bands with any metal supports possible, in particular ferritic or austenitic stainless steels can be produced. Another advantage is that sheets can be reshaped or stamped. Aluminum can furthermore be applied as a layer by means of thermal spraying
  • Typical layer thicknesses are in the range 50 to 400 ⁇ .
  • Common methods for spraying aluminum are wire flame spraying or cold gas spraying.
  • the surface to be coated is roughened or cleaned by sandblasting, in order to achieve a good layer adhesion, that is a jamming.
  • Cold gas spraying involves spraying AI powder with a very high kinetic energy onto a surface, whereby strong plastic deformation of the particles leads to the bond and to a very dense layer.
  • the high kinetic energy can cause thin-walled components tend to excessive distortion.
  • the wire In wire flame spraying, the wire is melted in the flame and melt droplets are thrown onto the surface, resulting in layers with a porosity of 5-10 vol.%.
  • thermally sprayed layers can have process-related pores.
  • the amount of pores can be 2 to 15% by volume.
  • Aluminum layer remaining porosity is particularly advantageous in view of the thermal expansion. As a result, in particular thermal stresses can be reduced. Also, fire aluminizing is possible for applying aluminum layers.
  • a sheet metal strip passes through a molten bath comparable to hot-dip galvanizing or tinplate production, whereby the aluminum is about 10% Silicon includes.
  • To increase the corrosion protection can be provided to form a Fe-Al-Si intermediate layer followed by a pure Al layer.
  • the total layer thickness of the system is variable and is typically 20 to 100 ⁇ . Base materials are often low carbon steels for good
  • the above-described techniques for applying the intermediate layer may serve both to coat the intermediate layer on the metallic material or the brittle-fracture material or both the metallic material and the like
  • a material in particular a glass ceramic or a glass with a thermal
  • Exemplary materials which have a coefficient of thermal expansion in this range are, for example, Li-Al-Si glass ceramics such as, for example, the glass ceramics ROBAX®, CERAN® and NEXTREMA® from Schott AG, Mainz, which have a coefficient of thermal expansion in the temperature range of 20 ° C to 300 ° C in the range of -0.3 to 1, 0 ⁇ 10 "6 / K have.
  • Li-Al-Si glass ceramics such as, for example, the glass ceramics ROBAX®, CERAN® and NEXTREMA® from Schott AG, Mainz, which have a coefficient of thermal expansion in the temperature range of 20 ° C to 300 ° C in the range of -0.3 to 1, 0 ⁇ 10 "6 / K have.
  • a glass material for example, a borosilicate glass can be used, for. Borofloat 33®.
  • the glass material Borofloat33® has a thermal
  • the metallic material is a metallic material is preferred with a coefficient of thermal expansion aMetaii in the temperature range 20 ° C to 300 ° C, for which: a M etaii ⁇ 20 ⁇ 10 "-6 / K, in particular in the range 4.0 ⁇ 10" 6 / K ⁇ aMetaii ⁇ 6 ⁇ 10 "6 / K KOVAR is an especially preferred metallic material, but molybdenum, steel, tungsten or stainless steel are also possible KOVAR is an iron-cobalt-nickel alloy.
  • a sp röd - 20 ⁇ 10 "6 / K ⁇ - is particularly preferred when the metallic material is selected depending on the brittle material in such a manner that the metallic material has a thermal expansion coefficient aMetaii (300 ° C 20 ° C) a M etaii ⁇ a sp röd + 20 ⁇ 10 "-6 / K, preferably a sp röd - 10 ⁇ 10" 6 / K ⁇ aMetaii ⁇ a spr öd + 10 ⁇ 10 "-6 / K, in particular a spr öd - 5 ⁇ 10 "6 / K ⁇ a M etaii ⁇ a spr öd + 5 ⁇ 10" has 6 / K.
  • connection of brittle material and metallic material is preferably carried out by means of welding, in particular ultrasonic welding.
  • the ultrasonic welding takes place in the usual frequency range of 15 to 50 kHz, preferably at 20 kHz.
  • reference is made to DE 199 17 133 A1 in which the welding of a workpiece made of glass, glass ceramic and / or ceramic, ie a brittle, inorganic, poorly heat-conducting material with a small distance order and a workpiece made of different materials, for example a metal, is described.
  • the disclosure of DE 199 17 133 A1 is fully included in the present application.
  • the welding in particular with ultrasonic welding apparatuses, between the brittle material and the metallic material takes place between a first connection surface on the brittle material and a second connection surface on the metallic material.
  • Welding can be flat or even partial surface, with a partial surface welding depending on the geometry of a spot weld, a seam welding or
  • Torsionssch spaung can be.
  • a body or composite comprising the brittle material and the metallic material according to the invention, despite the different thermal expansions of the two joining partners, here the brittle material and the metallic material, surprisingly durable
  • the temperature-resistant compound above 250 ° C, especially above 300 ° C.
  • the permanent temperature resistance up to temperatures of 400 ° C, particularly preferably up to 500 ° C, achieved. Even temperature changes of over 250 K, the compound thus prepared withstand, even if the brittle material has a low or zero expansion.
  • the thermal shock resistance is over a wide
  • Temperature range of more than 250K preferably ⁇ between 250K and 1300K, preferably ⁇ given between 250K and 900K, in particular ⁇ between 250K and 500K.
  • the compound is insensitive to temperature changes between, for example, -273 ° C and 1000 ° C, preferably 0 ° C and 500 ° C.
  • the thermal expansion coefficient of LAS glass ceramic differs greatly from the thermal expansion coefficient of stainless steel. According to the invention is between the brittle material and the
  • the intermediate layer preferably consists of a ductile material, in particular a ductile metal, preferably of aluminum, in particular high-purity aluminum, or else gold or titanium or a gold or titanium alloy.
  • the thickness of such an intermediate layer is preferably ⁇ 500 ⁇ m, in particular ⁇ 20 ⁇ m is preferably in the range from 20 to 200 ⁇ m, preferably 50 ⁇ m to 150 ⁇ m, particularly preferably in the range from 80 ⁇ m to 120 ⁇ m.
  • the metallic material is a metal element that has a homogeneous thickness distribution in the region of the welding surface with thickness fluctuations of not more than 30 ⁇ m, preferably not more than 10 ⁇ m, in particular not more than 3 ⁇ m. Such thickness distributions can be achieved, for example, when using metal elements that consist of a
  • the intermediate layer preferably has thickness fluctuations of not more than 20 ⁇ m, preferably not more than 5 ⁇ m, in particular not more than 1 ⁇ m.
  • first and / or second connecting surface which is connected by means of ultrasonic welding as a joining method.
  • This is particularly advantageous for the brittle material.
  • thermal or chemical tempering or a festists keitssteigernde coating for example, thermal or chemical tempering or a festists keitssteigernde coating.
  • connection of brittle material and metallic material by means of
  • the invention also includes a method for
  • a brittle, preferably substantially low-stretching material preferably a glass, a glass ceramic or a ceramic having a thermal expansion coefficient a sp röd ( 20 ° C - 300 ° C) ⁇ 4 ⁇ 10 "-6 / K, in particular a spr öd (20 ° C - 300 ° C) ⁇ 2 ⁇ 10" -6 / K, preferably in the range - 1 ⁇ 10 "6 / K , ⁇ a sp röd ⁇ 4 ⁇ 10 "-6 / K, in particular in the range - 0.6 ⁇ 10" 6 / K ⁇ a spr öd ⁇ 2 ⁇ 10 "-6 / K, such as a Li-Al-Si glass-ceramic, provided with a first connection surface.
  • a brittle, preferably substantially low-stretching material preferably a glass, a glass ceramic or a ceramic having a thermal expansion coefficient a sp röd (
  • the intermediate layer is preferably made of a ductile metal
  • Aluminum alloy or gold or titanium preferably with a thickness ⁇ 500 ⁇ , preferably ⁇ 200 ⁇ , in particular in the range between 20 ⁇ and 200 ⁇ , connected to each other. This will be a high temperature resistant connection for temperatures of more than 250 ° C, preferably more than 300 ° C and / or a thermal shock resistance of more than 250 K, provided.
  • the brittle material is mixed with the metallic material
  • Joining method in particular welding, in particular ultrasonic welding, preferably in the form of spot welding, seam welding or
  • thermo shock resistance is achieved when, in particular, the first bonding surface of the brittle material is pretreated.
  • thermal or chemical toughening a festig keitssteigernde coating, smoothing, nubs, structuring, partial or full area etching, polishing and / or ion exchange.
  • FIG. 1 shows a first embodiment of a body according to the invention made of a brittle material and a metallic material.
  • Fig. 2 shows a second embodiment of a body according to the invention of a brittle material and a metallic material, wherein the metallic material is a metallic element in the form of an angled stainless steel sheet.
  • an inventive body 100 is shown, consisting of a brittle material 1 and a metallic material 3.
  • the brittle material for example, without limitation, a substantially zero-expansion material such as a Li-Al-Si glass-ceramic, in particular ROBAX ® from Schott AG, Mainz.
  • a substantially zero-expansion material such as a Li-Al-Si glass-ceramic, in particular ROBAX ® from Schott AG, Mainz.
  • ROBAX ® from Schott AG, Mainz.
  • Such, in the Substantially nullausdehendes material has an average coefficient of thermal expansion a spr öd (20 ° C - 300 ° C) ⁇ 0.15 ⁇ 10 "6 / K.
  • the metallic material 3 is essentially a metallic material with a coefficient of thermal expansion aMetaii (20 ° C.-300 ° C.) ⁇ 6 -10 "6 / K in the temperature range from 20 ° C. to 300 ° C.
  • a particularly preferred metallic material is KOVAR. Further shown is the first bonding surface 10 of the brittle material and the second bonding surface 12 of the metallic material. In the region of the first and second connecting surfaces 10, 12, the metallic material 3 is bonded to the brittle material 1 in a material-locking manner, for example by a welding method as a joining method.
  • a ductile metal is in particular aluminum, pure aluminum, high-purity aluminum or gold or titanium, preferably as a film.
  • the cohesive connection is preferably carried out by welding
  • ultrasonic welding in a relatively short time in preferably less than 10 sec., In particular less than 5 sec, in particular even less than 1 sec, without being limited thereto.
  • a particularly temperature-resistant compound especially with high
  • Thermal shock resistance of more than 250 K is achieved when the first bonding surface 10 of the brittle material 1 is treated.
  • thermal or chemical tempering and / or a strength-increasing coating, a local or full-area etching or polishing is possible.
  • FIG. 2 shows a further exemplary embodiment of a body according to the invention made of a brittle material and a metallic material.
  • the metallic element is a preferably angled stainless steel sheet.
  • the same components as in FIG. 2 are higher by 100
  • the sprödbrüchige material 101 in Figure 2 is, for example, the glass-ceramic Robax ® having an average coefficient of thermal expansion 020-300 of -. 0.3-10 "6 / K
  • the intended for connection with a metallic material 103 in the form of a shaped body 200 connecting surface is, preferably formed in a rolling process planar connecting surface 1 12 having a substantially homogeneous thickness distribution with thickness variations of not more than 30 ⁇ , preferably not more than 10 ⁇ , in particular not more than 3 ⁇ .
  • the intermediate layer 120 of ductile material is a film, for example made of aluminum with a thickness of, for example, 0.1 mm used.
  • the intermediate layer can be applied to the
  • metallic material in the form of a shaped body by galvanic cutting, plating, in particular roll cladding, thermal spraying, fire aluminizing, vacuum evaporation or magnetron sputtering, as described above, can be applied.
  • the metallic material is in the form of a shaped body by galvanic cutting, plating, in particular roll cladding, thermal spraying, fire aluminizing, vacuum evaporation or magnetron sputtering, as described above, can be applied.
  • the metallic material is in the form of a shaped body
  • the thickness variations of the intermediate layer are not more than 20 ⁇ , preferably not more than 5 ⁇ , in particular not more than 1 ⁇ .
  • the connection of the molded body 200 with the brittle material 101 takes place in the region 210 of at least one leg 212 of the angled
  • the sprödbrüchige material from the glass ceramic Robax ® consists with a mean thermal expansion coefficient of 0. 20- 300 of -0,3-10 "6 / K
  • the intended for connection to a metallic molded body surface is a rolling process in a shaped plane
  • the intermediate layer of ductile material is an aluminum foil EN-AW-1050A with a thickness of 0.1 mm.
  • the metallic molded body consists of a 0.5 mm thick and in diameter 22 mm measuring flat base plate of the material Kovar with a mean thermal expansion coefficient 0: 20-300 of 5.5- 10 "6 / K.
  • On the base plate centric and vertical attached to it is a firmly connected to the base plate threaded bolt with a height of 12 mm and a diameter of 8 mm for further mounting options according to the other
  • the glass ceramic Robax, the intermediate layer of aluminum and the Kovar base plate are welded together with the help of a sonotrode in the form of a hollow cylinder with frontal rauting, the front side of the sonotrode resting on the Kovar base plate and a torsional vibration performs.
  • the sonotrode amplitude is 25 ⁇ , the sonotrode frequency 20 kHz, the welding pressure 2.0 bar and the welding power 800 Ws.
  • the composite body thus produced has a surface connection between the
  • Load test revealed a shear strength of at least 700 N.
  • the brittle material consists of the glass ceramic Ceran® with a mean thermal expansion coefficient 0: 20-300 of -0.2-10 "6 / K.
  • the surface intended for connection to a metallic molded body is one in a rolling process Shaped surface with the known from the application as a cooking surface knob structure
  • Intermediate layer of ductile material is an aluminum foil EN-AW-1050A with a thickness of 0.1 mm is used.
  • the metallic molded body consists of a 0.5 mm thick and in diameter 22 mm measuring flat base plate made of the material Kovar with a medium thermal
  • the glass-ceramic Ceran, the intermediate layer of aluminum and the Kovar base plate are welded together using a sonotrode in the form of a hollow cylinder with frontal Rauttechnik, the front of the sonotrode touches the Kovar base plate and a torsional vibration performs.
  • the sonotrode amplitude is 25 ⁇ , the sonotrode frequency 20 kHz, the welding pressure 1, 5 bar and the welding power 500 Ws.
  • the composite body thus produced has a connection between the in
  • the sprödbrüchige material from the glass ceramic Robax ® consists with a mean thermal expansion coefficient of 0. 20- 300 of -0,3-10 "6 / K
  • the intended for connection to a metallic molded body surface is a rolling process in a shaped plane
  • the intermediate layer of ductile material is an EN-AW-1050A aluminum foil with a thickness of 0.1 mm.
  • the metallic molded body consists of a 0.5 mm thick and in diameter 22 mm measuring flat base plate made of the material Kovar with a medium thermal
  • the glass ceramic Robax, the intermediate layer of aluminum and the Kovar base plate are welded together with the help of a sonotrode in the form of a hollow cylinder with frontal rauting, the front side of the sonotrode resting on the Kovar base plate and a torsional vibration performs.
  • the sonotrode amplitude is 25 ⁇
  • the sonotrode frequency 20 kHz the welding pressure 2.0 bar
  • the composite body thus produced has a surface connection between the Robax glass ceramic and the intermediate layer of aluminum, on the other hand, and at the same time a connection between the intermediate layer of aluminum and the Kovar base plate.
  • the contact surface produced in the welding process is about 1, 5 cm 2 .
  • the sprödbrüchige material from the glass Borofloat 33 ® is a mean thermal expansion coefficient of 0. 20-300 3,3-10 "6 / K
  • the intended for connection to a metallic molded body surface is in a float process
  • the surface of the ductile material is made of EN-AW-1050A aluminum foil 0.1 mm thick, consisting of a 0.5 mm thick and 22 mm in diameter flat base plate the material Kovar with an average coefficient of thermal expansion 0120-300 from 5.5 to 10 "6 / K.
  • On the base plate centric and placed perpendicular to it is a firmly connected to the base plate threaded bolt with a height of 12 mm and a diameter of 8 mm for further mounting options according to the other
  • the glass Borofloat 33, the intermediate layer of aluminum and the Kovar base plate are welded together using a sonotrode in the form of a hollow cylinder with frontal Rauttechnik, the front side of the sonotrode touches the Kovar base plate and a torsional Vibration takes place.
  • the sonotrode amplitude is 25 ⁇ , the sonotrode frequency 20 kHz, the welding pressure 2.0 bar and the welding energy 700 Ws.
  • the composite body thus produced has a surface connection between the Borofloat 33 glass and the intermediate layer of aluminum, on the other hand, and at the same time a connection between the intermediate layer of aluminum and the Kovar base plate.
  • the contact area produced in the welding process is approximately 1.5 cm 2 .
  • Load test revealed a shear strength of at least 500 N.
  • the sprödbrüchige material from the glass ceramic Robax ® consists with a mean thermal expansion coefficient of 0. 20- 300 of -0,3-10 "6 / K
  • the intended for connection to a metallic molded body surface is a rolling process in a shaped plane
  • the intermediate layer of ductile material is an aluminum foil EN-AW-1050A with a thickness of 0.1 mm.
  • the metallic molded body consists of a 0.5 mm thick, double-angled stainless steel sheet of the material stainless steel 1 .4301 with a middle
  • the glass ceramic Robax, the intermediate layer of aluminum and the angled stainless steel sheet are welded together with the aid of a sonotrode in the form of a cylinder with an end rauting, whereby the end face of the sonotrode is welded onto a leg of the
  • Stainless steel sheet touches down and performs a torsional vibration.
  • the composite body thus produced has a surface connection between the Robax glass ceramic and the intermediate layer of aluminum, on the other hand, and at the same time a connection between the intermediate layer of aluminum and the stainless steel sheet.
  • the contact surface produced in the welding process is about 0.5 cm 2 .
  • the mechanical load test consists of a blow with the impact tester according to Wegner, as described in DIN 51 155.
  • the impact tester according to Wegner is positioned vertically against the welding area of the stainless steel sheet welded to the Robax disk and the impact is triggered in accordance with DIN 51 155.
  • the welded joint survives this mechanical stress test with a impact energy of at least 0.25 J.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)
  • Cookers (AREA)
  • Baking, Grill, Roasting (AREA)
  • Glass Compositions (AREA)
  • Electric Stoves And Ranges (AREA)

Abstract

L'invention concerne un corps comportant au moins une matière de faible résistance mécanique, en particulier une vitrocéramique, un verre ou une céramique et une matière métallique. L'invention est caractérisée en ce que la matière de faible résistance mécanique forme avec la matière métallique une liaison de matière qui est résistante aux hautes températures, pour des températures supérieures à 250°C , en particulier supérieures à 300°C, de préférence supérieures à 400°C, en particulier supérieures à 500°C, et la liaison de la matière à faible résistance mécanique et de la matière métallique comprend une couche intermédiaire entre la matière à faible résistance mécanique et la matière métallique et la couche intermédiaire est constituée d'une matière ductile, de préférence un métal ductile, en particulier un matière ductile, de préférence un métal ductile, ayant une élongation à la rupture ≥ 1%, de préférence ≥ 2%, en particulier ≥ 4%, tout particulièrement ≥ 10%, en particulier dans la gamme de 1% à 20%, de façon tout particulièrement préférée dans la gamme de 2% à 15%.
PCT/EP2014/072725 2013-11-05 2014-10-23 Corps constitué d'une matière de faible résistance mécanique et d'une matière métallique et procédé de fabrication d'une liaison de matière entre une matière de faible résistance mécanique et une matière métallique WO2015067477A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016550980A JP2017501106A (ja) 2013-11-05 2014-10-23 脆性材料と金属材料とからなる本体、及び、脆性材料と金属材料との素材結合による結合を形成する方法
EP14799680.5A EP3066058A1 (fr) 2013-11-05 2014-10-23 Corps constitué d'une matière de faible résistance mécanique et d'une matière métallique et procédé de fabrication d'une liaison de matière entre une matière de faible résistance mécanique et une matière métallique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013018465.7 2013-11-05
DE201310018465 DE102013018465A1 (de) 2013-11-05 2013-11-05 Körper aus einem sprödbrüchigen Material und einem metallischen Material sowie ein Verfahren zur Herstellung einer stoffschlüssigen Verbindung eines sprödbrüchigen Materials und eines metallischen Materials

Publications (1)

Publication Number Publication Date
WO2015067477A1 true WO2015067477A1 (fr) 2015-05-14

Family

ID=51015410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/072725 WO2015067477A1 (fr) 2013-11-05 2014-10-23 Corps constitué d'une matière de faible résistance mécanique et d'une matière métallique et procédé de fabrication d'une liaison de matière entre une matière de faible résistance mécanique et une matière métallique

Country Status (4)

Country Link
EP (1) EP3066058A1 (fr)
JP (5) JP2017501106A (fr)
DE (5) DE102013018465A1 (fr)
WO (1) WO2015067477A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11143975B2 (en) 2016-12-22 2021-10-12 Asml Netherlands B.V. Lithographic apparatus comprising an object with an upper layer having improved resistance to peeling off

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018110897A1 (de) * 2017-12-22 2018-06-21 Schott Ag Einrichtungs- und Ausstattungsgegenstände für Küchen oder Labore mit Anzeigeeinrichtung
DE102018110910A1 (de) * 2017-12-22 2018-06-21 Schott Ag Einrichtungs- und Ausstattungsgegenstände für Küchen oder Labore mit Leuchtelement
DE102018102932A1 (de) * 2018-02-09 2019-08-14 Schott Ag Gebogene Glas- oder Glaskeramik-Scheibe und Verfahren zu deren Herstellung
DE102018103661A1 (de) 2018-02-19 2019-08-22 Schott Ag Transparenter Artikel aus Glaskeramik mit hoher Oberflächenqualität sowie Verfahren zu dessen Herstellung
US10902880B2 (en) * 2018-03-23 2021-01-26 Amazon Technologies, Inc. Moveable motor and cover for mobile drive unit turntable
DE102018216755A1 (de) * 2018-09-28 2020-04-02 Schott Ag System mit einer Arbeitsplatte und einem Funktionselement, Arbeitstisch umfassend ein solches System sowie Verfahren zur Herstellung eines Arbeitstisches
CN115397786B (zh) * 2020-04-09 2024-02-20 业纳光学系统有限公司 将玻璃元件热稳定地接合到支撑元件的方法、生产光学装置的方法以及光学装置
DE102020123829A1 (de) * 2020-09-14 2022-03-17 Miele & Cie. Kg Kochfeld, umfassend eine Deckplatte mit mindestens einer Kochstelle und einen Kochfeldboden

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2859562A (en) * 1954-10-15 1958-11-11 Philips Corp Metal glass seals and methods of making same
US3029559A (en) * 1956-07-25 1962-04-17 Bell Telephone Labor Inc Glass-metal seals
CH423294A (de) 1962-03-01 1966-10-31 Perkin Elmer Corp Verfahren zum Anbringen eines Metallstreifens an einem nichtmetallischen, vorzugsweise optischen Element
EP0262699A1 (fr) 1986-08-18 1988-04-06 Koninklijke Philips Electronics N.V. Interconnexion d'un élément en verre ou céramique et d'un élément en métal
US4896816A (en) 1984-02-15 1990-01-30 Quantel S.A. Method for producing a fluidtight and heat curable seal between metal objects and a body of vitroceramic material
DE19917133A1 (de) 1999-04-15 2000-11-02 Dietmar Eifler Ultraschallschweißverfahren
WO2006121954A2 (fr) * 2005-05-06 2006-11-16 Stark David H Unites de vitrage isole et procedes correspondants
DE102005047006A1 (de) 2005-09-30 2007-04-05 Schott Ag Verbundsystem, Verfahren zur Herstellung eines Verbundsystems und Leuchtkörper
DE102008002959A1 (de) 2008-07-22 2010-01-28 Schunk Sonosystems Gmbh Verfahren zum abdichtenden Verschweißen von Elementen mittels Ultraschall
EP2284450A1 (fr) * 2008-04-03 2011-02-16 Abengoa Solar New Technologies, S.A. Liaison mécanique hermétique entre verre et métal pour tubes récepteurs utilisés dans les centrales solaires

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3527958C2 (de) 1985-08-03 1994-01-20 Licentia Gmbh Back- und Bratrohr
DE3527957C2 (de) 1985-08-03 1996-06-20 Aeg Hausgeraete Gmbh Backofenmuffel aus Glas oder Glaskeramik
CA2183498A1 (fr) 1995-11-13 1997-05-14 Walton E. Sparks Interieur de four a partie inferieure lisse
DE19905670A1 (de) 1998-12-16 2000-09-07 Schott Glas Kochgerät
DE102008025907B4 (de) 2008-05-29 2015-04-30 Schott Ag Ofenmuffel
DE102009056757B4 (de) 2009-12-04 2020-11-26 Schott Ag Grillvorrichtung mit Wärmequellen-Schutzschild sowie Wärmequellen-Schutzschild zur Abschirmung von Heizelementen vor Nahrungsmittelrückständen
DE102012204235B4 (de) 2012-03-16 2024-02-29 BSH Hausgeräte GmbH Haushaltsgerät zum Zubereiten von Lebensmitteln mit einer Ultraschall-Lötverbindung sowie Verfahren zum Herstellen eines derartigen Haushaltsgeräts
DE102012215139A1 (de) 2012-08-27 2014-02-27 BSH Bosch und Siemens Hausgeräte GmbH Haltevorrichtung für eine Aufnahmeeinrichtung für einen Gargutträger in einem Gargerät sowie Anordnung mit einer derartigen Haltevorrichtung

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2859562A (en) * 1954-10-15 1958-11-11 Philips Corp Metal glass seals and methods of making same
US3029559A (en) * 1956-07-25 1962-04-17 Bell Telephone Labor Inc Glass-metal seals
CH423294A (de) 1962-03-01 1966-10-31 Perkin Elmer Corp Verfahren zum Anbringen eines Metallstreifens an einem nichtmetallischen, vorzugsweise optischen Element
US4896816A (en) 1984-02-15 1990-01-30 Quantel S.A. Method for producing a fluidtight and heat curable seal between metal objects and a body of vitroceramic material
EP0262699A1 (fr) 1986-08-18 1988-04-06 Koninklijke Philips Electronics N.V. Interconnexion d'un élément en verre ou céramique et d'un élément en métal
DE19917133A1 (de) 1999-04-15 2000-11-02 Dietmar Eifler Ultraschallschweißverfahren
WO2006121954A2 (fr) * 2005-05-06 2006-11-16 Stark David H Unites de vitrage isole et procedes correspondants
DE102005047006A1 (de) 2005-09-30 2007-04-05 Schott Ag Verbundsystem, Verfahren zur Herstellung eines Verbundsystems und Leuchtkörper
EP2284450A1 (fr) * 2008-04-03 2011-02-16 Abengoa Solar New Technologies, S.A. Liaison mécanique hermétique entre verre et métal pour tubes récepteurs utilisés dans les centrales solaires
DE102008002959A1 (de) 2008-07-22 2010-01-28 Schunk Sonosystems Gmbh Verfahren zum abdichtenden Verschweißen von Elementen mittels Ultraschall

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11143975B2 (en) 2016-12-22 2021-10-12 Asml Netherlands B.V. Lithographic apparatus comprising an object with an upper layer having improved resistance to peeling off

Also Published As

Publication number Publication date
EP3066058A1 (fr) 2016-09-14
JP3195486U (ja) 2015-01-22
JP3195484U (ja) 2015-01-22
JP3195485U (ja) 2015-01-22
DE202014004182U1 (de) 2014-06-18
JP3195487U (ja) 2015-01-22
DE202014004209U1 (de) 2014-07-21
DE202014004210U1 (de) 2014-07-21
JP2017501106A (ja) 2017-01-12
DE102013018465A1 (de) 2015-05-07
DE202014004212U1 (de) 2014-06-11

Similar Documents

Publication Publication Date Title
WO2015067477A1 (fr) Corps constitué d'une matière de faible résistance mécanique et d'une matière métallique et procédé de fabrication d'une liaison de matière entre une matière de faible résistance mécanique et une matière métallique
EP2176185A1 (fr) Procédé pour relier de manière durable deux composants par soudure au moyen d'un alliage d'apport en verre ou en métal
DE69832190T2 (de) Verfahren zur herstellung eines heizofenrohres mit einem zwischenelement
EP0001220B1 (fr) Procédé d'assemblage indirect de deux pièces
EP2435603B1 (fr) Procédé de fabrication d'un produit plat en acier et produit plat en acier
WO2013182394A1 (fr) Vitre comprenant un élément de connexion électrique
UA125978C2 (uk) Спосіб виготовлення гальванізованої та відпаленої листової сталі
CN102656433A (zh) 陶瓷产品及其制造方法
WO2019082036A1 (fr) Procédé de fabrication d'une tôle d'acier revêtue
KR101585721B1 (ko) 용접성이 우수한 아연도금강판 및 이의 제조 방법
DE102006035765A1 (de) Verfahren und Anordnung zum Erzeugen einer Löt- oder Diffusionsverbindung von Bauteilen aus gleichen oder unterschiedlichen Werkstoffen
EP3145896A2 (fr) Liaison physique de céramiques
WO2019082035A1 (fr) Procédé de fabrication d'une tôle d'acier revêtue
CN101218062B (zh) 用于粘接工件和微结构元件的方法
DE10017453A1 (de) Verfahren zur Herstellung einer Schweiß- bzw. Lötverbindung
EP3754290B1 (fr) Procédé de fabrication d'un composant de blindage pour véhicules automobiles
EP3877555A1 (fr) Procédé de production d'une pièce en tôle à partir d'un produit plat en acier pourvu d'un revêtement de protection contre la corrosion
EP0194701B1 (fr) Procédé pour la fabrication de couches protectrices de surfaces
JP2022130469A (ja) 被覆鋼板の製造方法
DE10240355B4 (de) Verbundbauteil und Verfahren zur Herstellung eines Verbundbauteiles
DE102015225662A1 (de) Verfahren zur vorbereitenden Behandlung und zur Warmumformung eines Stahlbauteils
KR101568614B1 (ko) 도금성 및 점용접성이 우수한 용융아연도금강판 및 그 제조방법
JP2021501260A (ja) 被覆鋼板の製造方法、スポット溶接された2枚の金属板及びその使用
EP2047942B1 (fr) Lot multicouche pour le brasage d'aciers inoxydables et d'alliages de nickel ou de cobalt
JP2021500475A (ja) 被覆鋼板の製造方法

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14799680

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014799680

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016550980

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE