WO2015067021A1 - 一种电容器阴极箔和电容器及其制备方法 - Google Patents

一种电容器阴极箔和电容器及其制备方法 Download PDF

Info

Publication number
WO2015067021A1
WO2015067021A1 PCT/CN2014/077564 CN2014077564W WO2015067021A1 WO 2015067021 A1 WO2015067021 A1 WO 2015067021A1 CN 2014077564 W CN2014077564 W CN 2014077564W WO 2015067021 A1 WO2015067021 A1 WO 2015067021A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
optionally substituted
layer
capacitor
cathode foil
Prior art date
Application number
PCT/CN2014/077564
Other languages
English (en)
French (fr)
Inventor
覃九三
赵大成
刘春华
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Publication of WO2015067021A1 publication Critical patent/WO2015067021A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/0425Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode

Definitions

  • the present invention relates to a capacitor cathode material and a method of fabricating the same, and more particularly to a capacitor cathode foil and capacitor and a method of fabricating the same. Background technique
  • the semiconductor material MnO 2 is used as the cathode of aluminum or tantalum capacitor, which makes the capacitor have a significant progress in the structure, and fundamentally eliminates the problem of capacitor failure caused by electrolyte leakage and dryness. Solid electrolyte capacitors also have better temperature-frequency characteristics in electrolytic capacitors. At the same time, due to its various shapes, the capacitor satisfies the development direction of component chip formation. It can be said that the solid electrolyte MnO 2 is used as the cathode material of aluminum or tantalum electrolytic capacitors to make the performance of the electrolytic capacitor reach a new level.
  • Capacitors require small, chip, large capacity, low equivalent series resistance, low loss tangent and high frequency performance.
  • MnO 2 has a large number of process steps and low electrical conductivity (about 1 S/cm), so that it is difficult to obtain good high-frequency characteristics, which makes the equivalent series resistance Res of the solid capacitor larger, which cannot meet the current circuit. High frequency requirements.
  • the use of higher conductivity materials as cathodes for electrolytic capacitors has become a trend in electrolytic capacitors.
  • ⁇ -conjugated polymers Due to its high electrical conductivity, ⁇ -conjugated polymers are particularly useful as solid electrolytes.
  • the ⁇ -conjugated polymer is also referred to as a conductive polymer or a synthetic metal.
  • the importance of ⁇ -conjugated polymers in the economy is increasing due to the advantages of polymers in terms of processability, weight and chemical modification characteristics.
  • Examples of known ⁇ -conjugated polymers are polypyrrole, polyaniline, polyacetylene, polyphenylacetylene, polythiophene.
  • the new conductive polymer poly(3,4-ethylenedioxythiophene) not only has good environmental stability, but also has a very stable conductivity in the temperature range of -60 ° C to 120 ° C, which is not affected by the climatic temperature. It has a much higher conductivity (1 ⁇ 500 S/cm) than MnO 2 , TCNQ complex salt, polyaniline and polypyrrole. Its use as a cathode material for capacitors can reduce the Res of the capacitor more effectively and improve the impedance of the capacitor. - Frequency and capacity frequency characteristics.
  • the object of the invention is to overcome the problems of the prior art and to provide a capacitor cathode foil and a method for preparing the same, which are coated with a novel conductive polymer by electrochemical polymerization on a porous metal oxide dielectric layer having a high specific surface area.
  • a capacitor cathode foil which is an oxidizable metal layer, a metal oxide layer and an electrolyte layer from the inside to the outside,
  • the oxidizable metal layer is made of a valve metal or an alloy and a compound of ruthenium, osmium, aluminum, titanium, zirconium, hafnium and vanadium;
  • the electrolyte layer is a solid electrolyte containing a conductive polymer which is a repeating element having the formula (I) or ( ⁇ ), or a polybenz of a repeating unit of the formula (I) and (II) ;
  • A represents an optionally substituted C1-C5 alkylene group
  • R represents a linear or branched optionally substituted C1-C18 alkyl group, an optionally substituted C5-C12 cycloalkyl group, an optionally substituted C6-C14 aryl group, an optionally substituted C7-C18 aralkyl group, or Substituted substituted C1-C4 hydroxyalkyl or hydroxy;
  • X represents an integer from 0-8;
  • the conductive polymer is coated on the metal oxide layer by electrochemical polymerization to form a conductive polymer film having a thickness of 100-1000 ⁇ m.
  • the conductive polymer is polythiophene, polypyrrole or polyaniline.
  • the conductive polymer is poly(3,4-ethylenedioxythiophene).
  • a capacitor comprising a cathode foil, the cathode foil being an oxidizable metal layer, a metal oxide layer and an electrolyte layer from the inside to the outside;
  • the material of the oxidizable metal layer described in the specification is a valve metal or an alloy and a compound of ruthenium, osmium, aluminum, titanium, zirconium, hafnium and vanadium;
  • the electrolyte layer is a solid electrolyte containing a conductive polymer, and the conductive polymer is a repeating element having the formula (I) or ( ⁇ ), or a polythiophene having repeating units of the formulae (I) and (II);
  • A represents an optionally substituted C1-C5 alkylene group
  • R represents a linear or branched optionally substituted C1-C18 alkyl group, an optionally substituted C5-C12 cycloalkyl group, an optionally substituted C6-C14 aryl group, an optionally substituted C7-C18 aralkyl group, or Substituted substituted C1-C4 hydroxyalkyl or hydroxy;
  • X represents an integer from 0-8;
  • the conductive polymer is coated on the metal oxide layer by electrochemical polymerization to form a conductive polymer film having a thickness of 100-1000 ⁇ m.
  • a method for preparing a capacitor cathode foil comprising the steps of:
  • valve metal or an alloy of yttrium, lanthanum, aluminum, titanium, zirconium, hafnium, vanadium and a compound as an oxidizable metal layer
  • step 2 selecting the oxide of the oxidizable metal in step 1 as the metal oxide layer;
  • A represents an optionally substituted C1-C5 alkylene group
  • R represents a linear or branched optionally substituted C1-C18 alkyl group, an optionally substituted C5-C12 cycloalkyl group, an optionally substituted C6-C14 aryl group, an optionally substituted C7-C18 aralkyl group, or Substituted substituted C1-C4 hydroxyalkyl or hydroxy;
  • X represents an integer from 0-8;
  • the conductive polymer is coated on the metal oxide layer by electrochemical polymerization to form a conductive polymer film having a thickness of 100-1000 ⁇ and a polymerization time of 150-500 s.
  • the electrochemical oxidative polymerization in the step 3) is carried out at a temperature of from -85 ° C to 320 ° C at the boiling point of the solvent used.
  • an electrolyte additive is further added to the solution before the chemical oxidation polymerization at the midpoint, and the electrolyte additive is a free acid.
  • the free acid is p-toluic acid, methic acid and an alkane sulfonate, an aromatic sulfonate, a tetrafluoroborate, a hexafluorophosphate, a perchlorate, a hexafluoroantimonate a salt of hexafluoroarsenate and hexafluoroantimonate anion and an alkali metal, alkaline earth metal or optionally alkylated ammonium, squamous, ruthenium and oxy lance cation.
  • the beneficial effects of the invention are as follows:
  • the capacitor cathode foil of the invention is coated with a new type of conductive polymer on the porous metal oxide dielectric layer with high specific surface area, the conductive polymer structure is dense, the adhesion is firm and stable, and the conductivity is good.
  • the metal oxide dielectric layer is in good contact, and while maintaining the excellent characteristics of the solid electrolytic capacitor, the electrode material is improved in high frequency performance, and the thickness of the conductive polymer film is controlled at 100-100 nm because of the conductive polymer film. When the thickness is less than 100 nm, the mechanical strength is insufficient, which is not conducive to subsequent processing.
  • the electrical resistance will increase, and the ESR of the capacitor will increase in the later stage; when the thickness of the conductive polymer film is higher than 100 nm, the conductive polymer and The bonding strength of the aluminum foil is not high, and the conductive polymer layer is liable to fall off and crack, which may result in deterioration of the electrical conductivity, which also causes the ESR of the fabricated capacitor to become large.
  • the capacitor cathode foil of the present invention is used as a solid electrolytic capacitor cathode or a supercapacitor cathode.
  • a foil for a capacitor cathode obtained according to the present invention includes:
  • the oxidizable metal refers to a valve metal or a compound having comparable properties, characterized in that the valve metal or a compound having comparable properties are ruthenium, osmium, aluminum, titanium, zirconium, hafnium, vanadium, among these metals. An alloy or compound of at least one metal with other elements.
  • the conductive polymer contained in the solid electrolyte is a repeating unit having the formula (I) or (II), or a repeating unit of the formula (I) and (II).
  • A represents an optionally substituted C1-C5 sub-pit group
  • R represents a linear or branched optionally substituted C1-C18 alkyl group, an optionally substituted C5-C12 cycloalkyl group, an optionally substituted C6-C14 aryl group, an optionally substituted C7-C18 aralkyl group, or a substituted C1-C4 hydroxyalkyl group or a hydroxyl group,
  • X represents an integer from 0 to 8, and if a plurality of groups R are attached to A, they may be the same or different.
  • the conductive polymer in the solid electrolyte is coated onto the metal oxide dielectric layer by electrochemical oxidative polymerization.
  • the conductive polymer film coated on the metal oxide dielectric layer has a thickness of 100 to 1000 ⁇ m.
  • a thin layer of conductive polymer may be first coated on the metal oxide dielectric layer. After a voltage is applied to the layer, a layer containing the conductive polymer is grown thereon.
  • the polymerization can be carried out at a temperature of from -85 ° C to the boiling point of the solvent used.
  • the electrochemical polymerization is preferably carried out at a temperature of from -85 ° C to 320 ° C, preferably from -40 ° C to 70 ° C, particularly preferably at room temperature.
  • the electrochemical polymerization time is from 10 seconds to 30 hours, preferably the polymerization time is from 60 seconds to 1 hour, and particularly preferably the polymerization time is 100. Seconds to 30 minutes.
  • the electropolymerization can be carried out in the presence or absence of an aqueous phase or a non-aqueous solvent which is inert under electropolymerization conditions.
  • the electropolymerization of the solid precursor is carried out in the presence of a solvent which is inert under electrochemical polymerization conditions.
  • the aqueous or non-aqueous solvent which is inert under electropolymerization conditions includes: water; alcohols such as decyl alcohol and ethanol; ketones such as acetone; chlorinated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride and fluorinated Hydrocarbons; esters such as ethyl acetate and butyl acetate; carbonates such as propylene carbonate; aromatic hydrocarbons such as benzene, toluene, dinonylbenzene; aliphatic hydrocarbons such as pentane, hexane, heptane, and cyclohexane Alkane; such as acetonitrile and benzonitrile; sulfoxides such as dimercaptosulfoxide; sulfones such as dimercaptosulfone, phenylmethylsulfone and sulfolane; liquid aliphatic amides such as mer
  • an electrolyte additive is added to the precursor or its solution.
  • a free acid or a conventional carrier electrolyte having a certain solubility in a solvent to be used is preferably used as an electrolyte additive.
  • the following electrolyte additives have been demonstrated: free acids such as p-toluenesulfonic acid, decanoic acid and with alkane sulfonates, aromatic acid salts, tetrafluoroborate, hexafluorophosphate, perchlorate, six Salts of fluoroantimonate, hexafluoroarsenate and hexafluoroantimonate anions and alkali metals, alkaline earth metals or optionally thiolated ammonium, squama, ruthenium and oxy lance cations.
  • the concentration of the precursor may be from 0.01 to 100% by weight, and the concentration is preferably from 0.05 to 30%.
  • Electropolymerization can be carried out intermittently or continuously.
  • the method for electropolymerization may be a constant current method, a potentiostatic method, or a cyclic voltammetry method.
  • the current density can be varied within a wide range; a current density of 0.0001 to 1200 mA/cm 3 is usually used, preferably 0.005 to 60 mA/cm 3 ; the potential can also be varied over a wide range, usually using a constant piezoelectric potential of 0.1 to 100 V, Preferably 0.5-75V o
  • a counter ion for preparing a conductive polymer it may be a monomer or a polymeric anion, preferably a monomer or Description
  • An anion of a polysulfonic acid or a naphthenic acid or an aromatic sulfonic acid is particularly preferably used in the electrolytic capacitor according to the invention, since the solution containing them is more permeable to the dielectric coated porous electrode material, This creates a larger contact area between the dielectric and the solid electrolyte.
  • the counter ion is added to the solution, for example, in the form of its alkali metal salt or its free acid. These counterions are optionally added to the precursor or precursor solution as an electrolyte additive or carrier electrolyte during electrochemical polymerization.
  • the anodized aluminum anode was used as the working electrode, the foil was used as the counter electrode, and the 3,4-ethylenedioxythiophene (EDOT) was electrolyzed in a boron trifluoride acetonitrile electrolyte solution at a constant potential polymerization of 1.5 mA.
  • Chemical polymerization The concentration of the EDOT monomer was 0.01 mol/L, the polymerization time was 180 S, and the thickness of the conductive polymer film was 120 nm.
  • the anodized aluminum anode is used as a working electrode, and the foil is a counter electrode.
  • a boron trifluoride diethyl ether electrolyte solution having a sodium polystyrene sodium concentration of 0.2 g/L, the mixture is subjected to a constant potential polymerization of 1.5 mA.
  • 4-ethylenedioxythiophene (EDOT) was subjected to electrochemical polymerization.
  • the concentration of the EDOT monomer was 0.01 mol/L, and the polymerization time was 180 S.
  • the thickness of the conductive polymer film was 130 nm.
  • the electrolytic cell containing 0.5 mol/L potassium nitrate (KNO3) solution nitrogen is deoxygenated, and then monomer 3,4-ethylenedioxythiophene (EDOT) is added, and the anodized aluminum anode is used as a working electrode, foil.
  • KNO3 potassium nitrate
  • EDOT monomer 3,4-ethylenedioxythiophene
  • the wafer was a counter electrode and was cycled 20 times at a sweep speed of 50 mV/s in the range of -0.80 - +1.50V.
  • the concentration of the EDOT monomer was 0.01 mol/L, and the thickness of the conductive polymer film was measured to be 330 nm.
  • Electrochemical polymerization of 3,4-ethylenedioxythiophene (EDOT) under potentiostatic polymerization conditions The EDOT monomer concentration was 0.01 mol/L, the polymerization time was 300 S, and the thickness of the conductive polymer film was measured to be 630 nm.
  • the monomer 3,4-ethylenedioxythiophene (EDOT) was added after nitrogen and oxygen removal, and the anodized aluminum anode was used as the working electrode.
  • the foil was a counter electrode, and electrochemical polymerization of 3,4-ethylenedioxythiophene (EDOT) was carried out under a 1.2 mA constant potential polymerization condition.
  • the concentration of the EDOT monomer was 0.01 mol/L, the polymerization time was 400 S, and the thickness of the conductive polymer film was measured to be 830 ⁇ .
  • the electrolytic cell containing 0.2 mol/L sodium sulfate (Na2S04) solution, nitrogen is added to deoxidize, and then monomer 3,4-ethylenedioxythiophene (EDOT) is added, and the anodized aluminum anode is used as a working electrode, foil.
  • the wafer was a counter electrode, and electrochemical polymerization of 3,4-ethylenedioxythiophene (EDOT) was carried out under a constant potential polymerization of 1.4 mA.
  • the concentration of the EDOT monomer was 0.01 mol/L, the polymerization time was 200 S, and the thickness of the conductive polymer film was measured to be 430 ⁇ .
  • the monomer 3,4-ethylenedioxythiophene (EDOT) was added after nitrogen and oxygen removal, and the anodized aluminum anode was used as the working electrode.
  • the foil was a counter electrode, and electrochemical polymerization of 3,4-ethylenedioxythiophene (EDOT) was carried out under a constant potential polymerization condition of 1.3 mA.
  • the concentration of the EDOT monomer was 0.01 mol/L, the polymerization time was 500 S, and the thickness of the conductive polymer film was measured to be 1000 nm.
  • the anodized aluminum anode was used as the working electrode, and the foil was used as the counter electrode.
  • a boron trifluoride ether electrolyte solution having a concentration of 0.2 g/L of decyl benzoic acid, the mixture was subjected to a constant potential polymerization of 1.3 mA.
  • 4-ethylenedioxythiophene (EDOT) was subjected to electrochemical polymerization.
  • the EDOT monomer concentration was 0.01 mol/L
  • the polymerization time was 280 S
  • the thickness of the conductive polymer film was measured to be 500 nm.
  • the anodized aluminum anode was used as the working electrode, and the foil was used as the counter electrode.
  • Electrochemical polymerization was carried out by 4-ethylenedioxythiazolidine (EDOT).
  • EDOT monomer concentration was 0.01 mol/L
  • the polymerization time was 270 S
  • the thickness of the conductive polymer film was measured to be 470 nm.
  • the anodized aluminum anode was immersed in an n-butanol solution having an EDOT concentration of 24.35% by weight for 10 seconds, and then taken out and dried; and then immersed in a 1.0 mol/L pair of sodium l-dodecylbenzenesulfonate.
  • An aqueous solution of iron benzenesulfonate was taken for 10 seconds, taken out and dried, and left to cool in air for 3 minutes; the above procedure was repeated 6 times.
  • the aluminum chip which completed the above steps was immersed in an EDOT concentration of 24.35 wt% ⁇ n-butanol solution for 10 seconds, and taken out and dried; and then immersed in a mol of 3.5 mol/L p-nonylbenzene of 0.2 mol/L sodium dodecylbenzenesulfonate.
  • the aqueous solution of iron sulfonate was taken for 10 seconds, taken out and dried, and left to cool in air for 3 minutes; the above procedure was repeated 6 times.
  • Comparative Example 2 was basically the same as the example except that the polymerization time was 50 ⁇ and the thickness of the conductive polymer film was 45 nm.
  • Comparative Example 3 was basically the same as the examples except that the polymerization time was 800 ⁇ and the thickness of the conductive polymer film was 1300 nm.
  • capacitor elements obtained in the above examples and comparative examples were further assembled into solid aluminum electrolytic capacitors, and Table 1 shows various performance values of solid aluminum electrolytic capacitors made of the above capacitor elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

一种电容器阴极箔,由内至外分别为可氧化金属层、金属氧化层和电解质层,所述可氧化金属层的材质为阀金属或钽、铌、铝、钛、锆、铪、钒的合金及化合物;所述电解质层为含有导电聚合物的固体电解质,所述导电聚合物为具有通式(I)或(II)的重复单元,或通式(I)和(II)的重复单元的聚噻吩。同时公开了一种电容器及其该电容器阴极箔的制备方法,该电容器阴极箔在高比表面积的多孔性金属氧化物介质层上覆一层新型导电聚合物,这层导电聚合物结构致密,附着牢固稳定,具有良好的导电性且与金属氧化物介质层接触良好,并且在保持固体电解电容器优良特性的同时,通过改变电极材料提高其高频性能。

Description

说 明 书
一种电容器阴极箔和电容器及其制备方法
技术领域
本发明涉及电容器阴极材料及制备方法, 尤其涉及一种电容器阴极箔和电 容器及其制备方法。 背景技术
半导体材料 MnO2作为铝或钽电容器阴极,使得电容器在结构上有了重大进 展, 根本上摆脱了电解液泄漏、 干涸等因素导致电容器的失效问题。 也使固体 电解质电容器在电解电容器中拥有较好的温度频率特性。 同时因其形状多样, 使得电容器满足元器件片式化的发展方向, 可以说固体电解质 MnO2作为铝或 钽电解电容器的阴极材料使得电解电容器的性能达到了一个新的水平。
电容器要求小型、 片式、 大容量、 低等效串联电阻、 低损耗正切值和高频 性能。 MnO2作为阴极材料, 由于其工艺环节繁多、 电导率低(l S/cm 左右)以 至难以取得良好的高频特性, 从而使得固体电容器的等效串联电阻 Res 较大, 已不能满足当前电路日益高频化的要求。 釆用更高电导率的材料作为电解电容 器的阴极, 已成为电解电容器的发展趋势。
由于其具有高电导性, π -共轭聚合物特别适用于用作固体电解质。 π -共轭 聚合物还被称为导电聚合物或合成金属。 由于与金属相比聚合物在可加工性、 重量和化学改性特性的目标调节方面具有优势, π -共轭聚合物在经济上面的重 要性逐渐增加。 已知 π -共轭聚合物的例子是聚吡咯、 聚苯胺、 聚乙炔、 聚苯乙 炔、 聚噻吩。 其中新型导电聚合物聚(3, 4-亚乙基二氧噻吩) 不仅环境稳定性 好, 在 -60°C ~ 120°C的温度范围内, 导电率非常稳定, 不受气候温度的影响, 且 具有比 MnO2、 TCNQ复合盐、 聚苯胺和聚吡咯高得多的电导率( 1 ~ 500 S/cm ), 其用作电容器的阴极材料可更有效地降低电容器的 Res, 改善电容器的阻抗-频 率和容量频率特性。 发明内容 说 明 书 本发明的发明目的在于克服现有技术问题, 提供一种电容器阴极箔及其制 备方法, 在高比表面积的多孔性金属氧化物介质层上通过电化学聚合方法被覆 一层新型导电聚合物。
为了实现上述发明目的, 本发明采用的技术方案为:
一种电容器阴极箔, 由内至外分别为可氧化金属层、 金属氧化层和电解质 层,
所述可氧化金属层的材质为阀金属或钽、 铌、 铝、 钛、 锆、 铪、 钒的合金 及化合物;
所述电解质层为含有导电聚合物的固体电解质, 所述导电聚合物为具有通 式 ( I ) 或 ( Π ) 的重复 元, 或通式 ( I )和 ( II ) 的重复单元的聚瘙吩;
Figure imgf000003_0001
其中,
A表示任选取代的 C1-C5亚烷基;
R表示直链或支链任选取代的 C1-C18烷基、 任选取代的 C5-C12环烷基、 任选取代的 C6-C14芳基、 任选取代的 C7-C18芳烷基、 任选取代的 C1-C4羟基 烷基或羟基;
X表示 0-8的整数;
所述导电聚合物通过电化学聚合的方法覆在金属氧化层上形成导电聚合物 膜, 所述导电聚合物膜的厚度为 100-1000 μ ηι。
其中, 所述导电聚合物为聚噻吩、 聚吡咯或聚苯胺。
其中, 所述导电聚合物为聚(3, 4-亚乙基二氧噻吩)。
为了实现上述发明目的, 本发明釆用另一技术方案为:
一种电容器, 包括阴极箔, 所述阴极箔由内至外分别为可氧化金属层、 金 属氧化层和电解质层; 说 明 书 所述可氧化金属层的材质为阀金属或钽、 铌、 铝、 钛、 锆、 铪、 钒的合金 及化合物;
所述电解质层为含有导电聚合物的固体电解质, 所述导电聚合物为具有通 式 ( I ) 或 ( Π ) 的重复 元, 或通式 ( I )和 ( II ) 的重复单元的聚噻吩;
Figure imgf000004_0001
其中,
A表示任选取代的 C1-C5亚垸基;
R表示直链或支链任选取代的 C1-C18烷基、 任选取代的 C5-C12环烷基、 任选取代的 C6-C14芳基、 任选取代的 C7-C18芳烷基、 任选取代的 C1-C4羟基 烷基或羟基;
X表示 0-8的整数;
所述导电聚合物通过电化学聚合的方法覆在金属氧化层上形成导电聚合物 膜, 所述导电聚合物膜的厚度为 100-1000 μ ηι。
为了实现上述发明目的, 本发明采用又一技术方案为:
一种电容器阴极箔的制备方法, 包括以下步骤:
1 )选取阀金属或钽、 铌、 铝、 钛、 锆、 铪、 钒的合金及化合物作为可氧化 金属层;
2 )选取步骤 1中可氧化金属的氧化物作为金属氧化层;
3 )采用电化学聚合方法将导电聚合物覆在金属氧化层上, 所述导电聚合物 为具有通式 ( I ) 或 ( II ) 的重复单元, 或通式 ( I ) 和 ( II ) 的重复单元的 聚噻吩; 说 明 书
Figure imgf000005_0001
其中,
A表示任选取代的 C1-C5亚烷基;
R表示直链或支链任选取代的 C1-C18烷基、 任选取代的 C5-C12环烷基、 任选取代的 C6-C14芳基、 任选取代的 C7-C18芳烷基、 任选取代的 C1-C4羟基 烷基或羟基;
X表示 0-8的整数;
所述导电聚合物通过电化学聚合的方法覆在金属氧化层上形成导电聚合物 膜, 所述导电聚合物膜的厚度为 100-1000 μ ηι, 聚合时间为 150-500s。
其中,步骤 3 )中电化学氧化聚合在 -85 °C-320°C所用溶剂沸点的温度下进行。 其中, 步骤 3 )中点化学氧化聚合前在溶液中进一步加入电解质添加剂, 所 述电解质添加剂为游离酸。
其中, 所述游离酸为对曱苯横酸、 甲碌酸和与烷磺酸盐、 芳族磺酸盐、 四 氟硼酸盐、 六氟磷酸盐、 高氯酸盐、 六氟锑酸盐、 六氟砷酸盐及六氟锑酸盐阴 离子的盐和碱金属、 碱土金属或任选烷基化的铵、 鱗、 锍和氧鎗阳离子。
本发明的有益效果为: 本发明电容器阴极箔在高比表面积的多孔性金属氧 化物介质层上覆一层新型导电聚合物, 这层导电聚合物结构致密, 附着牢固稳 定, 具有良好的导电性且与金属氧化物介质层接触良好, 并且在保持固体电解 电容器优良特性的同时, 通过改变电极材料提高其高频性能, 将导电聚合物膜 的厚度控制在 100-lOOOnm是因为, 导电聚合物膜的厚度低于 lOOnm时,其机械 强度不够, 不利于后续加工, 另一方面, 其电阻会增大, 制作电容器后期 ESR 会增大; 导电聚合物膜的厚度高于 lOOOnm时, 导电聚合物与铝箔的粘结强度不 高, 导电聚合物层易于脱落和开裂, 会导致导电性能变差, 同样会导致制作的 电容器 ESR变大。 说 明 书
具体实施方式
为详细说明本发明的技术内容、 构造特征、 所实现目的及效果, 以下结合 实施方式详予说明。
本发明电容器阴极箔用作固体电解电容器阴极或超级电容器阴极。
根据本发明得到的电容器阴极用箔, 包括:
一层可氧化金属,
一层该金属的氧化物,
一层含有导电聚合物的固体电解质,
其特征在于, 所述可氧化金属是指阀金属或具有可比性质的化合物, 其特 征在于阀金属或具有可比性质的化合物是钽、 铌、 铝、 钛、 锆、 铪、 钒, 这些 金属中的至少一种金属与其他元素的合金或化合物。
所述固体电解质中含有的导电聚合物为具有通式 ( I ) 或 ( II ) 的重复单 元, 或通式 ( I ) 和( II ) 的重复 元的聚噻吩。
Figure imgf000006_0001
其中 A表示任选取代的 C1-C5亚坑基,
R表示直链或支链任选取代的 C1-C18烷基、 任选取代的 C5-C12环烷基、 任选取代的 C6-C14芳基、 任选取代的 C7-C18芳烷基、 任选取代的 C1-C4羟基 烷基或羟基,
X表示 0-8的整数, 如果多个基团 R连接到 A上, 则其可相同或不同。 固体电解质中的导电聚合物通过电化学氧化聚合的方法被覆到金属氧化物 介质层上。被覆到金属氧化物介质层上的导电聚合物膜其厚度为 100 ~ 1000 μ ηι。 在电化学聚合期间, 在金属氧化物介质层上可首先涂布有导电聚合物的薄层。 向该层施加电压后, 含有所述导电聚合物的层在其上生长。 前体的电化学氧化 说 明 书
聚合可在 -85 °C至所用溶剂沸点的温度下进行。电化学聚合优选在 -85 °C至 320°C, 优选在 -40 °C至 70 °C的温度进行,特别优选的在室温下进行。取决于使用的前体、 使用的电解质、 选定的温度和施加的电流密度, 电化学聚合反应的时间为 10秒 至 30小时, 优选聚合时间为 60秒至 1小时, 特别优选聚合时间为 100秒至 30 分钟。 如杲前体为液体, 则电聚合可在电聚合条件下呈惰性的水相或非水相溶 剂的存在或不存在下进行。 固体前体的电聚合在电化学聚合条件下呈惰性的溶 剂的存在下进行。在某些情况下,使用溶剂混合物和 /或向溶剂中加入增溶剂(洗 涤剂)是有利的。 在电聚合条件下呈惰性的水相或非水相的溶剂包括: 水; 醇, 如曱醇和乙醇; 酮, 如丙酮; 氯代烃, 如二氯甲烷、 氯仿、 四氯化碳和氟代烃; 酯, 如乙酸乙酯和乙酸丁酯; 碳酸酯, 如碳酸丙烯酯; 芳香烃, 如苯、 曱苯、 二曱苯; 脂肪烃, 如戊烷、 己烷、 庚烷、 和环己烷; 腈, 如乙腈和苄腈; 亚砜, 如二曱基亚砜; 砜, 如二曱基砜、 苯基甲基砜和环丁砜; 液态脂肪族酰胺, 如 曱基乙酰胺、 二曱基乙酰胺、 二曱基曱酰胺、 吡咯烷酮、 N-曱基吡咯烷酮、 N- 曱基己内酰胺; 脂肪族和混合脂肪族 -芳香族醚, 例如乙瞇、 二乙醚和苯曱醚; 液态脲, 如四曱基脲或 N, N-二甲基咪唑啉酮。 为了进行电聚合, 将电解质添 加剂加入到前体或其溶液中。 在所用溶剂中具有一定溶解性的游离酸或常规载 体电解质优选用作电解质添加剂。 已经证明以下为电解质添加剂: 游离酸, 例 如对曱苯磺酸、 曱横酸和与烷磺酸盐、 芳族横酸盐、 四氟硼酸盐、 六氟磷酸盐、 高氯酸盐、 六氟锑酸盐、 六氟砷酸盐及六氟锑酸盐阴离子的盐和碱金属、 碱土 金属或任选垸基化的铵、 鱗、 锍和氧鎗阳离子。 前体的浓度可为 0.01-100wt%, 所述浓度优选为 0.05-30%。
电聚合可间断或连续进行。 用于电聚合的方法可以是恒电流法、 恒电位法、 循环伏安法。 其中电流密度可在较宽范围内变化; 通常使用 0.0001-120mA/cm3 的电流密度, 优选为 0.005-60mA/cm3; 电位也可在较宽范围内变化, 通常使用 0.1-100V的恒压电位, 优选为 0.5-75V o
对于金属氧化物电介质来说, 在电化学聚合之后, 电化学模拟氧化物膜以 修饰氧化物膜中可能存在的缺陷, 并随后降低成品电容器的剩余电流是有利的。 作为用于制备导电聚合物的抗衡离子, 可以是单体或聚合阴离子, 优选单体或 说 明 书
聚合磺酸或环烷磺酸或芳族磺酸的阴离子。 单体烷磺酸或环烷磺酸或芳族磺酸 的阴离子特别优选用于根据本发明的电解电容器中, 这是因为含有它们的溶液 更能够渗透进入涂有电介质的多孔电极材料中, 由此可在电介质和固体电解质 之间形成更大的接触面积。 将抗衡离子例如以其碱金属盐或其游离酸的形式加 入到所述溶液中。 在电化学聚合期间, 将这些抗衡离子任选作为电解质添加剂 或载体电解质加入到所述前体或前体溶液中。
在电聚合之前所有的电解质溶液可不通入或通入氮气 0 ~ 60分钟除氧, 并 在整个电聚合期间可緩慢通入氮气或不通入氮气以使反应在惰性气氛或非惰性 气氛下进行。 实施例 1 :
以阳极化后的铝阳极为工作电极, 箔片为对电极, 在三氟化硼乙瞇电解质 溶液中以 1.5mA恒电位聚合条件下对 3, 4-乙撑二氧噻吩 ( EDOT )进行电化学 聚合。 其中 EDOT单体浓度为 0.01mol/L, 聚合时间为 180S , 测得导电聚合物膜 的厚度为 120nm。
实施例 2:
以阳极化后的铝阳极为工作电极, 箔片为对电极, 在聚苯乙烯碌酸钠浓度 为 0.2g/L的三氟化硼乙醚电解质溶液中以 1.5mA恒电位聚合条件下对 3, 4-乙 撑二氧噻吩(EDOT ) 进行电化学聚合。 其中 EDOT单体浓度为 0.01mol/L, 聚 合时间为 180S, 测得导电聚合物膜的厚度为 130nm。
实施例 3:
在盛有 0.5mol/L硝酸钾 (KNO3 )溶液的电解池中通氮除氧后加入单体 3, 4-乙撑二氧噻吩(EDOT ), 以阳极化后的铝阳极为工作电极, 箔片为对电极, 在 -0.80 - +1.50V范围内以 50m V/s的扫速循环扫描 20次。其中 EDOT单体浓度 为 0.01mol/L, 测得导电聚合物膜的厚度为 330nm。
实施例 4:
在高氯酸四丁基胺浓度为 0.1mol/L的乙腈溶液中, 通纯净干燥的氮气除氧 10分钟,在氮气氛下, 以阳极化后的铝阳极为工作电极, 箔片为对电极, 以 1mA 说 明 书
恒电位聚合条件下 3, 4-乙撑二氧噻吩(EDOT )进行电化学聚合。 其中 EDOT 单体浓度为 0.01mol/L, 聚合时间为 300S, 测得导电聚合物膜的厚度为 630nm。
实施例 5:
在盛有 1.0mol/L高氯酸锂 ( C1O4 ) 溶液的电解池中通氮除氧后加入单体 3 , 4-乙撑二氧噻吩(EDOT ), 以阳极化后的铝阳极为工作电极, 箔片为对电极, 以 1.2mA恒电位聚合条件下对 3, 4-乙撑二氧噻吩(EDOT )进行电化学聚合。 其中 EDOT单体浓度为 0.01mol/L, 聚合时间为 400S,测得导电聚合物膜的厚度 为 830謹。
实施例 6:
在盛有 0.2mol/L硫酸钠 ( Na2S04 )溶液的电解池中通氮除氧后加入单体 3, 4-乙撑二氧噻吩(EDOT ), 以阳极化后的铝阳极为工作电极, 箔片为对电极, 以 1.4mA恒电位聚合条件下对 3, 4-乙撑二氧噻吩(EDOT )进行电化学聚合。 其中 EDOT单体浓度为 0.01mol/L, 聚合时间为 200S,测得导电聚合物膜的厚度 为 430謹。
实施例 7:
在盛有 0.8mol/L四氟硼酸钠 ( NaBF4 ) 溶液的电解池中通氮除氧后加入单 体 3, 4-乙撑二氧噻吩(EDOT ), 以阳极化后的铝阳极为工作电极, 箔片为对电 极, 以 1.3mA恒电位聚合条件下对 3, 4-乙撑二氧噻吩(EDOT )进行电化学聚 合。 其中 EDOT单体浓度为 0.01mol/L, 聚合时间为 500S , 测得导电聚合物膜的 厚度为 1000nm。
实施例 8:
以阳极化后的铝阳极为工作电极, 箔片为对电极, 在对曱基苯碌酸浓度为 0.2g/L的三氟化硼乙醚电解质溶液中以 1.3mA恒电位聚合条件下对 3, 4-乙撑二 氧噻吩(EDOT )进行电化学聚合。 其中 EDOT单体浓度为 0.01mol/L, 聚合时 间为 280S , 测得导电聚合物膜的厚度为 500nm。
实施例 9:
以阳极化后的铝阳极为工作电极, 箔片为对电极, 在聚苯乙烯磺酸钠浓度 为 0.2g/L的高氯酸锂 ( LiClO4 )电解质溶液中以 1.6mA恒电位聚合条件下对 3, 说 明 书
4-乙撑二氧噻喻(EDOT )进行电化学聚合。 其中 EDOT单体浓度为 0.01mol/L, 聚合时间为 270S, 测得导电聚合物膜的厚度为 470nm。
实施例 10:
在高氯酸四丁基胺浓度为 O.lmol/L的乙腈溶液中, 通纯净干燥的氮气除氧 10分钟,在氮气氛下,以阳极化后的铝阳极为工作电极,箔片为对电极,以 10mA 恒电流聚合条件下对 3 , 4-乙撑二氧噻吩( EDOT )进行电化学聚合。 其中 EDOT 单体浓度为 0.01mol/L, 聚合时间为 150S, 测得导电聚合物膜的厚度为 120nm。
对比例 1 :
将阳极化后的铝阳极浸入 EDOT浓度为 24.35\^%的正丁醇溶液中 10秒, 取出烘干; 再浸入 0. lmol/L十二烷基苯磺酸钠的 1.0mol/L对曱基苯磺酸铁水溶 液 10秒, 取出烘干, 并置于空气中冷去 3分钟; 重复上述步骤 6次。
将完成上述步骤的铝芯片浸入 EDOT浓度为 24.35wt%^ 正丁醇溶液中 10 秒, 取出烘干; 再浸入 0.2mol/L十二烷基苯磺酸钠的 3.5mol/L对曱基苯磺酸铁 水溶液 10秒, 取出烘干, 并置于空气中冷去 3分钟; 重复上述步骤 6次。
用去离子水清洗 4吕芯片。
对比例 2 与实施例基本相同, 区别在于聚合时间为 50S, 导电聚合物膜的 厚度为 45nm。
对比例 3与实施例基本相同, 区别在于聚合时间为 800S, 导电聚合物膜的 厚度为 1300nm。
将上述实施例和对比例方式制得的电容器元件进一步装配成固体铝电解电 容器, 表 1为由上述电容器元件制成的固体铝电解电容器的各项性能值。
表 1 固体铝电解电容器各项性能
损 耗
工作 静 电 ESR(mO)
实施例 角正切值
电压 容量( M F ) ( ΙΟΟΚΗζ ~ 300KHz )
(max)
实施例 1 20 69 0.18 26
实施例 2 20 73 0.25 31
实施例 3 20 47 0.22 35 说 明 书
Figure imgf000011_0001
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利 用本发明说明书内容所作的等效结构或等效流程变换, 或直接或间接运用在其 他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权 利 要 求 书
1、 一种电容器阴极箔, 由内至外分别为可氧化金属层、 金属氧化层和电解 质层, 其特征在于:
所述可氧化金属层的材质为阀金属或钽、 铌、 铝、 钛、 锆、 铪、 钒的合金 及化合物;
所述电解质层为含有导电聚合物的固体电解质, 所述导电聚合物为具有通 式 ( I ) 或 ( II ) 的重复 元, 或通式 ( I )和 ( II ) 的重复单元的聚噻吩;
Figure imgf000012_0001
其中,
A表示任选取代的 C1-C5亚烷基;
R表示直链或支链任选取代的 C1-C18烷基、 任选取代的 C5-C12环烷基、 任选取代的 C6-C14芳基、 任选取代的 C7-C18芳烷基、 任选取代的 C1-C4羟基 烷基或羟基;
X表示 0-8的整数;
所述导电聚合物通过电化学聚合的方法覆在金属氧化层上形成导电聚合物 膜, 所述导电聚合物膜的厚度为 100-1000 μ ηι。
2、 根据权利要求 1所述的电容器阴极箔, 其特征在于, 所述导电聚合物为 聚噻吩、 聚吡咯或聚苯胺。
3、 根据权利要求 1所述的电容器阴极箔, 其特征在于, 所述导电聚合物为 聚(3, 4-亚乙基二氧噻吩)。
4、 一种电容器, 其特征在于, 包括阴极箔, 所述阴极箔由内至外分别为可 氧化金属层、 金属氧化层和电解质层;
所述可氧化金属层的材质为阀金属或钽、 铌、 铝、 钛、 锆、 铪、 钒的合金 及化合物;
所述电解质层为含有导电聚合物的固体电解质, 所述导电聚合物为具有通 权 利 要 求 书
式 ( I ) 或 ( Π ) 的重复单元, ( I )和 ( II ) 的重复单元的聚瘙吩;
Figure imgf000013_0001
其中,
A表示任选取代的 C1-C5亚烷基;
R表示直链或支链任选取代的 C1-C18烷基、 任选取代的 C5-C12环烷基、 任选取代的 C6-C14芳基、 任选取代的 C7-C18芳烷基、 任选取代的 C1-C4羟基 烷基或羟基;
X表示 0-8的整数;
所述导电聚合物通过电化学聚合的方法覆在金属氧化层上形成导电聚合物 膜, 所述导电聚合物膜的厚度为 100-1000 μ ηι。
5、 一种电容器阴极箔的制备方法, 其特征在于, 包括以下步骤:
1 )选取阀金属或钽、 铌、 铝、 钛、 锆、 铪、 钒的合金及化合物作为可氧化 金属层;
2 )选取步骤 1中可氧化金属的氧化物作为金属氧化层;
3 )采用电化学聚合方法将导电聚合物覆在金属氧化层上, 所述导电聚合物 为具有通式 ( I ) 或 ( II ) 的重复单元, 或通式 ( I ) 和 ( II ) 的重复单元的 聚噻吩
Figure imgf000013_0002
权 利 要 求 书
A表示任选取代的 C1-C5亚烷基;
R表示直链或支链任选取代的 C1-C18垸基、 任选取代的 C5-C12环烷基、 任选取代的 C6-C14芳基、 任选取代的 C7-C18芳烷基、 任选取代的 C1-C4羟基 烷基或羟基;
X表示 0-8的整数;
所述导电聚合物通过电化学聚合的方法覆在金属氧化层上形成导电聚合物 膜, 所述导电聚合物膜的厚度为 100-1000 μ ηι, 聚合时间为 150-500s。
6、 根据权利要求 5所述的电容器阴极箔的制备方法, 其特征在于, 步骤 3 ) 中电化学氧化聚合在 -85 °C -320 °C所用溶剂沸点的温度下进行。
7、 根据权利要求 5所述的电容器阴极箔的制备方法, 其特征在于, 步骤 3 ) 中点化学氧化聚合前在溶液中进一步加入电解质添加剂, 所述电解质添加剂为 游离酸。
8、 根据权利要求 7所述的电容器阴极箔的制备方法, 其特征在于, 所述游 离酸为对曱苯磺酸、 曱磺酸和与坑磺酸盐、 芳族磺酸盐、 四氟硼酸盐、 六氟磷 酸盐、 高氯酸盐、 六氟锑酸盐、 六氟砷酸盐及六氟锑酸盐阴离子的盐和碱金属、 碱土金属或任选垸基化的铵、 鱗、 4巟和氧鎿阳离子。
PCT/CN2014/077564 2013-11-07 2014-05-15 一种电容器阴极箔和电容器及其制备方法 WO2015067021A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310549038.XA CN103578773B (zh) 2013-11-07 2013-11-07 一种电容器阴极箔和电容器及其制备方法
CN201310549038.X 2013-11-07

Publications (1)

Publication Number Publication Date
WO2015067021A1 true WO2015067021A1 (zh) 2015-05-14

Family

ID=50050336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077564 WO2015067021A1 (zh) 2013-11-07 2014-05-15 一种电容器阴极箔和电容器及其制备方法

Country Status (2)

Country Link
CN (1) CN103578773B (zh)
WO (1) WO2015067021A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103578773B (zh) * 2013-11-07 2016-07-06 深圳新宙邦科技股份有限公司 一种电容器阴极箔和电容器及其制备方法
CN104409213A (zh) * 2014-11-12 2015-03-11 深圳新宙邦科技股份有限公司 用于化成箔后处理的电解质胶液、电极箔和电容器
CN104409212A (zh) * 2014-11-12 2015-03-11 深圳新宙邦科技股份有限公司 化成箔后处理方法、电极箔和电容器
CN111048319A (zh) * 2019-11-13 2020-04-21 株洲宏达电子股份有限公司 一种水相电化学聚合噻吩制作片式钽电容器及其制作方法
KR20210061616A (ko) * 2019-11-20 2021-05-28 삼성전기주식회사 고체 전해 커패시터 및 이의 제조방법
CN116134566A (zh) * 2020-07-31 2023-05-16 松下知识产权经营株式会社 固体电解电容器元件及固体电解电容器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118162A1 (ja) * 2011-03-01 2012-09-07 日本ケミコン株式会社 重合液、この重合液から得られた導電性ポリマーフィルム及び固体電解コンデンサ
WO2012119711A1 (en) * 2011-03-06 2012-09-13 Heraeus Precious Metals Gmbh & Co. Kg Method for improving the electrical parameters in capacitors containing pedot/pss as a solid electrolyte by polyglycerol
CN103113559A (zh) * 2013-01-31 2013-05-22 深圳新宙邦科技股份有限公司 一种导电性高分子、其合成用氧化剂及固体电容器
CN103578773A (zh) * 2013-11-07 2014-02-12 深圳新宙邦科技股份有限公司 一种电容器阴极箔和电容器及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250747A (ja) * 2000-03-07 2001-09-14 Sanyo Electric Co Ltd 固体電解コンデンサ
EP1398805B1 (en) * 2001-05-31 2012-08-29 Nippon Chemi-Con Corporation Solid electrolytic capacitor
JP2004186684A (ja) * 2002-11-21 2004-07-02 Showa Denko Kk 固体電解コンデンサ及びその製造方法
CN102030760B (zh) * 2009-09-30 2014-01-15 H.C.斯达克克莱维欧斯有限公司 选定色数的单体和用其制备的电容器
CN102623183B (zh) * 2012-04-17 2014-03-05 电子科技大学 一种电解电容器的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118162A1 (ja) * 2011-03-01 2012-09-07 日本ケミコン株式会社 重合液、この重合液から得られた導電性ポリマーフィルム及び固体電解コンデンサ
WO2012119711A1 (en) * 2011-03-06 2012-09-13 Heraeus Precious Metals Gmbh & Co. Kg Method for improving the electrical parameters in capacitors containing pedot/pss as a solid electrolyte by polyglycerol
CN103113559A (zh) * 2013-01-31 2013-05-22 深圳新宙邦科技股份有限公司 一种导电性高分子、其合成用氧化剂及固体电容器
CN103578773A (zh) * 2013-11-07 2014-02-12 深圳新宙邦科技股份有限公司 一种电容器阴极箔和电容器及其制备方法

Also Published As

Publication number Publication date
CN103578773B (zh) 2016-07-06
CN103578773A (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
US11600449B2 (en) Layer compositions with improved electrical parameters comprising PEDOT/PSS and a stabilizer
US7154740B2 (en) Substituted poly(alkylenedioxythiophenes) as solid electrolytes in electrolytic capacitors
TWI423284B (zh) 具有聚合物外層之電解電容器及製造其之方法
US6987663B2 (en) Electrolytic capacitors with a polymeric outer layer
JP4538448B2 (ja) 導電性ポリマー製造用の遅延酸化剤
WO2015067021A1 (zh) 一种电容器阴极箔和电容器及其制备方法
JP5524795B2 (ja) 安定化されたチオフェン誘導体
DE102005016727A1 (de) Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zu ihrer Herstellung
JP2012186452A (ja) Pedot/pssを固体電解質として含有するコンデンサにおける電気パラメータをポリグリセロールによって改善するための方法
JP2010285622A (ja) ポリチオフェン、ポリチオフェンの分散液とその製造方法及びその使用
JP2012244077A (ja) 固体電解コンデンサの製造方法
JP2008053479A (ja) 固体電解コンデンサの製造方法
JP6878896B2 (ja) 電解コンデンサ及びその製造方法
JPH02235321A (ja) 固体電解コンデンサとその製造方法
DE102004022674A1 (de) Elektrolytkondensatoren mit polymerer Außenschicht
JP2010209342A (ja) 導電性ポリマー製造用の遅延酸化剤
KR102337435B1 (ko) 전해 콘덴서 및 그 제조 방법
JPH04315413A (ja) 固体電解コンデンサの製造方法
JP2011009314A (ja) 固体電解コンデンサ及びその製造方法
JPH0426777B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14859941

Country of ref document: EP

Kind code of ref document: A1