WO2015064720A1 - 分離膜、シート流路材および分離膜エレメント - Google Patents

分離膜、シート流路材および分離膜エレメント Download PDF

Info

Publication number
WO2015064720A1
WO2015064720A1 PCT/JP2014/078989 JP2014078989W WO2015064720A1 WO 2015064720 A1 WO2015064720 A1 WO 2015064720A1 JP 2014078989 W JP2014078989 W JP 2014078989W WO 2015064720 A1 WO2015064720 A1 WO 2015064720A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
sheet
flow path
channel material
separation
Prior art date
Application number
PCT/JP2014/078989
Other languages
English (en)
French (fr)
Inventor
山田 博之
洋帆 広沢
高木 健太朗
宜記 岡本
由恵 丸谷
俊介 田林
佐々木 崇夫
将弘 木村
田中 祐之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020167011166A priority Critical patent/KR102254401B1/ko
Priority to JP2014557654A priority patent/JP5888439B2/ja
Priority to EP14857212.6A priority patent/EP3064266B1/en
Priority to CN201480060087.XA priority patent/CN105682778B/zh
Priority to US15/033,488 priority patent/US9802160B2/en
Publication of WO2015064720A1 publication Critical patent/WO2015064720A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/107Specific properties of the central tube or the permeate channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/14Specific spacers
    • B01D2313/146Specific spacers on the permeate side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/08Patterned membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/52Crystallinity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the present invention relates to a separation membrane, a sheet channel material and a separation membrane element used for separating components contained in a fluid such as liquid and gas. More specifically, the present invention relates to a separation membrane or sheet channel material having good handling properties and a separation membrane element having stable performance.
  • Separation membranes used in separation methods using separation membrane elements are classified into microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, forward osmosis membranes and the like based on their pore sizes and separation functions. These membranes are used, for example, in the production of drinking water from seawater, brine, or water containing harmful substances, in the production of industrial ultrapure water, in wastewater treatment, or in the recovery of valuable materials. Depending on the separation performance.
  • the separation membrane element is common in that the raw fluid is supplied to one surface of the separation membrane and the permeated fluid is obtained from the other surface.
  • Separation membrane elements are provided with a large number of bundled separation membranes to secure a large membrane area and are configured to obtain a large amount of permeated fluid per unit element.
  • Various elements such as spiral type, hollow fiber type, plate-and-frame type, rotating flat membrane type, flat membrane integrated type are manufactured.
  • spiral separation membrane elements are often used for reverse osmosis filtration.
  • the spiral type separation membrane element has a perforated water collecting pipe, a supply side channel material that supplies the raw fluid to the separation membrane, a separation membrane that separates components contained in the raw fluid, and a permeated fluid that has permeated the separation membrane.
  • a permeate-side channel material for guiding to the water pipe is provided.
  • the supply-side channel material, the separation membrane, and the permeation-side channel material are wound around the perforated water collecting pipe.
  • Spiral separation membrane elements are widely used because they can apply pressure to the raw fluid and take out much permeated fluid.
  • the separation membrane elements described in Patent Documents 1 to 4 can achieve high water production and stable operation by operating under pressurized conditions, they are components of the separation membrane element.
  • the separation membrane or the sheet flow path material is curled, and therefore there is a problem in the handleability in the process of manufacturing the element. Therefore, the present invention provides a separation membrane or sheet flow having excellent handling properties with improved curling of the separation membrane or sheet flow path material while exhibiting good water freshness even when operated under pressure.
  • the purpose is to provide road material.
  • the present inventors can improve the curl of the separation membrane or sheet flow path material, and obtain a separation membrane or sheet flow path material with excellent handling properties.
  • the present invention has been completed.
  • a first invention is a separation membrane comprising: a separation membrane main body having a supply side surface and a permeation side surface; and a permeation side flow path member fixed to the permeation side surface of the separation membrane main body.
  • the permeate-side channel material is a separation membrane that is composed of a composition containing at least the highly crystalline polypropylene (A) and satisfies the following requirements (a) and (b).
  • A) The content of the highly crystalline polypropylene (A) is 40 to 95% by weight in the composition.
  • the permeation-side channel material has a melting endotherm ( ⁇ H) of 20 to 70 J / g.
  • the composition contains a low crystalline ⁇ -olefin polymer (B), and the content of the low crystalline ⁇ -olefin polymer (B) is from 5 to 60% by weight in the composition. %,
  • a third invention is the separation membrane according to the second invention, wherein the low crystalline ⁇ -olefin polymer (B) is a low crystalline polypropylene or a propylene / olefin copolymer.
  • a fourth invention is any one of the first to third inventions, wherein the permeation-side channel material has a tensile elongation of 5% or more and a tensile modulus of 0.2 to 2.0 GPa.
  • the separation membrane main body includes a base material, a porous support layer formed on the base material, and a separation functional layer formed on the porous support layer. 4.
  • a sixth invention is a separation membrane element including the separation membrane according to any one of the first to fifth inventions.
  • a sheet flow path in which a protrusion is fixed on a sheet, the protrusion is made of a composition containing at least the highly crystalline polypropylene (A) and satisfies the following requirements (a) and (b): It is a material.
  • the composition contains a low crystalline ⁇ -olefin polymer (B), and the content of the low crystalline ⁇ -olefin polymer (B) is from 5 to 60% by weight in the composition. % Of the sheet flow path material according to the seventh aspect of the present invention.
  • a ninth invention is the sheet channel material according to the eighth invention, wherein the low crystalline ⁇ -olefin polymer (B) is a low crystalline polypropylene or a propylene / olefin copolymer.
  • a tenth invention is the invention according to any one of the seventh to ninth inventions, wherein the protrusion has a tensile elongation of 5% or more and a tensile elastic modulus of 0.2 to 2.0 GPa.
  • This is a sheet channel material.
  • An eleventh aspect of the invention is a separation membrane element including the sheet channel material according to any one of the seventh to tenth aspects of the invention.
  • the component constituting the flow path material includes high crystalline polypropylene in a specific range, and the heat of fusion of the flow path material is controlled in the specific range, whereby the separation membrane or the sheet flow path material Curling can be suppressed.
  • the handleability of the separation membrane or sheet flow path material and the permeability in the separation membrane element manufacturing process are improved, and it is possible to obtain a separation membrane element that exhibits stable performance even in operation under pressurized conditions. it can.
  • FIG. 1 is a partially developed perspective view showing an outline of a separation membrane element.
  • FIG. 2 is a cross-sectional view showing an example of a separation membrane provided with a permeate-side channel material.
  • FIG. 3 is a cross-sectional view showing an example of the separation membrane body.
  • FIG. 4 is a cross-sectional view showing another example of the separation membrane main body.
  • FIG. 5 is a plan view showing an example of a separation membrane provided with a permeate-side channel material.
  • FIG. 6 is a plan view showing another example of a separation membrane provided with a permeate-side channel material.
  • FIG. 7 is a plan view showing still another example of a separation membrane provided with a permeate-side channel material.
  • FIG. 1 is a partially developed perspective view showing an outline of a separation membrane element.
  • FIG. 2 is a cross-sectional view showing an example of a separation membrane provided with a permeate-side channel material.
  • FIG. 3 is a cross-
  • FIG. 8 is a plan view showing still another example of a separation membrane provided with a permeate-side channel material.
  • FIG. 9 is a plan view showing still another example of a separation membrane provided with a permeate-side channel material.
  • FIG. 10 is a cross-sectional view of the separation membrane of FIG.
  • FIG. 11 is a cross-sectional view of the separation membrane of FIG. 12 is a cross-sectional view taken along the line CC of the separation membrane of FIG.
  • FIG. 13 is a cross-sectional view illustrating an example of a sheet flow path material in which a protrusion is fixed on a sheet.
  • FIG. 14 is a plan view illustrating an example of a sheet flow path material in which protrusions are fixed on the sheet.
  • FIG. 15 is a plan view showing another example of the sheet flow path material in which the protrusions are fixed on the sheet.
  • FIG. 16 is a plan view showing still another example of the sheet flow path material in which the protrusions are fixed on the sheet.
  • FIG. 17 is a plan view showing still another example of the sheet flow path material in which the protrusions are fixed on the sheet.
  • FIG. 18 is a plan view showing still another example of the sheet flow path material in which the protrusions are fixed on the sheet.
  • FIG. 19 is a cross-sectional view taken along the line DD of the sheet flow path material in which the protrusions are fixed on the sheet of FIG.
  • FIG. 20 is a cross-sectional view taken along the line EE of the sheet flow path material in which the protrusions are fixed on the sheet of FIG. 21 is a cross-sectional view taken along the line FF of the sheet flow path material in which the protrusions are fixed on the sheet of FIG.
  • the separation membrane element 1 includes a water collection pipe 6 and a separation membrane 3 wound around the water collection pipe 6.
  • the separation membrane element 1 further includes members such as a supply-side channel material 2 and an end plate.
  • the separation membrane 3 includes a separation membrane main body 30 and a permeation side flow path member 4 disposed on the permeation side surface of the separation membrane main body 30.
  • the separation membrane 3 forms a rectangular envelope membrane 5 with the permeate side surface facing inward.
  • the envelope-like membrane 5 is opened only on one side so that the permeate flows into the water collecting pipe 6 and is sealed on the other three sides.
  • the permeate is isolated from the supply water by the envelope membrane 5.
  • the supply-side channel material 2 is disposed between the envelope-shaped membranes 5, that is, between the supply-side surfaces of the separation membrane 3.
  • the supply-side channel material 2 and the plurality of envelope-like membranes 5 are wound around the water collecting pipe 6 in an overlapped state.
  • the raw water supplied from one end in the longitudinal direction of the separation membrane element 1 passes through the flow path formed by the supply side flow path material 2 to the separation membrane main body 30. Supplied.
  • the water that has permeated through the separation membrane main body 30 flows into the water collecting pipe 6 through the flow path formed by the permeate-side flow path material 4.
  • the permeated water 8 is recovered from one end of the water collecting pipe 6.
  • water that has not permeated through the separation membrane body 30 shown as “concentrated water 9” in the figure
  • a separation membrane element 1 shown in FIG. 1 is an example of a configuration of a spiral separation membrane element including a water collection pipe and a separation membrane wound around the water collection pipe, and the present invention is limited to this embodiment. is not.
  • a separation membrane is a membrane that can separate components in a fluid supplied to the surface of the separation membrane and obtain a permeated fluid that has permeated through the separation membrane.
  • the separation membrane includes a separation membrane main body and a flow path material disposed on the separation membrane main body.
  • FIG. 2 the separation membrane 3 includes a separation membrane main body 30 and a permeation side flow path member 4.
  • the separation membrane body 30 includes a supply-side surface 17 and a permeation-side surface 18.
  • the “supply side surface” of the separation membrane body means a surface on the side of the two surfaces of the separation membrane body to which the raw fluid (supply water 7) is supplied.
  • the “transmission side surface” means the opposite side surface.
  • the separation membrane main body 30 a membrane having separation performance according to the method of use, purpose, and the like is used.
  • the separation membrane main body 30 may be a single layer or a composite membrane including a base material and a separation functional layer.
  • 3 and 4 show examples of the composite membrane.
  • a separation membrane body 30 shown in FIG. 3 includes a base material 11, a porous support layer 12, and a separation functional layer 13.
  • the separation membrane main body 30 ⁇ / b> A shown in FIG. 4 includes two layers, a base material 11 and a separation functional layer 13. Below, each layer is demonstrated.
  • the thickness of the separation function layer 13 is not limited to a specific numerical value, but is preferably 5 to 3000 nm in terms of separation performance and permeation performance. Particularly for reverse osmosis membranes, forward osmosis membranes and nanofiltration membranes, the thickness is preferably 5 to 300 nm.
  • the thickness of the separation functional layer can be based on the conventional method for measuring the thickness of the separation membrane. For example, the separation membrane is embedded with resin, and an ultrathin section is prepared by cutting the separation membrane, and the obtained section is subjected to processing such as staining. Thereafter, the thickness can be measured by observing with a transmission electron microscope.
  • the separation functional layer has a pleat structure
  • measurement can be made at intervals of 50 nm in the cross-sectional length direction of the pleat structure located above the porous support layer, the number of pleats can be measured, and the average can be obtained. it can.
  • the separation function layer may be a layer having both a separation function and a support function, or may have only a separation function.
  • the “separation function layer” refers to a layer having at least a separation function.
  • the separation functional layer has both a separation function and a support function (example in FIG. 4)
  • the separation functional layer is preferably a layer containing a cellulose-based polymer, polyvinylidene fluoride, polyethersulfone, or polysulfone as a main component. Applied.
  • the separation functional layer is provided as a layer separate from the porous support layer (example in FIG. 3), the porous support layer is configured in that the pore diameter control is easy and the durability is excellent.
  • a crosslinked polymer is preferably used.
  • a polyamide separation functional layer obtained by polycondensation of a polyfunctional amine and a polyfunctional acid halide, an organic / inorganic hybrid functional layer, and the like are preferably used in that the separation performance of components in the raw fluid is excellent.
  • These separation functional layers can be formed by polycondensation of monomers on the porous support layer.
  • the separation functional layer can contain polyamide as a main component.
  • a film is formed by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid halide by a known method. For example, by applying a polyfunctional amine aqueous solution to the porous support layer, removing the excess amine aqueous solution with an air knife or the like, and then applying an organic solvent solution containing a polyfunctional acid halide, the polyamide separation functional layer Is obtained.
  • the separation functional layer may have an organic-inorganic hybrid structure containing silicon or the like.
  • the separation functional layer having an organic-inorganic hybrid structure include the following compounds (A) and (B): (A) a silicon compound in which a reactive group and a hydrolyzable group having an ethylenically unsaturated group are directly bonded to a silicon atom, and (B) a compound other than the compound (A) and having an ethylenically unsaturated group Compounds can be included.
  • the separation functional layer may contain a condensate of the hydrolyzable group of the compound (A) and a polymer of the ethylenically unsaturated group of the compound (A) and / or the compound (B).
  • the separation functional layer is A polymer formed by condensation and / or polymerization of only the compound (A), -The polymer formed by superposing
  • the polymer includes a condensate.
  • the compound (A) may be condensed through a hydrolyzable group.
  • the hybrid structure can be formed by a known method.
  • An example of a method for forming a hybrid structure is as follows.
  • a reaction solution containing the compound (A) and the compound (B) is applied to the porous support layer.
  • heat treatment may be performed.
  • a polymerization initiator, a polymerization accelerator and the like can be added during the formation of the separation functional layer.
  • the surface of the membrane may be hydrophilized with an alcohol-containing aqueous solution or an alkaline aqueous solution, for example, before use.
  • the material used for the porous support layer 12 and the shape thereof are not particularly limited, but may be formed on the substrate with a porous resin, for example.
  • a porous resin for example.
  • the porous support layer polysulfone, cellulose acetate, polyvinyl chloride, epoxy resin or a mixture and laminate of them is used, and polysulfone with high chemical, mechanical and thermal stability and easy to control pore size. Is preferably used.
  • the porous support layer gives mechanical strength to the separation membrane and does not have separation performance like a separation membrane for components having a small molecular size such as ions.
  • the pore size and pore distribution of the porous support layer are not particularly limited.
  • the porous support layer may have uniform and fine pores, or the side on which the separation functional layer is formed. It may have a pore size distribution such that the diameter gradually increases from the surface to the other surface.
  • the projected area equivalent circle diameter of the pores measured on the surface on the side where the separation functional layer is formed using an atomic force microscope or an electron microscope is preferably 1 to 100 nm. .
  • the pores on the surface on the side where the separation functional layer is formed in the porous support layer preferably have a projected area circle equivalent diameter of 3 to 50 nm.
  • the thickness of the porous support layer is not particularly limited, but is preferably in the range of 20 to 500 ⁇ m, more preferably 30 to 300 ⁇ m, for reasons such as giving strength to the separation membrane.
  • the morphology of the porous support layer can be observed with a scanning electron microscope, a transmission electron microscope, or an atomic microscope.
  • a scanning electron microscope after peeling off the porous support layer from the substrate, it is cut by the freeze cleaving method to obtain a sample for cross-sectional observation.
  • the sample is thinly coated with platinum, platinum-palladium or ruthenium tetrachloride, preferably ruthenium tetrachloride, and observed with a high-resolution field emission scanning electron microscope (UHR-FE-SEM) at an acceleration voltage of 3 to 6 kV.
  • UHR-FE-SEM high-resolution field emission scanning electron microscope
  • an S-900 electron microscope manufactured by Hitachi, Ltd. can be used. Based on the obtained electron micrograph, the film thickness of the porous support layer and the projected area equivalent circle diameter of the surface can be measured.
  • the thickness and pore diameter of the porous support layer are average values, and the thickness of the porous support layer is an average value of 20 points measured at intervals of 20 ⁇ m in a direction perpendicular to the thickness direction by cross-sectional observation. Moreover, a hole diameter is an average value of each projected area circle equivalent diameter measured about 200 holes.
  • the porous support layer is formed, for example, by applying a solution of the above polysulfone in N, N-dimethylformamide (hereinafter referred to as DMF) on a substrate to be described later, for example, a polyester woven fabric or non-woven fabric that is densely woven to a certain thickness. It can be produced by casting and wet coagulating it in water.
  • DMF N, N-dimethylformamide
  • the porous support layer is “Office of Saleen Water Research and Development Progress Report” No. 359 (1968).
  • the polymer concentration, the temperature of the solvent, and the poor solvent can be appropriately adjusted.
  • a predetermined amount of polysulfone is dissolved in DMF to prepare a polysulfone resin solution having a predetermined concentration.
  • this polysulfone resin solution is applied to a substrate made of polyester woven or non-woven fabric to a substantially constant thickness, and after removing the surface solvent in the air for a certain period of time, the polysulfone is coagulated in the coagulation liquid.
  • a fibrous substrate in terms of strength, unevenness-forming ability and fluid permeability.
  • a fibrous base material either a long fiber nonwoven fabric or a short fiber nonwoven fabric can be preferably used.
  • the long fiber nonwoven fabric has excellent film-forming properties, when the polymer solution is cast, the solution penetrates through the permeation, the porous support layer peels off, and Can suppress the occurrence of defects such as pinholes and the like, and the film becoming non-uniform due to fluffing of the substrate.
  • the base material is made of a long-fiber nonwoven fabric composed of thermoplastic long fibers, compared to a short-fiber nonwoven fabric, it suppresses the occurrence of non-uniformity and film defects caused by fiber fluffing during casting of a polymer solution. be able to. Furthermore, since the separation membrane is subjected to tension in the film forming direction when continuously formed, it is preferable to use a long fiber nonwoven fabric having excellent dimensional stability as a base material.
  • the fibers in the surface layer on the side opposite to the porous support layer are longitudinally oriented as compared with the fibers on the surface layer on the porous support layer side. According to such a structure, not only a high effect of preventing membrane breakage and the like by realizing strength is realized, but also when providing unevenness to the separation membrane, as a laminate including a porous support layer and a substrate The moldability is also improved, and the uneven shape on the surface of the separation membrane is stabilized, which is preferable.
  • the fiber orientation degree in the surface layer on the side opposite to the porous support layer of the long-fiber nonwoven fabric is preferably 0 ° to 25 °, and the fiber orientation degree in the surface layer on the porous support layer side And the orientation degree difference is preferably 10 ° to 90 °.
  • a heating process is included, but a phenomenon occurs in which the porous support layer or the separation functional layer contracts due to heating.
  • the shrinkage is remarkable in the width direction where no tension is applied in continuous film formation. Since shrinkage causes problems in dimensional stability and the like, a substrate having a small thermal dimensional change rate is desired.
  • the difference between the fiber orientation degree on the surface layer opposite to the porous support layer and the fiber orientation degree on the porous support layer side surface layer is 10 ° to 90 °, the change in the width direction due to heat is suppressed. Can also be preferred.
  • the fiber orientation degree is an index indicating the direction of the fibers of the nonwoven fabric base material constituting the porous support layer.
  • the fiber orientation degree is an average value of angles between the film forming direction when continuous film formation is performed, that is, the longitudinal direction of the nonwoven fabric base material, and the fibers constituting the nonwoven fabric base material. That is, if the longitudinal direction of the fiber is parallel to the film forming direction, the fiber orientation degree is 0 °. If the longitudinal direction of the fiber is perpendicular to the film forming direction, that is, if it is parallel to the width direction of the nonwoven fabric substrate, the degree of orientation of the fiber is 90 °. Accordingly, the closer to 0 ° the fiber orientation, the longer the orientation, and the closer to 90 °, the lateral orientation.
  • the fiber orientation degree is measured as follows. First, 10 small piece samples are randomly collected from the nonwoven fabric. Next, the surface of the sample is photographed at 100 to 1000 times with a scanning electron microscope. In the photographed image, 10 samples are selected for each sample, and the angle when the longitudinal direction (longitudinal direction, film forming direction) of the nonwoven fabric is 0 ° is measured. That is, the angle is measured for a total of 100 fibers per nonwoven fabric. An average value is calculated from the angles of 100 fibers thus measured. The value obtained by rounding off the first decimal place of the obtained average value is the fiber orientation degree.
  • the thickness of the base material is preferably set so that the total thickness of the base material and the porous support layer is in the range of 30 to 300 ⁇ m, or in the range of 50 to 250 ⁇ m.
  • the permeation-side channel material (hereinafter also simply referred to as “channel material”) 4 is fixed to the permeation-side surface 18 of the separation membrane body 30.
  • channel material the permeation side flow path member 4 is provided so as to form the permeation side flow path 15.
  • “Provided to form a permeate-side flow path” means that the flow path is such that the permeated fluid that has permeated through the main body of the separation membrane can reach the water collecting pipe when the separation membrane is incorporated into a separation membrane element described later. It means that the material is provided.
  • the permeation side channel material is composed of a composition containing at least the highly crystalline polypropylene (A) and satisfies the following requirements (a) and (b).
  • B) The permeation-side channel material has a melting endotherm ( ⁇ H) of 20 to 70 J / g.
  • the content of the highly crystalline polypropylene (A) is more preferably 85% by weight or less, and further preferably 75% by weight or less.
  • the content of the highly crystalline polypropylene (A) is more preferably 45% by weight or more, and further preferably 50% by weight.
  • Examples of the highly crystalline polypropylene (A) of the present invention include a propylene homopolymer; a propylene random copolymer; a propylene block copolymer, etc., and these may be used alone or in combination of two or more. Good.
  • the melting point of the highly crystalline polypropylene (A) is preferably 140 ° C. or higher, and more preferably 150 ° C. or higher. The melting point is a value measured with a differential scanning calorimeter (DSC), and details of the measuring method will be described later.
  • DSC differential scanning calorimeter
  • the melt flow rate (MFR) of the highly crystalline polypropylene (A) is preferably 10 to 2000 g / 10 minutes.
  • the MFR of the highly crystalline polypropylene (A) is more preferably 30 to 1800 g / 10 minutes, and further preferably 50 to 1500 g / 10 minutes. Details of the MFR measurement method will be described later.
  • the melting endotherm ( ⁇ H) of the permeate-side channel material is 20 to 70 J / g.
  • ⁇ H of the permeate-side channel material is smaller than 20 J / g, curling of the separation membrane is sufficiently suppressed, but on the other hand, crystallization of the composition constituting the permeate-side channel material becomes very slow, The side channel material becomes sticky. As a result, at the time of roll conveyance, the permeate side channel material adheres to the roll, or the permeate side channel material is deformed by contact with the roll.
  • the permeate-side flow path material adheres to the separation functional layer side of the separation membrane, and the unwinding property of the separation membrane roll is significantly deteriorated. Membrane handling is greatly reduced. Furthermore, the amount of compressive deformation under pressure operation increases. On the other hand, if the ⁇ H of the permeate side channel material is greater than 70 J / g, the composition of the permeate side channel material is rapidly crystallized. Therefore, when the permeate side channel is formed, the composition is cooled and solidified. The accompanying volume change becomes very large, and as a result, the separation membrane is greatly curled.
  • the permeate side channel material becomes very fragile, and the permeate side channel material is broken during roll conveyance.
  • the ⁇ H of the permeate-side channel material is more preferably 25 to 65 J / g, and still more preferably 30 to 60 J / g.
  • the melting endotherm is a numerical value measured by a differential scanning calorimeter (DSC), and details of the measuring method will be described later.
  • the composition constituting the permeation side channel material preferably contains the low crystalline ⁇ -olefin polymer (B), and the content thereof is 5 to 60% by weight in the composition. It is preferable.
  • the low crystalline ⁇ -olefin polymer of the present invention is an amorphous or low crystalline ⁇ -olefin polymer, such as (B-1) atactic polypropylene or isotactic polypropylene having low stereoregularity.
  • B-2 an ethylene / ⁇ -olefin copolymer selected from the group consisting of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms (as the ⁇ -olefin having 3 to 20 carbon atoms, Examples of the linear ⁇ -olefin include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-heptene, and the like.
  • (B-3) Commercially available products such as “Tafmer” manufactured by Mitsui Chemicals, Inc., “Sufumi Chemical Co., Ltd.” “ Examples thereof include propylene / olefin copolymers such as “Tufselen”. In the present invention, one or more of these can be used. Among them, as the low crystalline ⁇ -olefin polymer (B), from the viewpoint of good compatibility with high crystalline polypropylene, versatility, curling improvement effect of the separation membrane, etc., (B-1) low crystalline polypropylene And (B-3) a propylene / olefin copolymer is more preferred.
  • the content of the low crystalline ⁇ -olefin polymer (B) is preferably 5 to 60% by weight with respect to the composition constituting the permeate-side channel material.
  • the content of the low crystalline ⁇ -olefin polymer (B) is preferably 5 to 60% by weight with respect to the composition constituting the permeate-side channel material.
  • the content of the low crystalline ⁇ -olefin-based polymer (B) is more preferably 10 to 55% by weight from the viewpoint of flexibility of the permeation side channel material and compressive deformation under pressure, and 15 to 50%. More preferably, it is% by weight.
  • the flow path material fixed to the permeation side surface of the separation membrane main body contains 1 additive such as a thermal fluidity improver, a filler, an antioxidant, and a lubricant within the range not impairing the object of the invention. It may contain two or more types.
  • thermal fluidity improver (C) examples include (C-1) synthetic waxes such as polyethylene wax, polypropylene wax, atactic polypropylene wax, and Fischer-Tropsch wax; (C-2) paraffin wax, microwax and the like Petroleum wax; (C-3) natural wax such as carnauba wax and beeswax; (C-4) rosin resin such as rosin, hydrogenated rosin, polymerized rosin, rosin ester; (C-5) terpene, hydrogenated terpene, aromatic Terpene resins such as aromatic modified terpenes and aromatic modified hydrogenated terpenes; (C-6) “Imabe” (trade name) manufactured by Idemitsu Kosan Co., Ltd.
  • “Arcon” (trade name) manufactured by Arakawa Chemical Industries, Ltd., Tosoh Corporation Examples include hydrogenated petroleum resins such as “Petocol” and “Petrotac” (both trade names) That, but is not limited to these. Moreover, you may use these individually or in mixture of 2 or more types. Of these, (C-1) synthetic wax, (C-), from the viewpoint of the effect of improving the thermal fluidity of the composition, the compatibility with the highly crystalline polypropylene (A), and the thermal decomposition resistance of the composition upon heating and melting. 5) Terpene resins and (C-6) hydrogenated petroleum resins are preferred.
  • the content can be appropriately set in order to adjust the melt viscosity of the composition constituting the permeate-side flow path material, but it may cause a decrease in pressure resistance of the permeate-side flow path material and the occurrence of bleed out on the surface of the flow path material. In consideration of prevention, it is preferably 50% by weight or less, more preferably 40% by weight or less in the composition.
  • antioxidant (D) examples include, but are not limited to, phenolic compounds; phosphorus compounds; hindered amine compounds; sulfur compounds. Moreover, you may use these individually or in mixture of 2 or more types.
  • the content is preferably 0.001 to 1% by weight based on the composition from the viewpoint of suppressing thermal decomposition of the composition at the time of forming the permeate-side channel material.
  • fatty acid amide compounds such as stearic acid amide, oleic acid amide, erucic acid amide, ethylenebis stearic acid amide; metal soaps such as calcium stearate, zinc stearate, magnesium stearate, zinc stearate; Examples include fatty acid ester compounds, but are not limited thereto. Moreover, you may use these individually or in mixture of 2 or more types.
  • the filler (F) examples include, but are not limited to, inorganic compounds such as calcium carbonate, talc, alumina, silica, mica, and clay. These may be used alone or in admixture of two or more. From the viewpoint of moldability of the permeation side channel material, thickening of the composition, and wear of the processing apparatus, the content is preferably 3 to 30% by weight with respect to the composition.
  • the tensile elongation of the permeate-side channel material fixed to the permeate-side surface of the separation membrane main body is 5% or more. If the tensile elongation is 5% or more, even if the separation membrane is rolled or wound on a winder, the flow channel material can be prevented from being damaged or broken, and a high-quality separation membrane can be obtained. In the element manufacturing process, handleability is improved.
  • the tensile elongation is more preferably 7% or more, still more preferably 10% or more.
  • the higher the tensile elongation the higher the energy required for fracture, which is preferable from the viewpoint of toughness. However, if the tensile elongation is excessively high, the amount of deformation under a constant stress increases, so 300% or less is preferable. 200% or less is more preferable.
  • the tensile elastic modulus of the permeate-side channel material fixed to the permeate-side surface of the separation membrane body is preferably 0.2 to 2.0 GPa.
  • the tensile elastic modulus is more preferably 0.25 GPa or more, and further preferably 0.30 GPa or more. The higher the tensile elastic modulus, the more the amount of compressive deformation of the channel material during the pressurizing operation can be suppressed, but it is difficult to substantially achieve 2.0 GPa or more.
  • the shape of the permeate side channel material may be a continuous shape or a discontinuous shape.
  • the “continuous” channel material is a channel material that is separated as a member having an integral shape without being divided into a plurality of portions when the channel material is separated from one separation membrane body.
  • members such as nets, tricots (knitted fabrics), and films are continuous flow path materials.
  • discontinuous is a state in which the flow path material is divided into a plurality of portions when the flow path material is peeled from the separation membrane body.
  • flow path material each of the individual portions separated on one separation membrane main body and the entire flow path material provided on one separation membrane main body may be referred to as “flow path material”.
  • the channel material when a knitted fabric such as tricot is used as the channel material, the height of the channel is smaller than the thickness of the knitted fabric.
  • the discontinuous channel material reduces the flow resistance and reduces the amount of water produced than the continuous shape. Can be increased.
  • the flow path member 42 is a cylindrical member having an approximately hemispherical upper portion, and is arranged on the separation membrane main body 30 in a lattice shape.
  • the shape of each flow path member 43 shown in FIG. 6 is the same as that of the flow path member 42 shown in FIG. 5, but in FIG. 6, the flow path members 43 are arranged in a staggered manner.
  • the channel material 44 is a cylindrical member having an elliptical shape in plan view, and is arranged on the separation membrane body 30 in a staggered manner.
  • the upper surface of the flow path member 44 is flat and the cross-sectional shape thereof is a rectangle.
  • the flow path member 45 is a wall member having a linear shape in plan view.
  • the wall-like members are arranged in parallel to each other.
  • the cross section of the flow path member 45 in a plane perpendicular to the membrane surface of the separation membrane main body 30 is a trapezoid whose upper width is narrower than the lower width.
  • FIG. 9 shows an example of a continuous channel material.
  • the flow path member 46 is a net-like member continuous in the membrane surface direction of the separation membrane main body 30.
  • the height of the portion where the flow path materials intersect corresponds to the thickness of the flow path material, and is larger than the thickness of the portion where the flow path materials do not intersect.
  • the cross-sectional shape of any of the flow path materials shown in FIGS. 5 to 9 can be changed to the cross-sectional shapes shown in FIGS. That is, the planar shape and cross-sectional shape and arrangement of the flow path materials described as different forms can be combined with each other.
  • the embodiment of the present invention includes a form obtained by arbitrarily combining any of the planar shapes of FIGS. 5 to 9 with any of the cross-sectional shapes of FIGS. It is.
  • the flow path material fixed to the permeation side surface of the separation membrane main body is disposed so as to be continuous from the inner end to the outer end of the sheet in the winding direction.
  • the inner side in the winding direction is the side close to the water collecting pipe in the separation membrane main body
  • the outer side in the winding direction is the side far from the water collecting pipe in the main body of the separation membrane
  • the flow path material is the longitudinal direction of the water collecting pipe It is preferable to be orthogonal to.
  • the interval between adjacent flow path materials is preferably 0.05 to 5.00 mm,
  • the thickness is more preferably 0.10 to 2.00 mm, and it is preferable to design appropriately within this range.
  • interval of a flow-path material is a horizontal distance from the highest place of the high location in the flow-path material in which a height difference exists to the highest location of the adjacent high location.
  • the difference in height on the permeate side of the separation membrane is preferably 50 to 500 ⁇ m, more preferably 75 to 450 ⁇ m, still more preferably 100 to 400 ⁇ m.
  • the thickness difference on the permeation side of the separation membrane can be measured from a cross-sectional sample using a digital microscope “VHX-1000” (trade name) manufactured by Keyence Corporation. The measurement can be performed on a portion where there is an arbitrary height difference, and the value obtained by summing the values of the thicknesses can be divided by the number of the total measurement locations.
  • the form of the separation membrane may be a form in which the flow path material is provided up to the edge of the separation membrane body, or a form in which there is a region in which no flow path material is provided in the vicinity of the edge. . That is, as long as the flow path material is arranged so as to form a flow path on the permeation side, there may be a portion where the flow path material is not provided in the separation membrane body. For example, it is not necessary to provide a flow path material at the adhesion portion with the other separation membrane on the permeate side surface. In addition, for other use or manufacturing reasons, a region where the flow path material is not disposed may be provided in a part of the separation membrane or the like.
  • a sheet with protrusions fixed can be used as a transmission-side channel material.
  • the sheet channel material 47 with the protrusions 20 fixed on the sheet 19 is disposed on the permeation side surfaces of the two separation membrane bodies 30 ⁇ / b> B as the permeation side channel material.
  • the sheet examples include a fibrous base material and a porous film, and it is preferable to use a fibrous base material in terms of strength and water permeability.
  • a fibrous base material either a long fiber nonwoven fabric or a short fiber nonwoven fabric can be preferably used, and the adhesiveness of the protrusions to the sheet and the sealing between the permeation side surfaces of the two separation membranes are sealed.
  • the fibrous base material preferably has a thickness of 20 to 150 ⁇ m and a basis weight of 20 to 100 g / m 2 .
  • the protrusion fixed to the sheet has a melting endotherm ( ⁇ H) of 20 to 70 J / g.
  • ⁇ H melting endotherm
  • the ⁇ H of the protrusion is smaller than 20 J / g, curling of the sheet to which the protrusion is fixed is sufficiently suppressed, but on the other hand, the crystallization of the composition constituting the protrusion is very slow. Will be sticky.
  • the protrusions adhere to the roll, and the shape of the protrusions is deformed by contact with the roll.
  • the sheet roll is taken up with a winder and then unwound, the projections adhere to the sheet (the surface on which the projections are not provided).
  • the handleability is greatly reduced. Furthermore, when a pressure operation is performed in the element form, the amount of compressive deformation of the protrusions increases, and the element performance decreases.
  • ⁇ H of the protrusion is larger than 70 J / g, the composition of the protrusion that is fixed to the sheet is rapidly crystallized. Therefore, when forming the protrusion, the volume change accompanying cooling and solidification of the composition The amount becomes very large, and as a result, the sheet to which the protrusions are fixed is greatly curled. Furthermore, the protrusion becomes very brittle, and when the sheet on which the protrusion is fixed is rolled, the protrusion is peeled off or the protrusion is peeled from the sheet.
  • the ⁇ H of the protrusion is more preferably 25 to 65 J / g, and further preferably 30 to 60 J / g.
  • the melting endotherm is a numerical value measured by a differential scanning calorimeter (DSC), and details of the measuring method will be described later.
  • the composition constituting the protrusions preferably contains the low crystalline ⁇ -olefin polymer (B), and the content thereof is preferably 5 to 60% by weight in the composition.
  • the low crystalline ⁇ -olefin polymer include (B-1) low crystalline polypropylene, (B-2) ethylene / ⁇ -olefin copolymer, (B-3) propylene / olefin copolymer, etc. Can be illustrated. In the present invention, one or more of these can be used.
  • (B) low crystalline ⁇ -olefin polymer
  • (B-1) low crystalline More preferred are polypropylene and (B-3) propylene / olefin copolymer.
  • the content of the low crystalline ⁇ -olefin polymer (B) is preferably 5 to 60% by weight with respect to the composition constituting the protrusion.
  • the content of the low crystalline ⁇ -olefin polymer (B) is preferably 5 to 60% by weight with respect to the composition constituting the protrusion.
  • the content of the low crystalline ⁇ -olefin polymer (B) exceeds 60% by weight, the curl of the sheet flow path material can be greatly improved, but the flexibility of the protrusions is remarkably increased, for example, exceeding 2 MPa.
  • the content of the low crystalline ⁇ -olefin-based polymer (B) is more preferably 10 to 55% by weight, more preferably 15 to 50% by weight, from the viewpoint of the flexibility of the projection and the compressive deformation property under pressure. More preferably it is.
  • the sheet channel material may contain one or more additives such as a thermal fluidity improver, a filler, an antioxidant, and a lubricant as long as the object of the invention is not impaired. .
  • thermal fluidity improver (C) examples include the above-mentioned (C-1) synthetic wax, (C-2) petroleum wax, (C-3) natural wax, (C-4) rosin resin, (C -5) Terpene resins, (C-6) hydrogenated petroleum resins and the like, but are not limited thereto. Moreover, you may use these individually or in mixture of 2 or more types. Of these, (C-1) synthetic wax, (C-), from the viewpoint of the effect of improving the thermal fluidity of the composition, the compatibility with the highly crystalline polypropylene (A), and the thermal decomposition resistance of the composition upon heating and melting. 5) Terpene resins and (C-6) hydrogenated petroleum resins are preferred.
  • the content can be set as appropriate in order to adjust the melt viscosity of the composition constituting the protrusion, but in consideration of preventing the decrease in pressure resistance of the protrusion and the occurrence of bleed out to the surface of the protrusion, the composition In the product, it is preferably 50% by weight or less, and more preferably 40% by weight or less.
  • antioxidant (D) examples include, but are not limited to, the above-described phenolic compounds, phosphorus compounds, hindered amine compounds, sulfur compounds, and the like. Moreover, you may use these individually or in mixture of 2 or more types.
  • the content is preferably 0.001 to 1% by weight with respect to the composition from the viewpoint of suppressing thermal decomposition of the composition.
  • Examples of the lubricant (E) include, but are not limited to, the above fatty acid amide compounds, metal soaps, fatty acid ester compounds, and the like. Moreover, you may use these individually or in mixture of 2 or more types.
  • the filler (F) examples include, but are not limited to, the inorganic compounds described above. These may be used alone or in admixture of two or more. In view of moldability of the protrusions, thickening of the composition, and wear of the processing apparatus, the content of the filler (F) is preferably 3 to 30% by weight with respect to the composition.
  • the tensile elongation of the protrusion fixed to the sheet is preferably 5% or more.
  • the tensile elongation is more preferably 7% or more, still more preferably 10% or more.
  • the higher the tensile elongation the higher the energy required for fracture, which is preferable from the viewpoint of toughness.
  • the tensile elongation is excessively high, the amount of deformation under a constant stress increases, so 300% or less is preferable. 200% or less is more preferable.
  • the tensile elastic modulus of the protrusion fixed to the sheet is preferably 0.2 to 2.0 GPa.
  • the tensile elastic modulus is more preferably 0.25 GPa or more, and further preferably 0.30 GPa or more. The higher the tensile elastic modulus, the more the amount of compressive deformation of the channel material during the pressurizing operation can be suppressed, but it is difficult to substantially achieve 2.0 GPa or more.
  • the shape of the protrusion may be a continuous shape or a discontinuous shape.
  • a “continuous” protrusion is one that has an integrated shape without being divided into a plurality of portions when the protrusion is peeled from one sheet.
  • the “discontinuous” protrusion is one in which the protrusion is divided into a plurality of portions when the protrusion is peeled off the sheet.
  • the height of the channel is smaller than the thickness of the projection having a continuous shape.
  • the discontinuous shape channel material is more than the continuous shape channel material.
  • the flow resistance can be reduced, and as a result, the amount of water produced can be increased.
  • FIGS. 14 to 17 show examples of discontinuous protrusions.
  • the protrusions 21 are cylindrical members having an approximately hemispherical upper portion, and are arranged on the sheet 19 in a lattice shape.
  • the shape of each protrusion 22 shown in FIG. 15 is the same as the shape of the protrusion 21 shown in FIG. 14, but in FIG. 15, the protrusions 22 are arranged in a staggered manner.
  • the protrusions 23 are elliptic cylinders and are arranged on the sheet 19 in a staggered manner. As shown in the cross section of FIG. 20, the upper surface of the protrusion 23 is flat and the cross sectional shape is rectangular.
  • the protrusion 24 is a wall member having a linear shape in plan view.
  • the wall-like members are arranged in stripes parallel to each other.
  • the cross section of the protrusion 24 in the direction perpendicular to the sheet surface is a trapezoid whose upper width is narrower than the lower width.
  • FIG. 18 shows an example of the protrusion 25 having a continuous shape.
  • the protrusion 25 is a net-like member continuous in the sheet surface direction.
  • the height of the portion where the protrusions intersect corresponds to the thickness of the protrusion, and is larger than the thickness of the portion where the protrusions do not intersect.
  • the channel material includes a form obtained by arbitrarily combining any one of the planar shapes shown in FIGS. 14 to 18 with any one of the cross-sectional shapes shown in FIGS. 19 to 21. It is.
  • the interval between adjacent protrusions is preferably 0.05 to 5.00 mm. More preferably, the thickness is 10 to 2.00 mm, and it may be designed as appropriate within this range.
  • interval of a protrusion is a horizontal distance from the highest place of the high place in the protrusion in which a height difference exists to the highest place of the adjacent high place.
  • the thickness of the protrusion fixed to the sheet is preferably 50 to 500 ⁇ m, more preferably 75 to 450 ⁇ m, and still more preferably 100 to 400 ⁇ m.
  • the thickness of the protrusions is preferably 50 to 500 ⁇ m, more preferably 75 to 450 ⁇ m, and still more preferably 100 to 400 ⁇ m.
  • the height difference of the protrusions fixed on the sheet can be measured from the cross-sectional sample using a digital microscope “VHX-1000” (trade name) manufactured by Keyence Corporation.
  • the measurement can be performed on a portion where there is an arbitrary height difference, and the value obtained by summing the values of the thicknesses can be divided by the number of the total measurement locations.
  • the protrusions fixed on the sheet are arranged so as to continue from the inner end to the outer end of the sheet in the winding direction.
  • the inner side in the winding direction is the side close to the water collecting pipe in the sheet
  • the outer side in the winding direction is the side far from the water collecting pipe in the sheet
  • the protrusions are orthogonal to the longitudinal direction of the water collecting pipe. Is preferred.
  • the form of protrusions fixed on the sheet may be a form in which the protrusions are provided up to the edge of the sheet, or may be a form in which there are no protrusions in the vicinity of the edge.
  • the protrusions fixed on the sheet are arranged so as to form a passage on the transmission side, there may be a portion where the protrusions are not provided on the sheet.
  • the adhesion surface is not uneven due to the protrusion, so the adhesion between the separation membrane bodies is improved.
  • the amount of the channel material used in the portion can be reduced.
  • the step of providing the permeation side channel material can be performed at any time during the production of the separation membrane.
  • the flow path material may be provided before the porous support layer is formed on the base material, or after the porous support layer is provided and before the separation functional layer is formed. It may be performed after the separation functional layer is formed and before or after the above-described chemical treatment is performed.
  • Application, printing, spraying, etc. are adopted in the process of forming each layer included in the flow path material.
  • the equipment used include a nozzle type hot melt applicator, a spray type hot melt applicator, a flat nozzle type hot melt applicator, a roll type coater, an extrusion type coater, a gravure printing machine, and a sprayer.
  • the processing temperature is not particularly limited as long as the resin can be melt-molded, but the degradation of the separation membrane due to heat during processing is suppressed. It is preferable that it is 230 degrees C or less at the point to do, and it is more preferable that it is 200 degrees C or less.
  • the melt viscosity of the composition constituting the permeate-side channel material is preferably 1 to 100 Pa ⁇ s.
  • the melt viscosity of the composition is more preferably 3 to 95 Pa ⁇ s, still more preferably 5 to 90 Pa ⁇ s.
  • the resin may be forcibly cooled using cold air or liquid in the process of cooling and solidifying the molten resin.
  • Separation Membrane Element Manufacturing Method (4-1) Outline A conventional element manufacturing apparatus can be used to manufacture a separation membrane element.
  • a method described in reference documents Japanese Patent Publication No. 44-14216, Japanese Patent Publication No. 4-11928, Japanese Unexamined Patent Publication No. 11-226366 should be adopted. Can do. Details are as follows.
  • the supply side flow path material is a continuously formed member such as a net
  • the supply side flow path material is overlapped with the separation membrane and the supply side flow path material.
  • a flow path can be formed.
  • the supply side channel material which has a discontinuous or continuous shape can be formed by apply
  • Examples of the concavo-convex processing method include methods such as embossing, hydraulic forming, and calendering. The embossing conditions, the embossed shape, and the like may be appropriately designed according to the required performance of the separation membrane element. This concavo-convex processing may be regarded as a part of the method for manufacturing the separation membrane.
  • the envelope-like membrane 5 as shown in FIG. 1 is formed by combining or stacking the two separation membranes so that the permeate side surface faces inward.
  • the envelope film is sealed on three sides. Sealing can be performed by bonding with an adhesive or hot melt, or by fusion with heat or laser.
  • the adhesive used for forming the envelope film preferably has a viscosity in the range of 4 to 15 Pa ⁇ s, more preferably 5 to 12 Pa ⁇ s.
  • the performance of the separation membrane element may be reduced.
  • the viscosity of the adhesive is 15 Pa ⁇ s or less, wrinkles are generated when the separation membrane is wound around the water collection pipe. It becomes difficult.
  • the adhesive viscosity is 4 Pa ⁇ s or more, the outflow of the adhesive from between the separation membranes is suppressed, and the risk that the adhesive adheres to unnecessary portions is reduced.
  • the amount of the adhesive applied is preferably such that the width of the portion to which the adhesive is applied after the separation membrane is wrapped around the water collecting pipe is 10 to 100 mm. As a result, the separation membrane is securely bonded, and the inflow of the raw fluid to the permeate side is suppressed. Also, a relatively large effective membrane area can be secured.
  • the viscosity of the adhesive is measured with a B-type viscometer (JIS K 6833) based on the viscosity of a mixture in which the main agent, the curing agent alone, and the blending ratio are defined in advance.
  • the separation membrane thus coated with the adhesive is arranged so that the closed portion of the envelope-like membrane is located on the inner side in the winding direction, and the separation membrane is wound around the water collecting pipe.
  • the separation membrane is wound in a spiral shape.
  • the requirements described in the section of “(4-3-1) Channel material fixed to the permeation side surface of the separation membrane” are preferable for the viscosity, the coating amount, and the type of the adhesive.
  • the separation membrane thus coated with the adhesive is arranged so that the closed portion of the envelope membrane is located on the inner side in the winding direction, and the separation membrane is wound around the water collecting pipe.
  • the method for producing a separation membrane element may include further winding a film, a filament, and the like around the wound body of the separation membrane formed as described above. Further steps such as edge cutting for aligning the end of the separation membrane in the longitudinal direction of the water collecting pipe, attachment of an end plate, and the like may be included.
  • the separation membrane element may be used as a separation membrane module by being connected in series or in parallel and housed in a pressure vessel.
  • the separation membrane element and module described above can be combined with a pump that supplies fluid to them, a device that pretreats the fluid, and the like to form a fluid separation device.
  • the supplied water can be separated into permeated water such as drinking water and concentrated water that has not permeated through the membrane, and water suitable for the purpose can be obtained.
  • the operating pressure during permeation is preferably in the range of 0.2 to 8 MPa.
  • the salt removal rate decreases.
  • the membrane permeation flux decreases, so a range of 5 to 45 ° C. is preferable.
  • the raw fluid pH becomes high, in the case of high salt concentration supply water such as seawater, scales such as magnesium may occur, and there is a concern about membrane deterioration due to high pH operation. Is preferred.
  • the fluid to be treated by the separation membrane element is not particularly limited.
  • the feed water is 500 mg / L to 100 g / L TDS (Total Dissolved Solids: total dissolved solids) such as seawater, brine, drainage, etc.
  • TDS Total Dissolved Solids: total dissolved solids
  • the solution filtered through a 0.45 ⁇ m filter can be calculated from the weight of the residue by evaporating at a temperature of 39.5 to 40.5 ° C. .
  • a sheet (sheet flow channel material) having a separation membrane or protrusions fixed to the permeate side flow channel material fixed to the base material side of the separation membrane main body is 50 cm long
  • a specimen was cut into a size of 50 cm.
  • the test piece was placed on a surface plate, the amount of lifting at the four corners of the test piece was measured, and the average value was taken as the curl height of the test piece.
  • the number of test pieces used for this measurement was five, and the average value of the five test pieces was defined as the curl height (h) of the separation membrane or sheet channel material, and the curl property was evaluated according to the following criteria.
  • MFR Melt flow rate
  • the melting endotherm of the permeation side channel material was measured using a differential scanning calorimeter DSC-7 manufactured by PerkinElmer. That is, 10 mg of the sample from which the permeate-side channel material was peeled from the separation membrane body or sheet was heated to 200 ° C. at a rate of temperature increase of 10 ° C./min, and the melting endotherm was calculated from the endothermic peak area of the obtained DSC curve. Calculated. The number of measurements was 3, and the average value was defined as the melting endotherm [J / g].
  • the melting point of highly crystalline polypropylene (A) was measured using a differential scanning calorimeter DSC-7 manufactured by PerkinElmer. That is, 10 mg of a polypropylene sample was heated to 220 ° C. at a heating rate of 10 ° C./min, held at 220 ° C. for 5 minutes, and then cooled to room temperature at 15 ° C./min. Thereafter, the temperature was raised again to 220 ° C. at a rate of temperature rise of 10 ° C./min, and the top temperature of the endothermic peak that appeared in the range of 100 to 200 ° C. was taken as the melting point. The number of measurements was 3, and the average value was defined as the melting point [° C.] of the highly crystalline polypropylene (A).
  • Thickness / interval of transmission-side channel material A cross section of 10 arbitrary transmission-side channel materials was photographed at 500 times using a scanning electron microscope “S-800” (trade name, manufactured by Hitachi, Ltd.). . In the photographed image, the thickness of the transmission side channel material and the interval between adjacent transmission side channel materials were measured.
  • G Elongation and tensile elastic modulus of permeation side channel material
  • AG-50NISMS trade name
  • a tensile test was performed under the conditions of a sample length of 10 cm and a tensile speed of 10 cm / min.
  • the elongation at the point indicated by the maximum load was defined as the elongation [%] of the channel material, and the tensile modulus [GPa] was measured from the stress-strain curve obtained by the measurement.
  • the number of measurements was 5 times, and the average values were taken as elongation and tensile modulus.
  • Location where the permeation-side flow path material is fixed to the separation membrane functional layer, or the location where the protrusion is fixed to the sheet (projection non-fixed surface) is 6 to 10/10 m
  • X The location where the permeation-side flow path material is fixed to the separation membrane functional layer, or the location where the protrusion is fixed to the sheet (the surface where the protrusion is not fixed) is 11 or more / 10 m.
  • TDS removal rate Water production and desalination rate
  • the spiral type separation membrane element was operated for 1 hour under conditions of operating pressures of 1.5 MPa and 2.5 MPa using a saline solution having a concentration of 500 mg / L, pH 6.5, and temperature of 25 ° C. as supply water.
  • the permeated water was obtained by operating for 10 minutes. From the obtained permeated water amount, the permeation amount per cubic membrane element and per day (cubic meter) was defined as the fresh water production amount [m 3 / day].
  • the electric conductivity of the feed water and the obtained permeated water was measured using an electric conductivity meter manufactured by Toa Radio Industry Co., Ltd., and the practical salt content (S) was measured.
  • TDS removal rate (%) 100 ⁇ ⁇ 1 ⁇ (TDS concentration in permeated water / TDS concentration in feed water) ⁇
  • Non-woven fabric composed of long polyethylene terephthalate fibers (fineness: 1.1 dtex, thickness: 90 ⁇ m, air permeability: 1 cc / cm 2 / sec, fiber orientation: porous support layer side surface layer of 40 °, opposite to the porous support layer
  • DMF dimethylformamide
  • an aqueous solution of metaphenylenediamine (1.8% by weight) / ⁇ -caprolactam (4.5% by weight) was applied to the surface of the porous support membrane on which the polysulfone was cast, and then nitrogen was blown from the air nozzle.
  • an n-decane solution at 25 ° C. containing 0.06% by weight of trimesic acid chloride was applied so that the membrane surface was completely wetted. Thereafter, the excess solution was removed from the membrane by air blowing, washed with hot water (80 ° C.), and drained by air blowing to obtain a separation membrane body.
  • Example 1 High crystalline PP (MFR 1000 g / 10 min, melting point 161 ° C.) 55 wt% and low crystalline ⁇ -olefin polymer (manufactured by Idemitsu Kosan Co., Ltd .; low stereoregular polypropylene “L-MODU ⁇ S400” (trade name)) After melting 45% by weight of the composition pellets at 200 ° C., the molten resin was supplied by a gear pump to an applicator loaded with comb-shaped shims (slit width 0.4 mm, pitch 0.8 mm).
  • the molten resin is discharged from the comb-shaped shim, and the permeate-side flow path material is processed in a stripe shape at a speed of 10 m / min on the permeate side of the separation membrane body, wound on a winder via a free roll, and separated.
  • a film roll was obtained (winding tension 15 N / m, core diameter 3 inches used for winding).
  • the sheet 10m was unwound from the separation membrane roll to obtain a separation membrane sheet.
  • the melting endotherm ( ⁇ H) was 46 J / g
  • the tensile elongation was 25%
  • the tensile modulus was 0. .31 GPa.
  • a test piece having a size of 50 cm in length and 50 cm in width was prepared from the separation membrane sheet, and the curl height was evaluated.
  • the curl height was as low as 1.9 cm, and the separation membrane was extremely excellent in handleability. .
  • the separation membrane sheet was not fixed to the surface of the separation membrane functional layer, and smooth unwinding was possible.
  • the damaged part was not found, and the unwinding property and quality of the separation membrane sheet were extremely good.
  • the separation membrane sheet is cut, and a net (thickness: 800 ⁇ m, pitch 5 mm ⁇ 5 mm) is continuously laminated as a supply-side channel material between the separation membrane sheets folded so that one side is open,
  • the effective area of the separation membrane element is 37 m 2
  • 26 envelope-shaped films having a width of 930 mm were produced.
  • a predetermined portion on the opening side of the envelope-shaped membrane was adhered to the outer peripheral surface of the perforated water collecting tube, and further wrapped in a spiral shape to produce a wound body.
  • a film was wound around the outer peripheral surface of the wound body and fixed with tape, and then edge cutting, end plate mounting, and filament winding were performed to produce an 8-inch diameter element.
  • the separation membrane element was put into a fiber reinforced plastic cylindrical pressure vessel and the desalination rate and the amount of water produced were measured under an operating pressure of 1.5 MPa, the element performance was 98.8% for the salt performance and the amount of water produced was 34. It was 5 m 3 / day. Further, the desalination rate was 99.0% under an operating pressure of 2.5 MPa, the amount of water produced was 58.5 m 3 / day, and extremely good performance was exhibited even under high-pressure operation conditions. The results are shown in Table 1.
  • Example 2 The resin constituting the permeate-side channel material is a high crystalline PP (similar to Example 1) 92% by weight / low crystalline ⁇ -olefin polymer (manufactured by Idemitsu Kosan Co., Ltd .; low stereoregular PP “L-MODU” Evaluation was performed in the same manner as in Example 1 except that S400 (trade name) was changed to 8% by weight. The results are shown in Table 1. Since ⁇ H was high, the curl height was a little as high as 4.7 cm, but the separation membrane was excellent in handleability. When the unwinding property evaluation of the separation membrane sheet was performed, the separation membrane sheet was not fixed to the surface of the separation membrane functional layer, and smooth unwinding was possible. On the other hand, as a result of evaluating the damaged part of the flow path material, 5 damaged parts per 10 m in length were found due to the small tensile elongation of the flow path material. Met.
  • Example 3 The resin constituting the permeate-side channel material is made of 65% by weight of highly crystalline PP (same as in Example 1) / low crystalline ⁇ -olefin polymer (manufactured by Idemitsu Kosan Co., Ltd .; low stereoregular PP “L-MODU” -S400 "(trade name)) 20 wt% / heat fluidity improver (manufactured by Yashara Chemical Co., Ltd .; Terpene resin hydride” Clearon P125 "(trade name)) 15 wt% Was evaluated.
  • the results are shown in Table 1.
  • the curl height was as low as 1.5 cm, and the separation membrane was extremely excellent in handleability.
  • the separation membrane sheet When the unwinding property evaluation of the separation membrane sheet was performed, the separation membrane sheet was not fixed to the surface of the separation membrane functional layer, and smooth unwinding was possible. Further, no breakage was found in the separation membrane sheet, and the unwinding property and quality of the separation membrane sheet were extremely good.
  • Example 4 The resin constituting the permeate-side channel material is a high crystalline PP (same as in Example 1) 40% by weight / low crystalline ⁇ -olefin polymer (manufactured by Idemitsu Kosan Co., Ltd .; low stereoregular PP “L-MODU”) -S600 "(trade name)) 30 wt% / heat fluidity improver (manufactured by Yasuhara Chemical Co., Ltd .; terpene resin hydride” Clearon P115 "(trade name)) 30 wt% Was evaluated.
  • the results are shown in Table 1.
  • the curl height was as low as 0.5 cm, and the separation membrane was extremely excellent in handleability.
  • the resin constituting the permeate side channel material is 75% by weight of high crystalline PP (same as in Example 1) / low crystalline ⁇ -olefin polymer (manufactured by Idemitsu Kosan Co., Ltd .; low stereoregular PP “L-MODU” ⁇ S600 ”(trade name)) 5 wt% / heat fluidity improver (manufactured by Arakawa Chemical Industries, Ltd .; hydrogenated petroleum resin“ alicyclic saturated hydrocarbon resin, Alcon P-100 ”(trade name)) 20 weight Evaluation was performed in the same manner as in Example 1 except that the percentage was changed to%. The results are shown in Table 1.
  • the curl height was as low as 2.5 cm, and the separation membrane was excellent in handleability.
  • the separation membrane sheet was not fixed to the surface of the separation membrane functional layer, and smooth unwinding was possible. Further, although there were two damaged portions in the separation membrane sheet, the unwinding property and quality of the separation membrane sheet were extremely good.
  • the resin constituting the permeate side channel material is 85% by weight of high crystalline PP (same as in Example 1) / low crystalline ⁇ -olefin polymer (manufactured by Idemitsu Kosan Co., Ltd .; low stereoregular PP “L-MODU” ⁇ S600 ”(trade name)) 10% by weight / heat fluidity improver (made by Idemitsu Kosan Co., Ltd .; hydrogenated petroleum resin“ dicyclopentadiene / aromatic copolymer hydrogenated petroleum resin Imabu P125 ”(trade name)) Evaluation was performed in the same manner as in Example 1 except that the content was changed to 5% by weight. The results are shown in Table 1.
  • Example 7 The resin constituting the permeate-side channel material is made of 70% by weight of highly crystalline PP (similar to Example 1) / low crystalline ⁇ -olefin polymer (manufactured by Mitsui Chemicals, Inc .; propylene / olefin copolymer “Toughmer PN”.
  • the evaluation was performed in the same manner as in Example 1 except that the weight was changed to 30% by weight. The results are shown in Table 2.
  • the curl height was as low as 2.0 cm, and the separation membrane was extremely excellent in handleability.
  • the separation membrane sheet was not fixed to the surface of the separation membrane functional layer, and smooth unwinding was possible.
  • the separation membrane sheet had one damaged portion, but the unwinding property and quality of the separation membrane sheet were extremely good.
  • the resin constituting the permeate-side channel material is 50% by weight of high crystalline PP (same as in Example 1) / low crystalline ⁇ -olefin polymer (manufactured by Mitsui Chemicals, Inc .; propylene / olefin copolymer “Toughmer PN”) -20300 "(trade name)) 20% by weight / thermal fluidity improver (Arakawa Chemical Industries, Ltd .; hydrogenated petroleum resin” alicyclic saturated hydrocarbon resin, Alcon P-100 "(trade name)) 20 weight % / Talc (“Micron White 5000S” (trade name) manufactured by Hayashi Kasei Co., Ltd.) was evaluated in the same manner as in Example 1 except that it was changed to 10% by weight.
  • the results are shown in Table 2.
  • the curl height was as low as 1.0 cm, and the separation membrane was extremely excellent in handleability.
  • the separation membrane sheet was not fixed to the surface of the separation membrane functional layer, and smooth unwinding was possible.
  • the separation membrane sheet had one damaged portion, but the unwinding property and quality of the separation membrane sheet were extremely good.
  • Example 9 The resin constituting the permeate-side channel material is 60% by weight of high crystalline PP (same as in Example 1) / low crystalline ⁇ -olefin polymer (manufactured by Sumitomo Chemical Co., Ltd .; special propylene elastomer “Tough Selenium H-5002” “(Trade name)) 10% by weight / heat fluidity improver (manufactured by Yasuhara Chemical Co., Ltd .; Terpene resin hydride“ Clearon P125 ”(trade name)). Went.
  • Table 2 The results are shown in Table 2. The curl height was as low as 0.7 cm, and the separation membrane was extremely excellent in handleability.
  • the separation membrane sheet had four places fixed to the surface of the separation membrane functional layer, but relatively smooth unwinding was possible. It was good. Moreover, although there were two damaged portions in the separation membrane sheet, the quality of the separation membrane sheet was very good.
  • the resin constituting the permeate-side channel material is made of a highly crystalline PP (manufactured by Prime Polymer Co., Ltd., MFR 120 g / 10 minutes, melting point 165 ° C.) 60% by weight / low crystalline ⁇ -olefin polymer (manufactured by Idemitsu Kosan Co., Ltd.) Low stereoregularity PP “L-MODU S400” (trade name)) 20% by weight / heat fluidity improver (manufactured by Hiroyuki Kato Co., Ltd .; Fischer-Tropsch wax “Sazol Wax H1” (trade name)) 20 Evaluation was performed in the same manner as in Example 1 except that the weight was changed to wt% and the processing temperature was 225 ° C.
  • the results are shown in Table 2.
  • the curl height was as low as 1.0 cm, and the separation membrane was extremely excellent in handleability.
  • the separation membrane sheet had two portions fixed to the surface of the separation membrane functional layer, but it was possible to unwind relatively smoothly. It was very good.
  • the separation membrane sheet had four damaged portions, but the quality of the separation membrane sheet was good.
  • Example 11 Highly crystalline PP (“BC10HRF” (trade name) manufactured by Nippon Polypro Co., Ltd., MFR 100 g / 10 minutes, melting point 167 ° C.) 45 wt% / low crystalline ⁇ -olefin polymer (Mitsui Chemicals Co., Ltd .; propylene / olefin copolymer “Tuffmer PN-20300” (trade name)) 15% by weight / heat fluidity improver (manufactured by Arakawa Chemical Industries, Ltd .; hydrogenated petroleum resin “alicyclic saturated” Hydrocarbon resin Alcon P-125 "(trade name)) 20% by weight / heat fluidity improver (manufactured by Sanyo Chemical Co., Ltd .; PP wax" Biscol 550P “(trade name)) 20% by weight, processing temperature
  • the evaluation was performed in the same manner as in Example 1 except that the temperature was set to 230 ° C.
  • the results are shown in Table 2.
  • the curl height was as low as 1.4 cm, and the separation membrane was extremely excellent in handleability.
  • the separation membrane sheet had 5 locations fixed to the surface of the separation membrane functional layer, but relatively smooth unwinding was possible. It was good.
  • the quality of the separation membrane sheet was very good.
  • Example 1 Evaluation was performed in the same manner as in Example 1 except that only the highly crystalline PP (similar to Example 1) was used as the resin constituting the permeate side channel material. The results are shown in Table 3. Due to the very large ⁇ H, the curl height was 10 cm or more, and the handleability was extremely poor. When the unwinding property evaluation of the separation membrane sheet was carried out, the separation membrane sheet was found not to be fixed on the surface of the separation membrane functional layer, and the unwinding property was very good. On the other hand, since the tensile elongation of the flow path material is very low, the separation membrane sheet has 11 or more damaged portions, and the quality of the separation membrane sheet was very poor.
  • the resin constituting the permeate side channel material is 97% by weight of highly crystalline PP (similar to Example 1) / low crystalline ⁇ -olefin polymer (manufactured by Idemitsu Kosan Co., Ltd .; low stereoregular PP “L-MODU” -Evaluation was performed in the same manner as in Example 1 except that S400 (trade name) was changed to 3% by weight.
  • S400 trade name
  • the resin constituting the permeate side channel material is 35% by weight of high crystalline PP (same as in Example 1) / low crystalline ⁇ -olefin polymer (manufactured by Idemitsu Kosan Co., Ltd .; low stereoregular PP “L-MODU” -Evaluation was performed in the same manner as in Example 1 except that S400 (trade name) was changed to 65% by weight.
  • S400 trade name
  • the resin constituting the permeate side channel material is made of 20% by weight of highly crystalline PP (same as in Example 1) / low crystalline ⁇ -olefin polymer (manufactured by Idemitsu Kosan Co., Ltd .; low stereoregular PP “L-MODU” -S600 “(trade name)) 40 wt% / heat fluidity improver (manufactured by Yasuhara Chemical Co., Ltd .; terpene resin hydride” Clearon P115 "(trade name)) 40 wt% Was evaluated.
  • the results are shown in Table 3.
  • the curl height was as low as 0.1 cm, and the separation membrane was extremely excellent in handleability.
  • the separation membrane sheet had a large number of portions (11 or more) fixed to the surface of the separation membrane functional layer. Peeling occurred and smooth unwinding was very difficult. On the other hand, no damage was found in the separation membrane sheet, and the quality of the separation membrane sheet was extremely good. Further, when the desalination rate and the amount of water produced were measured in the same manner as in Example 1, the element performance was as good as 97.8%, but the amount of water produced was 25.0 m 3 / day. The value was 20% or more lower than 1. When the permeate-side channel material was observed after the operation was completed, the channel material was greatly compressed and deformed, and most of the permeate channel was blocked. This is presumably because the pressure resistance (elastic modulus) of the resin constituting the flow path material is low.
  • Example 12 High crystalline PP (MFR 1000 g / 10 min, melting point 161 ° C., similar to Example 1) 45% by weight and low crystalline ⁇ -olefin polymer (manufactured by Idemitsu Kosan Co., Ltd .; low stereoregular polypropylene “L-MODU ⁇ S400 (Product name) After melting 55% by weight of the composition pellets at 210 ° C., the molten resin is supplied to the applicator loaded with comb-shaped shims (slit width 0.35 mm, pitch 0.7 mm) by a gear pump. did.
  • the molten resin is discharged from the comb shim, and the protrusions are striped at a speed of 8.5 m / min on the sheet (polyethylene terephthalate long fiber nonwoven fabric, single yarn fineness 1.2 dtex, thickness 55 ⁇ m, basis weight 28 g / m 2 ). And wound up on a winder via a free roll to obtain a sheet roll (winding tension 15 N / m, core diameter 3 inches used for winding). The sheet 10m was unwound from the sheet roll to obtain a sheet (sheet channel material) to which the protrusions were fixed.
  • the melting endotherm ( ⁇ H) was 33 J / g
  • the tensile elongation was 26%
  • the tensile modulus was 0.23 GPa. .
  • a test piece having a length of 50 cm and a width of 50 cm was prepared from the sheet channel material, and the curl height was evaluated.
  • the curl height was as low as 0.8 cm, and the separation membrane was extremely excellent in handleability. It was. This is presumably because the content of highly crystalline PP in the flow path material and ⁇ H are controlled within a preferable range.
  • the unwinding property evaluation of the sheet flow path material was performed, the protrusions were not adhered to another sheet surface in contact with the wound state, and smooth unwinding was possible.
  • no damaged part was found, and the unwinding property and quality of the sheet channel material were extremely good.
  • the sheet channel material is cut and a net (thickness: 800 ⁇ m, pitch 5 mm ⁇ 5 mm) is continuously laminated as a supply-side channel material between the separation membrane sheets folded so that one side is open.
  • Twenty-six envelope films having a width of 930 mm were prepared so as to be 37 m 2 . Thereafter, a predetermined portion on the opening side of the envelope-shaped membrane was adhered to the outer peripheral surface of the perforated water collecting tube, and further wrapped in a spiral shape to produce a wound body.
  • a film was wound around the outer peripheral surface of the wound body and fixed with tape, and then edge cutting, end plate mounting, and filament winding were performed to produce an 8-inch diameter element.
  • the separation membrane element was placed in a fiber reinforced plastic cylindrical pressure vessel and the desalination rate and the amount of water produced were measured. The element performance was 98.9% desalination rate and the amount of water produced was 33.9 m 3 / day. It showed very good performance even under high pressure operating conditions. The results are shown in Table 4.
  • Example 13 High crystalline PP (same as in Example 1) 60% by weight / low crystalline ⁇ -olefin polymer (manufactured by Idemitsu Kosan Co., Ltd .; low stereoregular PP “L-MODU ⁇ S400” (trade name)) 30% by weight / Evaluation was performed in the same manner as in Example 12 except that the thermal fluidity improver (Yasuhara Chemical Co., Ltd .; Terpene resin hydride “Clearon P125” (trade name)) was changed to 10% by weight. The results are shown in Table 4. The curl height was as low as 1.1 cm, and the sheet was extremely easy to handle.
  • the resin constituting the protrusion is made of 40% by weight of highly crystalline PP (similar to Example 1) / low crystalline ⁇ -olefin polymer (manufactured by Idemitsu Kosan Co., Ltd .; low stereoregular PP “L-MODU ⁇ S400”) (Trade name))
  • a composition pellet consisting of 45% by weight / heat fluidity improver Yasuhara Chemical Co., Ltd .; Terpene resin hydride “Clearon P145” (trade name) 15% by weight
  • the molten resin was supplied to the applicator loaded with comb-shaped shims (slit width 0.30 mm, pitch 0.6 mm) by a gear pump.
  • the molten resin is discharged from the comb-shaped shim, and the protrusions are processed in a stripe shape at a speed of 15 m / min on the sheet (polyethylene terephthalate long fiber nonwoven fabric, single yarn fineness 1.4 dtex, thickness 50 ⁇ m, basis weight 33 g / m 2 ). Then, it was wound around a winder via a free roll to obtain a sheet roll (winding tension 15 N / m, core diameter 3 inches used for winding). The sheet 10m was unwound from the sheet roll to obtain a sheet (sheet channel material) to which the protrusions were fixed.
  • the obtained sheet channel material was evaluated in the same manner as in Example 12. The results are shown in Table 4.
  • the curl height was as low as 0.7 cm, and the sheet was extremely excellent in handleability.
  • As a result of evaluating the unwinding property of the sheet to which the protrusions were fixed five points of adhesion of the protrusions to the sheet were observed, but due to the light adhesion, relatively smooth unwinding was possible. . Further, no damage was found on the sheet to which the protrusions were fixed, and the unwinding property and quality of the sheet were extremely good.
  • the resin constituting the protrusion is 45% by weight of highly crystalline PP (similar to Example 10) / low crystalline ⁇ -olefin polymer (manufactured by Idemitsu Kosan Co., Ltd .; low stereoregular PP “L-MODU ⁇ S400”) (Trade name)) 45% by weight / thermal fluidity improver (made by Arakawa Chemical Industries, Ltd .; hydrogenated petroleum resin “alicyclic saturated hydrocarbon resin / Alcon P100” (trade name) 10% by weight) After the pellets were melted at 210 ° C., the molten resin was supplied to an applicator loaded with comb-shaped shims (slit width 0.30 mm, pitch 0.6 mm) by a gear pump.
  • the molten resin is discharged from the comb-shaped shim, and the protrusions are processed in a stripe shape at a speed of 4 m / min on a sheet (polyethylene terephthalate short fiber nonwoven fabric, single yarn fineness 1.2 dtex, thickness 75 ⁇ m, basis weight 75 g / m 2 ). Then, it was wound around a winder via a free roll to obtain a sheet roll (winding tension 15 N / m, core diameter 3 inches used for winding). The sheet 10m was unwound from the sheet roll to obtain a sheet (sheet channel material) to which the protrusions were fixed.
  • the obtained sheet channel material was evaluated in the same manner as in Example 12. The results are shown in Table 4.
  • the curl height was as low as 0.9 cm, and the sheet was extremely easy to handle.
  • As a result of evaluating the unwinding property of the sheet to which the protrusions were fixed four points of adhesion of the protrusions to the sheet were observed, but due to the light adhesion, a relatively smooth unwinding was possible. . Further, there were two damaged portions on the sheet to which the protrusions were fixed, and the unwinding property and quality of the sheet were extremely good.
  • the resin constituting the projection is made of 50% by weight of highly crystalline PP (same as in Example 1) / low crystalline ⁇ -olefin polymer (B-1) (manufactured by Idemitsu Kosan Co., Ltd .; low stereoregular PP “L” -MODU.S400 "(trade name)) 45% by weight / low crystalline ⁇ -olefin polymer (B-2) (manufactured by Mitsui Chemicals, Inc .; propylene / olefin copolymer” Tuffmer PN-20300 "(trade name)
  • the composition pellets comprising 5 wt%) were melted at 200 ° C., the molten resin was supplied to the applicator loaded with comb shims (slit width 0.4 mm, pitch 0.8 mm) by a gear pump.
  • the molten resin is discharged from the comb-shaped shim, and the protrusions are processed into a stripe shape at a speed of 6 m / min on a sheet (polyethylene terephthalate long fiber nonwoven fabric, single yarn fineness 1.2 dtex, thickness 48 ⁇ m, basis weight 25 g / m 2 ). Then, it was wound around a winder via a free roll to obtain a sheet roll (winding tension 15 N / m, core diameter 3 inches used for winding). The sheet 10m was unwound from the sheet roll to obtain a sheet (sheet channel material) to which the protrusions were fixed.
  • the obtained sheet channel material was evaluated in the same manner as in Example 12. The results are shown in Table 4.
  • the curl height was as low as 0.6 cm, and the sheet was extremely easy to handle.
  • the unwinding property evaluation of the sheet with the protrusions fixed thereto was performed, the adhesion of the protrusions to the sheet was not observed, and smooth unwinding was possible. Further, no damage was found on the sheet to which the protrusions were fixed, and the unwinding property and quality of the sheet were extremely good.
  • the resin constituting the protrusions is made of 50% by weight of highly crystalline PP (similar to Example 1) / low crystalline ⁇ -olefin polymer (manufactured by Mitsui Chemicals, Inc .; propylene / olefin copolymer “Toughmer PN-20300”) (Product name) 25 wt%) After melting a composition pellet made of a thermal fluidity improver (Yasuhara Chemical Co., Ltd .; terpene resin hydride "Clearon P145" (product name) 25 wt%) at 210 ° C, The molten resin was supplied to the applicator loaded with comb-shaped shims (slit width 0.4 mm, pitch 0.8 mm) by a gear pump.
  • highly crystalline PP similar to Example 1
  • low crystalline ⁇ -olefin polymer manufactured by Mitsui Chemicals, Inc .
  • the molten resin is discharged from the comb-shaped shim, and the protrusions are processed in a stripe shape at a speed of 9 m / min on a sheet (polyethylene terephthalate long fiber nonwoven fabric, single yarn fineness 1.2 dtex, thickness 73 ⁇ m, basis weight 50 g / m 2 ). Then, it was wound around a winder via a free roll to obtain a sheet roll (winding tension 15 N / m, core diameter 3 inches used for winding). The sheet 10m was unwound from the sheet roll to obtain a sheet (sheet channel material) to which the protrusions were fixed.
  • the obtained sheet channel material was evaluated in the same manner as in Example 12. The results are shown in Table 4.
  • the curl height was as low as 1.1 cm, and the sheet was extremely easy to handle.
  • As a result of evaluating the unwinding property of the sheet to which the protrusions were fixed three points of adhesion of the protrusions to the sheet were observed, but due to the light adhesion, relatively smooth unwinding was possible. . Moreover, although there were four damaged parts on the sheet to which the protrusions were fixed, the quality was good.
  • Example 5 Evaluation was performed in the same manner as in Example 12 except that the resin constituting the protrusion was only high crystalline PP (similar to Example 1). The results are shown in Table 5.
  • the curl height of the sheet to which the protrusions were fixed was as high as 10 cm or more, and the handleability was extremely poor.
  • the unwinding property evaluation of the sheet to which the protrusions were fixed was carried out, no adhesion of the protrusions to the sheet was observed. Further, there were 11 or more damaged portions of the protrusions, and the sheet quality was very poor.
  • the separation membrane and separation membrane element of the present invention can be suitably used particularly for desalination of brine.
  • Separation membrane element 2 Supply side channel material 3: Separation membrane 30, 30A, 30B: Separation membrane body 4: Permeation side channel material 5: Envelope membrane 6: Catchment pipe 7: Supply water (raw fluid) 8: Permeated water 9: Concentrated water 11: Substrate 12: Porous support layer 13: Separation functional layer 15: Permeation side channel 17: Supply side surface 18: Permeation side surface 19: Sheets 20 to 25: Projections 42 to 47: Sheet channel material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明は、良好な造水性能を発揮しつつ、また取扱性や工程通過性に優れた分離膜および分離膜エレメントを提供する。本発明の分離膜は、供給側の面と透過側の面とを有する分離膜本体と、前記分離膜本体の透過側の面に固着する透過側流路材と、を備える分離膜であって、前記透過側流路材は高結晶性ポリプロピレン(A)を少なくとも含んでなる組成物から構成され、かつ下記要件(a)および(b)を満たす。 (a)前記高結晶性ポリプロピレン(A)の含有量が、前記組成物中、40~95重量%である。 (b)前記透過側流路材の融解吸熱量(ΔH)が20~70J/gである。

Description

分離膜、シート流路材および分離膜エレメント
 本発明は、液体、気体等の流体に含まれる成分を分離するために使用される分離膜、シート流路材および分離膜エレメントに関する。より詳しくは、良好な取扱性を有する分離膜またはシート流路材ならびに安定した性能を有する分離膜エレメントに関する。
 液体、気体等の流体に含まれる成分を分離するために、様々な方法が提案されている。例えば、海水またはかん水などに含まれるイオン性物質を除くための技術においては、近年、省エネルギーおよび省資源のためのプロセスとして分離膜エレメントによる分離法の利用が拡大している。
 分離膜エレメントによる分離法に使用される分離膜は、その孔径および分離機能などに基づいて、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜、正浸透膜などに分類される。これらの膜は、例えば海水、かん水もしくは有害物を含んだ水からの飲料水の製造、工業用超純水の製造、廃水処理または有価物の回収などに用いられており、目的とする分離成分及び分離性能によって使い分けられている。
 分離膜エレメントは、分離膜の一方の面に原流体を供給し、他方の面から透過流体を得る点では共通している。分離膜エレメントは、束ねられた多数の分離膜を備えることで大きな膜面積を確保しており、単位エレメントあたりで多くの透過流体を得ることができるように構成されており、用途や目的にあわせて、スパイラル型、中空糸型、プレート・アンド・フレーム型、回転平膜型、平膜集積型などの各種エレメントが製造されている。
 例えば、逆浸透ろ過には、スパイラル型分離膜エレメントがよく用いられる。スパイラル型分離膜エレメントは、有孔集水管、分離膜へ原流体を供給する供給側流路材、原流体に含まれる成分を分離する分離膜、及び分離膜を透過した透過流体を有孔集水管へと導くための透過側流路材を備える。供給側流路材、分離膜および透過側流路材は、有孔集水管の周りに巻き付けられる。スパイラル型分離膜エレメントは、原流体に圧力を付与し、透過流体を多く取り出すことができるので、広く用いられている。
 近年、分離膜エレメントに造水コストの低減への高まりから、分離膜エレメントの低コスト化のニーズが高まっており、分離膜、各流路部材、分離膜エレメント部材の改良による低コスト化が提案されている。例えば、特許文献1~3では、スパイラル型分離膜エレメントにおいて、平膜の表面または裏面に、ドット形状あるいはストライプ形状に配置された流路材が設けられている。また、特許文献4では、シート上に繊維状物から形成された流路材が設けられている。
国際公開第2011/152484号 日本国特開2012-40487号公報 日本国特開2012-161748号公報 国際公開第2012/142429号
 しかし、特許文献1~4に記載された分離膜エレメントは、加圧条件下で運転を実施することで、高造水化や安定運転を達成できるものの、一方、分離膜エレメントの構成部材である分離膜またはシート流路材はカールしており、そのためエレメントを作製する工程においては、その取扱性に問題がある。
 そこで、本発明は、加圧条件下で運転を実施しても良好な造水性能を発揮しつつ、分離膜またはシート流路材のカールが改善され、取扱性に優れた分離膜またはシート流路材を提供することを目的とする。
 本発明者らは上記した課題を解決するために鋭意検討を行った結果、分離膜またはシート流路材のカールを改善することができ、取扱性に優れた分離膜またはシート流路材を得ることに成功し、本発明を完成するに至った。
 すなわち本発明は、以下の構成を要旨とするものである。
 第1の発明は、供給側の面と透過側の面とを有する分離膜本体と、前記分離膜本体の前記透過側の面に固着する透過側流路材と、を備える分離膜であって、前記透過側流路材は高結晶性ポリプロピレン(A)を少なくとも含む組成物から構成され、かつ下記要件(a)および(b)を満たす分離膜である。
 (a)前記高結晶性ポリプロピレン(A)の含有量が、前記組成物中、40~95重量%である。
 (b)前記透過側流路材の融解吸熱量(ΔH)が20~70J/gである。
 第2の発明は、前記組成物が低結晶性α-オレフィン系ポリマー(B)を含み、前記低結晶性α-オレフィン系ポリマー(B)の含有量が、前記組成物中、5~60重量%である、上記第1の発明に記載の分離膜である。
 第3の発明は、前記低結晶性α-オレフィン系ポリマー(B)が、低結晶性ポリプロピレンまたはプロピレン・オレフィン共重合体である、上記第2の発明に記載の分離膜である。
 第4の発明は、前記透過側流路材の引張伸度が5%以上であり、かつ引張弾性率が0.2~2.0GPaである、上記第1~第3の発明のいずれか一つに記載の分離膜である。
 第5の発明は、前記分離膜本体が、基材、前記基材上に形成された多孔性支持層、および前記多孔性支持層上に形成された分離機能層を備える、上記第1~第4の発明のいずれか一つに記載の分離膜である。
 第6の発明は、上記第1~第5の発明のいずれか一つに記載の分離膜を含む分離膜エレメントである。
 第7の発明は、突起物がシート上に固着され、前記突起物は高結晶性ポリプロピレン(A)を少なくとも含む組成物から構成され、かつ下記要件(a)および(b)を満たすシート流路材である。
 (a)前記高結晶性ポリプロピレン(A)の含有量が、前記組成物中、40~95重量%である。
 (b)前記突起物の融解吸熱量(ΔH)が20~70J/gである。
 第8の発明は、前記組成物が低結晶性α-オレフィン系ポリマー(B)を含み、前記低結晶性α-オレフィン系ポリマー(B)の含有量が、前記組成物中、5~60重量%である、上記第7の発明に記載のシート流路材である。
 第9の発明は、前記低結晶性α-オレフィン系ポリマー(B)が、低結晶性ポリプロピレンまたはプロピレン・オレフィン共重合体である、上記第8の発明に記載のシート流路材である。
 第10の発明は、前記突起物の引張伸度が5%以上であり、かつ引張弾性率が0.2~2.0GPaである、上記第7~第9の発明のいずれか一つに記載のシート流路材である。
 第11の発明は、上記第7~第10の発明のいずれか一つに記載のシート流路材を含む分離膜エレメントである。
 本発明によれば、流路材を構成する成分に特定範囲の高結晶性ポリプロピレンが含まれ、かつ前記流路材の融解熱量を特定範囲に制御することで、分離膜またはシート流路材のカールを抑制することが可能となる。その結果、分離膜またはシート流路材の取扱性や分離膜エレメント製造工程における通過性が良好になるとともに、加圧条件下での運転においても、安定した性能を示す分離膜エレメントを得ることができる。
図1は、分離膜エレメントの概要を示す一部展開斜視図である。 図2は、透過側流路材を備える分離膜の一例を示す断面図である。 図3は、分離膜本体の一例を示す断面図である。 図4は、分離膜本体の他の例を示す断面図である。 図5は、透過側流路材を備える分離膜の一例を示す平面図である。 図6は、透過側流路材を備える分離膜の他の例を示す平面図である。 図7は、透過側流路材を備える分離膜のさらに他の例を示す平面図である。 図8は、透過側流路材を備える分離膜のさらに他の例を示す平面図である。 図9は、透過側流路材を備える分離膜のさらに他の例を示す平面図である。 図10は、図5の分離膜のA-A矢視断面図である。 図11は、図7の分離膜のB-B矢視断面図である。 図12は、図8の分離膜のC-C矢視断面図である。 図13は、シート上に突起物が固着されたシート流路材の一例を示す断面図である。 図14は、シート上に突起物が固着されたシート流路材の一例を示す平面図である。 図15は、シート上に突起物が固着されたシート流路材の他の例を示す平面図である。 図16は、シート上に突起物が固着されたシート流路材の更に他の例を示す平面図である。 図17は、シート上に突起物が固着されたシート流路材の更に他の例を示す平面図である。 図18は、シート上に突起物が固着されたシート流路材の更に他の例を示す平面図である。 図19は、図14のシート上に突起物が固着されたシート流路材のD-D矢視断面図である。 図20は、図16のシート上に突起物が固着されたシート流路材のE-E矢視断面図である。 図21は、図17のシート上に突起物が固着されたシート流路材のF-F矢視断面図である。
 以下、本発明の分離膜および分離膜エレメントについて詳細に説明する。
1.分離膜エレメント
 図1に示すように、分離膜エレメント1は、集水管6と、集水管6の周囲に巻回された分離膜3とを備える。また、分離膜エレメント1は、供給側流路材2および端板等の部材をさらに備える。
 分離膜3は、分離膜本体30と、分離膜本体30の透過側の面に配置された透過側流路材4とを備える。
 分離膜3は、透過側の面を内側に向けた矩形状の封筒状膜5を形成する。封筒状膜5は、透過水が集水管6に流れるように、その一辺のみにおいて開口し、他の三辺においては封止される。透過水はこの封筒状膜5によって供給水から隔離される。
 供給側流路材2は、封筒状膜5同士の間、つまり分離膜3の供給側の面の間に配置される。供給側流路材2および複数の封筒状膜5は、重なった状態で、集水管6の周囲に巻き付けられる。
 分離膜エレメント1の長手方向における一端から供給された原水(図中に「供給水7」として示す。)は、供給側流路材2によって形成された流路を通って、分離膜本体30に供給される。
 分離膜本体30を透過した水(図中に「透過水8」として示す。)は、透過側流路材4によって形成された流路を通って集水管6に流れこむ。こうして、透過水8は、集水管6の一端から回収される。
 一方、分離膜本体30を透過しなかった水(図中に「濃縮水9」として示す)は、分離膜エレメント1の他端から回収される。
 図1に示す分離膜エレメント1は、集水管と、集水管の周囲に巻回された分離膜とを備えるスパイラル型分離膜エレメントの構成の一例であり、本発明はこの形態に限定されるものではない。
2.分離膜
 上述の分離膜エレメントに用いられる分離膜3としては、以下に述べる各種形態の分離膜を適用することができる。図面を参照しながら各形態について説明するが、以下において、他の図面を参照して説明した要素については、同符号を付してその説明を省略することがある。
(2-1)概要
 分離膜とは、分離膜表面に供給される流体中の成分を分離し、分離膜を透過した透過流体を得ることができる膜である。分離膜は、分離膜本体と、分離膜本体上に配置された流路材とを備える。
 このような分離膜の一例を図2に示す。図2に示すように、分離膜3は、分離膜本体30と透過側流路材4とを備える。分離膜本体30は供給側の面17と透過側の面18とを備える。
 本発明において、分離膜本体の「供給側の面」とは、分離膜本体の2つの面のうち、原流体(供給水7)が供給される側の表面を意味する。「透過側の面」とは、その逆側の面を意味する。分離膜本体が、基材11及び分離機能層13を備える場合は、一般的に、分離機能層13側の面が供給側の面であり基材11側の面が透過側の面である。
(2-2)分離膜本体
(2-2-1)概要
 分離膜本体30としては、使用方法、目的等に応じた分離性能を有する膜が用いられる。分離膜本体30は、単層であっても、基材および分離機能層を備える複合膜であってもよい。
 図3および図4に複合膜の例を示す。図3に示す分離膜本体30は、基材11、多孔性支持層12および分離機能層13を備える。一方、図4に示す分離膜本体30Aは、基材11および分離機能層13の2つの層からなる。以下に、各層について説明する。
(2-2-2)分離機能層
 分離機能層13の厚みは具体的な数値に限定されないが、分離性能と透過性能の点で5~3000nmであることが好ましい。特に逆浸透膜、正浸透膜、ナノろ過膜では5~300nmであることが好ましい。
 分離機能層の厚みは、これまでの分離膜の膜厚測定法に準ずることができる。例えば、分離膜を樹脂により包埋し、それを切断することで超薄切片を作製し、得られた切片に染色などの処理を行う。その後、透過型電子顕微鏡により観察することで、厚みの測定が可能である。また、分離機能層がひだ構造を有する場合、多孔性支持層より上に位置するひだ構造の断面長さ方向に50nm間隔で測定し、ひだの数を20個測定し、その平均から求めることができる。
 分離機能層は、分離機能および支持機能の両方を有する層であってもよいし、分離機能のみを備えていてもよい。なお、「分離機能層」とは、少なくとも分離機能を備える層を指す。
 分離機能層が分離機能および支持機能の両方を有する場合(図4の例)、分離機能層としては、セルロース系ポリマー、ポリフッ化ビニリデン、ポリエーテルスルホン、またはポリスルホンを主成分として含有する層が好ましく適用される。
 一方、分離機能層が、多孔性支持層とは別の層として設けられる場合(図3の例)、孔径制御が容易であり、かつ耐久性に優れるという点で、多孔性支持層を構成する材料として、架橋高分子が好ましく使用される。特に、原流体中の成分の分離性能に優れるという点で、多官能アミンと多官能酸ハロゲン化物とを重縮合させてなるポリアミド分離機能層、有機無機ハイブリッド機能層などが好適に用いられる。これらの分離機能層は、多孔性支持層上でモノマーを重縮合することによって形成可能である。
 例えば、分離機能層は、ポリアミドを主成分として含有することができる。このような膜は、公知の方法により、多官能アミンと多官能酸ハロゲン化物とを界面重縮合することで形成される。例えば、多孔性支持層に多官能アミン水溶液を塗布し、余分なアミン水溶液をエアーナイフなどで除去し、その後、多官能酸ハロゲン化物を含有する有機溶媒溶液を塗布することで、ポリアミド分離機能層が得られる。
 また、分離機能層は、ケイ素などを有する有機-無機ハイブリッド構造を有してもよい。有機-無機ハイブリッド構造を有する分離機能層は、例えば、以下の化合物(A)、(B):
 (A)エチレン性不飽和基を有する反応性基および加水分解性基がケイ素原子に直接結合したケイ素化合物、ならびに
 (B)前記化合物(A)以外の化合物であってエチレン性不飽和基を有する化合物
を含有することができる。
 具体的には、分離機能層は、化合物(A)の加水分解性基の縮合物ならびに化合物(A)および/または化合物(B)のエチレン性不飽和基の重合物を含有してもよい。すなわち、分離機能層は、
  ・化合物(A)のみが縮合および/または重合することで形成された重合物、
  ・化合物(B)のみが重合して形成された重合物、並びに
  ・化合物(A)と化合物(B)との共重合物
のうちの少なくとも1種の重合物を含有することができる。なお、重合物には縮合物が含まれる。また、化合物(A)と化合物(B)との共重合体中で、化合物(A)は加水分解性基を介して縮合していてもよい。
 ハイブリッド構造は、公知の方法で形成可能である。ハイブリッド構造の形成方法の一例は次のとおりである。化合物(A)および化合物(B)を含有する反応液を多孔性支持層に塗布する。余分な反応液を除去した後、加水分解性基を縮合させるためには、加熱処理すればよい。化合物(A)および化合物(B)のエチレン性不飽和基の重合方法としては、熱処理、電磁波照射、電子線照射、プラズマ照射を行えばよい。重合速度を速める目的で分離機能層形成の際に重合開始剤、重合促進剤等を添加することができる。
 なお、いずれの分離機能層についても、使用前に、例えばアルコール含有水溶液、アルカリ水溶液によって膜の表面を親水化させてもよい。
(2-2-3)多孔性支持層
 以下の構成は、分離機能と支持機能とが1つの層で実現される場合における分離機能層(図4参照)、および分離機能と支持機能とが別々の層で実現される場合における多孔性支持層(図3参照)に適用可能である。
 多孔性支持層12に使用される材料やその形状は特に限定されないが、例えば、多孔性樹脂によって基板上に形成されてもよい。多孔性支持層としては、ポリスルホン、酢酸セルロース、ポリ塩化ビニル、エポキシ樹脂あるいはそれらを混合、積層したものが使用され、化学的、機械的、熱的に安定性が高く、孔径が制御しやすいポリスルホンを使用することが好ましい。
 多孔性支持層は、分離膜に機械的強度を与え、かつイオン等の分子サイズの小さな成分に対して分離膜のような分離性能を有さない。多孔性支持層が有する孔のサイズおよび孔の分布は特に限定されないが、例えば、多孔性支持層は、均一で微細な孔を有してもよいし、あるいは分離機能層が形成される側の表面からもう一方の面にかけて径が徐々に大きくなるような孔径分布を有してもよい。また、いずれの場合でも、分離機能層が形成される側の表面で原子間力顕微鏡または電子顕微鏡などを用いて測定された細孔の投影面積円相当径は、1~100nmであることが好ましい。特に界面重合反応性および分離機能層の保持性の点で、多孔性支持層において分離機能層が形成される側の表面における孔は、3~50nmの投影面積円相当径を有することが好ましい。
 多孔性支持層の厚みは特に限定されないが、分離膜に強度を与えるため等の理由から、20~500μmの範囲にあることが好ましく、より好ましくは30~300μmである。
 多孔性支持層の形態は、走査型電子顕微鏡や透過型電子顕微鏡、原子間顕微鏡により観察できる。例えば走査型電子顕微鏡で観察するのであれば、基材から多孔性支持層を剥がした後、これを凍結割断法で切断して断面観察のサンプルとする。このサンプルに白金または白金-パラジウムまたは四塩化ルテニウム、好ましくは四塩化ルテニウムを薄くコーティングして3~6kVの加速電圧で、高分解能電界放射型走査電子顕微鏡(UHR-FE-SEM)で観察する。高分解能電界放射型走査電子顕微鏡は、株式会社日立製作所製S-900型電子顕微鏡などが使用できる。得られた電子顕微鏡写真に基づいて、多孔性支持層の膜厚、表面の投影面積円相当径を測定することができる。
 多孔性支持層の厚みおよび孔径は平均値であり、多孔性支持層の厚みは、断面観察で厚み方向に直交する方向に20μm間隔で測定し、20点測定の平均値である。また、孔径は、200個の孔について測定された、各投影面積円相当径の平均値である。
 次に、多孔性支持層の形成方法について説明する。多孔性支持層は、例えば、上記ポリスルホンのN,N-ジメチルホルムアミド(以降、DMFと記載)溶液を、後述する基材、例えば密に織ったポリエステル織布あるいは不織布の上に一定の厚さに注型し、それを水中で湿式凝固させることによって、製造することができる。
 多孔性支持層は、”オフィス・オブ・セイリーン・ウォーター・リサーチ・アンド・ディベロップメント・プログレス・レポート”No.359(1968)に記載された方法に従って形成される。なお、所望の形態を得るために、ポリマー濃度、溶媒の温度、貧溶媒は適宜、調整可能である。
 例えば、所定量のポリスルホンをDMFに溶解し、所定濃度のポリスルホン樹脂溶液を調製する。次いで、このポリスルホン樹脂溶液をポリエステル織布あるいは不織布からなる基材上に略一定の厚さに塗布した後、一定時間空気中で表面の溶媒を除去した後、凝固液中でポリスルホンを凝固させることによって得ることができる。
(2-2-4)基材
 基材11としては、強度、凹凸形成能および流体透過性の点で繊維状基材を用いることが好ましい。繊維状基材としては、長繊維不織布及び短繊維不織布のいずれも好ましく用いることができる。特に、長繊維不織布は、優れた製膜性を有するので、高分子重合体の溶液を流延した際に、その溶液が過浸透により裏抜けすること、多孔性支持層が剥離すること、さらには基材の毛羽立ち等により膜が不均一化すること、及びピンホール等の欠点発生を抑制できる。また、基材が熱可塑性長繊維より構成される長繊維不織布からなることにより、短繊維不織布と比べて、高分子溶液流延時に繊維の毛羽立ちによって起きる不均一化および膜欠点の発生を抑制することができる。さらに、分離膜は、連続製膜される時に、製膜方向に対し張力がかけられるので、寸法安定性に優れる長繊維不織布を基材として用いることが好ましい。
 長繊維不織布は、成形性および強度の点で、多孔性支持層とは反対側の表層における繊維が、多孔性支持層側の表層の繊維よりも縦配向であることが好ましい。そのような構造によれば、強度を保つことで膜破れ等を防ぐ高い効果が実現されるだけでなく、分離膜に凹凸を付与する際、多孔性支持層と基材とを含む積層体としての成形性も向上し、分離膜表面の凹凸形状が安定するので好ましい。
 より具体的には、長繊維不織布の、多孔性支持層とは反対側の表層における繊維配向度は、0°~25°であることが好ましく、また、多孔性支持層側表層における繊維配向度との配向度差が10°~90°であることが好ましい。
 分離膜の製造工程やエレメントの製造工程においては加熱する工程が含まれるが、加熱により多孔性支持層または分離機能層が収縮する現象が起きる。特に連続製膜において張力が付与されていない幅方向において、収縮は顕著である。収縮により、寸法安定性等に問題が生じるため、基材としては熱寸法変化率が小さいものが望まれる。不織布において、多孔性支持層とは反対側の表層における繊維配向度と多孔性支持層側表層における繊維配向度との差が10°~90°であると、熱による幅方向の変化を抑制することもでき、好ましい。
 ここで、繊維配向度とは、多孔性支持層を構成する不織布基材の繊維の向きを示す指標である。具体的には、繊維配向度とは、連続製膜を行う際の製膜方向、つまり不織布基材の長手方向と、不織布基材を構成する繊維との間の角度の平均値である。つまり、繊維の長手方向が製膜方向と平行であれば、繊維配向度は0°である。また、繊維の長手方向が製膜方向に直角であれば、すなわち不織布基材の幅方向に平行であれば、その繊維の配向度は90°である。よって、繊維配向度が0°に近いほど縦配向であり、90°に近いほど横配向であることを示す。
 繊維配向度は以下のように測定される。まず、不織布からランダムに小片サンプル10個を採取する。次に、そのサンプルの表面を走査型電子顕微鏡で100~1000倍で撮影する。撮影像の中で、各サンプルあたり10本を選び、不織布の長手方向(縦方向、製膜方向)を0°としたときの角度を測定する。つまり1つの不織布あたり計100本の繊維について、角度の測定が行われる。こうして測定された100本の繊維についての角度から平均値を算出する。得られた平均値の小数点以下第一位を四捨五入して得られる値が、繊維配向度である。
 基材の厚みは、基材と多孔性支持層との厚みの合計が、30~300μmの範囲内、または50~250μmの範囲内となるように設定されることが好ましい。
(2-3)透過側流路材
 図2に示したように、透過側流路材(以下、単に「流路材」ともいう)4は、分離膜本体30の透過側の面18に固着する。具体的には、透過側流路材4は、透過側流路15を形成するように設けられる。「透過側流路を形成するように設けられる」とは、分離膜が後述の分離膜エレメントに組み込まれたときに、分離膜本体を透過した透過流体が集水管に到達できるように、流路材が設けられていることを意味する。
 本発明において、透過側流路材は、高結晶性ポリプロピレン(A)を少なくとも含む組成物から構成され、かつ下記要件(a)および(b)を満たすことが肝要である。
(a)高結晶性ポリプロピレン(A)の含有量が、組成物中、40~95重量%である。
(b)前記透過側流路材の融解吸熱量(ΔH)が20~70J/gである。
 高結晶性ポリプロピレン(A)の含有量を、組成物中、95重量%以下とすることで、透過側流路が形成された分離膜のカールを抑制できる。それによって、分離膜の取扱性が向上し、例えば分離膜エレメントの製造工程の一つである、封筒状膜を積層する工程での通過性が格段に良くなる。高結晶性ポリプロピレン(A)の含有量は85重量%以下であることがより好ましく、75重量%以下であることが更に好ましい。
 一方、高結晶性ポリプロピレン(A)の含有量を、組成物中、40重量%以上とすることで、分離膜のカールが改善されるだけでなく、例えば本発明の分離膜エレメントを、2MPaを超えるような加圧条件で運転しても、透過側流路材の圧縮変形を抑制でき、その結果、分離膜エレメント性能(特に造水性能)の低下を抑制でき、安定した性能を発現できる。圧縮変形量を抑制する点から、高結晶性ポリプロピレン(A)の含有量は、45重量%以上であることがより好ましく、50重量%であることが更に好ましい。
 本発明の高結晶性ポリプロピレン(A)とは、例えばプロピレン単独重合体;プロピレンランダム共重合体;プロピレンブロック共重合体等が挙げられ、これらを単独で、または2種以上混合して用いてもよい。また高結晶性ポリプロピレン(A)の融点は140℃以上であることが好ましく、150℃以上であることがより好ましい。なお融点は、示差走査熱量計(DSC)にて測定される値であり、測定方法の詳細については後述する。
 更には高結晶性ポリプロピレン(A)のメルトフローレイト(MFR)は10~2000g/10分であることが好ましい。MFRをこのような範囲とすることで、透過側流路材の溶融成形が容易となる。また溶融成形温度を低く設定することが可能となり、その結果、溶融成形時の分離膜本体の熱による損傷や分離膜性能の低下を抑制でき、さらには分離膜本体の透過側の面への固着性が良好となる。高結晶性ポリプロピレン(A)のMFRは30~1800g/10分であることがより好ましく、50~1500g/10分であることが更に好ましい。なおMFRの測定方法の詳細については後述する。
 本発明において、透過側流路材の融解吸熱量(ΔH)は20~70J/gであることが肝要である。透過側流路材のΔHが20J/gより小さい場合、分離膜のカールは十分に抑制されるが、一方、透過側流路材を構成する組成物の結晶化が非常に遅くなるため、透過側流路材がべたついてしまう。その結果、ロール搬送の際、透過側流路材がロールに接着したり、ロールとの接触により透過側流路材が変形してしまう。更には、巻取機で巻き取り、その後、巻き出した場合、透過側流路材が分離膜の分離機能層側に付着してしまう等、分離膜ロールの巻き出し性が著しく悪化し、分離膜の取扱性が大きく低下する。更には加圧運転下での圧縮変形量が大きくなってしまう。
 一方、透過側流路材のΔHが70J/gより大きい場合、透過側流路材を構成する組成物の結晶化が速いため、透過側流路を形成する際、組成物の冷却、固化に伴う体積変化量が非常に大きくなり、その結果、分離膜は大きくカールしてしまう。更には、透過側流路材は非常に脆くなってしまい、ロール搬送時に透過側流路材の破壊が発生する。
 透過側流路材のΔHは、25~65J/gであることがより好ましく、30~60J/gであることが更に好ましい。なお融解吸熱量は、示差走査熱量計(DSC)にて測定される数値であり、測定方法の詳細については、後述する。
 本発明において、透過側流路材を構成する組成物には、低結晶性α-オレフィン系ポリマー(B)を含むことが好ましく、その含有量は、組成物中、5~60重量%であることが好ましい。
 本発明の低結晶性α-オレフィン系ポリマーとは、非晶性または低結晶性のα-オレフィン系ポリマーであり、例えば(B-1)アタクチックポリプロピレンや立体規則性が低いアイソタクチックポリプロピレン等の低結晶性ポリプロピレン;(B-2)エチレンおよび炭素数3~20のα-オレフィンからなる群から選ばれたエチレン・α-オレフィン共重合体(炭素数3~20のα-オレフィンとしては、直鎖状及び分岐状のα-オレフィンが含まれ、具体的には、直鎖状のα-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-へプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン等が例示され、分岐状のα-オレフィンとしては、3-メチル-1-ブテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、2-エチル-1-ヘキセン、2,2,4-トリメチル-1-ペンテン等が挙げられる);(B-3)市販品として、三井化学株式会社製「タフマー」、住友化学株式会社製「タフセレン」等のプロピレン・オレフィン共重合体等を例示できる。本発明においては、これらのうち1種または2種以上を用いることができる。なかでも低結晶性α-オレフィン系ポリマー(B)としては、高結晶性ポリプロピレンとの良好な相溶性、汎用性、分離膜のカール改善効果等の観点から、(B-1)低結晶性ポリプロピレンおよび(B-3)プロピレン・オレフィン共重合体がより好ましい。
 本発明において、低結晶性α-オレフィン系ポリマー(B)の含有量は、透過側流路材を構成する組成物に対して、5~60重量%であることが好ましい。低結晶性α-オレフィン系ポリマー(B)の含有量を5重量%以上とすることで、透過側流路材に柔軟性を付与でき、また高結晶性ポリプロピレン(A)の結晶化速度を遅延させることができ、その結果、分離膜のカールを抑制できる。一方、低結晶性α-オレフィン系ポリマー(B)の含有量が60重量%を超えると、分離膜のカールを大きく改善できるものの、透過側流路材の柔軟性が著しく高くなり、例えば2MPaを超えるような加圧条件で運転すると、透過側流路材の圧縮変形量が大きくなり、その結果、流路閉塞によって、分離膜エレメント性能(特に造水性能)が大きく低下する。低結晶性α-オレフィン系ポリマー(B)の含有量は、透過側流路材の柔軟性および加圧下における圧縮変形性の点から、10~55重量%であることがより好ましく、15~50重量%であることが更に好ましい。
 また本発明において、分離膜本体の透過側の面に固着する流路材には、発明の目的を損なわない範囲で、熱流動性向上剤、フィラー、酸化防止剤、滑剤等の添加剤を1種類あるいは2種類以上含んでいてもよい。
 熱流動性向上剤(C)としては、例えば、(C-1)ポリエチレンワックス、ポリプロピレンワックス、アタクチックポリプロピレンワックス、フィッシャー・トロプシュワックス等の合成ワックス;(C-2)パラフィンワックス、マイクロワックス等の石油ワックス;(C-3)カルナウバロウ、ミツロウ等の天然ワックス;(C-4)ロジン、水添ロジン、重合ロジン、ロジンエステル等のロジン系樹脂;(C-5)テルペン、水素化テルペン、芳香族変性テルペン、芳香族変性水素化テルペン等のテルペン系樹脂;(C-6)出光興産株式会社製「アイマーブ」(商品名)、荒川化学工業株式会社製「アルコン」(商品名)、東ソー株式会社製「ペトコール」、「ペトロタック」(いずれも商品名)等の水素化石油樹脂等を例示できるが、これらに限定されない。またこれらを単独で、または2種以上混合して用いてもよい。これらのうち、組成物の熱流動性向上効果、高結晶性ポリプロピレン(A)との相溶性、加熱溶融時の組成物の耐熱分解性の点から、(C-1)合成ワックス、(C-5)テルペン系樹脂、(C-6)水素化石油樹脂が好ましい。またその含有量は、透過側流路材を構成する組成物の溶融粘度を調整するため、適宜設定できるが、透過側流路材の耐圧性低下や流路材表面へのブリードアウトの発生を防ぐことを考慮すると、組成物中、50重量%以下であることが好ましく、40重量%以下であることがより好ましい。
 酸化防止剤(D)としては、フェノール系化合物;リン系化合物;ヒンダードアミン系化合物;イオウ系化合物等を例示できるが、これらに限定されない。またこれらを単独で、または2種以上を混合して用いてもよい。透過側流路材の成形時、組成物の熱分解を抑制する点から、含有量は、組成物に対して、0.001~1重量%であることが好ましい。
 滑剤(E)としては、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、エチレンビスステアリン酸アミド等の脂肪酸アミド系化合物;ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸亜鉛等の金属せっけん;脂肪酸エステル系化合物等を例示できるが、これらに限定されない。また、これらを単独で、また2種以上を混合して用いてもよい。
 フィラー(F)としては、炭酸カルシウム、タルク、アルミナ、シリカ、マイカ、クレー等無機系化合物等を例示できるが、これらに限定されない。またこれらを単独で、また2種以上を混合して用いてもよい。透過側流路材の成形性、組成物の増粘、加工装置の摩耗の点から、含有量は、組成物に対して、3~30重量%であることが好ましい。
 本発明において、分離膜本体の透過側の面に固着する透過側流路材の引張伸度は5%以上であることが好ましい。引張伸度が5%以上である場合、分離膜をロール搬送したり、巻取機に巻き取っても、流路材の破損や破壊を抑制でき、高品質な分離膜を得ることができ、またエレメント製造工程において、取扱性が良好となる。引張伸度は7%以上であることがより好ましく、10%以上であることが更に好ましい。また、引張伸度は、高いほど破壊に要するエネルギーが高くなり、靭性の点からは好ましいが、過度に高くすると、定応力下での変形量が大きくなってしまうため、300%以下が好ましく、200%以下がより好ましい。
 本発明において、分離膜本体の透過側の面に固着する透過側流路材の引張弾性率は0.2~2.0GPaであることが好ましい。引張弾性率を0.2GPa以上とすることで、分離膜エレメントを2.0MPaを超えるような加圧条件下で運転しても、流路材の圧縮変形量を抑制でき、その結果、造水性能の低下を抑制できる。引張弾性率は、0.25GPa以上であることがより好ましく、0.30GPa以上であることが更に好ましい。引張弾性率は高ければ高いほど、加圧運転時の流路材の圧縮変形量を抑制できるが、実質的に2.0GPa以上を達成することは困難である。
 透過側流路材の形状は、連続形状であってもよいし、不連続形状であってもよい。「連続」な流路材とは、流路材を1枚の分離膜本体から分離したときに、複数の部分に分かれずに一体の形状を有する部材として分離される流路材である。例えば、ネット、トリコット(編物)およびフィルム等の部材は、連続な流路材である。
 これに対して、「不連続」とは、流路材を分離膜本体から剥離すると、流路材が複数の部分に分かれる状態である。便宜上、1枚の分離膜本体上で分かれた個々の部分、および1つの分離膜本体上に設けられた流路材全体のいずれも、「流路材」と呼ぶことがある。
 例えばトリコット等の編物が流路材として用いられた場合、流路の高さは編物の厚みよりも小さくなる。これに対して、不連続な流路材の厚みは全て、流路の高さとして活用されるので、不連続な流路材は、連続な形状よりも、流動抵抗を低減し、造水量を増加させることができる。
 図5~図8に、不連続形状の流路材の例を示す。
 図5および図10に示すように、流路材42は、上部が略半球形状である円柱形の部材であって、分離膜本体30上に格子状に配置されている。図6に示す個々の流路材43の形状は図5に示した流路材42の形状と同じであるが、図6では、流路材43は千鳥状に配置されている。
 図7に示すように、流路材44は、平面視が楕円状の円柱形の部材であって、分離膜本体30上に千鳥状に配置されている。図11に示すとおり、流路材44の上面は平らであり、その断面形状は矩形である。
 図8に示すように、流路材45は、平面形状は直線状の壁状部材である。壁状部材は、互いに平行に配置されている。図12に示すように、分離膜本体30の膜面に垂直な平面における流路材45の断面は、上部の幅が下部の幅よりも狭い台形である。
 図9に、連続形状の流路材の例を示す。図9に示したように、流路材46は、分離膜本体30の膜面方向に連続するネット状の部材である。この場合、流路材が交差する部分の高さが流路材の厚みに相当し、交差していない部分の厚みよりも大きいものである。
 なお、図5~図9に示す流路材のいずれにおいても、その断面形状は図10~図12に示した断面形状に変更可能である。つまり、異なる形態として説明した流路材の平面形状および断面形状、ならびに配置は、互いに組み合わせることができる。このように、流路材は、図5~図9の平面形状のいずれかを、図10~図12の断面形状のいずれかと任意に組み合わせることで得られる形態も、本発明の実施形態に含まれる。
 分離膜本体の透過側の面に固着する流路材は、巻回方向におけるシートの内側端部から外側端部まで連続するように配置される。巻回方向の内側とは、分離膜本体において、集水管に近い側であり、巻回方向の外側とは、分離膜本体において集水管から遠い側であり、流路材は集水管の長手方向に直交していることが好ましい。
 また、分離膜エレメントを用いた加圧運転時における複数の流路材間の膜落ち込みを抑制する観点から、隣接する流路材の間隔は、0.05~5.00mmであることが好ましく、0.10~2.00mmであることがより好ましく、この範囲内で適宜設計するとよい。なお流路材の間隔とは、高低差が存在する流路材における高い箇所の最も高いところから近接する高い箇所の最も高い箇所までの水平距離のことである。
 分離膜の透過側の高低差、すなわち透過側流路材の厚みは50~500μmであることが好ましく、より好ましくは75~450μm、さらに好ましくは100~400μmである。流路材の厚みを500μm以下とすることで、1つのベッセルに充填できる膜リーフ数を多くすることができる。また、流路材の厚みを50μm以上とすることで、流体の流動抵抗を比較的小さくすることができるので、良好な分離特性および透過性能を得ることができる。
 分離膜の透過側の高低差は、株式会社キーエンス製デジタルマイクロスコープ「VHX-1000」(商品名)などを用いて断面サンプルから計測することができる。測定は任意の高低差が存在する箇所について実施し、各厚みの値を総和した値を測定総箇所の数で割って求めることができる。
 また、分離膜の形態は、流路材が分離膜本体の縁まで設けられている形態であってもよいし、縁近傍において流路材が設けられていない領域がある形態であってもよい。つまり、流路材が透過側の流路を形成できるように配置されていれば、分離膜本体において流路材が設けられない部分があってもよい。例えば、透過側の面における他の分離膜との接着部分には、流路材が設けられる必要はない。また、その他の使用上または製造上の理由により、分離膜の端部などの一部の箇所に、流路材が配置されない領域が設けられていてもよい。
(2-4)突起物が固着されたシート流路材
 本発明において、突起物が固着されたシートは透過側流路材として採用することができる。図13に示すように、シート19上に突起物20が固着されたシート流路材47は、透過側流路材として2つの分離膜本体30Bの透過側面に配置される。
 突起物20をシート19に固着したシート流路材47の場合、シート上に突起物を形成させる時に位置精度不良や加工欠点により、隣り合う突起物同士が結合し、透過水流路(突起物間の溝)が閉塞するような形状になったとしても、シート内部が流路となり、透過水はシートを介して別の溝へ移動することができる。更には、シート上に突起物を加工しているので、突起物を形成させる時に分離膜自体の性能低下が生じない。
 シートとしては、繊維状基材、多孔性フィルムなどが挙げられるが、強度および水の透過性の点で繊維状基材を用いることが好ましい。
 繊維状基材としては、長繊維不織布及び短繊維不織布のいずれも好ましく用いることができ、突起物のシートへの接着性、2枚の分離膜の透過側の面の間を封止する際のシートへの接着剤の含浸性、シート搬送におけるシート破れの防止の点から、繊維状基材の厚みは20~150μm、目付は20~100g/mの範囲であることが好ましい。
 本発明において、シートに固着された突起物は、その融解吸熱量(ΔH)が20~70J/gであることが肝要である。突起物のΔHが20J/gより小さい場合、突起物が固着されたシートのカールは十分に抑制されるが、一方、突起物を構成する組成物の結晶化が非常に遅くなるため、突起物がべたついてしまう。その結果、ロール搬送の際、突起物がロールに接着したり、またロールとの接触により突起物の形状が変形してしまう。更には、巻取機で巻き取り、その後、巻き出した場合、突起物がシート(突起物が設けられていない面)に接着してしまう等、突起物が固着されたシートロールの巻き出し性が著しく悪化し、その結果、取扱性が大きく低下する。更には、エレメント形態で加圧運転した際、突起物の圧縮変形量が大きくなり、エレメント性能が低下してしまう。
 一方、突起物のΔHが70J/gより大きい場合、シートに固着された突起物を構成する組成物の結晶化が速いため、突起物を形成する際、組成物の冷却、固化に伴う体積変化量が非常に大きくなり、その結果、突起物が固着されたシートは大きくカールしてしまう。更には、突起物は非常に脆くなってしまい、突起物が固着されたシートをロール搬送する際、突起物の破壊や破壊された場所を起点として、突起物のシートからの剥離が発生する。
 突起物のΔHは、25~65J/gであることがより好ましく、30~60J/gであることが更に好ましい。なお融解吸熱量は、示差走査熱量計(DSC)にて測定される数値であり、測定方法の詳細については、後述する。
 本発明において、突起物を構成する組成物には、低結晶性α-オレフィン系ポリマー(B)を含むことが好ましく、その含有量は、組成物中、5~60重量%であることが好ましい。
 低結晶性α-オレフィン系ポリマーは、例えば、上記した(B-1)低結晶性ポリプロピレン、(B-2)エチレン・α-オレフィン共重合体、(B-3)プロピレン・オレフィン共重合体等を例示できる。本発明においては、これらのうち1種または2種以上を用いることができる。なかでも低結晶性α-オレフィン系ポリマー(B)としては、高結晶性ポリプロピレンとの良好な相溶性、汎用性、シート流路材のカール改善効果等の観点から、(B-1)低結晶性ポリプロピレンおよび(B-3)プロピレン・オレフィン共重合体がより好ましい。
 本発明において、低結晶性α-オレフィン系ポリマー(B)の含有量は、突起物を構成する組成物に対して、5~60重量%であることが好ましい。低結晶性α-オレフィン系ポリマー(B)の含有量を5重量%以上とすることで、突起物に柔軟性を付与でき、また高結晶性ポリプロピレン(A)の結晶化速度を遅延させることができ、その結果、シート流路材のカールを抑制できる。一方、低結晶性α-オレフィン系ポリマー(B)の含有量が60重量%を超えると、シート流路材のカールを大きく改善できるものの、突起物の柔軟性が著しく高くなり、例えば2MPaを超えるような加圧条件で運転すると、突起物の圧縮変形量が大きくなり、その結果、透過側流路の閉塞によって、分離膜エレメント性能(特に造水性能)が大きく低下する。低結晶性α-オレフィン系ポリマー(B)の含有量は、突起物の柔軟性および加圧下における圧縮変形性の点から、10~55重量%であることがより好ましく、15~50重量%であることが更に好ましい。
 また本発明において、シート流路材には、発明の目的を損なわない範囲で、熱流動性向上剤、フィラー、酸化防止剤、滑剤等の添加剤を1種類あるいは2種類以上含んでいてもよい。
 熱流動性向上剤(C)としては、例えば、上記した(C-1)合成ワックス、(C-2)石油ワックス、(C-3)天然ワックス、(C-4)ロジン系樹脂、(C-5)テルペン系樹脂、(C-6)水素化石油樹脂等を例示できるが、これらに限定されない。またこれらを単独で、または2種以上混合して用いてもよい。これらのうち、組成物の熱流動性向上効果、高結晶性ポリプロピレン(A)との相溶性、加熱溶融時の組成物の耐熱分解性の点から、(C-1)合成ワックス、(C-5)テルペン系樹脂、(C-6)水素化石油樹脂が好ましい。
 またその含有量は、突起物を構成する組成物の溶融粘度を調整するため、適宜設定できるが、突起物の耐圧性低下や突起物表面へのブリードアウトの発生を防ぐことを考慮すると、組成物中、50重量%以下であることが好ましく、40重量%以下であることがより好ましい。
 酸化防止剤(D)としては、上記したフェノール系化合物、リン系化合物、ヒンダードアミン系化合物、イオウ系化合物等を例示できるが、これらに限定されない。またこれらを単独で、または2種以上を混合して用いてもよい。突起物をシートに固着させる際、組成物の熱分解を抑制する点から、含有量は、組成物に対して、0.001~1重量%であることが好ましい。
 滑剤(E)としては、上記した脂肪酸アミド系化合物、金属せっけん、脂肪酸エステル系化合物等を例示できるが、これらに限定されない。また、これらを単独で、また2種以上を混合して用いてもよい。
 フィラー(F)としては、上記した無機系化合物等を例示できるが、これらに限定されない。またこれらを単独で、また2種以上を混合して用いてもよい。突起物の成形性、組成物の増粘、加工装置の摩耗の点から、フィラー(F)の含有量は、組成物に対して、3~30重量%であることが好ましい。
 本発明において、シートに固着された突起物の引張伸度は5%以上であることが好ましい。引張伸度が5%以上である場合、突起物が固着されたシートをロール搬送したり、巻取機に巻き取っても、突起物の破損や破壊を抑制でき、高品質なシートを得ることができ、またエレメント製造工程において、取扱性が良好となる。引張伸度は7%以上であることがより好ましく、10%以上であることが更に好ましい。また、引張伸度は、高いほど破壊に要するエネルギーが高くなり、靭性の点からは好ましいが、過度に高くすると、定応力下での変形量が大きくなってしまうため、300%以下が好ましく、200%以下がより好ましい。
 本発明において、シートに固着された突起物の引張弾性率は0.2~2.0GPaであることが好ましい。引張弾性率を0.2GPa以上とすることで、分離膜エレメントを2.0MPaを超えるような加圧条件下で運転しても、突起物の圧縮変形量を抑制でき、その結果、造水性能の低下を抑制できる。引張弾性率は、0.25GPa以上であることがより好ましく、0.30GPa以上であることが更に好ましい。引張弾性率は高ければ高いほど、加圧運転時の流路材の圧縮変形量を抑制できるが、実質的に2.0GPa以上を達成することは困難である。
 シート上に固着された突起物において、突起物の形状は、連続形状であってもよいし、不連続形状であってもよい。「連続」な突起物とは、突起物を1枚のシートから剥離させたときに、複数の部分に分かれずに一体の形状を有するものである。これに対して、「不連続」な突起物とは、突起物をシートから剥離させたとき、突起物が複数の部分に分かれるものである。
 例えばシート上に連続形状を有する突起物を設けた流路材の場合、流路の高さは連続形状を有する突起物の厚みよりも小さくなる。これに対して、不連続形状を有する突起物を設けた流路材の厚みは全て、流路の高さとして活用されるので、不連続形状の流路材は、連続形状の流路材よりも、流動抵抗を低減することができ、その結果、造水量を増加させることができる。
 図14~図17に、不連続形状の突起物の例を示す。
 図14および図19に示すように、突起物21は、上部が略半球形状である円柱形の部材であって、シート19上に格子状に配置されている。図15に示す個々の突起物22の形状は、図14に示した突起物21の形状と同じであるが、図15では、突起物22は千鳥状に配置されている。
 図16に示すように、突起物23は、楕円柱であって、シート19上に千鳥状に配置されている。図20に断面を示すとおり、突起物23の上面は平らであり、その断面形状は矩形である。
 図17に示すように、突起物24は、平面形状は直線状の壁状部材である。壁状部材は、互いに平行なストライプ状に配置されている。図21に示すように、シート面に対して垂直方向における突起物24の断面は、上部の幅が下部の幅よりも狭い台形である。
 図18に、連続形状の突起物25の例を示す。図18に示したように、突起物25は、シート面方向に連続するネット状の部材である。この場合、突起物が交差する部分の高さが突起物の厚みに相当し、交差していない部分の厚みよりも大きいものである。
 なお、図14~図18に示す流路材のいずれにおいても、その断面形状は図19~図21に示した断面形状に変更可能である。つまり、異なる形態として説明した流路材の平面形状および断面形状、ならびに配置は、互いに組み合わせることができる。このように、流路材は、図14~図18の平面形状のいずれかを、図19~図21の断面形状のいずれかと任意に組み合わせることで得られる形態も、本発明の実施形態に含まれる。
 また、分離膜エレメントを用いた加圧運転時における複数の突起物間の膜落ち込みを抑制する観点から、隣接する突起物の間隔は、0.05~5.00mmであることが好ましく、0.10~2.00mmであることがより好ましく、この範囲内で適宜設計するとよい。なお突起物の間隔とは、高低差が存在する突起物における高い箇所の最も高いところから近接する高い箇所の最も高い箇所までの水平距離のことである。
 シートに固着された突起物の厚みは50~500μmであることが好ましく、より好ましくは75~450μm、さらに好ましくは100~400μmである。突起物の厚みを500μm以下とすることで、1つのベッセルに充填できる膜リーフ数を多くすることができる。また、突起物の厚みを50μm以上とすることで、流体の流動抵抗を比較的小さくすることができるので、良好な分離特性および透過性能を得ることができる。
 シート上に固着された突起物の高低差は、株式会社キーエンス製デジタルマイクロスコープ「VHX-1000」(商品名)などを用いて断面サンプルから計測することができる。測定は任意の高低差が存在する箇所について実施し、各厚みの値を総和した値を測定総箇所の数で割って求めることができる。
 シート上に固着された突起物は、巻回方向におけるシートの内側端部から外側端部まで連続するように配置される。巻回方向の内側とは、シートにおいて集水管に近い側であり、巻回方向の外側とは、シートにおいて集水管から遠い側であり、突起物は集水管の長手方向に直交していることが好ましい。
 シート上に固着された突起物形態は、突起物がシートの縁まで設けられている形態であってもよいし、縁近傍において突起物が設けられていない領域がある形態であってもよい。つまり、シート上に固着された突起物が透過側の流路を形成できるように配置されていれば、シート上に突起物が設けられない部分があってもよい。縁近傍において突起物を設けられていない領域がある形態では、分離膜本体の透過側面を接着材で固着させる時、接着面は突起物による凹凸がないため、分離膜本体同士の接着性が向上する。更には接着面に突起物を設けられていない場合、当該部分の流路材使用量を削減することができる。
3.分離膜の製造方法
(3-1)分離膜本体
 分離膜本体の製造方法については上述したが、簡単にまとめると以下のとおりである。
 良溶媒に樹脂を溶解し、得られた樹脂溶液を基材にキャストして純水中に浸漬して多孔性支持層と基材を複合させる。その後、上述したように、多孔性支持層上に分離機能層を形成する。さらに、必要に応じて分離性能、透過性能を高めるべく、塩素、酸、アルカリ、亜硝酸などの化学処理を施し、さらにモノマー等を洗浄し分離膜本体の連続シートを作製する。なお、化学処理の前または後で、エンボス加工等によって分離膜本体に凹凸を形成してもよい。
(3-2)透過側流路材
(3-2-1)分離膜本体の透過側面に固着する流路材
 透過側流路材を設ける工程は、分離膜製造のどの時点で行われてもよい。例えば、流路材は、基材上に多孔性支持層が形成される前に設けられてもよいし、多孔性支持層が設けられた後であって分離機能層が形成される前に設けられてもよいし、分離機能層が形成された後、上述の化学処理が施される前または後に行われてもよい。
 流路材に含まれる各層を形成する工程には、塗布、印刷、噴霧等が採用される。また、使用される機器としては、ノズル型ホットメルトアプリケーター、スプレー型ホットメルトアプリケーター、フラットノズル型ホットメルトアプリケーター、ロール型コーター、押出型コーター、グラビア印刷機、噴霧器などが挙げられる。
 加熱によって樹脂組成物を加工して透過側流路材を形成する場合、加工温度は、樹脂を溶融成形加工できる温度であれば特に限定されないが、加工時の熱による分離膜の性能低下を抑制する点で230℃以下であることが好ましく、200℃以下であることがより好ましい。
 また加熱による溶融成形加工の際、透過側流路材を構成する組成物の溶融粘度は、1~100Pa・sであることが好ましい。組成物の溶融粘度を1Pa・s以上とすることで透過側流路材の溶融成形性が高まり、所望の形状付与が可能となり、また流路材は機械的特性に優れ、分離膜の取扱性が良好となる。一方、溶融粘度を100Pa・s以下とすることで分離膜本体の透過側の面への組成物の含浸が速やかに進行し、流路材の固着性を高めることができ、分離膜本体から流路材の剥離が発生せず、取扱性、品質に優れた分離膜を得ることができる。組成物の溶融粘度は、3~95Pa・sであることがより好ましく、5~90Pa・sであることが更に好ましい。
 また溶融成形加工では、溶融した樹脂を冷却固化する過程において、冷風や液体を用いて樹脂を強制的に冷却してもよい。
(3-2-2)シート上に突起物が設けられた流路材
 シート上に突起物を設ける方法や加熱によって樹脂を突起物に加工する場合、上記「(3-2-1)分離膜本体の透過側面に固着する流路材」の項に記載した要件を好ましく採用できる。
4.分離膜エレメントの製造方法
(4-1)概要
 分離膜エレメントの製造には、従来のエレメント製作装置を用いることができる。また、エレメント作製方法としては、参考文献(日本国特公昭44-14216号公報、日本国特公平4-11928号公報、日本国特開平11-226366号公報)に記載される方法を採用することができる。詳細は以下の通りである。
(4-2)供給側流路の形成
 供給側流路材が、ネット等の連続的に形成された部材である場合は、分離膜と供給側流路材とを重ね合わせることで、供給側流路を形成することができる。
 また、分離膜に樹脂を直接塗布することで、不連続な、または連続な形状を有する供給側流路材を形成することができる。分離膜本体に固着された供給側流路材によって形成される場合も、供給側流路材の配置が分離膜の製造方法の一部とみなされてもよい。
 また、分離膜本体を凹凸加工することで、流路を形成してもよい。凹凸加工法としては、エンボス成形、水圧成形、カレンダ加工といった方法が挙げられる。エンボス加工の条件、エンボス加工形状等は、求められる分離膜エレメントの性能等に応じて適宜設計すればよい。この凹凸加工は、分離膜の製造方法の一部とみなされてもよい。
(4-3)分離膜の積層および巻回
(4-3-1)分離膜本体の透過側面に固着する流路材
 1枚の分離膜を透過側の面が内側を向くように折り畳んで貼り合わせることで、または2枚の分離膜を透過側の面が内側を向くように重ねて貼り合わせることで、図1に示したような封筒状膜5が形成される。上述したように、封筒状膜は三辺が封止される。封止は、接着剤またはホットメルト等による接着、熱またはレーザによる融着等により実行できる。
 封筒状膜の形成に用いられる接着剤は、粘度が4~15Pa・sの範囲内であることが好ましく、さらに5~12Pa・sがより好ましい。分離膜にしわが発生すると、分離膜エレメントの性能が低下することがあるが、接着剤粘度が、15Pa・s以下であることで、分離膜を集水管に巻囲するときに、しわが発生しにくくなる。また、接着剤粘度が4Pa・s以上である場合、分離膜間からの接着剤の流出が抑制され、不要な部分に接着剤が付着する危険性が低下する。
 接着剤の塗布量は、分離膜が集水管に巻囲された後に、接着剤が塗布される部分の幅が10~100mmであるような量であることが好ましい。これによって、分離膜が確実に接着されるので、原流体の透過側への流入が抑制される。また、有効膜面積も比較的大きく確保することができる。
 接着剤としてはウレタン系接着剤が好ましく、粘度を4~15Pa・sの範囲とするためには、主剤のイソシアネートと硬化剤のポリオールとが、イソシアネート:ポリオール=1:1~1:5の割合で混合されたものが好ましい。接着剤の粘度は、予め主剤、硬化剤単体、及び配合割合を規定した混合物の粘度をB型粘度計(JIS K 6833)で測定される。
 こうして接着剤が塗布された分離膜は、封筒状膜の閉口部分が巻回方向内側に位置するように配置され、集水管の周囲に分離膜を巻きつけられる。こうして、分離膜がスパイラル状に巻回される。
(4-3-2)シート上に突起物が設けられた流路材
 1枚の分離膜本体を透過側面が内側を向くように折り畳んで貼り合わせることで、または2枚の分離膜本体を透過側面が内側を向くように重ねて貼り合わせることで、封筒状膜5が形成される。その間に、透過側流路材を構成する、突起物が固着されたシート(シート流路材)が挿入される。
 上述したように、封筒状膜は三辺が封止される。封止は、接着剤またはホットメルト等による接着、熱またはレーザによる融着等により実行できる。接着剤の粘度、塗布量、種類は、上記「(4-3-1)分離膜本体の透過側面に固着する流路材」の項に記載した要件が好ましい。
 こうして接着剤が塗布された分離膜は、封筒状膜の閉口部分が巻回方向内側に位置するように配置され、集水管の周囲に分離膜が巻きつけられる。
(4-4)その他の工程
 分離膜エレメントの製造方法は、上述のように形成された分離膜の巻回体の外側に、フィルムおよびフィラメント等をさらに巻きつけることを含んでいてもよいし、集水管の長手方向における分離膜の端を切りそろえるエッジカット、端板の取り付け等のさらなる工程を含んでいてもよい。
5.分離膜エレメントの利用
 分離膜エレメントは、さらに、直列または並列に接続して圧力容器に収納されることで、分離膜モジュールとして使用されてもよい。
 また、上記の分離膜エレメント、モジュールは、それらに流体を供給するポンプや、その流体を前処理する装置などと組み合わせて、流体分離装置を構成することができる。この分離装置を用いることにより、例えば供給水を飲料水などの透過水と膜を透過しなかった濃縮水とに分離して、目的にあった水を得ることができる。
 流体分離装置の操作圧力は高い方が除去率は向上するが、運転に必要なエネルギーも増加すること、分離膜エレメントの供給流路、透過流路の保持性も考慮すると、膜モジュールに原流体を透過する際の操作圧力は、0.2~8MPaの範囲が好ましい。原流体温度は、高くなると塩除去率が低下するが、低くなるにしたがい膜透過流束も減少するので、5~45℃の範囲が好ましい。また、原流体pHは、高くなると海水などの高塩濃度の供給水の場合、マグネシウムなどのスケールが発生する恐れがあり、また、高pH運転による膜の劣化が懸念されるため、中性領域での運転が好ましい。
 分離膜エレメントによって処理される流体は特に限定されないが、水処理に使用する場合、供給水としては、海水、かん水、排水等の500mg/L~100g/LのTDS(Total Dissolved Solids:総溶解固形分)を含有する液状混合物が挙げられる。一般に、TDSは総溶解固形分量を指し、「重量÷体積」あるいは「重量比」で表される。定義によれば、0.45μmのフィルターで濾過した溶液を39.5~40.5℃の温度で蒸発させ残留物の重さから算出できるが、より簡便には実用塩分(S)から換算できる。
 以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。
A.分離膜、シート流路材のカール評価
 分離膜本体の基材側に透過側流路材を固着させた分離膜または突起物が固着されたシート(シート流路材)を、たて50cm、横50cmの大きさに切断して試験片とした。この試験片を定盤の上に載置し、試験片の4隅の浮き上がり量を測定し、その平均値を試験片のカール高さとした。この測定に供した試験片は5枚であり、試験片5枚の平均値を、分離膜またはシート流路材のカール高さ(h)とし、下記基準によって、カール性を評価した。なお「◎」および「○」を合格とし、分離膜またはシート流路材の取扱性が優れていると評価した。
 <評価基準>
 ◎:カール高さ(h)≦2cm
 ○:2cm<カール高さ(h)≦5cm
 △:5cm<カール高さ(h)≦10cm
 ×:10cm<カール高さ(h)
B.メルトフローレイト(MFR)
 JIS K7210:1999に準拠し、温度230℃、加重21.18Nの条件でMFR[g/10分]を測定した。測定回数は3回であり、その平均値をMFRとした。
C.透過側流路材の融解吸熱量測定
 透過側流路材の融解吸熱量は、パーキンエルマー社製示差走査熱量計DSC-7型を用いて測定した。すなわち、透過側流路材を分離膜本体またはシートから剥離させた試料10mgを昇温速度10℃/分にて200℃まで昇温し、得られたDSC曲線の吸熱ピーク面積から融解吸熱量を算出した。測定回数は3回であり、その平均値を融解吸熱量[J/g]とした。
D.高結晶性ポリプロピレンの融点
 高結晶性ポリプロピレン(A)の融点は、パーキンエルマー社製示差走査熱量計DSC-7型を用いて測定した。すなわちポリプロピレン試料10mgを昇温速度10℃/分にて220℃まで昇温し、220℃で5分間保持した後、室温まで15℃/分で降温させた。その後、220℃まで昇温速度10℃/分で再度昇温し、この際、100~200℃の範囲で出現した吸熱ピークのトップ温度を融点とした。測定回数は3回であり、その平均値を高結晶性ポリプロピレン(A)の融点[℃]とした。
E.溶融粘度
 株式会社東洋精機製作所製キャピラリーレオメーター「キャピログラフ1B」(商品名)を用い、L=40mm、D=1mmのダイを用いて、温度200℃、剪断速度24sec-1で測定した値を溶融粘度[Pa・s]とした。溶融粘度測定に供したペレットは、測定前に100℃の温度で8時間の真空乾燥を行い、溶融時間5分として測定した。
F.透過側流路材の厚み・間隔
 走査型電子顕微鏡「S-800」(商品名、株式会社日立製作所製)を用いて10個の任意の透過側流路材の断面を500倍で写真撮影した。撮影された画像において、透過側流路材の厚み、並びに隣り合う透過側流路材の間隔を測定した。
G.透過側流路材の伸度および引張弾性率
 透過側流路材を分離膜本体から剥離させた試料、または突起物をシートから剥離させた試料を、温度20℃、湿度65%の環境下において、株式会社島津製作所製オートグラフ「AG-50NISMS」(商品名)を用い、試料長10cm、引張速度10cm/minの条件で引張試験を行った。最大荷重の示す点の伸度を流路材の伸度[%]とし、また測定で得られた応力-歪み曲線から引張弾性率[GPa]を測定した。測定回数は5回とし、その平均値を伸度、引張弾性率とした。
H.分離膜シート、シート流路材の巻き出し性評価
 分離膜本体の基材側に透過側流路材を固着させる加工工程において、またはシート上に突起物を固着させる加工工程において、長さ10mの加工を実施し、巻取機に巻き取り、分離膜ロールまたはシートロールを得た。その後、分離膜ロールまたはシートロールから2m/分の速度で分離膜シートまたは突起物が固着されたシート(シート流路材)10mを巻き出し、下記基準によって、分離膜シートまたはシート流路材の巻き出し性を評価した。なお「◎」および「○」を合格とし、分離膜またはシート流路材の巻き出し性が優れていると評価した。
 <評価基準>
 ◎:分離膜機能層への透過側流路材の固着箇所、またはシート(突起物未固着面)への突起物の固着箇所が0~2箇所/10m
 ○:分離膜機能層への透過側流路材の固着箇所、またはシート(突起物未固着面)への突起物の固着箇所が3~5箇所/10m
 △:分離膜機能層への透過側流路材の固着箇所、またはシート(突起物未固着面)への突起物の固着箇所が6~10箇所/10m
 ×:分離膜機能層への透過側流路材の固着箇所、またはシート(突起物未固着面)への突起物の固着箇所が11箇所以上/10m
I.分離膜シート、シート流路材の品質評価
 分離膜本体の基材側に透過側流路材を固着させる加工工程において、またはシート上に突起物を固着させる加工工程において、長さ10mの加工を実施し、巻取機に巻き取り、分離膜ロールまたはシートロールを得た。その後、分離膜ロールまたはシートロールから2m/分の速度で分離膜シートまたは突起物が固着されたシート(シート流路材)10mを巻き出し、流路材が破壊されている箇所を数え上げ、下記基準によって、分離膜シートまたはシート流路材の取扱性を評価した。なお「◎」および「○」を合格とし、分離膜またはシート流路材の品質が優れていると評価した。
 <評価基準>
 ◎:透過側流路材の破壊箇所が0~2箇所/10m
 ○:透過側流路材の破壊箇所が3~5箇所/10m
 △:透過側流路材の破壊箇所が6~10箇所/10m
 ×:透過側流路材の破壊箇所が11箇所以上/10m
J.造水量および脱塩率(TDS除去率)
 スパイラル型分離膜エレメントに、供給水として濃度500mg/L、pH6.5、温度25℃の食塩水を用い、操作圧力1.5MPaおよび2.5MPaの条件下で1時間運転し、その後、同条件で10分間の運転を行うことで透過水を得た。得られた透過水量から、分離膜エレメントあたり、かつ1日あたりの透水量(立方メートル)を造水量[m/日]とした。
 また、供給水、得られた透過水の電気伝導度を、東亜電波工業株式会社製電気伝導度計を用いて測定し、実用塩分(S)を測定した。こうして得られた実用塩分を塩濃度とみなして、下記式を用いることで、TDS除去率を求めた。本評価はエレメント3本について実施し、その平均値を造水量、TDS除去率とした。
 TDS除去率(%)=100×{1-(透過水中のTDS濃度/供給水中のTDS濃度)}
(分離膜シートの製造)
 ポリエチレンテレフタレート長繊維からなる不織布(繊度:1.1dtex、厚み:90μm、通気度:1cc/cm/sec、繊維配向度:多孔性支持層側表層40°、多孔性支持層とは反対側の表層20°)上に、ポリスルホン15.0重量%のジメチルホルムアミド(DMF)溶液を180μmの厚みで室温(25℃)にてキャストし、ただちに純水中に浸漬して5分間放置し、厚さ130μmの繊維補強ポリスルホン多孔性支持膜ロールを作成した。
 その後、多孔性支持膜のポリスルホンがキャストされた面に、メタフェニレンジアミン(1.8重量%)・ε-カプロラクタム(4.5重量%)水溶液を塗布し、続いて、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド0.06重量%を含む25℃のn-デカン溶液を膜表面が完全に濡れるように塗布した。その後、膜から余分な溶液をエアブローで除去し、熱水洗浄(80℃)後、エアブローで液切りして分離膜本体を得た。
(透過側流路材を構成する樹脂の作成)
 高結晶性ポリプロピレン(PP)(A)、低結晶性α-オレフィン系ポリマー(B)および添加剤(C、D)を表1~表5に示す重量比率で、あらかじめブレンドした後、二軸押出機(テクノベル社製KZW-15)を用いて200℃で溶融混練した。押出機ダイから吐出された樹脂は水槽内で十分に冷却させ、続いて5mm程度にカッティングして組成物ペレットを得た。
(実施例1)
 高結晶性PP(MFR1000g/10分、融点161℃)55重量%と低結晶性α-オレフィン系ポリマー(出光興産株式会社製;低立体規則性ポリプロピレン「L-MODU・S400」(商品名))45重量%からなる組成物ペレットを200℃で溶融させた後、ギアポンプにより、櫛形シム(スリット幅0.4mm、ピッチ0.8mm)が装填されたアプリケーターに溶融樹脂を供給した。
 次いで、櫛形シムから溶融樹脂を吐出させ、分離膜本体の透過側に透過側流路材をストライプ状に10m/分の速度で加工し、フリーロールを介して、巻取機に巻き取り、分離膜ロールを得た(巻取張力15N/m、巻き取りに使用したコア径3インチ)。分離膜ロールからシート10mを巻出し、分離膜シートを得た。
 得られた分離膜シートから透過側流路材を切り離し、流路材の各種特性評価を測定した結果、融解吸熱量(ΔH)は46J/g、引張伸度は25%、引張弾性率は0.31GPaであった。
 次に分離膜シートから縦50cm、横50cmの大きさの試験片を作製し、カール高さを評価した結果、カール高さは1.9cmと低く、取扱性に極めて優れた分離膜であった。流路材中の高結晶性PPの含有量ならびにΔHが好ましい範囲に制御されているためと考えられる。
 分離膜シートの巻き出し性評価を実施したところ、分離膜シートは分離膜機能層表面に固着しておらず、スムーズな巻き出しが可能であった。また流路材の破損箇所を評価した結果、破損箇所は見当たらず、分離膜シートの巻きだし性および品質は極めて良好であった。
 また、分離膜シートを裁断し、1辺が開口するように折りたたまれた分離膜シートの間に、供給側流路材としてネット(厚み:800μm、ピッチ5mm×5mm)を連続的に積層し、分離膜シートの有孔集水管の長手方向の両側の端部にウレタン系接着剤(イソシアネート:ポリオール=1:3)を塗布した後、重ね合わせて、分離膜エレメントでの有効面積が37mになるように、幅930mmの封筒状膜26枚を作製した。
 その後、封筒状膜の開口部側の所定部分を有孔集水管の外周面に接着し、さらにスパイラル状に巻囲することで巻囲体を作製した。巻囲体の外周面にフィルムを巻き付け、テープで固定した後に、エッジカット、端板取りつけ、フィラメントワインディングを行い、直径8インチエレメントを作製した。
 該分離膜エレメントを繊維強化プラスチック製筒型圧力容器に入れて、操作圧力1.5MPa条件で、脱塩率および造水量を測定したところ、エレメント性能は脱塩率98.8%、造水量34.5m/日であった。また操作圧力2.5MPa条件では、脱塩率99.0%、造水量58.5m/日であり、高圧運転条件下でも極めて良好な性能を示した。
 結果を表1に示す。
(実施例2)
 透過側流路材を構成する樹脂を、高結晶性PP(実施例1と同様)92重量%/低結晶性α-オレフィン系ポリマー(出光興産株式会社製;低立体規則性PP「L-MODU・S400」(商品名))8重量%に変更した以外は、実施例1と同様に評価を行った。結果を表1に示す。
 ΔHが高いため、カール高さは4.7cmとやや高かったものの、取扱性に優れた分離膜であった。分離膜シートの巻き出し性評価を実施したところ、分離膜シートは分離膜機能層表面に固着しておらず、スムーズな巻き出しが可能であった。一方、流路材の破損箇所を評価した結果、流路材の引張伸度が小さいことに起因して、長さ10mあたり5箇所の破損箇所が見られたが、品質に優れた分離膜シートであった。
(実施例3)
 透過側流路材を構成する樹脂を、高結晶性PP(実施例1と同様)65重量%/低結晶性α-オレフィン系ポリマー(出光興産株式会社製;低立体規則性PP「L-MODU・S400」(商品名))20重量%/熱流動性向上剤(ヤスハラケミカル株式会社製;テルペン樹脂水素化物「クリアロンP125」(商品名))15重量%に変更した以外は、実施例1と同様に評価を行った。結果を表1に示す。
 カール高さは1.5cmと低く、取扱性に極めて優れた分離膜であった。分離膜シートの巻き出し性評価を実施したところ、分離膜シートは分離膜機能層表面に固着しておらず、スムーズな巻き出しが可能であった。また分離膜シートに破損箇所は見当たらず、分離膜シートの巻きだし性および品質は極めて良好であった。
(実施例4)
 透過側流路材を構成する樹脂を、高結晶性PP(実施例1と同様)40重量%/低結晶性α-オレフィン系ポリマー(出光興産株式会社製;低立体規則性PP「L-MODU・S600」(商品名))30重量%/熱流動性向上剤(ヤスハラケミカル株式会社製;テルペン樹脂水素化物「クリアロンP115」(商品名))30重量%に変更した以外は、実施例1と同様に評価を行った。結果を表1に示す。
 カール高さは0.5cmと低く、取扱性に極めて優れた分離膜であった。分離膜シートの巻き出し性評価を実施したところ、分離膜シートは分離膜機能層表面に固着している箇所があったが(5箇所)、比較的スムーズな巻き出しが可能であり、巻き出し性は良好であった。また分離膜シートに破損箇所は見当たらず、分離膜シートの品質は極めて良好であった。
(実施例5)
 透過側流路材を構成する樹脂を、高結晶性PP(実施例1と同様)75重量%/低結晶性α-オレフィン系ポリマー(出光興産株式会社製;低立体規則性PP「L-MODU・S600」(商品名))5重量%/熱流動性向上剤(荒川化学工業株式会社製;水素化石油樹脂「脂環族飽和炭化水素樹脂・アルコンP-100」(商品名))20重量%に変更した以外は、実施例1と同様に評価を行った。結果を表1に示す。
 カール高さは2.5cmと低く、取扱性に優れた分離膜であった。分離膜シートの巻き出し性評価を実施したところ、分離膜シートは分離膜機能層表面に固着しておらず、スムーズな巻き出しが可能であった。また分離膜シートに破損箇所が2箇所あったものの、分離膜シートの巻きだし性および品質は極めて良好であった。
(実施例6)
 透過側流路材を構成する樹脂を、高結晶性PP(実施例1と同様)85重量%/低結晶性α-オレフィン系ポリマー(出光興産株式会社製;低立体規則性PP「L-MODU・S600」(商品名))10重量%/熱流動性向上剤(出光興産株式会社製;水素化石油樹脂「ジシクロペンタジエン/芳香族共重合系水添石油樹脂アイマーブP125」(商品名))5重量%に変更した以外は、実施例1と同様に評価を行った。結果を表1に示す。
 ΔHが高いため、カール高さは4.2cmとやや高かったものの、取扱性に優れた分離膜であった。分離膜シートの巻き出し性評価を実施したところ、分離膜シートは分離膜機能層表面に固着しておらず、スムーズな巻き出しが可能であった。一方、流路材の破損箇所を評価した結果、流路材の引張伸度が小さいことに起因して、長さ10mあたり3箇所の破損箇所が見られたが、品質に優れた分離膜シートであった。
(実施例7)
 透過側流路材を構成する樹脂を、高結晶性PP(実施例1と同様)70重量%/低結晶性α-オレフィン系ポリマー(三井化学株式会社製;プロピレン・オレフィン共重合体「タフマーPN-20300」(商品名))30重量%に変更した以外は、実施例1と同様に評価を行った。結果を表2に示す。
 カール高さは2.0cmと低く、取扱性に極めて優れた分離膜であった。分離膜シートの巻き出し性評価を実施したところ、分離膜シートは分離膜機能層表面に固着しておらず、スムーズな巻き出しが可能であった。また分離膜シートに破損箇所が1箇所あったが、分離膜シートの巻きだし性および品質は極めて良好であった。
(実施例8)
 透過側流路材を構成する樹脂を、高結晶性PP(実施例1と同様)50重量%/低結晶性α-オレフィン系ポリマー(三井化学株式会社製;プロピレン・オレフィン共重合体「タフマーPN-20300」(商品名))20重量%/熱流動性向上剤(荒川化学工業株式会社製;水素化石油樹脂「脂環族飽和炭化水素樹脂・アルコンP-100」(商品名))20重量%/タルク(林化成株式会社製「ミクロンホワイト5000S」(商品名))10重量%に変更した以外は、実施例1と同様に評価を行った。結果を表2に示す。
 カール高さは1.0cmと低く、取扱性に極めて優れた分離膜であった。分離膜シートの巻き出し性評価を実施したところ、分離膜シートは分離膜機能層表面に固着しておらず、スムーズな巻き出しが可能であった。また分離膜シートに破損箇所が1箇所あったが、分離膜シートの巻きだし性および品質は極めて良好であった。
(実施例9)
 透過側流路材を構成する樹脂を、高結晶性PP(実施例1と同様)60重量%/低結晶性α-オレフィン系ポリマー(住友化学株式会社製;特殊プロピレン系エラストマー「タフセレンH-5002」(商品名))10重量%/熱流動性向上剤(ヤスハラケミカル株式会社製;テルペン樹脂水素化物「クリアロンP125」(商品名))30重量%に変更した以外は、実施例1と同様に評価を行った。結果を表2に示す。
 カール高さは0.7cmと低く、取扱性に極めて優れた分離膜であった。分離膜シートの巻き出し性評価を実施したところ、分離膜シートは分離膜機能層表面に固着している箇所が4箇所あったが、比較的スムーズな巻き出しが可能であり、巻き出し性は良好であった。また分離膜シートに破損箇所は2箇所あったが、分離膜シートの品質は極めて良好であった。
(実施例10)
 透過側流路材を構成する樹脂を、高結晶性PP(株式会社プライプポリマー製、MFR120g/10分、融点165℃)60重量%/低結晶性α-オレフィン系ポリマー(出光興産株式会社製;低立体規則性PP「L-MODU・S400」(商品名))20重量%/熱流動性向上剤(加藤洋行株式会社製;フィッシャー・トロプシュワックス「サゾールワックスH1」(商品名))20重量%に変更し、加工温度を225℃とした以外は、実施例1と同様に評価を行った。結果を表2に示す。
 カール高さは1.0cmと低く、取扱性に極めて優れた分離膜であった。分離膜シートの巻き出し性評価を実施したところ、分離膜シートは分離膜機能層表面に固着している箇所が2箇所あったが、比較的スムーズな巻き出しが可能であり、巻き出し性は極めて良好であった。また分離膜シートに破損箇所は4箇所あったが、分離膜シートの品質は良好であった。
(実施例11)
 透過側流路材を構成する樹脂を、高結晶性PP(日本ポリプロ株式会社製「BC10HRF」(商品名)、MFR100g/10分、融点167℃)45重量%/低結晶性α-オレフィン系ポリマー(三井化学株式会社製;プロピレン・オレフィン共重合体「タフマーPN-20300」(商品名))15重量%/熱流動性向上剤(荒川化学工業株式会社製;水素化石油樹脂「脂環族飽和炭化水素樹脂・アルコンP-125」(商品名))20重量%/熱流動性向上剤(三洋化成株式会社製;PPワックス「ビスコール550P」(商品名))20重量%に変更し、加工温度を230℃とした以外は、実施例1と同様に評価を行った。結果を表2に示す。
 カール高さは1.4cmと低く、取扱性に極めて優れた分離膜であった。分離膜シートの巻き出し性評価を実施したところ、分離膜シートは分離膜機能層表面に固着している箇所が5箇所あったが、比較的スムーズな巻き出しが可能であり、巻き出し性は良好であった。また分離膜シートに破損箇所は2箇所あったが、分離膜シートの品質は極めて良好であった。
(比較例1)
 透過側流路材を構成する樹脂を高結晶性PP(実施例1と同様)のみとした以外は、実施例1と同様に評価を行った。結果を表3に示す。
 ΔHが非常に大きいことに起因して、カール高さは10cm以上であり取扱性は極めて不良であった。分離膜シートの巻き出し性評価を実施したところ、分離膜シートは分離膜機能層表面に固着している箇所は見られず、巻き出し性は極めて良好であった。一方、流路材の引張伸度が非常に低いため、分離膜シートに破損箇所は11箇所以上あり、分離膜シートの品質は非常に悪いものであった
(比較例2)
 透過側流路材を構成する樹脂を、高結晶性PP(実施例1と同様)97重量%/低結晶性α-オレフィン系ポリマー(出光興産株式会社製;低立体規則性PP「L-MODU・S400」(商品名))3重量%に変更した以外は、実施例1と同様に評価を行った。結果を表3に示す。
 ΔHが高いため、カール高さは9.5cmと非常に高く、取扱性は不良であった。分離膜シートの巻き出し性評価を実施したところ、分離膜シートは分離膜機能層表面に固着しておらず、スムーズな巻き出しが可能であった。一方、流路材の破損箇所を評価した結果、流路材の引張伸度が小さいことに起因して、長さ10mあたり10箇所の破損箇所が見られ、低品質な分離膜シートであった。
(比較例3)
 透過側流路材を構成する樹脂を、高結晶性PP(実施例1と同様)35重量%/低結晶性α-オレフィン系ポリマー(出光興産株式会社製;低立体規則性PP「L-MODU・S400」(商品名))65重量%に変更した以外は、実施例1と同様に評価を行った。結果を表3に示す。
 カール高さは0.2cmと非常に低く、取扱性は極めて良好であり、また分離膜シートには破損箇所が見当たらず、分離膜シートの品質は極めて良好であった。
 一方、分離膜シートの巻き出し性評価を実施したところ、分離膜シートは分離膜機能層表面に多数固着しており(10箇所)、巻き出しの際、分離膜機能層の部分的な剥離が発生し、スムーズな巻き出しは非常に困難であった。
 また実施例1と同様に脱塩率および造水量を測定したところ、エレメント性能は脱塩率98.8%と良好であったが、造水量は27.4m/日であり、上記実施例と比べて20%以上低い値であった。運転終了後に透過側流路材を観察したところ、流路材が圧縮変形し、透過水流路が閉塞していた。流路材を構成する樹脂の耐圧性(弾性率)が低いためと考えられる。
(比較例4)
 透過側流路材を構成する樹脂を、高結晶性PP(実施例1と同様)20重量%/低結晶性α-オレフィン系ポリマー(出光興産株式会社製;低立体規則性PP「L-MODU・S600」(商品名))40重量%/熱流動性向上剤(ヤスハラケミカル株式会社製;テルペン樹脂水素化物「クリアロンP115」(商品名))40重量%に変更した以外は、実施例1と同様に評価を行った。結果を表3に示す。
 カール高さは0.1cmと低く、取扱性に極めて優れた分離膜であった。分離膜シートの巻き出し性評価を実施したところ、分離膜シートは分離膜機能層表面に固着している箇所が多数あり(11箇所以上)、巻き出しの際、分離膜機能層の部分的な剥離が発生し、スムーズな巻き出しは非常に困難であった。一方、分離膜シートに破損箇所は見当たらず、分離膜シートの品質は極めて良好であった。また実施例1と同様に脱塩率および造水量を測定したところ、エレメント性能は脱塩率97.8%と良好であったが、造水量は25.0m/日であり、上記実施例1と比べて20%以上低い値であった。運転終了後に透過側流路材を観察したところ、流路材が大きく圧縮変形し、透過水流路の大部分が閉塞していた。流路材を構成する樹脂の耐圧性(弾性率)が低いためと考えられる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
(実施例12)
 高結晶性PP(MFR1000g/10分、融点161℃、実施例1と同様)45重量%と低結晶性α-オレフィン系ポリマー(出光興産株式会社製;低立体規則性ポリプロピレン「L-MODU・S400」(商品名))55重量%からなる組成物ペレットを210℃で溶融させた後、ギアポンプにより、櫛形シム(スリット幅0.35mm、ピッチ0.7mm)が装填されたアプリケーターに溶融樹脂を供給した。
 次いで、櫛形シムから溶融樹脂を吐出させ、シート(ポリエチレンテレフタレート長繊維不織布、単糸繊度1.2dtex、厚み55μm、目付け28g/m)上に突起物をストライプ状に8.5m/分の速度で加工し、フリーロールを介して、巻取機に巻き取り、シートロールを得た(巻取張力15N/m、巻き取りに使用したコア径3インチ)。シートロールからシート10mを巻出し、突起物が固着されたシート(シート流路材)を得た。
 得られたシートから突起物を切り離し、流路材の各種特性評価を測定した結果、融解吸熱量(ΔH)は33J/g、引張伸度は26%、引張弾性率は0.23GPaであった。
 次にシート流路材から縦50cm、横50cmの大きさの試験片を作製し、カール高さを評価した結果、カール高さは0.8cmと低く、取扱性に極めて優れた分離膜であった。流路材中の高結晶性PPの含有量ならびにΔHが好ましい範囲に制御されているためと考えられる。
 シート流路材の巻き出し性評価を実施したところ、突起物は巻き取られた状態で接触する別のシート面に接着しておらず、スムーズな巻き出しが可能であった。また流路材の破損箇所を評価した結果、破損箇所は見当たらず、シート流路材の巻きだし性および品質は極めて良好であった。
 また、シート流路材を裁断し、1辺が開口するように折りたたまれた分離膜シートの間に、供給側流路材としてネット(厚み:800μm、ピッチ5mm×5mm)を連続的に積層し、透過側流路材としてシート流路材を封筒状膜間に挿入し、ウレタン系接着剤(イソシアネート:ポリオール=1:3)を塗布した後、重ね合わせて、分離膜エレメントでの有効面積が37mになるように、幅930mmの封筒状膜26枚を作製した。
 その後、封筒状膜の開口部側の所定部分を有孔集水管の外周面に接着し、さらにスパイラル状に巻囲することで巻囲体を作製した。巻囲体の外周面にフィルムを巻き付け、テープで固定した後に、エッジカット、端板取りつけ、フィラメントワインディングを行い、直径8インチエレメントを作製した。
 該分離膜エレメントを繊維強化プラスチック製筒型圧力容器に入れて、脱塩率および造水量を測定したところ、エレメント性能は脱塩率98.9%、造水量33.9m/日であり、高圧運転条件下でも極めて良好な性能を示した。
 結果を表4に示す。
(実施例13)
 高結晶性PP(実施例1と同様)60重量%/低結晶性α-オレフィン系ポリマー(出光興産株式会社製;低立体規則性PP「L-MODU・S400」(商品名))30重量%/熱流動性向上剤(ヤスハラケミカル株式会社製;テルペン樹脂水素化物「クリアロンP125」(商品名))10重量%に変更した以外は、実施例12と同様に評価を行った。結果を表4に示す。
 カール高さは1.1cmと低く、取扱性に極めて優れたシートであった。突起物が固着されたシートの巻き出し性評価を実施したところ、シートへの突起物の接着は観察されず、スムーズな巻き出しが可能であった。また突起物が固着されたシートに破損箇所は見当たらず、シートの巻きだし性および品質は極めて良好であった。
(実施例14)
 突起物を構成する樹脂を、高結晶性PP(実施例1と同様)40重量%/低結晶性α-オレフィン系ポリマー(出光興産株式会社製;低立体規則性PP「L-MODU・S400」(商品名))45重量%/熱流動性向上剤(ヤスハラケミカル株式会社製;テルペン樹脂水素化物「クリアロンP145」(商品名)15重量%)からなる組成物ペレットを180℃で溶融させた後、ギアポンプにより、櫛形シム(スリット幅0.30mm、ピッチ0.6mm)が装填されたアプリケーターに溶融樹脂を供給した。
 次いで、櫛形シムから溶融樹脂を吐出させ、シート(ポリエチレンテレフタレート長繊維不織布、単糸繊度1.4dtex、厚み50μm、目付け33g/m)上に突起物をストライプ状に15m/分の速度で加工し、フリーロールを介して、巻取機に巻き取り、シートロールを得た(巻取張力15N/m、巻き取りに使用したコア径3インチ)。シートロールからシート10mを巻出し、突起物が固着されたシート(シート流路材)を得た。
 得られたシート流路材を、実施例12と同様に評価した。結果を表4に示す。
 カール高さは0.7cmと低く、取扱性に極めて優れたシートであった。突起物が固着されたシートの巻き出し性評価を実施したところ、シートへの突起物の接着箇所は5箇所観察されたが、軽度な接着のため、比較的スムーズな巻き出しが可能であった。また突起物が固着されたシートに破損箇所は見当たらず、シートの巻きだし性および品質は極めて良好であった。
(実施例15)
 突起物を構成する樹脂を、高結晶性PP(実施例10と同様)45重量%/低結晶性α-オレフィン系ポリマー(出光興産株式会社製;低立体規則性PP「L-MODU・S400」(商品名))45重量%/熱流動性向上剤(荒川化学工業株式会社製;水素化石油樹脂「脂環族飽和炭化水素樹脂・アルコンP100」(商品名)10重量%)からなる組成物ペレットを210℃で溶融させた後、ギアポンプにより、櫛形シム(スリット幅0.30mm、ピッチ0.6mm)が装填されたアプリケーターに溶融樹脂を供給した。
 次いで、櫛形シムから溶融樹脂を吐出させ、シート(ポリエチレンテレフタレート短繊維不織布、単糸繊度1.2dtex、厚み75μm、目付け75g/m)上に突起物をストライプ状に4m/分の速度で加工し、フリーロールを介して、巻取機に巻き取り、シートロールを得た(巻取張力15N/m、巻き取りに使用したコア径3インチ)。シートロールからシート10mを巻出し、突起物が固着されたシート(シート流路材)を得た。
 得られたシート流路材を、実施例12と同様に評価した。結果を表4に示す。
 カール高さは0.9cmと低く、取扱性に極めて優れたシートであった。突起物が固着されたシートの巻き出し性評価を実施したところ、シートへの突起物の接着箇所は4箇所観察されたが、軽度な接着のため、比較的スムーズな巻き出しが可能であった。また突起物が固着されたシートに破損箇所は2箇所あり、シートの巻きだし性および品質は極めて良好であった。
(実施例16)
 突起物を構成する樹脂を、高結晶性PP(実施例1と同様)50重量%/低結晶性α-オレフィン系ポリマー(B-1)(出光興産株式会社製;低立体規則性PP「L-MODU・S400」(商品名))45重量%/低結晶性α-オレフィン系ポリマー(B-2)(三井化学株式会社製;プロピレン・オレフィン共重合体「タフマーPN-20300」(商品名)5重量%)からなる組成物ペレットを200℃で溶融させた後、ギアポンプにより、櫛形シム(スリット幅0.4mm、ピッチ0.8mm)が装填されたアプリケーターに溶融樹脂を供給した。
 次いで、櫛形シムから溶融樹脂を吐出させ、シート(ポリエチレンテレフタレート長繊維不織布、単糸繊度1.2dtex、厚み48μm、目付け25g/m)上に突起物をストライプ状に6m/分の速度で加工し、フリーロールを介して、巻取機に巻き取り、シートロールを得た(巻取張力15N/m、巻き取りに使用したコア径3インチ)。シートロールからシート10mを巻出し、突起物が固着されたシート(シート流路材)を得た。
 得られたシート流路材を、実施例12と同様に評価した。結果を表4に示す。
 カール高さは0.6cmと低く、取扱性に極めて優れたシートであった。突起物が固着されたシートの巻き出し性評価を実施したところ、シートへの突起物の接着箇所は観察されず、スムーズな巻き出しが可能であった。また突起物が固着されたシートに破損箇所は見当たらず、シートの巻きだし性および品質は極めて良好であった。
(実施例17)
 突起物を構成する樹脂を、高結晶性PP(実施例1と同様)50重量%/低結晶性α-オレフィン系ポリマー(三井化学株式会社製;プロピレン・オレフィン共重合体「タフマーPN-20300」(商品名)25重量%)/熱流動性向上剤(ヤスハラケミカル株式会社製;テルペン樹脂水素化物「クリアロンP145」(商品名)25重量%)からなる組成物ペレットを210℃で溶融させた後、ギアポンプにより、櫛形シム(スリット幅0.4mm、ピッチ0.8mm)が装填されたアプリケーターに溶融樹脂を供給した。
 次いで、櫛形シムから溶融樹脂を吐出させ、シート(ポリエチレンテレフタレート長繊維不織布、単糸繊度1.2dtex、厚み73μm、目付け50g/m)上に突起物をストライプ状に9m/分の速度で加工し、フリーロールを介して、巻取機に巻き取り、シートロールを得た(巻取張力15N/m、巻き取りに使用したコア径3インチ)。シートロールからシート10mを巻出し、突起物が固着されたシート(シート流路材)を得た。
 得られたシート流路材を、実施例12と同様に評価した。結果を表4に示す。
 カール高さは1.1cmと低く、取扱性に極めて優れたシートであった。突起物が固着されたシートの巻き出し性評価を実施したところ、シートへの突起物の接着箇所は3箇所観察されたが、軽度な接着のため、比較的スムーズな巻き出しが可能であった。また突起物が固着されたシートに破損箇所は4箇所あったが、品質は良好であった。
Figure JPOXMLDOC01-appb-T000004
(比較例5)
 突起物を構成する樹脂を、高結晶性PP(実施例1と同様)のみとした以外は、実施例12と同様に評価を行った。結果を表5に示す。
 突起物が固着されたシートのカール高さは10cm以上と非常に高く、取扱性は極めて不良であった。突起物が固着されたシートの巻き出し性評価を実施したところ、シートへの突起物の接着箇所は観察されなかった。また突起物の破損箇所は11箇所以上あり、シートの品質は非常に悪いもであった。
(比較例6)
 高結晶性PP(実施例1と同様)96重量%/低結晶性α-オレフィン系ポリマー(出光興産株式会社製;低立体規則性PP「L-MODU・S400」(商品名)4重量%に変更した以外は、実施例12と同様に評価を行った。結果を表5に示す。
 シートのカール高さは7.4cmと高く、取扱性は不良であった。シートの巻き出し性評価を実施したところ、シートへの突起物の接着は観察されず、スムーズな巻き出しが可能であった。また突起物の破損箇所は7箇所あり、シートの品質は悪いもであった。
(比較例7)
 高結晶性PP(実施例1と同様)35重量%/低結晶性α-オレフィン系ポリマー(出光興産株式会社製;低立体規則性PP「L-MODU・S400」(商品名)60重量%/タルク(林化成社製「ミクロンホワイト5000S」(商品名)5重量%)に変更した以外は、実施例12と同様に評価を行った。結果を表5に示す。
 シートのカール高さは0.3cmと非常に低く、取扱性は極めて良好であった。シートの巻き出し性評価を実施したところ、シートへの突起物の接着は6箇所あり、スムーズな巻き出しが困難であった。また突起物の破損箇所は1箇所であり、シートの品質は極めて良好なものであった。
 また実施例12と同様に脱塩率および造水量を測定したところ、エレメント性能は脱塩率98.3%と良好であったが、造水量は28.0m/日(操作圧力1.5MPa)であり、上記実施例12と比べて20%以上低い値であった。運転終了後にシート上の突起物を観察したところ、突起物が圧縮変形し、透過水流路が閉塞していた。突起物を構成する高結晶性PP樹脂の含有量が少なく、また耐圧性(弾性率)が低いためと考えられる。
(比較例8)
 高結晶性PP(実施例1と同様)30重量%/低結晶性α-オレフィン系ポリマー(出光興産株式会社製;低立体規則性PP「L-MODU・S400」(商品名)50重量%/熱流動性向上剤(ヤスハラケミカル株式会社製;テルペン樹脂水素化物「クリアロンP125」(商品名)20重量%)に変更した以外は、実施例12と同様に評価を行った。結果を表5に示す。
 シートのカール高さは0.2cmと非常に低く、取扱性は極めて良好であった。シートの巻き出し性評価を実施したところ、シートへの突起物の接着は10箇所以上あり、スムーズな巻き出しが困難であった。一方、突起物の破損箇所は観察されず、シートの品質は極めて良好なものであった。
 また実施例12と同様に脱塩率および造水量を測定したところ、エレメント性能は脱塩率98.4%と良好であったが、造水量は25.3m/日(操作圧力1.5MPa)であり、上記実施例12と比べて25%以上低い値であった。運転終了後にシート上の突起物を観察したところ、突起物が圧縮変形し、透過水流路が閉塞していた。突起物を構成する高結晶性PP樹脂の含有量が少なく、また耐圧性(弾性率)が低いためと考えられる。
Figure JPOXMLDOC01-appb-T000005
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2013年10月30日出願の日本特許出願(特願2013-225516)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の分離膜および分離膜エレメントは、特にかん水の脱塩に好適に用いることができる。
1: 分離膜エレメント
2: 供給側流路材
3: 分離膜
30,30A,30B:分離膜本体
4: 透過側流路材
5: 封筒状膜
6: 集水管
7: 供給水(原流体)
8: 透過水
9: 濃縮水
11:基材
12:多孔性支持層
13:分離機能層
15:透過側流路
17:供給側の面
18:透過側の面
19:シート
20~25:突起物
42~47:シート流路材

Claims (11)

  1.  供給側の面と透過側の面とを有する分離膜本体と、前記分離膜本体の前記透過側の面に固着する透過側流路材と、を備える分離膜であって、
     前記透過側流路材は高結晶性ポリプロピレン(A)を少なくとも含む組成物から構成され、かつ下記要件(a)および(b)を満たす分離膜。
     (a)前記高結晶性ポリプロピレン(A)の含有量が、前記組成物中、40~95重量%である。
     (b)前記透過側流路材の融解吸熱量(ΔH)が20~70J/gである。
  2.  前記組成物が低結晶性α-オレフィン系ポリマー(B)を含み、前記低結晶性α-オレフィン系ポリマー(B)の含有量が、前記組成物中、5~60重量%である、請求項1に記載の分離膜。
  3.  前記低結晶性α-オレフィン系ポリマー(B)が、低結晶性ポリプロピレンまたはプロピレン・オレフィン共重合体である、請求項2に記載の分離膜。
  4.  前記透過側流路材の引張伸度が5%以上であり、かつ引張弾性率が0.2~2.0GPaである、請求項1~請求項3のいずれか一項に記載の分離膜。
  5.  前記分離膜本体が、基材、前記基材上に形成された多孔性支持層、および前記多孔性支持層上に形成された分離機能層を備える、請求項1~請求項4のいずれか一項に記載の分離膜。
  6.  請求項1~請求項5のいずれか一項に記載の分離膜を含む分離膜エレメント。
  7.  突起物がシートに固着され、前記突起物は高結晶性ポリプロピレン(A)を少なくとも含む組成物から構成され、かつ下記要件(a)および(b)を満たすシート流路材。
     (a)前記高結晶性ポリプロピレン(A)の含有量が、前記組成物中、40~95重量%である。
     (b)前記突起物の融解吸熱量(ΔH)が20~70J/gである。
  8.  前記組成物が低結晶性α-オレフィン系ポリマー(B)を含み、前記低結晶性α-オレフィン系ポリマー(B)の含有量が、前記組成物中、5~60重量%である、請求項7に記載のシート流路材。
  9.  前記低結晶性α-オレフィン系ポリマー(B)が、低結晶性ポリプロピレンまたはプロピレン・オレフィン共重合体である、請求項8に記載のシート流路材。
  10.  前記突起物の引張伸度が5%以上であり、かつ引張弾性率が0.2~2.0GPaである、請求項7~請求項9のいずれか一項に記載のシート流路材。
  11.  請求項7~請求項10のいずれか一項に記載のシート流路材を含む分離膜エレメント。
PCT/JP2014/078989 2013-10-30 2014-10-30 分離膜、シート流路材および分離膜エレメント WO2015064720A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167011166A KR102254401B1 (ko) 2013-10-30 2014-10-30 분리막, 시트 유로재 및 분리막 엘리먼트
JP2014557654A JP5888439B2 (ja) 2013-10-30 2014-10-30 分離膜、シート流路材および分離膜エレメント
EP14857212.6A EP3064266B1 (en) 2013-10-30 2014-10-30 Separation membrane element
CN201480060087.XA CN105682778B (zh) 2013-10-30 2014-10-30 分离膜、片材流路部件及分离膜元件
US15/033,488 US9802160B2 (en) 2013-10-30 2014-10-30 Separation membrane, sheet flow path material, and separation membrane element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013225516 2013-10-30
JP2013-225516 2013-10-30

Publications (1)

Publication Number Publication Date
WO2015064720A1 true WO2015064720A1 (ja) 2015-05-07

Family

ID=53004317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078989 WO2015064720A1 (ja) 2013-10-30 2014-10-30 分離膜、シート流路材および分離膜エレメント

Country Status (6)

Country Link
US (1) US9802160B2 (ja)
EP (1) EP3064266B1 (ja)
JP (1) JP5888439B2 (ja)
KR (1) KR102254401B1 (ja)
CN (1) CN105682778B (ja)
WO (1) WO2015064720A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221103A1 (ja) * 2017-05-30 2018-12-06 東レ株式会社 分離膜エレメント
JP2021169600A (ja) * 2020-04-14 2021-10-28 雄獅鉛筆廠股▲ふん▼有限公司 塗料組成物及びコーティング製品

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102263342B1 (ko) * 2013-10-31 2021-06-11 도레이 카부시키가이샤 분리막 엘리먼트
JP6305729B2 (ja) * 2013-11-05 2018-04-04 日東電工株式会社 複合半透膜
MX2017012181A (es) 2015-03-24 2018-01-24 Arstroma Co Ltd Aparato de separacion de fluido que comprende membrana de separacion de fluido y modulo de membrana de separacion de fluido.
CN106582320B (zh) * 2016-12-11 2019-04-30 浙江伊美薄膜工业集团有限公司 一种高强耐污型正渗透膜的制备方法
CN110520210A (zh) * 2017-04-20 2019-11-29 阿夸曼布拉尼斯公司 用于螺旋卷绕元件的不嵌套、不变形图案
EP3459618B1 (de) * 2017-09-25 2024-05-15 Sartorius Stedim Biotech GmbH Filtervorrichtung mit strömungseinbau
JP7178753B1 (ja) 2022-06-23 2022-11-28 雄三郎 伊東 潮力及び引力を利用した発電装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411928B2 (ja) 1985-12-16 1992-03-03 Nippon Electric Co
JPH0414216B2 (ja) 1985-06-14 1992-03-12 Hasegawa Komuten Kk
JPH11226366A (ja) 1998-02-19 1999-08-24 Toray Ind Inc 流体分離膜エレメントの製造方法および装置ならびに流体分離膜エレメント
JP2009537638A (ja) * 2006-05-15 2009-10-29 東燃化学株式会社 ポリオレフィン微多孔膜、その製造方法、電池用セパレータ及び電池
JP2011168944A (ja) * 2010-01-21 2011-09-01 Idemitsu Kosan Co Ltd ポリプロピレン系不織布
WO2011152484A1 (ja) 2010-06-03 2011-12-08 東レ株式会社 分離膜エレメント
JP2012040487A (ja) 2010-08-18 2012-03-01 Toray Ind Inc 分離膜エレメント
JP2012506792A (ja) * 2008-10-24 2012-03-22 東レ東燃機能膜合同会社 多層微多孔膜ならびにかかる膜を製造および使用するための方法
JP2012161748A (ja) 2011-02-08 2012-08-30 Toray Ind Inc 分離膜エレメント
WO2012142429A2 (en) 2011-04-13 2012-10-18 Gfd Fabrics, Inc. Filter element for fluid filtration system
WO2013047746A1 (ja) * 2011-09-29 2013-04-04 東レ株式会社 分離膜、分離膜エレメントおよび分離膜の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL64466A (en) 1981-12-07 1986-01-31 Yeda Res & Dev Composite membrane spacer unit for dialysis and electrodialysis devices
JPH1053673A (ja) * 1996-08-08 1998-02-24 Tonen Chem Corp ポリプロピレン樹脂組成物
ATE306312T1 (de) 1999-06-08 2005-10-15 Nitto Denko Corp Membranmodul zur trennung von flüssigkeiten und verfahren zu seiner herstellung
JP4198058B2 (ja) 2001-11-01 2008-12-17 旭化成ケミカルズ株式会社 ポリ乳酸系樹脂二軸延伸フィルム
WO2011118486A1 (ja) 2010-03-23 2011-09-29 東レ株式会社 分離膜およびその製造方法
EP2614881A1 (en) 2010-09-07 2013-07-17 Toray Industries, Inc. Separation membrane, separation membrane element, and method for producing separation membrane
US20130213880A1 (en) 2010-10-26 2013-08-22 Toray Industries, Inc. Separation membrane, separation membrane element and separation membrane production method
US20130334128A1 (en) 2010-12-28 2013-12-19 Toray Industries, Inc. Separation membrane element
CN202151550U (zh) 2011-07-13 2012-02-29 浙江开创环保科技有限公司 一种纵横宽流道卷式膜组件
CN103842054B (zh) 2011-09-29 2016-01-20 东丽株式会社 分离膜及分离膜元件
KR101870307B1 (ko) 2011-12-02 2018-06-22 도레이 카부시키가이샤 분리막 엘리먼트 및 분리막 엘리먼트의 제조 방법
US20150041388A1 (en) 2012-02-24 2015-02-12 Toray Industries, Inc. Separation membrane and separation membrane element

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414216B2 (ja) 1985-06-14 1992-03-12 Hasegawa Komuten Kk
JPH0411928B2 (ja) 1985-12-16 1992-03-03 Nippon Electric Co
JPH11226366A (ja) 1998-02-19 1999-08-24 Toray Ind Inc 流体分離膜エレメントの製造方法および装置ならびに流体分離膜エレメント
JP2009537638A (ja) * 2006-05-15 2009-10-29 東燃化学株式会社 ポリオレフィン微多孔膜、その製造方法、電池用セパレータ及び電池
JP2012506792A (ja) * 2008-10-24 2012-03-22 東レ東燃機能膜合同会社 多層微多孔膜ならびにかかる膜を製造および使用するための方法
JP2011168944A (ja) * 2010-01-21 2011-09-01 Idemitsu Kosan Co Ltd ポリプロピレン系不織布
WO2011152484A1 (ja) 2010-06-03 2011-12-08 東レ株式会社 分離膜エレメント
JP2012040487A (ja) 2010-08-18 2012-03-01 Toray Ind Inc 分離膜エレメント
JP2012161748A (ja) 2011-02-08 2012-08-30 Toray Ind Inc 分離膜エレメント
WO2012142429A2 (en) 2011-04-13 2012-10-18 Gfd Fabrics, Inc. Filter element for fluid filtration system
WO2013047746A1 (ja) * 2011-09-29 2013-04-04 東レ株式会社 分離膜、分離膜エレメントおよび分離膜の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OFFICE OF SALINE WATER RESEARCH AND DEVELOPMENT PROGRESS REPORT, no. 359, 1968
See also references of EP3064266A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221103A1 (ja) * 2017-05-30 2018-12-06 東レ株式会社 分離膜エレメント
JPWO2018221103A1 (ja) * 2017-05-30 2020-03-26 東レ株式会社 分離膜エレメント
US11123691B2 (en) 2017-05-30 2021-09-21 Toray Industries, Inc. Separation membrane element
JP7478510B2 (ja) 2017-05-30 2024-05-07 東レ株式会社 分離膜エレメント
JP2021169600A (ja) * 2020-04-14 2021-10-28 雄獅鉛筆廠股▲ふん▼有限公司 塗料組成物及びコーティング製品

Also Published As

Publication number Publication date
US9802160B2 (en) 2017-10-31
JP5888439B2 (ja) 2016-03-22
US20160271564A1 (en) 2016-09-22
CN105682778A (zh) 2016-06-15
CN105682778B (zh) 2017-10-27
JPWO2015064720A1 (ja) 2017-03-09
KR20160075543A (ko) 2016-06-29
EP3064266A4 (en) 2017-06-28
KR102254401B1 (ko) 2021-05-24
EP3064266B1 (en) 2020-04-15
EP3064266A1 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5888439B2 (ja) 分離膜、シート流路材および分離膜エレメント
WO2015016253A1 (ja) 分離膜エレメント
JP6136269B2 (ja) 水処理用分離膜エレメント
JP6489011B2 (ja) 分離膜、シート流路材および分離膜エレメント
JP6206185B2 (ja) 分離膜および分離膜エレメント
JP6634828B2 (ja) 分離膜エレメント
WO2014003171A1 (ja) 分離膜および分離膜エレメント
JP5653713B2 (ja) 透水性フィルムおよびその製造方法
JP2015071159A (ja) 分離膜エレメント
WO2011135742A1 (ja) 透水性フィルムおよびその製造方法
JP5564322B2 (ja) 透水性フィルムおよびその製造方法
JP2015027666A (ja) 分離膜および分離膜エレメント
JP2017029912A (ja) 分離膜エレメント
JP2018023971A (ja) 流路材および分離膜エレメント
JP2015142899A (ja) 分離膜エレメント
JP2015091574A (ja) 分離膜エレメント
JP2017013056A (ja) 分離膜エレメント

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014557654

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167011166

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014857212

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014857212

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15033488

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE