WO2015067399A1 - Luftkanal - Google Patents

Luftkanal Download PDF

Info

Publication number
WO2015067399A1
WO2015067399A1 PCT/EP2014/069872 EP2014069872W WO2015067399A1 WO 2015067399 A1 WO2015067399 A1 WO 2015067399A1 EP 2014069872 W EP2014069872 W EP 2014069872W WO 2015067399 A1 WO2015067399 A1 WO 2015067399A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air duct
channel
section
holes
Prior art date
Application number
PCT/EP2014/069872
Other languages
English (en)
French (fr)
Inventor
Alexander Rudert
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to CN201490001158.4U priority Critical patent/CN205930736U/zh
Priority to PL14767001T priority patent/PL3044066T3/pl
Priority to EP14767001.2A priority patent/EP3044066B1/de
Priority to DK14767001T priority patent/DK3044066T3/da
Priority to ES14767001T priority patent/ES2761601T3/es
Publication of WO2015067399A1 publication Critical patent/WO2015067399A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D27/00Heating, cooling, ventilating, or air-conditioning
    • B61D27/009Means for ventilating only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D17/00Construction details of vehicle bodies
    • B61D17/04Construction details of vehicle bodies with bodies of metal; with composite, e.g. metal and wood body structures
    • B61D17/12Roofs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Definitions

  • the invention relates to an air duct with at least one connection point for feeding in or sucking in air and having a multiplicity of holes, through which air fed to the at least one connection point leaves the air duct to the outside or air sucked into it penetrates into the air duct.
  • Such air ducts are known to be used in the field of rail vehicle technology to ventilate the passenger compartment of rail vehicles. Also, such air ducts can serve for the intake of air when a negative pressure is generated at the junction.
  • the invention has for its object to improve an air duct of the type described in such a way that it ensures even in the case of a very large length at least approximately equal distribution of the air flow through its holes.
  • Embodiments of the air duct according to the invention are specified in subclaims.
  • the invention provides that in the interior of the air duct, a separating device is arranged, which extends along the longitudinal direction of the air duct and divides the interior of the air duct into an inner channel portion and an outer channel portion, wherein the holes of the air duct lie in the inner channel portion and the connection - Position lies in the outer channel portion, and the separating means comprises a plurality of openings, which viewed in the longitudinal direction of the air channel spaced from each other are and each allow an air flow between the inner channel - section and the outer channel section.
  • a significant advantage of the air duct according to the invention is the fact that this due to the inventively provided separation device or the invention provided segmentation of the interior of the air duct in an inner channel section and an outer channel section a particularly uniform distribution of the air velocity and the pressure conditions over the longitudinal direction of the air channel shows.
  • a significant drop in pressure and air velocity in the longitudinal direction of the air duct can be advantageously avoided with the segmentation provided according to the invention; at least a remaining pressure or velocity drop will be significantly lower than in previously known air ducts, in which the separation device provided according to the invention simply lacks.
  • An annoying noise formation by the air flow can also be reduced by the described equalization of the flow and pressure conditions in an advantageous manner.
  • the separator - during an air flow through the air duct - causes a pressure difference between the inner channel portion and the outer channel portion.
  • the pressure loss coefficient of the plurality of openings is at least twice as large as the pressure loss coefficient of the plurality of holes.
  • a deflection of the air flow takes place from the
  • the air duct has a channel wall in which the holes are formed
  • the separator has a side wall in which the openings are formed, the side wall transversely, in particular is arranged perpendicular to the channel wall and the air flow in the air duct is deflected at least twice, namely at least once on the extending between the junction and the openings and located in the outer channel section and at least once on the extending between the openings and the holes and in the inner channel section located section.
  • the air flow is deflected in each case by at least 90 degrees on the partial section located in the outer channel section and on the partial section located in the inner channel section.
  • the separator rests with a cross-sectional concave surface portion on a channel wall of the air duct and the concave surface portion through the channel wall to form the inner ren section the air duct is closed.
  • the separating device is formed by an extruded profile element whose extrusion direction extends along the longitudinal direction of the air channel.
  • the separating device is formed by a cross-sectionally U-shaped element or at least in sections in the transverse direction.
  • is formed U-shaped element whose longitudinal direction extends along the longitudinal direction of the air channel and which includes the holes in its profile interior.
  • the U-shaped element preferably has two side wall sections; In this case, the openings are preferably arranged in one or both side wall sections.
  • the separating device is closed at the end, ie at both end faces or at least at one of its end faces. Moreover, it is advantageous if the separating device has one or more folding elements, with which the openings or at least some of the openings are completely or at least partially closed and / or the air flow in the region of the openings can be deflected by flap adjustment.
  • Such a design of the air duct makes it possible in a simple manner to make a subsequent optimization of the flow behavior of the air duct by individually adjusting the one or more hinged elements until the predetermined flow behavior is actually achieved.
  • the folding elements can be adjusted manually or by way of actuators, which are remotely controlled, for example in the context of a control or regulating method, with an eye to the currently desired flow behavior of the air duct, for example by means of a computer-assisted control or regulating method.
  • actuators which are remotely controlled, for example in the context of a control or regulating method, with an eye to the currently desired flow behavior of the air duct, for example by means of a computer-assisted control or regulating method.
  • the invention also relates to a rail vehicle with an air duct, as has been described above. With regard to the advantages of the rail vehicle according to the invention, reference is made to the above statements.
  • Figure 1 shows an embodiment of an inventive
  • FIG. 2 shows the air duct according to FIG. 1 in a three-dimensional cutaway view obliquely from the plane of FIG.
  • Figure 3 shows an embodiment of an inventive
  • FIG. 1 shows an air duct 10, which is equipped with a connection point 20.
  • the connection point 20 serves for feeding air into the air duct 10 or for sucking air out of the air duct 10.
  • the following example assumes that the connection point 20 is used for feeding in air and that an air flow L is fed from outside through the connection point 20 into the air duct 10.
  • the air duct 10 is provided with a separator 30 which divides the air duct 10 into an outer duct section 40 and an inner duct section 50. A fluidic connection between the outer channel Section 40 and the inner channel portion 50 is ensured by openings 60 which are provided in the separator 30.
  • the air duct 10 comprises a duct wall 70, which closes the air duct 10 in the representation according to FIG. 1 downwards.
  • the channel wall 70 is provided with holes 80 which lie in the region of the inner channel portion 50 and are thus separated by the separator 30 from the outer channel portion 40 and the junction 20. If, as already mentioned, an air flow L at the junction 20 in the outer channel portion 40 of the air duct 10 is fed, the air flow L must first pass through the openings 60 in the separator 30 and enter the inner channel portion 50 before passing through the holes 80 in the channel wall 70 can leave the air duct 10.
  • the arrangement and the size of the openings 60 and the holes 80 are selected such that in the case of feeding the air flow L, a pressure difference between the outer channel portion 40 and the inner channel portion 50 is formed; the pressure Pa in the outer channel section 40 will preferably be greater than the pressure Pi in the inner channel section 50. Due to the overpressure in the outer channel section 40, the air flow L will flow through the outer channel section 40 uniformly along the entire length of the air channel 10 and thus also the openings 60 located further downstream from the connection point 20 will reach the separation device 30.
  • the separating device 30 it is avoided by the separating device 30 that air is sucked in from the holes 80 located in the vicinity of the connection point 20 due to the high air velocity in the area of the connection point 20 and the Bernoulli effect, and air only exits from the holes 80 located further behind .
  • the end face 31 of the separator 30 is preferably closed.
  • FIG. 2 shows the air duct 10 according to FIG. 1 in a three-dimensional representation-in the cut-open state-obliquely from the side.
  • the separating device 30 is formed by a U-shaped element or a U-profile having two parallel, at least approximately parallel, side walls 32 and 33 and the two side walls 32 and 33 connecting bottom wall 34 , Due to its U-shape, the separator 30 forms a cross-sectional concave surface portion 35 which rests on the channel wall 70 and is closed by the channel wall 70 to form the inner channel portion 50.
  • the two side walls 32 and 33 and the bottom wall 34 thus separate the holes 80 from the outer channel portion 40 of the air duct 10.
  • the two side walls 32 and 33 are perpendicular, at least approximately perpendicular, on the lower channel wall 70 of the air duct 10 in order to sandwich the portion of the channel wall 70 equipped with the holes 80, such a configuration is considered to be particularly advantageous in view of optimum flow conditions.
  • the separating device 30 may be formed, for example, by an extruded profile element whose extrusion direction extends along the longitudinal direction P of the air duct 10. In the embodiment according to FIG.
  • the openings 60 in the separating device 30 are arranged in the region of the two side walls 32 and 33, so that the air flow L, which flows along the longitudinal direction P of the air channel 10, must be deflected at least twice before the holes Reaches 80 in the channel wall 70 and can leave the air duct 10. This will be explained in more detail below:
  • FIG. 2 shows that the air flow L can be subdivided into three partial air flows, namely two lateral partial air flows Ls, which flow past laterally next to the separating device 30, and an upper partial air flow Lo, which flows above the bottom wall 34.
  • the two lateral partial air flows Ls it should be noted that they must be deflected at least once by approximately 90 ° in order to pass from the outer channel section 40 into the inner channel section 50. Within the inner channel section 50, a further deflection by about 90 ° takes place in order to allow passage of the holes 80 in the channel wall 70.
  • the two lateral partial air flows Ls are deflected twice in each case by 90 ° in each case before they pass through the holes 80.
  • the upper partial air flow Lo it can be seen that it first has to be deflected by about 90 ° three times before it passes from the outer channel section 40 into the inner channel section 50. Subsequently, a further deflection by about 90 ° is required to allow a flow through the holes 80 provided in the channel wall 70. In summary, the upper part of the air flow Lo is thus deflected by approximately 360 °, before he can leave the air duct 10.
  • the separating device 30 is arranged centrally in the air duct 10 and the following parameters are maintained:
  • Hl Hl ⁇ H2 / 3, where Bl is the width of the separator 30, Hl the height of the separator 30, B2 the width of the air duct 10 and H2 the height of the air duct 10.
  • the separator 30 at its openings 60 each have a hinged element which can completely or at least partially close the associated opening 60 and / or can deflect the air flow in the region of the associated opening 60 by flap adjustment.
  • a hinged element which can completely or at least partially close the associated opening 60 and / or can deflect the air flow in the region of the associated opening 60 by flap adjustment.
  • Such folding elements are not shown for reasons of clarity in Figures 1 and 2.
  • the folding elements make it possible in a simple manner to make a subsequent optimization of the air flow in the air duct 10 until a predetermined flow behavior is achieved.
  • the folding elements are preferably adjusted individually, either manually or via actuators.
  • FIG. 3 shows an exemplary embodiment of a rail vehicle 100 that is equipped with the air duct 10 according to FIGS. 1 and 2.
  • the air duct 10 serves to ventilate or air-conditioning the interior of the rail vehicle 100. It can be seen that the longitudinal direction P of the air channel 10 is parallel to the longitudinal direction of the rail vehicle 100.
  • FIG. 3 also shows, from the air duct 10, the connecting point 20, the separating device 30 and the two channel sections 40 and 50 of the air duct formed by the separating device 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Duct Arrangements (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

Die Erfindung bezieht sich u. a. auf einen Luftkanal (10) mit zumindest einer Anschlussstelle (20) zum Einspeisen oder Ansaugen von Luft und mit einer Vielzahl an Löchern (80), durch die an der zumindest einen Anschlussstelle (20) eingespeiste Luft den Luftkanal (10) nach außen verlässt oder angesaugte Luft in den Luftkanal (10) eindringt. Erfindungsgemäß ist vorgesehen, dass im Inneren des Luftkanals (10) eine Trenneinrichtung (30) angeordnet ist, die sich längs der Längsrichtung des Luftkanals (10) erstreckt und das Innere des Luftkanals (10) in einen inneren Kanalabschnitt (50) und einen äußeren Kanalabschnitt (40) unterteilt, wobei die Löcher (80) des Luftkanals (10) im inneren Kanalabschnitt (50) liegen und die Anschlussstelle (20) im äußeren Kanalabschnitt (40) liegt, und die Trenneinrichtung (30) eine Mehrzahl an Öffnungen (60) aufweist, die in Längsrichtung des Luftkanals (10) gesehen beabstandet zueinander angeordnet sind und jeweils einen Luftstrom (L) zwischen dem inneren Kanalabschnitt (50) und dem äußeren Kanalabschnitt (40) ermöglichen.

Description

Beschreibung Luftkanal Die Erfindung bezieht sich auf einen Luftkanal mit zumindest einer Anschlussstelle zum Einspeisen oder Ansaugen von Luft und mit einer Vielzahl an Löchern, durch die an der zumindest einen Anschlussstelle eingespeiste Luft den Luftkanal nach außen verlässt oder angesaugte Luft in den Luftkanal ein- dringt.
Derartige Luftkanäle werden bekannterweise im Bereich der Schienenfahrzeugtechnik eingesetzt, um den Fahrgastinnenraum von Schienenfahrzeugen zu belüften. Auch können derartige Luftkanäle zum Ansaugen von Luft dienen, wenn an der Anschlussstelle ein Unterdruck erzeugt wird.
Der Erfindung liegt die Aufgabe zugrunde, einen Luftkanal der beschriebenen Art dahingehend zu verbessern, dass dieser auch im Falle einer sehr großen Länge eine zumindest annähernd gleiche Verteilung des Luftvolumenstroms durch seine Löcher sicherstellt .
Diese Aufgabe wird erfindungsgemäß durch einen Luftkanal mit den Merkmalen gemäß Patentanspruch 1 gelöst. Vorteilhafte
Ausgestaltungen des erfindungsgemäßen Luftkanals sind in Unteransprüchen angegeben.
Danach ist erfindungsgemäß vorgesehen, dass im Inneren des Luftkanals eine Trenneinrichtung angeordnet ist, die sich längs der Längsrichtung des Luftkanals erstreckt und das Innere des Luftkanals in einen inneren Kanalabschnitt und einen äußeren Kanalabschnitt unterteilt, wobei die Löcher des Luftkanals im inneren Kanalabschnitt liegen und die Anschluss- stelle im äußeren Kanalabschnitt liegt, und die Trenneinrichtung eine Mehrzahl an Öffnungen aufweist, die in Längsrichtung des Luftkanals gesehen beabstandet zueinander angeordnet sind und jeweils einen Luftstrom zwischen dem inneren Kanal - abschnitt und dem äußeren Kanalabschnitt ermöglichen.
Ein wesentlicher Vorteil des erfindungsgemäßen Luftkanals ist darin zu sehen, dass dieser aufgrund der erfindungsgemäß vorgesehenen Trenneinrichtung bzw. die erfindungsgemäß vorgesehene Segmentierung des Inneren des Luftkanals in einen inneren Kanalabschnitt und einen äußeren Kanalabschnitt eine besonders gleichmäßige Verteilung der Luftgeschwindigkeit und der Druckverhältnisse über der Längsrichtung des Luftkanals zeigt. Ein signifikanter Druck- und Luftgeschwindigkeitsabfall in Längsrichtung des Luftkanals lässt sich mit der erfindungsgemäß vorgesehenen Segmentierung in vorteilhafter Weise vermeiden; zumindest wird ein verbleibender Druck- bzw. Geschwindigkeitsabfall deutlich geringer sein als bei vorbekannten Luftkanälen, bei denen die erfindungsgemäß vorgesehene Trenneinrichtung schlicht fehlt. Eine störende Geräuschbildung durch den Luftstrom lässt sich durch die beschriebene Vergleichmäßigung der Strömungs- und Druckverhältnisse in vorteilhafter Weise ebenfalls reduzieren.
Mit Blick auf eine Vergleichmäßigung des Luftstromes über der Kanallänge wird es als vorteilhaft angesehen, wenn die Trenneinrichtung - während eines Luftflusses durch den Luftkanal - einen Druckunterschied zwischen dem inneren Kanalabschnitt und dem äußeren Kanalabschnitt hervorruft.
Für ein optimales strömungstechnisches Verhalten des Luftkanals, insbesondere mit Blick auf einen möglichst gleichmäßi- gen Luftstrom durch die Löcher des Luftkanals, wird es als vorteilhaft angesehen, wenn der Druckverlustbeiwert der Mehrzahl an Öffnungen mindestens zweimal so groß wie der Druckverlustbeiwert der Vielzahl an Löchern ist. Vorzugsweise erfolgt eine Umlenkung des Luftstroms von der
Anschlussstelle zu den Löchern bzw. umgekehrt von den Löchern zu der Anschlussstelle, um quer verlaufende Strömungskomponenten zu erzeugen; demgemäß wird es als vorteilhaft angese- hen, wenn die Ebene, in der die Öffnungen der Trenneinrichtung liegen, quer zu derjenigen Ebene angeordnet ist, in der die Löcher des Luftkanals liegen. Mit Blick auf das angesprochene Umlenken des Luftstromes ist bei einer besonders bevorzugten Ausgestaltung des Luftkanals vorgesehen, dass der Luftkanal eine Kanalwand aufweist, in der die Löcher ausgebildet sind, die Trenneinrichtung eine Seitenwand aufweist, in der die Öffnungen ausgebildet sind, die Seitenwand quer, insbesondere senkrecht, zur Kanalwand angeordnet ist und der Luftstrom im Luftkanal zumindest zweimal umgelenkt wird, nämlich zumindest einmal auf der sich zwischen der Anschlussstelle und den Öffnungen erstreckenden und im äußeren Kanalabschnitt befindlichen Teilstrecke und zumindest einmal auf der sich zwischen den Öffnungen und den Löchern erstreckenden und im inneren Kanalabschnitt befindlichen Teilstrecke.
Vorzugsweise wird der Luftstrom auf der im äußeren Kanalab- schnitt befindlichen Teilstrecke und auf der im inneren Kanalabschnitt befindlichen Teilstrecke jeweils um mindestens 90 Grad umgelenkt.
Um die bereits angesprochene Segmentierung des Luftkanals durch die Trenneinrichtung besonders einfach zu erreichen, wird es als vorteilhaft angesehen, wenn die Trenneinrichtung mit einem im Querschnitt konkaven Oberflächenabschnitt auf einer Kanalwand des Luftkanals aufliegt und der konkave Oberflächenabschnitt durch die Kanalwand unter Bildung des inne- ren Abschnitts des Luftkanals verschlossen ist.
Vorzugsweise ist die Trenneinrichtung durch ein Strangpressprofilelement gebildet, dessen Strangpressrichtung sich entlang der Längsrichtung des Luftkanals erstreckt.
Bezüglich der Formgestaltung der Trenneinrichtung ist es vorteilhaft, wenn die Trenneinrichtung durch ein im Querschnitt U- förmiges Element oder zumindest abschnittsweise im Quer- schnitt U-förmiges Element gebildet ist, dessen Längsrichtung sich entlang der Längsrichtung des Luftkanals erstreckt und das die Löcher in seinem Profilinneren einschließt. Bevorzugt weist das U- förmige Element zwei Seitenwandab- schnitte auf; in diesem Falle sind die Öffnungen vorzugsweise in einem oder in beiden Seitenwandabschnitten angeordnet.
Um sicherzustellen, dass der Luftstrom die Öffnungen in der Trenneinrichtung passieren muss, wird es als vorteilhaft angesehen, wenn die Trenneinrichtung stirnseitig, also an beiden Stirnseiten oder zumindest an einer ihrer Stirnseiten, verschlossen ist. Darüber hinaus ist es vorteilhaft, wenn die Trenneinrichtung ein oder mehrere Klappelemente aufweist, mit denen die Öffnungen oder zumindest einige der Öffnungen vollständig oder zumindest zum Teil verschließbar sind und/oder der Luftstrom im Bereich der Öffnungen durch Klappenverstellung umlenkbar ist. Eine solche Ausgestaltung des Luftkanals ermöglicht es in einfacher Weise, eine nachträgliche Optimierung des Strömungsverhaltens des Luftkanals vorzunehmen, indem das oder die Klappelemente individuell derart eingestellt werden, bis das vorgegebene Strömungsverhalten tatsächlich erzielt wird. Die Klappelemente können manuell oder über Aktuatoren einstellbar sein, die ferngesteuert, beispielsweise im Rahmen eines Steuer- oder Regelverfahrens, mit Blick auf das jeweils aktuell gewünschte Strömungsverhalten des Luftkanals optimiert eingestellt werden, beispielsweise mittels eines compu- tergestützten Steuer- oder Reglungsverfahren . Mit den erwähnten Klappelementen ist es beispielsweise möglich, im Nachhinein Effekte wie den dynamischen Rückgewinn am Kanalende des Luftkanals auszugleichen. Die Erfindung bezieht sich darüber hinaus auf ein Schienenfahrzeug mit einem Luftkanal, wie er oben beschrieben worden ist . Bezüglich der Vorteile des erfindungsgemäßen Schienenfahrzeugs sei auf die obigen Ausführungen verwiesen.
Als vorteilhaft wird es angesehen, wenn die Längsrichtung des Luftkanals parallel zur Längsrichtung des Schienenfahrzeugs verläuft .
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher erläutert; dabei zeigen beispielhaft:
Figur 1 ein Ausführungsbeispiel für einen erfindungsgemäßen
Luftkanal in einem seitlichen Querschnitt,
Figur 2 den Luftkanal gemäß Figur 1 in einer dreidimensio- nalen aufgeschnittenen Darstellung schräg von der
Seite und
Figur 3 ein Ausführungsbeispiel für ein erfindungsgemäßes
Schienenfahrzeug, das mit dem Luftkanal gemäß den Figuren 1 und 2 ausgestattet ist.
In den Figuren werden der Übersicht halber für identische oder vergleichbare Komponenten stets dieselben Bezugszeichen verwendet .
Die Figur 1 zeigt einen Luftkanal 10, der mit einer Anschlussstelle 20 ausgestattet ist. Die Anschlussstelle 20 dient zum Einspeisen von Luft in den Luftkanal 10 oder zum Ansaugen von Luft aus dem Luftkanal 10 heraus. Nachfolgend wird beispielhaft davon ausgegangen, dass die Anschlussstelle 20 zum Einspeisen von Luft genutzt wird und ein Luftstrom L von außen durch die Anschlussstelle 20 in den Luftkanal 10 hinein eingespeist wird. Der Luftkanal 10 ist mit einer Trenneinrichtung 30 ausgestattet, die den Luftkanal 10 in einen äußeren Kanalabschnitt 40 und einen inneren Kanalabschnitt 50 unterteilt. Eine strömungstechnische Verbindung zwischen dem äußeren Kanalab- schnitt 40 und dem inneren Kanalabschnitt 50 wird durch Öffnungen 60 gewährleistet, die in der Trenneinrichtung 30 vorgesehen sind. Der Luftkanal 10 umfasst eine Kanalwand 70, die den Luftkanal 10 bei der Darstellung gemäß Figur 1 nach unten abschließt. Die Kanalwand 70 ist mit Löchern 80 versehen, die im Bereich des inneren Kanalabschnitts 50 liegen und somit durch die Trenneinrichtung 30 von dem äußeren Kanalabschnitt 40 und der Anschlussstelle 20 getrennt werden. Wird, wie bereits erwähnt, ein Luftstrom L an der Anschlussstelle 20 in den äußeren Kanalabschnitt 40 des Luftkanals 10 eingespeist, so muss der Luftstrom L zunächst die Öffnungen 60 in der Trenneinrichtung 30 passieren und in den inneren Kanalabschnitt 50 gelangen, bevor er durch die Löcher 80 in der Kanalwand 70 den Luftkanal 10 verlassen kann.
Die Anordnung und die Größe der Öffnungen 60 und der Löcher 80 sind derart gewählt, dass sich im Falle eines Einspeisens des Luftstroms L ein Druckunterschied zwischen dem äußeren Kanalabschnitt 40 und dem inneren Kanalabschnitt 50 ausbildet; der Druck Pa im äußeren Kanalabschnitt 40 wird vorzugsweise größer sein als der Druck Pi im inneren Kanalabschnitt 50. Durch den Überdruck im äußeren Kanalabschnitt 40 wird er- reicht, dass der Luftstrom L den äußeren Kanalabschnitt 40 entlang der gesamten Länge des Luftkanals 10 gleichmäßig durchfluten wird und somit auch die von der Anschlussstelle 20 aus gesehen weiter dahinter liegenden Öffnungen 60 in der Trenneinrichtung 30 erreichen wird. Mit anderen Worten wird durch die Trenneinrichtung 30 vermieden, dass aus den in der Nähe der Anschlussstelle 20 befindlichen Löchern 80 durch die hohe Luftgeschwindigkeit im Bereich der Anschlussstelle 20 und den Bernoulli -Effekt Luft angesaugt wird und nur aus den weiter dahinter liegenden Löchern 80 Luft austritt..
Um eine optimale Druckverteilung im äußeren Kanalabschnitt 40 und im inneren Kanalabschnitt 50 bzw. um zu erreichen, dass durch die Löcher 80 jeweils zumindest annähernd gleich viel Luft fließt, wird es als vorteilhaft angesehen, wenn der Druckverlustbeiwert ζο der Öffnungen 60 insgesamt mindestens zweimal so groß ist wie der Druckverlustbeiwert ζΐ der Löcher 80; es soll also gelten: ζο > 2 * ζΐ
Um zu vermeiden, dass der Luftstrom L nach dem Passieren der Anschlussstelle 20 an der Stirnseite 31 der Trenneinrichtung 30 in den inneren Kanalabschnitt 50 eindringt, ohne zuvor die Öffnungen 60 zu passieren, ist die Stirnseite 31 der Trenneinrichtung 30 vorzugsweise verschlossen.
Die Figur 2 zeigt den Luftkanal 10 gemäß Figur 1 in einer dreidimensionalen Darstellung - im aufgeschnittenen Zustand - schräg von der Seite. Es lässt sich erkennen, dass die Trenneinrichtung 30 durch ein U-förmiges Element bzw. ein U-Profil gebildet ist, das zwei parallele, zumindest näherungsweise parallele, Seitenwände 32 und 33 sowie eine die beiden Sei- tenwände 32 und 33 verbindende Bodenwand 34 aufweist. Aufgrund ihrer U-Förmigkeit bildet die Trenneinrichtung 30 einen im Querschnitt konkaven Oberflächenabschnitt 35, der auf der Kanalwand 70 aufliegt und durch die Kanalwand 70 unter Bildung des inneren Kanalabschnitts 50 verschlossen wird. Die beiden Seitenwände 32 und 33 sowie die Bodenwand 34 trennen somit die Löcher 80 von dem äußeren Kanalabschnitt 40 des Luftkanals 10. Bei dem Ausführungsbeispiel gemäß den Figuren 1 und 2 stehen die beiden Seitenwände 32 und 33 senkrecht, zumindest näherungsweise senkrecht, auf der unteren Kanalwand 70 des Luftkanals 10, um den mit den Löchern 80 ausgestatteten Abschnitt der Kanalwand 70 zwischen sich einzuschließen, eine solche Ausgestaltung wird mit Blick auf optimale Strömungsverhältnisse als besonders vorteilhaft angesehen. Die Trenneinrichtung 30 kann beispielsweise durch ein Strangpressprofilelement gebildet sein, dessen Strangpressrichtung sich entlang der Längsrichtung P des Luftkanals 10 erstreckt. Bei dem Ausführungsbeispiel gemäß Figur 2 sind die Öffnungen 60 in der Trenneinrichtung 30 im Bereich der beiden Seitenwände 32 und 33 angeordnet, so dass der Luftstrom L, der entlang der Längsrichtung P des Luftkanals 10 strömt, zumindest zweimal umgelenkt werden muss, bevor er die Löcher 80 in der Kanalwand 70 erreicht und den Luftkanal 10 verlassen kann. Dies soll nachfolgend näher erläutert werden:
Die Figur 2 zeigt, dass sich der Luftstrom L in drei Teil- luftströme unterteilen lässt, nämlich zwei seitliche Teilluftströme Ls, die seitlich neben der Trenneinrichtung 30 vorbeifließen, sowie einen oberen Teilluftstrom Lo, der oberhalb der Bodenwand 34 fließt. Bezüglich der beiden seitlichen Teilluftströme Ls ist festzustellen, dass diese zumindest einmal um ca. 90° umgelenkt werden müssen, um von dem äußeren Kanalabschnitt 40 in den inneren Kanalabschnitt 50 zu gelangen. Innerhalb des inneren Kanalabschnitts 50 erfolgt ein weiteres Umlenken um ca. 90°, um ein Passieren der Löcher 80 in der Kanalwand 70 zu ermöglichen. Mit anderen Worten werden die beiden seitlichen Teilluftströme Ls also insgesamt jeweils zweimal um jeweils 90° umgelenkt, bevor sie die Löcher 80 passieren. Bezüglich des oberen Teilluftstroms Lo lässt sich erkennen, dass dieser zunächst dreimal um ca. 90° umgelenkt werden muss, bevor er von dem äußeren Kanalabschnitt 40 in den inneren Kanalabschnitt 50 gelangt. Anschließend ist ein weiteres Umlenken um ca. 90° erforderlich, um einen Durchfluss durch die in der Kanalwand 70 vorgesehenen Löcher 80 zu ermöglichen. Zusammengefasst wird der obere Teilluftstrom Lo also um ca. 360° umgelenkt, bevor er den Luftkanal 10 verlassen kann.
Die oben angesprochenen Winkelangaben sind selbstverständlich nur beispielhaft für die in der Figur 2 dargestellte Ausführungsform zu verstehen, bei der die Seitenwände 32 und 33 senkrecht auf der Kanalwand 70 stehen. Im Falle einer anderen Ausgestaltung der Trenneinrichtung 30 bzw. im Falle einer an- deren Ausrichtung der Seitenwände 32 und 33 würden sich andere Winkelkonstellationen ergeben. Für die Funktionsweise des Luftkanals 10 gemäß den Figuren 1 und 2 ist lediglich von Bedeutung, dass es durch die Trenneinrichtung 30 zu einer Un- terteilung des Luftkanals 10 sowie einer besonders gleichmäßigen Verteilung des Luftstroms durch die Löcher 80 - entlang der Längsrichtung P des Luftkanals 10 gesehen - kommt.
Bezüglich der Dimensionierung des Luftkanals 10 wird es als vorteilhaft angesehen, wenn die Trenneinrichtung 30 mittig im Luftkanal 10 angeordnet ist und folgende Parameter eingehalten werden:
0,4 * B2 < Bl < 0,6 * B2
Hl < H2/3, wobei Bl die Breite der Trenneinrichtung 30, Hl die Höhe der Trenneinrichtung 30, B2 die Breite des Luftkanals 10 und H2 die Höhe des Luftkanals 10 bezeichnen.
Vorzugweise weist die Trenneinrichtung 30 an ihren Öffnungen 60 jeweils ein Klappelement auf, das die zugeordnete Öffnung 60 vollständig oder zumindest zum Teil verschließen kann und/oder den Luftstrom im Bereich der zugeordneten Öffnung 60 durch Klappenverstellung umlenken kann. Derartige Klappelemente sind aus Gründen der Übersicht in den Figuren 1 und 2 nicht gezeigt. Die Klappelemente ermöglichen es in einfacher Weise, eine nachträgliche Optimierung des Luftstromes im Luftkanal 10 vorzunehmen, bis ein vorgegebenes Strömungsver- halten erzielt wird. Die Klappelemente werden vorzugsweise individuell eingestellt, sei es manuell oder über Aktuatoren.
Die Figur 3 zeigt ein Ausführungsbeispiel für ein Schienenfahrzeug 100, das mit dem Luftkanal 10 gemäß den Figuren 1 und 2 ausgestattet ist. Der Luftkanal 10 dient zum Belüften bzw. Klimatisieren des Innenraums des Schienenfahrzeugs 100. Es lässt sich erkennen, dass die Längsrichtung P des Luftkanals 10 parallel zur Längsrichtung des Schienenfahrzeugs 100 liegt. Die Figur 3 zeigt von dem Luftkanal 10 darüber hinaus die Anschlussstelle 20, die Trenneinrichtung 30 sowie die beiden durch die Trenneinrichtung 30 gebildeten Kanalabschnitte 40 und 50 des Luftkanals.
Aufgrund der im Zusammenhang mit den Figuren 1 und 2 im Detail beschriebenen Funktionen der Trenneinrichtung 30 wird es im Falle eines Einspeisens eines Luftstroms an der Anschlussstelle 20 zu einer entlang der Längsrichtung P gesehen gleich verteilten Luftströmung durch die Löcher in der unteren Kanalwand 70 des Luftkanals 10 sowie zu einer gleichmäßigen Belüftung und Klimatisierung des Innenraums des Schienenfahr- zeugs 100 kommen.
Obwohl die Erfindung im Detail durch bevorzugte Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.

Claims

Patentansprüche
1. Luftkanal (10)
mit zumindest einer Anschlussstelle (20) zum Einspeisen oder Ansaugen von Luft und
mit einer Vielzahl an Löchern (80) , durch die an der zumindest einen Anschlussstelle (20) eingespeiste Luft den Luftkanal (10) nach außen verlässt oder angesaugte Luft in den Luftkanal (10) eindringt,
dadurch gekennzeichnet, dass
im Inneren des Luftkanals (10) eine Trenneinrichtung (30) angeordnet ist, die sich längs der Längsrichtung des Luftkanals (10) erstreckt und das Innere des Luftkanals (10) in einen inneren Kanalabschnitt (50) und einen äuße- ren Kanalabschnitt (40) unterteilt, wobei die Löcher (80) des Luftkanals (10) im inneren Kanalabschnitt (50) liegen und die Anschlussstelle (20) im äußeren Kanalabschnitt (40) liegt, und
die Trenneinrichtung (30) eine Mehrzahl an Öffnungen (60) aufweist, die in Längsrichtung des Luftkanals (10) gesehen beabstandet zueinander angeordnet sind und jeweils einen Luftstrom (L) zwischen dem inneren Kanalabschnitt (50) und dem äußeren Kanalabschnitt (40) ermöglichen.
2. Luftkanal (10) nach Anspruch 1,
dadurch gekennzeichnet, dass
die Trenneinrichtung (30) während eines Luftstromes (L) durch den Luftkanal (10) einen Druckunterschied zwischen dem inneren Kanalabschnitt (50) und dem äußeren Kanalabschnitt (40) hervorruft.
3. Luftkanal (10) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass
der Druckverlustbeiwert der Mehrzahl an Öffnungen (60) min- destens zweimal so groß wie der Druckverlustbeiwert der Vielzahl an Löchern (80) ist.
4. Luftkanal (10) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass
die Ebene, in der die Öffnungen (60) der Trenneinrichtung (30) liegen, quer zu derjenigen Ebene angeordnet ist, in de die Löcher (80) des Luftkanals (10) liegen.
5. Luftkanal (10) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass
die Trenneinrichtung (30) mit einem im Querschnitt konka- ven Oberflächenabschnitt (35) auf einer Kanalwand (70) des Luftkanals (10) aufliegt und
der konkave Oberflächenabschnitt (35) durch die Kanalwand (70) unter Bildung des inneren Kanalabschnitts (50) des Luftkanals (10) verschlossen ist.
6. Luftkanal (10) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass
der Luftkanal (10) eine Kanalwand (70) aufweist, in der die Löcher (80) ausgebildet sind,
- die Trenneinrichtung (30) eine Seitenwand (32, 33) aufweist, in der die Öffnungen (60) ausgebildet sind, die Seitenwand (32, 33) quer, insbesondere senkrecht, zur Kanalwand (70) angeordnet ist und
der Luftstrom im Luftkanal (10) zumindest zweimal umge- lenkt wird, nämlich zumindest einmal auf der sich zwischen der Anschlussstelle (20) und den Öffnungen (60) erstreckenden und im äußeren Kanalabschnitt (40) befindlichen Teilstrecke und zumindest einmal auf der sich zwischen den Öffnungen (60) und den Löchern (80) erstrecken- den und im inneren Kanalabschnitt (50) befindlichen Teilstrecke .
7. Luftkanal (10) nach Anspruch 6,
dadurch gekennzeichnet, dass
der Luftstrom (L) auf der im äußeren Kanalabschnitt (40) befindlichen Teilstrecke und auf der im inneren Kanalabschnitt (50) befindlichen Teilstrecke jeweils um mindestens 90 Grad umgelenkt wird.
8. Luftkanal (10) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass
die Trenneinrichtung (30) durch ein Strangpressprofilelement gebildet ist, dessen Strangpressrichtung sich entlang der Längsrichtung (P) des Luftkanals (10) erstreckt.
9. Luftkanal (10) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass
die Trenneinrichtung (30) durch ein im Querschnitt U-förmiges Element oder zumindest abschnittsweise im Querschnitt U- förmiges Element gebildet ist, dessen Längsrichtung sich entlang der Längsrichtung (P) des Luftkanals (10) erstreckt und das die Löcher (80) in seinem Profilinneren einschließt.
10. Luftkanal (10) nach Anspruch 9,
dadurch gekennzeichnet, dass
das U-förmige Element zwei Seitenwände (32, 33) aufweist und die Öffnungen (60) in einem oder in beiden Seitenwänden ange- ordnet sind.
11. Luftkanal (10) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass
die Anschlussstelle (20) an einem Ende des Luftkanals (10) angeordnet ist und
die Trenneinrichtung (30) an ihrer der Anschlussstelle (20) zugewandten Stirnseite verschlossen ist.
12. Luftkanal (10) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass
die Trenneinrichtung (30) ein oder mehrere Klappelemente aufweist, mit denen die Öffnungen (60) oder zumindest einige der Öffnungen (60) vollständig oder zumindest zum Teil verschließbar sind.
13. Schienenfahrzeug (100) mit einem Luftkanal (10) nach einem der voranstehenden Ansprüche.
14. Schienenfahrzeug (100) nach Anspruch 13,
dadurch gekennzeichnet, dass
die Längsrichtung des Luftkanals (10) parallel zur Längsrichtung des Schienenfahrzeugs (100) verläuft.
PCT/EP2014/069872 2013-11-07 2014-09-18 Luftkanal WO2015067399A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201490001158.4U CN205930736U (zh) 2013-11-07 2014-09-18 空气通道和具有空气通道的轨道车辆
PL14767001T PL3044066T3 (pl) 2013-11-07 2014-09-18 Kanał wentylacyjny
EP14767001.2A EP3044066B1 (de) 2013-11-07 2014-09-18 Luftkanal
DK14767001T DK3044066T3 (da) 2013-11-07 2014-09-18 Luftkanal
ES14767001T ES2761601T3 (es) 2013-11-07 2014-09-18 Conducto de aire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013222652.7 2013-11-07
DE201310222652 DE102013222652A1 (de) 2013-11-07 2013-11-07 Luftkanal

Publications (1)

Publication Number Publication Date
WO2015067399A1 true WO2015067399A1 (de) 2015-05-14

Family

ID=51570507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/069872 WO2015067399A1 (de) 2013-11-07 2014-09-18 Luftkanal

Country Status (8)

Country Link
EP (1) EP3044066B1 (de)
CN (1) CN205930736U (de)
DE (1) DE102013222652A1 (de)
DK (1) DK3044066T3 (de)
ES (1) ES2761601T3 (de)
PL (1) PL3044066T3 (de)
PT (1) PT3044066T (de)
WO (1) WO2015067399A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU209232U1 (ru) * 2021-10-18 2022-02-08 Общество С Ограниченной Ответственностью "Кск Инжиниринг" (Ооо "Кск Инжиниринг") Устройство распределения воздуха в салоне пассажирского вагона

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2059715A (en) * 1929-12-26 1936-11-03 Carrier Engineering Corp Means for air conditioning railroad cars
US2155632A (en) * 1937-04-16 1939-04-25 B F Sturtevant Co Air conditioning system
US2172944A (en) * 1936-08-14 1939-09-12 Burgess Battery Co Ventilating system
US2329102A (en) * 1941-06-30 1943-09-07 Burgess Battery Co Air distributing apparatus for ventilating systems
DE8912822U1 (de) * 1989-10-30 1990-02-15 Linke-Hofmann-Busch Waggon-Fahrzeug-Maschinen Gmbh, 3320 Salzgitter Luftkanal für Fahrzeuge, insbesondere für Schienenfahrzeuge

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE937458C (de) * 1954-01-22 1956-01-05 Flettnerluefter Ges M B H Druck- und Saugluefter fuer Fahrzeuge od. dgl.
DE1530057A1 (de) * 1966-03-29 1970-06-11 Linke Hofmann Busch Belueftung fuer ein elektrisches Schienentriebfahrzeug
DD236496A1 (de) * 1985-04-25 1986-06-11 Ammendorf Waggonbau Fahrgastraumbelueftung mittels luftkanal und einer fahrgastraumdecke mit luftdurchtrittsoeffnungen
DE4103035A1 (de) * 1991-02-01 1992-08-13 Bayerische Motoren Werke Ag Belueftungsanordnung fuer einen fahrzeug-innenraum
DE102007014406B3 (de) * 2007-03-26 2008-04-24 Airbus Deutschland Gmbh Versorgungskanal mit einem Luftverteilungssystem für Fahrzeuge, Flugzeug mit einem solchen Versorgungskanal und Verfahren zum Ausbilden eines Versorgungskanals
DE102009031599A1 (de) * 2009-07-07 2011-01-13 Siemens Aktiengesellschaft Schienenfahrzeug

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2059715A (en) * 1929-12-26 1936-11-03 Carrier Engineering Corp Means for air conditioning railroad cars
US2172944A (en) * 1936-08-14 1939-09-12 Burgess Battery Co Ventilating system
US2155632A (en) * 1937-04-16 1939-04-25 B F Sturtevant Co Air conditioning system
US2329102A (en) * 1941-06-30 1943-09-07 Burgess Battery Co Air distributing apparatus for ventilating systems
DE8912822U1 (de) * 1989-10-30 1990-02-15 Linke-Hofmann-Busch Waggon-Fahrzeug-Maschinen Gmbh, 3320 Salzgitter Luftkanal für Fahrzeuge, insbesondere für Schienenfahrzeuge

Also Published As

Publication number Publication date
EP3044066A1 (de) 2016-07-20
DE102013222652A1 (de) 2015-05-07
PL3044066T3 (pl) 2020-03-31
ES2761601T3 (es) 2020-05-20
EP3044066B1 (de) 2019-09-18
CN205930736U (zh) 2017-02-08
DK3044066T3 (da) 2019-12-09
PT3044066T (pt) 2019-10-30

Similar Documents

Publication Publication Date Title
DE102016116358A1 (de) Luftausströmer
EP3063026A1 (de) Luftdüse
DE102009007037A1 (de) Ausströmdüse einer Belüftungsvorrichtung oder Klimaanlage für Fahrzeuge
DE102007019539A1 (de) Luftzufuhrvorrichtung für die Klimatisierung von Passagierräumen in Flugzeugen
DE102016116356A1 (de) Luftausströmer
EP3737599B1 (de) Fahrzeug mit einer klimaanordnung
DE102010008377B4 (de) Luftausströmer
DE102014214581A1 (de) Luftverteileinrichtung für den Innenraum eines Schienenfahrzeugs
DE102012212466A1 (de) Luftkanalsystem für ein Schienenfahrzeug des Personenverkehrs
DE102016116351A1 (de) Luftausströmer
EP2934982A1 (de) Klimatisierungsanordnung für ein schienenfahrzeug
DE102010018502A1 (de) Versorgungssystem zur Versorgung von Passagieren in einem Passagierraum eines Fahrzeugs
DE102008008586A1 (de) Fahrzeug mit einer Klima- bzw. Lüftungsanlage
WO2008090232A1 (de) Verfahren zur klimatisierung eines fahrzeugs
WO2019166274A1 (de) Lüftungsvorrichtung für ein kraftfahrzeug
DE102010023528B4 (de) Luftausströmvorrichtung für ein Fahrzeug
EP3044066B1 (de) Luftkanal
DE102014209452A1 (de) Klimaanlage mit Bypassvorrichtung
DE102019115285A1 (de) Luftausströmer
DE102019206851A1 (de) Klimatisierungseinrichtung für ein Kraftfahrzeug, Kraftfahrzeug
DE102012207795B4 (de) Luftkanalsystem zum Führen von Warmluft und Kaltluft, insbesondere für ein Schienenfahrzeug
DE102014221641A1 (de) Luftstromregulierungsdüse
DE102022103498A1 (de) Luftausströmer für ein fahrzeug
DE102017113370A1 (de) Klimaanlage für ein Kraftfahrzeug
DE102011084490A1 (de) Weggebundenes Fahrzeug, insbesondere Zug, mit verbesserter Lufteinsaugung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14767001

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014767001

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014767001

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE