WO2015064711A1 - メチレンジスルホニルクロライド化合物の製造方法 - Google Patents

メチレンジスルホニルクロライド化合物の製造方法 Download PDF

Info

Publication number
WO2015064711A1
WO2015064711A1 PCT/JP2014/078960 JP2014078960W WO2015064711A1 WO 2015064711 A1 WO2015064711 A1 WO 2015064711A1 JP 2014078960 W JP2014078960 W JP 2014078960W WO 2015064711 A1 WO2015064711 A1 WO 2015064711A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
methylene
mol
compound
compound represented
Prior art date
Application number
PCT/JP2014/078960
Other languages
English (en)
French (fr)
Inventor
真耶 村上
悟士 八軒
武寛 檜山
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Publication of WO2015064711A1 publication Critical patent/WO2015064711A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/02Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D327/00Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms

Definitions

  • the present invention relates to a method for producing a methylene disulfonyl chloride compound.
  • Methylene disulfonyl chloride compounds include methylene disulfonate compounds useful for pharmaceuticals such as leukemia treatment drugs for animals, methylene disulfonate compounds, methylene disulfonamide compounds useful for additives for secondary battery electrolytes, etc. It is a compound having a skeleton that is advantageous as an intermediate in the synthesis.
  • Non-Patent Document 1 a method of producing a carboxylic acid compound by reacting chlorosulfonic acid and phosphoryl trichloride
  • Patent Document 1 reports that the use of a large excess of phosphoryl trichloride can suppress the formation of the insoluble by-product.
  • phosphoryl trichloride which is a toxic substance, in a large excess from the viewpoints of economy and safety.
  • the object of the present invention is to provide a production method capable of reducing the amount of phosphoryl trichloride used as a poisonous substance and obtaining a methylenedisulfonyl chloride compound in a high yield by an industrially advantageous method.
  • the present inventors have suppressed the formation of insoluble by-products (polymer compounds) by reacting a carboxylic acid halide compound, phosphoryl trichloride, and chlorosulfonic acid. Furthermore, the inventors have found that methylene disulfonyl chloride compounds can be produced by reducing the amount of phosphoryl trichloride, which is a toxic substance, and the present invention has been completed with further improvements.
  • the present invention includes, for example, the subject matters described in the following sections.
  • R 1 R 2 CHCOX (1) (Wherein R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms in which the hydrogen atom may be substituted with a halogen atom, and X represents a halogen atom).
  • R 1 and R 2 are the same as R 1 and R 2 in formula (1), respectively).
  • Item 2 The manufacturing method of the said claim
  • Item 3 The step of obtaining the methylene disulfonyl chloride compound represented by the formula (2) by the production method according to the item 1 or 2, and the reaction of the methylene disulfonyl chloride compound represented by the formula (2) with water. Including the step of dehydration in the presence of a polar organic solvent:
  • R 1 and R 2 are the same as R 1 and R 2 in formula (1), respectively).
  • Item 4 A step of obtaining a methylene disulfonic acid compound represented by the formula (3) by the production method according to item 3, and The methylene disulfonic acid compound represented by the formula (3) is mixed with a dehydrating agent and at least one compound selected from the group consisting of formaldehyde, trioxane, and paraformaldehyde, and reacted with the following formula (4) ):
  • R 1 and R 2 are the same as R 1 and R 2 in formula (1), respectively).
  • a methylene disulfonyl chloride compound by reacting a carboxylic acid halide compound, phosphoryl trichloride, and chlorosulfonic acid, a methylene disulfonyl chloride compound can be obtained in an industrially advantageous manner with a high yield.
  • the methylene disulfonic acid compound and the methylene disulfonate compound can be obtained in a high yield by an industrially advantageous method.
  • the production method of the present invention comprises a production method for obtaining a methylene disulfonyl chloride compound by reacting a carboxylic acid halide compound, phosphoryl trichloride and chlorosulfonic acid, and a methylene disulfonic acid compound and a methylene disulfonate compound including the step.
  • a production method for obtaining a methylene disulfonyl chloride compound by reacting a carboxylic acid halide compound, phosphoryl trichloride and chlorosulfonic acid, and a methylene disulfonic acid compound and a methylene disulfonate compound including the step.
  • the carboxylic acid halide compound according to the present invention has the following formula (1): R 1 R 2 CHCOX (1) (Wherein R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms in which the hydrogen atom may be substituted with a halogen atom, and X represents a halogen atom). ) It is a compound represented by these.
  • the alkyl group having 1 to 4 carbon atoms may be linear or branched. Specific examples include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an isopropyl group.
  • the hydrogen atom of the alkyl group may be substituted with a halogen atom.
  • the halogen atom is preferably a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, more preferably a chlorine atom.
  • the number of hydrogen atoms substituted with halogen atoms is preferably 1, 2, 3, or 4, more preferably 1 or 2.
  • an unsubstituted or monosubstituted product in which one of R 1 and R 2 is hydrogen and the other is an alkyl group having 1 to 4 carbon atoms which may be substituted with hydrogen or a halogen atom is preferable.
  • a monosubstituted product in which the other is an alkyl group having 1 to 4 carbon atoms which may be substituted with a halogen atom is particularly preferred.
  • the alkyl group having 1 to 4 carbon atoms which may be substituted with a monosubstituted halogen atom is preferably a linear alkyl group such as a methyl group, an ethyl group, an n-propyl group or an n-butyl group.
  • examples of the halogen atom represented by X include a chlorine atom, a bromine atom and an iodine atom.
  • a chlorine atom is preferable from the viewpoints of easy availability and safety.
  • the compound of the formula (1) include chlorides such as acetic acid chloride, propionic acid chloride, butyric acid chloride, valeric acid chloride, isobutyric acid chloride, and isovaleric acid chloride; and acetic acid bromide, propionic acid bromide, Examples include bromides such as butyric acid bromide, valeric acid bromide, isobutyric acid bromide, and isovaleric acid bromide.
  • chlorides are preferable from the viewpoints of availability, safety, and the like, more preferably acetic acid chloride, propionic acid chloride, and butyric acid chloride, and particularly preferably propionic acid chloride and butyric acid chloride.
  • carboxylic acid halide compound Commercially available products may be used as the carboxylic acid halide compound. Moreover, you may use what was manufactured in accordance with the conventional method, for example, what was manufactured by making carboxylic acid, thionyl chloride, or thionyl bromide react can be used.
  • the amount of phosphoryl trichloride used per mol of the carboxylic acid halide compound is 2. By making it 0 mol or more and 10.0 mol or less, the production
  • the amount of phosphoryl trichloride used per mole of the carboxylic acid halide compound is preferably 2.0 mol or more and 6.0 mol or less.
  • the amount of chlorosulfonic acid used per mole of the carboxylic acid halide compound is preferably Is 2.0 mol or more and 4.0 mol or less, more preferably 2.0 mol or more and 3.0 mol or less. If the usage-amount of chlorosulfonic acid with respect to 1 mol of said carboxylic acid halide compounds is 2.0 mol or more, the yield of a methylene disulfonyl chloride compound can be improved more.
  • the method of reacting the carboxylic acid halide compound represented by the formula (1), phosphoryl trichloride, and chlorosulfonic acid is not particularly limited.
  • Examples include a method of mixing (preferably adding) an acid halide compound.
  • a method of dropping chlorosulfonic acid to phosphoryl trichloride is preferable from the viewpoint of safety.
  • the temperature at the time of mixing (preferably dropping) is preferably 0 to 50 ° C., and more preferably 20 to 50 ° C.
  • the dropping time is preferably 0.5 to 3.0 hours.
  • the dropping time is 0.5 hours or more, a rapid increase in the temperature of the reaction solution due to the heat of dilution can be prevented, and the reaction can be performed more safely.
  • dripping time is 3.0 hours or less, the time concerning manufacture can be suppressed moderately and it is economical.
  • a method of dropping the carboxylic acid halide compound is preferable.
  • the dropping temperature is preferably 0 to 50 ° C, particularly preferably 20 to 50 ° C.
  • the dropping time is preferably 0.5 to 3.0 hours.
  • the reaction is performed under an inert atmosphere such as nitrogen or argon as necessary.
  • the temperature at which the mixed solution is heated and reacted is preferably 70 to 140 ° C., more preferably 90 to 120 ° C.
  • the reaction time is usually 10 to 20 hours.
  • the reaction temperature is 70 ° C. or higher, the reaction proceeds at an appropriate reaction rate and the efficiency is good.
  • reaction can be advanced with sufficient yield.
  • the methylene disulfonyl chloride compound obtained as described above can be isolated by distillation after the completion of the reaction, after distilling off excess phosphoryl trichloride.
  • the methylene disulfonyl chloride compound obtained by the production method of the present invention is represented by the following formula (2):
  • R ⁇ 1 > and R ⁇ 2 > show the same atom or group as R ⁇ 1 > and R ⁇ 2 > in Formula (1), respectively.
  • methylene disulfonyl chloride compound of the formula (2) include, for example, methane disulfonyl chloride, ethane-1,1-disulfonyl chloride, propane-1,1-disulfonyl chloride, butane-1,1- Examples thereof include disulfonyl chloride, propane-2,2-disulfonyl chloride, 2-methyl-propane-1,1-disulfonyl chloride and the like.
  • methanedisulfonyl chloride, ethane-1,1-disulfonyl chloride, and propane-1,1-disulfonyl chloride are preferable, and ethane-1,1-disulfonyl chloride and propane-1,1-disulfonyl chloride are preferable. Is particularly preferred.
  • R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms in which the hydrogen atom may be substituted with a halogen atom.
  • the methylene disulfonic acid compound represented by these can be obtained efficiently.
  • R 1 and R 2 in the formula (3) include those exemplified in R 1 and R 2 in Formula (1).
  • methylene disulfonic acid compound of the formula (3) include, for example, methane disulfonic acid, ethane-1,1-disulfonic acid, propane-1,1-disulfonic acid, butane-1,1-disulfonic acid, propane -2,2-disulfonic acid, 2-methyl-propane-1,1-disulfonic acid and the like.
  • methanedisulfonic acid, ethane-1,1-disulfonic acid, and propane-1,1-disulfonic acid are preferable, and ethane-1,1-disulfonic acid and propane-1,1-disulfonic acid are particularly preferable.
  • the amount of water used (charge amount) in the reaction is not particularly limited, but it is preferable that the amount of water used is excessive with respect to the methylene disulfonyl chloride compound.
  • water is present in excess, the reaction proceeds efficiently and a methylene disulfonic acid compound can be obtained in high yield.
  • the amount of water used per 1 mol of methylene disulfonyl chloride compound is 10 mol or more, the risk that the raw material will remain unreacted is further reduced, and if it is 40 mol or less, excess water is removed. To be efficient.
  • the reaction temperature for reacting the methylene disulfonyl chloride compound with water is preferably 60 ° C. to 100 ° C., and more preferably 95 to 100 ° C.
  • the methylene disulfonic acid compound represented by the formula (3) usually forms a hydrogen bond with a water molecule in the presence of water. Since an excessive amount of water is reacted in the above production method, the obtained methylene disulfonic acid compound is considered to form hydrogen bonds with water molecules. Although this state is sometimes described as the formation of a hydrate of a methylene disulfonic acid compound, it is described in this specification that water is present in the methylene disulfonic acid compound.
  • Water in the methylene disulfonic acid compound may inhibit the dehydration condensation reaction particularly in the reaction of synthesizing the methylene disulfonate compound by the steps described below. Therefore, it is desirable to remove water from the methylene disulfonic acid compound according to the present invention as much as possible when the methylene disulfonate compound is synthesized by the steps described below.
  • the content of water in the methylene disulfonic acid compound is preferably about 3% by mass or less. More preferably, it is 2 mass% or less, More preferably, it is 1 mass% or less, Most preferably, it is 0.5 mass% or less.
  • a methylene disulfonic acid compound usually forms a hydrogen bond with a water molecule, it is usually difficult to reduce the water content to about 3% by mass or less. For example, even when added to a solvent such as toluene and azeotroped, the water content does not decrease. In addition, when water is to be removed at a high temperature (about 120 ° C.), the methylene disulfonic acid compound may be decomposed and produce impurities due to the high temperature.
  • the water content can be efficiently reduced by dehydrating the obtained methylene disulfonic acid compound in the presence of a polar organic solvent.
  • a polar organic solvent Although a limited interpretation is not desired, it is thought that this is because water molecules that are hydrogen-bonded to the methylene disulfonic acid compound are replaced with a polar organic solvent, so that water can easily go out of the reaction system.
  • the polar organic solvent is preferably an aprotic polar organic solvent, and specific examples thereof include dimethyl sulfoxide, sulfolane, methyl pyrrolidine, and dimethylformamide. Of these, sulfolane is particularly preferred.
  • a polar organic solvent can be used individually by 1 type or in combination of 2 or more type, unless the effect of this invention is impaired.
  • the polar organic solvent can also be used as a reaction solvent when a methylene disulfonate compound is synthesized, for example, by the steps described below. Therefore, it is not necessary to distill off the polar organic solvent after removing water, and the synthesis of the methylene disulfonate compound can be continued.
  • the amount of the polar organic solvent used is preferably about 3 to 10 moles, more preferably about 5 to 7 moles per mole of the methylenedisulfonyl chloride compound.
  • the amount is about 3 mol or more, water is preferably replaced, and the water content can be efficiently reduced.
  • the amount is about 10 mol or less, the removal of the solvent is easier and the methylene disulfonic acid compound can be obtained more efficiently.
  • the method for adding the polar organic solvent is not particularly limited.
  • the methylenedisulfonyl chloride compound and water may be mixed before reacting or may be added to the reaction solution after completion of the reaction.
  • a method of adding water after distilling water from the reaction solution after completion of the reaction to some extent (for example, until the water content becomes about 17% by mass) by distillation under reduced pressure is preferable from the viewpoint of work efficiency.
  • the water content can be greatly reduced by dehydration as compared with the usual method.
  • the method for reducing the water content to about 3% by mass or less is not limited, but when the temperature of the reaction solution to which the polar organic solvent is added is in the range of 0 to 80 ° C., for example, vacuum distillation, dehydration with a desiccant The method of performing etc. is mentioned.
  • the temperature is preferably 60 to 80 ° C. in vacuum distillation. When temperature is 60 degreeC or more, a water content can be reduced more efficiently. When the temperature is 80 ° C. or lower, the possibility that the methylene disulfonic acid compound in the reaction solution is decomposed to lower the purity is further reduced.
  • the degree of reduced pressure is not particularly limited, but is preferably 3 to 10 mmHg, for example.
  • a cyclic methylene disulfonate compound can be synthesized from the methylene disulfonic acid compound represented by the above formula (3) obtained by the above method by a known method.
  • the known method for example, the method described in International Publication No. WO2007 / 125736 is preferably exemplified. Specifically, it is a method of synthesizing a cyclic methylene disulfonate compound by reacting a methylene disulfonic acid compound and a formaldehyde compound in the presence of a dehydrating agent.
  • reaction solution is further dehydrated, and from the group consisting of formaldehyde, trioxane, and paraformaldehyde.
  • R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms in which the hydrogen atom may be substituted with a halogen atom.
  • the methylene disulfonate compound represented by these can be manufactured.
  • R 1 and R 2 in Formula (4) include those exemplified in R 1 and R 2 in Formula (1).
  • the dehydrating agent used here is not particularly limited, and examples thereof include phosphorus pentoxide, phosphorus pentachloride, phosphorus oxychloride, thionyl chloride, acetyl chloride, and acetic anhydride. Among these, phosphorus pentoxide is preferable from the viewpoint of high reactivity.
  • These dehydrating agents can be used singly or in combination of two or more.
  • the amount of the dehydrating agent to be used is not particularly limited, but is preferably 0.6 to 10 mol, more preferably 0.8 to 3 mol with respect to 1 mol of the methylene disulfonic acid compound.
  • the amount of at least one compound selected from the group consisting of formaldehyde, trioxane, and paraformaldehyde is not particularly limited, but is equivalent to formaldehyde with respect to 1 mole of methylene disulfonic acid compound. And preferably 0.2 to 10 mol, more preferably 0.3 to 3 mol.
  • the reaction temperature is not particularly limited, but is preferably 0 to 200 ° C., more preferably 50 to 150 ° C., for example.
  • the reaction time varies depending on the reaction temperature, but is about 0.1 to 15 hours, for example.
  • the reaction of this method is a dehydration condensation reaction, the progress of the reaction is inhibited when water is present.
  • the said method can be performed by adding a dehydrating agent and a formaldehyde compound after dehydrating the methylene disulfonic acid compound represented by the formula (3) in the presence of a polar solvent. That is, the methylene disulfonate compound represented by the formula (4) can be continuously synthesized without removing the polar organic solvent.
  • the methylene disulfonate compound represented by the formula (4) obtained as described above is separated from the reaction mixture by a conventional separation means and purified.
  • separation and purification means include distillation, recrystallization, column chromatography, ion exchange chromatography, gel chromatography, affinity chromatography, preparative thin layer chromatography, solvent extraction, and the like. it can.
  • Example 1 In a 300 mL four-necked flask equipped with a stirrer, a condenser, a thermometer, and a dropping funnel, phosphoryl trichloride 184.0 (1.20 mol) was charged under a nitrogen stream, and chlorosulfonic acid 76. 9 g (0.66 mol) was added dropwise over 30 minutes while maintaining at 20-30 ° C. with a dropping funnel. After completion of the dropwise addition, 27.8 g (0.30 mol) of propionic acid chloride was further added dropwise to the obtained mixture at 20 to 30 ° C. over 30 minutes using a dropping funnel.
  • reaction solution was heated to 110 ° C. over 1 hour using an oil bath, and stirred for 15 hours while maintaining the reaction solution at 110 ° C.
  • excess phosphoryl trichloride was removed from the reaction solution by distillation under reduced pressure.
  • brown solution was distilled under reduced pressure at 120 to 140 ° C./2 to 5 mmHg to separate the first fraction, and 49.21 g (0.22 mol) of ethane-1,1-disulfonyl chloride was obtained.
  • the yield of ethane-1,1-disulfonyl chloride was 72.2% based on propionic acid chloride.
  • Example 2 In the same manner as in Example 1, except that 92.0 g (0.60 mol) of phosphoryl trichloride was used instead of 184.0 (1.20 mol) of phosphoryl trichloride, ethane-1, 44.1 g (0.19 mol) of 1-disulfonyl chloride was obtained. The yield of ethane-1,1-disulfonyl chloride was 64.8% based on propionic acid chloride.
  • Example 3 In the same manner as in Example 1 except that 140.0 g (1.20 mol) of chlorosulfonic acid was used instead of 76.9 g (0.66 mol) of chlorosulfonic acid, ethane-1, 38.9 g (0.17 mol) of 1-disulfonyl chloride was obtained. The yield of ethane-1,1-disulfonyl chloride was 57.1% with respect to propionic acid chloride.
  • Example 4 In Example 1, in place of 27.8 g (0.30 mol) of propionic acid chloride, 23.6 g (0.30 mol) of acetic acid chloride was used in the same manner as in Example 1, except that methanedisulfonyl chloride 43 .4 (0.20 mol) was obtained. The yield of methanedisulfonyl chloride was 68.3% with respect to acetic acid chloride.
  • Reference example 1 In a 300 mL four-necked flask equipped with a stirrer, a condenser, a thermometer and a dropping funnel, 46.0 g (0.30 mol) of phosphoryl trichloride was charged under a nitrogen stream, and chlorosulfonic acid 76. 9 g (0.66 mol) was added dropwise over 30 minutes while maintaining at 20-30 ° C. with a dropping funnel. After completion of the dropwise addition, 27.8 g (0.30 mol) of propionic acid chloride was further added dropwise to the obtained mixture at 20 to 30 ° C. over 30 minutes using a dropping funnel. Next, the temperature of the reaction solution was raised to 110 ° C. over an hour using an oil bath.
  • Comparative Example 1 In a 300 mL four-necked flask equipped with a stirrer, a condenser, a thermometer and a dropping funnel, 92.0 g (0.60 mol) of phosphoryl trichloride was charged under a nitrogen stream, and 76.9 g of chlorosulfonic acid was added thereto. (0.66 mol) was added dropwise over 30 minutes while maintaining the temperature at 20 to 30 ° C. with a dropping funnel. Further, 22.2 g (0.30 mol) of propionic acid was added dropwise at 20 to 30 ° C. over 30 minutes. After completion of dropping, the temperature of the reaction solution was raised to 110 ° C. over 1 hour using an oil bath.
  • Table 1 summarizes the conditions and results of the above Examples and Comparative Examples.
  • Example 5 In a 200 mL four-necked flask equipped with a stirrer, a condenser, a thermometer, and a dropping funnel, 45.4 g (2.52 mol) of water was charged and cooled to 10 ° C. 22.7 g (0.10 mol) of ethane-1,1-disulfonyl chloride obtained by the same method as in Example 1 was added dropwise over 1 hour while maintaining the temperature at 0 ° C. Next, the temperature was raised to 100 ° C. with an oil bath and refluxed for 8 hours. After completion of the reaction, the water was distilled off under reduced pressure at 60 ° C./3 mmHg for 1 hour.
  • the water content was determined by the Karl Fischer method.
  • the following example is the same.
  • Example 6 Ethane-1,1-disulfonic acid having a water content of 0.1% by mass obtained in the same manner as in Example 5 in a nitrogen gas stream in a 300 mL four-necked flask equipped with a stirrer, a condenser and a thermometer. 96.2 g (0.098 mol) of a sulfolane solution was charged, and the temperature was raised to 100 ° C. After the temperature increase, 4.1 g of paraformaldehyde (0.136 mol in terms of formaldehyde) and 27.8 g of diphosphorus pentoxide (0.196 mol) were added, and the temperature was kept for 12 hours.
  • Comparative Example 5 In a 300 mL four-necked flask equipped with a stirrer, a condenser tube and a thermometer, 16.2 g of black viscous oil having a water content of 2.6% by mass and sulfolane 80 obtained in the same manner as in Comparative Example 4 under a nitrogen stream 0.0 g was added and the temperature was raised to 100 ° C. After the temperature increase, 4.1 g of paraformaldehyde (0.136 mol in terms of formaldehyde) and 27.8 g of diphosphorus pentoxide (0.196 mol) were added, and the temperature was kept for 12 hours. As a result of measuring this reaction liquid by gas chromatography (GC) method, methylene 1,1-ethanedisulfonate, which was the target product, was not confirmed.
  • GC gas chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 毒物である三塩化ホスホリルの使用量を削減し、工業的に有利な方法で、高い収率において、メチレンジスルホニルクロライド化合物を得られる製造方法を提供すること。 下記式(1): RCHCOX (1) (式中、R及びRは、それぞれ独立して、水素原子、又は水素原子がハロゲン原子で置換されていてもよい炭素数1~4のアルキル基を示し、Xはハロゲン原子を示す。) で表されるカルボン酸ハライド化合物、クロロスルホン酸、及び該カルボン酸ハライド化合物 1モルに対して2.0モル以上10.0モル以下の三塩化ホスホリルを反応させる工程を含む、下記式(2): (式中、R及びRは、それぞれ式(1)におけるR及びRと同じものを示す。) で表されるジスルホニルクロライド化合物の製造方法。

Description

メチレンジスルホニルクロライド化合物の製造方法
 本発明は、メチレンジスルホニルクロライド化合物の製造方法に関する。
 メチレンジスルホニルクロライド化合物は、動物の白血病治療薬等の医薬品等に有用なメチレンジスルホネート化合物や、二次電池用電解液の添加剤等に有用なメチレンジスルホン酸エステル化合物、メチレンジスルホンアミド化合物等を合成する際に中間物として有利な骨格を持つ化合物である。
 メチレンジスルホニルクロライド化合物の製造方法としては、カルボン酸化合物にクロロスルホン酸及び三塩化ホスホリルを反応させて製造する方法(非特許文献1)等が知られている。
 しかしながら、非特許文献1の方法によると、反応途中で不溶性の副生成物(ポリマー化合物)が生じる。これにより反応中に攪拌不良や装置の目詰まりなどが起こるため、工業的にメチレンジスルホニルクロライド化合物を製造するのは、困難である。そこで、特許文献1では、大過剰の三塩化ホスホリルを使用することで上記不溶性の副生成物の生成を抑制できることを報告している。しかし、毒物である三塩化ホスホリルを大過剰に使用することは、経済面、安全面の観点等から、工業的には好ましくない。
特開2006-206515号公報
BIOORGANIC CHEMISTRY 24,242-250(1996)
 本発明は、毒物である三塩化ホスホリルの使用量を削減し、工業的に有利な方法で、高い収率において、メチレンジスルホニルクロライド化合物を得られる製造方法を提供することを目的とする。
 本発明者等は、前記課題を解決すべく鋭意検討の結果、カルボン酸ハライド化合物、三塩化ホスホリル、及びクロロスルホン酸を反応させることにより、不溶性の副生成物(ポリマー化合物)の生成を抑制し、更に、毒物である三塩化ホスホリルの使用量を削減してメチレンジスルホニルクロライド化合物を製造できることを見出し、さらに改良を重ねて本発明を完成させるに至った。
 即ち、本発明は例えば以下の項に記載の主題を包含する。
 項1. 下記式(1):
CHCOX    (1)
(式中、R及びRは、それぞれ独立して、水素原子、又は水素原子がハロゲン原子で置換されていてもよい炭素数1~4のアルキル基を示し、Xはハロゲン原子を示す。)
で表されるカルボン酸ハライド化合物、クロロスルホン酸、及び該カルボン酸ハライド化合物 1モルに対して2.0モル以上10.0モル以下の三塩化ホスホリルを反応させる工程を含む、下記式(2):
Figure JPOXMLDOC01-appb-C000004
(式中、R及びRは、それぞれ式(1)におけるR及びRと同じものを示す。)
で表されるメチレンジスルホニルクロライド化合物の製造方法。
 項2. 前記式(1)で表されるカルボン酸ハライド化合物 1モルに対する前記クロロスルホン酸の使用量が、2.0モル以上4.0モル以下である、前記項1に記載の製造方法。
 項3. 前記項1又は2に記載の製造方法により前記式(2)で表されるメチレンジスルホニルクロライド化合物を得る工程、及び
前記式(2)で表されるメチレンジスルホニルクロライド化合物と水とを反応させ、極性有機溶媒存在中で脱水する工程
を含む、下記式(3):
Figure JPOXMLDOC01-appb-C000005
(式中、R及びRは、それぞれ式(1)におけるR及びRと同じものを示す。)
で表されるメチレンジスルホン酸化合物の製造方法。
 項4. 前記項3に記載の製造方法により前記式(3)で表されるメチレンジスルホン酸化合物を得る工程、及び、
前記式(3)で表されるメチレンジスルホン酸化合物に、脱水剤、並びにホルムアルデヒド、トリオキサン、及びパラホルムアルデヒドからなる群より選択される少なくとも一種の化合物を混合し、反応させる工程を含む下記式(4):
Figure JPOXMLDOC01-appb-C000006
(式中、R及びRは、それぞれ式(1)におけるR及びRと同じものを示す。)
で表されるメチレンジスルホネート化合物の製造方法。
 本発明によれば、カルボン酸ハライド化合物、三塩化ホスホリル、及びクロロスルホン酸を反応させることにより、メチレンジスルホニルクロライド化合物を工業的に有利な方法で、高い収率によって取得することができる。
 また、本発明によれば、メチレンジスルホン酸化合物及びメチレンジスルホネート化合物を工業的に有利な方法で、高い収率によって取得することができる。
 本発明の製造方法は、カルボン酸ハライド化合物、三塩化ホスホリル、及びクロロスルホン酸を反応させてメチレンジスルホニルクロライド化合物を得る製造方法、並びに当該工程を含むメチレンジスルホン酸化合物及びメチレンジスルホネート化合物を得る製造方法に係る。
 1.メチレンジスルホニルクロライド化合物の製造
 本発明に係るカルボン酸ハライド化合物は、下記式(1):
 RCHCOX   (1)
(式中、R及びRは、それぞれ独立して、水素原子、又は水素原子がハロゲン原子で置換されていてもよい炭素数1~4のアルキル基を示し、Xはハロゲン原子を示す。)
で表される化合物である。
 前記炭素数1~4のアルキル基は、直鎖又は分岐鎖であってもよい。具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、イソプロピル基等が好ましく例示される。上記のとおり、当該アルキル基の水素原子はハロゲン原子で置換されていてもよい。ハロゲン原子は好ましくはフッ素原子、塩素原子、臭素原子、又はヨウ素原子であり、より好ましくは塩素原子である。また、ハロゲン原子で置換される水素原子数は、好ましくは1、2、3、又や4個であり、より好ましくは1又は2個である。これらの中でも、R及びRのどちらか一方が水素であり、他方が水素又はハロゲン原子で置換されていてもよい炭素数1~4のアルキル基である無置換体又は一置換体が好ましく、他方がハロゲン原子で置換されていてもよい炭素数1~4のアルキル基である一置換体が特に好ましい。一置換体のハロゲン原子で置換されていてもよい炭素数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基のような直鎖のアルキル基が好ましい。
 前記式(1)において、Xで示されるハロゲン原子としては、たとえば、塩素原子、臭素原子及びヨウ素原子等を挙げることができる。これらの中でも塩素原子が入手の容易さ、安全性等の観点から好ましい。
 前記式(1)の化合物の具体例としては、例えば、酢酸クロライド、プロピオン酸クロライド、酪酸クロライド、吉草酸クロライド、イソ酪酸クロライド、イソ吉草酸クロライド等の塩化物;及び酢酸ブロマイド、プロピオン酸ブロマイド、酪酸ブロマイド、吉草酸ブロマイド、イソ酪酸ブロマイド、イソ吉草酸ブロマイド等の臭化物が挙げられる。これらの中でも、塩化物が入手の容易さ、安全性等の観点から好ましく、酢酸クロライド、プロピオン酸クロライド、酪酸クロライドであることがより好ましく、プロピオン酸クロライド、酪酸クロライドであることが特に好ましい。これらのカルボン酸ハライド化合物を使用することで、より高い収率でメチレンジスルホニルクロライド化合物を得ることができる。
 前記カルボン酸ハライド化合物は、市販品を用いてもよい。また、常法に従って製造されたものを用いてもよく、例えば、カルボン酸と塩化チオニル又は臭化チオニルを反応させて製造されたもの等を用いることができる。
 当該製造方法において、前記式(1)で表されるカルボン酸ハライド化合物、三塩化ホスホリル、及びクロロスルホン酸を反応させる際に、該カルボン酸ハライド化合物 1モルに対する三塩化ホスホリルの使用量を2.0モル以上10.0モル以下にすることにより不溶性の副生成物(ポリマー化合物)の生成を抑制することができる。該カルボン酸ハライド化合物 1モルに対する三塩化ホスホリルの使用量は、2.0モル以上6.0モル以下であることが好ましい。なお、該カルボン酸ハライド化合物 1モルに対する三塩化ホスホリルの使用量が2.0モル未満の場合は、不溶性の副生成物(ポリマー化合物)がより多く生成し、10.0モルを超える場合は、効率的に反応が進行せず、メチレンジスルホニルクロライド化合物の収率が低下する。
 当該製造方法において、前記式(1)で表されるカルボン酸ハライド化合物、三塩化ホスホリル、及びクロロスルホン酸を反応させる際に、前記カルボン酸ハライド化合物 1モルに対するクロロスルホン酸の使用量は、好ましくは2.0モル以上4.0モル以下、より好ましくは2.0モル以上3.0モル以下である。前記カルボン酸ハライド化合物 1モルに対するクロロスルホン酸の使用量が、2.0モル以上であれば、メチレンジスルホニルクロライド化合物の収率をより向上することができる。4.0モル以下であれば、反応液中で過剰のクロロスルホン酸の分解によって硫酸が生成することを抑えることができるため、反応により得られるメチレンジスルホニルクロライド化合物が硫酸により分解されることを抑えることができる。
 前記式(1)で表されるカルボン酸ハライド化合物、三塩化ホスホリル、及びクロロスルホン酸を反応させる方法は、特に限定されないが、例えば、まず三塩化ホスホリルとクロロスルホン酸を混合した後に、該カルボン酸ハライド化合物を混合(好ましくは添加)する方法等が挙げられる。なお、三塩化ホスホリルとクロロスルホン酸とを混合する際には、希釈熱等により発熱するので、安全性の観点等からクロロスルホン酸を三塩化ホスホリルに滴下する方法が好ましい。混合(好ましくは滴下)を行う際の温度としては、0~50℃であることが好ましく、20~50℃であることがより好ましい。混合液が、50℃以下であれば、不溶性の副生成物の生成の原因となる物質の発生を抑えることができ、より収率よく反応を行うことができる。また、0℃以上であれば、昇温する際に時間等を短縮することができ、工業化を行うために経済的である。滴下する場合における滴下時間は0.5~3.0時間で滴下することが好ましい。滴下時間が0.5時間以上であれば、希釈熱による反応液の温度の急激な上昇を防ぐことができ、より安全に反応を行うことができる。また、滴下時間が3.0時間以下であれば、製造にかかる時間を適度に抑えることができ、経済的である。
 三塩化ホスホリルとクロロスルホン酸との混合液に該カルボン酸ハライド化合物を混合(好ましくは添加)する際には、該カルボン酸ハライド化合物を滴下する方法が好ましい。滴下する温度としては、0~50℃であることが好ましく、20~50℃であることが特に好ましい。滴下時間は0.5~3.0時間で滴下することが好ましい。所定の時間をかけて滴下することで、発熱を抑制することができ、不溶性の副生成物(ポリマー化合物)が生成する原因となる物質の発生を抑えることができる。また、0℃以上であれば、昇温する際に時間等を短縮することができ、工業化を行なうために経済的である。さらに、滴下時間を3.0時間以下とすることで製造にかかる時間を適度に抑えることができ、経済的である。
 前記反応は、必要に応じて、窒素、アルゴン等の不活性雰囲気下で行う。
 前記原料の混合後、混合液を加熱し反応させる温度としては、70~140℃とすることが好ましく、90~120℃とすることがより好ましい。反応時間は、通常、10~20時間である。反応温度が70℃以上であれば、適度な反応速度で反応が進行し、効率がよい。また、140℃以下であれば、三塩化ホスホリルが気化し、反応系外に出ることを抑えることができるため、収率よく反応を進行させることができる。
 上記のようにして得られたメチレンジスルホニルクロライド化合物は、反応終了後、余剰分の三塩化ホスホリルを留去した後に蒸留により単離することができる。
 本発明の製造方法により得られるメチレンジスルホニルクロライド化合物は下記式(2):
Figure JPOXMLDOC01-appb-C000007
(式中、R及びRは、それぞれ式(1)におけるR及びRと同じ原子または基を示す。)
で表される。
 前記式(2)のメチレンジスルホニルクロライド化合物の具体例としては、例えば、メタンジスルホニルクロライド、エタン-1,1-ジスルホニルクロライド、プロパン-1,1-ジスルホニルクロライド、ブタン-1,1-ジスルホニルクロライド、プロパン-2,2-ジスルホニルクロライド、2-メチル-プロパン-1,1-ジスルホニルクロライド等が挙げられる。これらの中でも、メタンジスルホニルクロライド、エタン-1,1-ジスルホニルクロライド、プロパン-1,1-ジスルホニルクロライドが好ましく、エタン-1,1-ジスルホニルクロライド、プロパン-1,1-ジスルホニルクロライドが特に好ましい。
 2.メチレンジスルホン酸化合物の製造
 本発明では、上記方法により得られた前記式(2)で表されるメチレンジスルホニルクロライド化合物を、水と反応させ、極性有機溶媒存在中で脱水することにより下記式(3):
Figure JPOXMLDOC01-appb-C000008
(式中、R及びRは、それぞれ独立して、水素原子、又は水素原子がハロゲン原子で置換されていてもよい炭素数1~4のアルキル基を示す。)
で表されるメチレンジスルホン酸化合物を効率的に得ることができる。
 前記式(3)中におけるR及びRは、前記式(1)におけるR及びRにおいて例示したものが挙げられる。
 前記式(3)のメチレンジスルホン酸化合物の具体例としては、例えば、メタンジスルホン酸、エタン-1,1-ジスルホン酸、プロパン-1,1-ジスルホン酸、ブタン-1,1-ジスルホン酸、プロパン-2,2-ジスルホン酸、2-メチル-プロパン-1,1-ジスルホン酸等が挙げられる。これらの中でも、メタンジスルホン酸、エタン-1,1-ジスルホン酸、プロパン-1,1-ジスルホン酸が好ましく、エタン-1,1-ジスルホン酸、プロパン-1,1-ジスルホン酸が特に好ましい。
 当該反応における水の使用量(仕込み量)としては、特に限定されないが、前記メチレンジスルホニルクロライド化合物に対して過剰量存在することが好ましい。例えば、前記メチレンジスルホニルクロライド化合物 1モルに対して、10~40モルの水を使用することが好ましく、20~30モルの水を使用することがより好ましい。水が過剰に存在することにより、効率的に反応が進行し、高収率でメチレンジスルホン酸化合物を得ることができる。特に、メチレンジスルホニルクロライド化合物 1モルに対する水の使用量が10モル以上であれば、原料が未反応のままとなるおそれがより低減され、40モル以下であれば、過剰に含まれる水を除去する場合に効率的である。
 前記メチレンジスルホニルクロライド化合物と水とを反応させる際の反応温度としては、60℃~100℃とすることが好ましく、95~100℃とすることがより好ましい。
 なお、前記式(3)で表されるメチレンジスルホン酸化合物は、水存在下では、通常水分子と水素結合を形成していると考えられている。上記の製造方法では過剰量の水を反応させているため、得られるメチレンジスルホン酸化合物は水分子と水素結合を形成していると考えられる。この状態をメチレンジスルホン酸化合物の水和物が形成されると表記することもあるが、本明細書中では、メチレンジスルホン酸化合物中に水が存在すると記載する。
 メチレンジスルホン酸化合物中の水は、特に、下述する工程によりメチレンジスルホネート化合物を合成する反応において、脱水縮合反応を阻害するおそれがある。従って、本発明に係るメチレンジスルホン酸化合物は、下述する工程によりメチレンジスルホネート化合物を合成する際には、できるだけ水を除くことが望ましい。特に限定はされないが、メチレンジスルホン酸化合物中の水の含量は、約3質量%以下にすることが好ましい。より好ましくは2質量%以下、さらに好ましくは1質量%以下、特に好ましくは0.5質量%以下である。
 しかしながら、通常メチレンジスルホン酸化合物は、水分子と水素結合を形成していることから、水の含量を約3質量%以下にすることは通常困難である。例えば、トルエン等の溶媒に添加し、共沸させた場合にも水分含量は低くならない。また、高温(120℃程度)にすることで水を除去させようとした場合には、高温により、メチレンジスルホン酸化合物が分解し、不純物が生成するおそれがある。
 本発明においては、得られたメチレンジスルホン酸化合物を極性有機溶媒存在中で脱水することによって、効率的に、水分含量を低くできる。限定的な解釈を望むものではないが、これは、メチレンジスルホン酸化合物と水素結合している水分子が極性有機溶媒に置換され、水が反応系外に出て行きやすくなるためと考えられる。
 前記極性有機溶媒としては、非プロトン性極性有機溶媒が好ましく、具体的にはジメチルスルホキシド、スルホラン、メチルピロリジン、ジメチルホルムアミド等が好ましく例示される。これらの中でも、スルホランが特に好ましい。極性有機溶媒は、本発明の効果を損なわない限り、1種単独で又は2種以上を組み合わせて用いることができる。
 前記極性有機溶媒は、例えば、下述する工程により、メチレンジスルホネート化合物を合成する際の反応溶媒としても用いることができる。従って、水を除去した後、極性有機溶媒を蒸留除去する必要がなく、引続き、メチレンジスルホネート化合物の合成が可能となる。
 前記極性有機溶媒の使用量としては、メチレンジスルホニルクロライド化合物 1モルに対して、3~10モル程度であることが好ましく、5~7モル程度であることがより好ましい。3モル程度以上である場合、好ましく水が置換され、水分含量を効率よく低下させることができる。10モル程度以下である場合、溶媒の除去がより容易であり、より効率的にメチレンジスルホン酸化合物の取得ができる。
 前記極性有機溶媒の添加方法としては、特に限定されない。メチレンジスルホニルクロライド化合物と水を反応させる前に混合しても、反応終了後の反応液に添加してもよい。好ましくは、反応終了後の反応液から減圧留去等により水をある程度(例えば水分含量17質量%程度になるまで)留去した後に、添加する方法が、作業効率の観点等から好ましい。
 極性有機溶媒を添加した後、脱水することにより、通常の方法に比べ、水の含量を大幅に減少させることができる。特に、水の含量を約3質量%以下にする方法としては、限定されないが、極性有機溶媒を添加した反応液の温度が0~80℃の範囲において、例えば、減圧留去、乾燥剤による脱水等を行う方法が挙げられる。これらの中でも、減圧留去では、温度が60~80℃であることが好ましい。温度が60℃以上である場合、水分含量をより効率よく低下させることができる。80℃以下である場合、反応液中のメチレンジスルホン酸化合物が分解されて純度が低下するおそれが、より低減される。また、減圧度は特に限定されないが、例えば、3~10mmHgであることが好ましい。
 3.メチレンジスルホネート化合物の製造
 上記方法により得られた前記式(3)で表されるメチレンジスルホン酸化合物から更に公知の方法により、環状のメチレンジスルホネート化合物を合成することができる。当該公知の方法としては、例えば国際公開WO2007/125736号パンフレットに記載の方法が好ましく例示できる。具体的には、メチレンジスルホン酸化合物とホルムアルデヒド化合物とを脱水剤の存在下で反応させて、環状のメチレンジスルホネート化合物を合成する方法である。
 以下に、上記方法により得られたメチレンジスルホン酸化合物から更に環状のメチレンジスルホネート化合物を合成する方法の好ましい一態様を詳述する。
 上記のようにして、前記式(3)で表されるメチレンジスルホン酸化合物を極性有機溶媒存在中で脱水した後、反応液にさらに、脱水剤、並びにホルムアルデヒド、トリオキサン、及びパラホルムアルデヒドからなる群より選択される少なくとも1種の化合物を加え、反応させることにより、下記式(4):
Figure JPOXMLDOC01-appb-C000009
(式中、R及びRは、それぞれ独立して、水素原子、又は水素原子がハロゲン原子で置換されていてもよい炭素数1~4のアルキル基を示す。)
で表されるメチレンジスルホネート化合物を製造することができる。
 前記式(4)中におけるR及びRは、前記式(1)におけるR及びRにおいて例示したものが挙げられる。
 ここで用いる脱水剤としては、特に限定されるものではなく、例えば、五酸化リン、五塩化リン、オキシ塩化リン、塩化チオニル、塩化アセチル、無水酢酸等を挙げることができる。これらの中でも、反応性が高い観点から、五酸化リンが好ましい。これらの脱水剤は、1種単独又は2種以上を組み合わせて用いることができる。脱水剤の使用量は、特に限定されないが、メチレンジスルホン酸化合物 1モルに対して、好ましくは、0.6~10モル、より好ましくは0.8~3モルである。
 ホルムアルデヒド、トリオキサン、及びパラホルムアルデヒドからなる群より選択される少なくとも1種の化合物(以下「ホルムアルデヒド化合物」とも呼ぶ)の使用量は、特に限定されないが、メチレンジスルホン酸化合物 1モルに対して、ホルムアルデヒド換算で好ましくは0.2~10モル、より好ましくは0.3~3モルである。
 当該方法においては、反応温度は特に限定はされないが、例えば、好ましくは0~200℃、より好ましくは50~150℃である。また、反応時間は反応温度により異なるが、例えば0.1~15時間程度である。
 当該方法の反応は、脱水縮合反応であるため、水が存在すると反応の進行が阻害される。この点、上述した方法により、原料であるメチレンジスルホン酸化合物中の水含有量を低減させることで、反応進行が阻害されるおそれが小さくなり、有利である。また、当該方法は、前記式(3)で表されるメチレンジスルホン酸化合物を極性溶媒存在中で脱水した後、さらに、脱水剤並びにホルムアルデヒド化合物を加えることで行うことができる。即ち、極性有機溶媒を除去することなく、引続き、前記式(4)で表されるメチレンジスルホネート化合物の合成が可能となる。
 上記により得られる前記式(4)で表されるメチレンジスルホネート化合物は、通常の分離手段により反応混合物より分離され、精製される。このような分離及び精製手段としては、例えば蒸留法、再結晶法、カラムクロマトグラフィー、イオン交換クロマトグラフィー、ゲルクロマトグラフィー、親和クロマトグラフィー、プレパラティブ薄層クロマトグラフィー、溶媒抽出法等を挙げることができる。
 以下に実施例および比較例を挙げ、本発明を具体的に説明するが、本発明はこの実施例によってなんら限定されるものではない。
 <メチレンジスルホニルクロライド化合物の製造>
 実施例1
 撹拌機、冷却管、温度計および滴下ロートを備え付けた300mL容の4つ口フラスコ内に、窒素気流下で三塩化ホスホリル 184.0(1.20モル)を仕込み、これにクロロスルホン酸 76.9g(0.66モル)を滴下ロートにより20~30℃に維持しながら、30分かけて滴下した。滴下終了後、得られた混合物にさらにプロピオン酸クロライド 27.8g(0.30モル)を滴下ロートにより、20~30℃で30分かけて滴下した。滴下終了後、オイルバスにより反応液を1時間かけて110℃まで昇温し、反応液を110℃に保持したまま15時間攪拌した。反応終了後、反応液から減圧留去により過剰の三塩化ホスホリルを除去した。得られた褐色溶液を120~140℃/2~5mmHgにて減圧蒸留を行い、初留を分離後、エタン-1,1-ジスルホニルクロライド49.21g(0.22モル)を取得した。エタン-1,1-ジスルホニルクロライドの収率は、プロピオン酸クロライドに対して72.2%であった。
 実施例2
 実施例1において、三塩化ホスホリル 184.0(1.20モル)に代えて、三塩化ホスホリル 92.0g(0.60モル)を用いた以外は実施例1と同様にして、エタン-1,1-ジスルホニルクロライド 44.1g(0.19モル)を取得した。エタン-1,1-ジスルホニルクロライドの収率は、プロピオン酸クロライドに対して64.8%であった。
 実施例3
 実施例1において、クロロスルホン酸 76.9g(0.66モル)に代えて、クロロスルホン酸 140.0g(1.20モル)を用いた以外は実施例1と同様にして、エタン-1,1-ジスルホニルクロライド 38.9g(0.17モル)を取得した。エタン-1,1-ジスルホニルクロライドの収率は、プロピオン酸クロライドに対して57.1%であった。
 実施例4
 実施例1において、プロピオン酸クロライド 27.8g(0.30モル)に代えて、酢酸クロライド 23.6g(0.30モル)を用いた以外は実施例1と同様にして、メタンジスルホニルクロライド 43.4(0.20モル)を取得した。メタンジスルホニルクロライドの収率は、酢酸クロライドに対して68.3%であった。
 参考例1
 撹拌機、冷却管、温度計および滴下ロートを備え付けた300mL容の4つ口フラスコ内に、窒素気流下で三塩化ホスホリル 46.0g(0.30モル)を仕込み、ここにクロロスルホン酸 76.9g(0.66モル)を滴下ロートにより20~30℃に維持しながら、30分かけて滴下した。滴下終了後、得られた混合物にさらに、プロピオン酸クロライド 27.8g(0.30モル)を滴下ロートにより、20~30℃で30分かけて滴下した。次にオイルバスにより反応液を1時間かけて110℃まで昇温した。反応液を110℃に保持したまま5時間攪拌したところ、反応液中に黒色の粘性不溶物が系内に多量に生成したため、攪拌が困難となった。これにより蒸留操作が行なえず、目的物を取得することができなかった。
 参考例2
 実施例1において、三塩化ホスホリル184.0(1.20モル)に代えて、三塩化ホスホリルを552.0g(3.60モル)を用いた以外は実施例1と同様にして、エタン-1,1-ジスルホニルクロライド8.5g(0.04モル)を取得した。エタン-1,1-ジスルホニルクロライドの収率は、プロピオン酸クロライドに対して12.5%であった。
 比較例1
 撹拌機、冷却管、温度計および滴下ロートを備え付けた300mL容の4つ口フラスコに、窒素気流下で三塩化ホスホリル92.0g(0.60モル)を仕込み、ここにクロロスルホン酸76.9g(0.66モル)を滴下ロートにより20~30℃に維持しながら、30分かけて滴下した。さらに、プロピオン酸22.2g(0.30モル)を、20~30℃で30分かけて滴下した。滴下終了後、オイルバスにより反応液を1時間かけて110℃まで昇温した。反応液を110℃に保持したまま3時間攪拌したところ、反応液中に黒色の粘性不溶物が系内に多量に生成したため、攪拌が困難となった。これにより蒸留操作が行なえず、目的物を取得することができなかった。
 比較例2
 撹拌機、冷却管、温度計および滴下ロートを備え付けた300mL容の4つ口フラスコに、窒素気流下で三塩化ホスホリル184.0g(1.20モル)を仕込み、ここにクロロスルホン酸76.9g(0.66モル)を滴下ロートにより20~30℃に維持しながら、30分かけて滴下した。さらに、プロピオン酸22.2g(0.30モル)を20~30℃で30分かけて滴下した。次にオイルバスにより反応液を1時間かけて110℃まで昇温し、反応液を110℃に保持したまま3時間還流したところ、反応液中に黒色の粘性不溶物が系内に多量に生成したため、攪拌が困難となった。これにより蒸留操作が行なえず、目的物を取得することができなかった。
 上記実施例及び比較例の条件と結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000010
 <メチレンジスルホン酸の製造>
 実施例5
 攪拌機、冷却管、温度計及び滴下ロートを備え付けた200mL容の4つ口フラスコに、水 45.4g(2.52モル)を仕込み10℃に冷却した。ここに、実施例1と同様の方法で得られたエタン-1,1-ジスルホニルクロライド 22.7g(0.10モル)を0℃に維持しながら1時間かけて滴下した。次にオイルバスにより100℃に昇温し、8時間還流した。反応終了後、水分を60℃/3mmHgにて1時間減圧留去をした。これにより水分含量17質量%の淡黄色のオイルが得られた。さらにここにスルホラン80.0gを添加し、80℃/3mmHgにて3時間減圧留去を行い、水分含量0.1質量%のエタン-1,1-ジスルホン酸のスルホラン溶液 96.2g(0.098モル)を取得した。エタン-1,1-ジスルホン酸の収率は、エタン-1,1-ジスルホニルクロライドに対して、98.0%であった。
 なお、水分含量はカール・フィッシャー法により求めた。以下の例も同じである。
 比較例3
 攪拌機、冷却管、温度計及び滴下ロートを備え付けた200mL容の4つ口フラスコに、水 45.4g(2.52モル)を仕込み10℃に冷却した。ここに、実施例1と同様の方法で得られたエタン-1,1-ジスルホニルクロライド 22.7g(0.10モル)を1時間かけて滴下した。次にオイルバスにより100℃に昇温し、8時間還流した。反応終了後、水分を60℃/3mmHgにて1時間減圧留去をした。これにより水分含量17質量%の淡黄色のオイルが得られた。さらに同じ条件にて、3時間減圧留去を続けたが、水分含量は17質量%のままであった。
 比較例4
 攪拌機、冷却管、温度計及び滴下ロートを備え付けた200mL容の4つ口フラスコに、水 45.4g(2.52モル)を仕込み10℃に冷却した。ここに、実施例1と同様の方法で得られたエタン-1,1-ジスルホニルクロライド 22.7g(0.10モル)を1時間かけて滴下した。次にオイルバスにより100℃に昇温し、8時間還流した。反応終了後、水分を60℃/3mmHgにて1時間減圧留去した。これにより水分含量17質量%の淡黄色のオイルが得られた。この淡黄色オイルを140℃/3mmHgにてさらに減圧留去を行ったところ、水分含量2.6質量%の黒色粘性オイルとなった。
 <メチレンジスルホネート化合物の製造>
 実施例6
 攪拌機、冷却管及び温度計を備え付けた300mL容の4つ口フラスコに窒素気流下、実施例5と同様の方法で得られた水分含量0.1質量%のエタン-1,1-ジスルホン酸のスルホラン溶液 96.2g(0.098モル)を仕込み、100℃に昇温した。昇温後、パラホルムアルデヒド 4.1g(ホルムアルデヒド換算で0.136モル)と五酸化二リン 27.8g(0.196モル)を添加し、12時間保温した。その後、室温まで冷却し、アセトニトリル 78.4gと水 32.3gとを添加し、分液操作を行った。分液後、油層を40℃/3mmHgにて3時間減圧濃縮を行った。その後、濃縮液を5℃まで冷却し、水 81.3gを1時間かけて滴下した。これにより生成した結晶を濾別により取得した。取得した結晶を水、イソプロパノール、及びヘキサンで洗浄し、40℃/3mmHgにて3時間減圧留去することにより、メチレン 1,1-エタンジスルホネートの白色結晶13.0g(0.06モル)を取得した。
 比較例5
 攪拌機、冷却管及び温度計を備え付けた300mL容の4つ口フラスコに窒素気流下、比較例4と同様の方法により得られた水分含量2.6質量%の黒色粘性オイル 16.2gとスルホラン 80.0gを加え、100℃に昇温した。昇温後、パラホルムアルデヒド 4.1g(ホルムアルデヒド換算で0.136モル)と五酸化二リン 27.8g(0.196モル)を添加し、12時間保温した。この反応液をガスクロマトグラフィー(GC)法にて測定した結果、目的物であるメチレン 1,1-エタンジスルホネートは確認されなかった。

Claims (4)

  1.  下記式(1):
    CHCOX    (1)
    (式中、R及びRは、それぞれ独立して、水素原子、又は水素原子がハロゲン原子で置換されていてもよい炭素数1~4のアルキル基を示し、Xはハロゲン原子を示す。)
    で表されるカルボン酸ハライド化合物、クロロスルホン酸、及び該カルボン酸ハライド化合物 1モルに対して2.0モル以上10.0モル以下の三塩化ホスホリルを反応させる工程を含む、下記式(2):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R及びRは、それぞれ式(1)におけるR及びRと同じものを示す。)
    で表されるメチレンジスルホニルクロライド化合物の製造方法。
  2.  前記式(1)で表されるカルボン酸ハライド化合物 1モルに対する前記クロロスルホン酸の使用量が、2.0モル以上4.0モル以下である、請求項1に記載の製造方法。
  3.  請求項1又は2に記載の製造方法により前記式(2)で表されるメチレンジスルホニルクロライド化合物を得る工程、及び
    前記式(2)で表されるメチレンジスルホニルクロライド化合物と水とを反応させ、極性有機溶媒存在中で脱水する工程
    を含む、下記式(3):
    Figure JPOXMLDOC01-appb-C000002
    (式中、R及びRは、それぞれ式(1)におけるR及びRと同じものを示す。)
    で表されるメチレンジスルホン酸化合物の製造方法。
  4.  請求項3に記載の製造方法により前記式(3)で表されるメチレンジスルホン酸化合物を得る工程、及び、
    前記式(3)で表されるメチレンジスルホン酸化合物に、脱水剤、並びにホルムアルデヒド、トリオキサン、及びパラホルムアルデヒドからなる群より選択される少なくとも一種の化合物を混合し、反応させる工程を含む下記式(4):
    Figure JPOXMLDOC01-appb-C000003
    (式中、R及びRは、それぞれ式(1)におけるR及びRと同じものを示す。)
    で表されるメチレンジスルホネート化合物の製造方法。
PCT/JP2014/078960 2013-10-30 2014-10-30 メチレンジスルホニルクロライド化合物の製造方法 WO2015064711A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013225102 2013-10-30
JP2013-225102 2013-10-30
JP2013234789 2013-11-13
JP2013-234789 2013-11-13

Publications (1)

Publication Number Publication Date
WO2015064711A1 true WO2015064711A1 (ja) 2015-05-07

Family

ID=53004308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078960 WO2015064711A1 (ja) 2013-10-30 2014-10-30 メチレンジスルホニルクロライド化合物の製造方法

Country Status (2)

Country Link
TW (1) TW201527266A (ja)
WO (1) WO2015064711A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336155A (ja) * 2004-04-28 2005-12-08 Sumitomo Chemical Co Ltd 環式ジスルホン酸エステルの製造方法
JP2006188449A (ja) * 2005-01-05 2006-07-20 Sumitomo Chemical Co Ltd 環式ジスルホン酸エステルの製造方法
JP2006206515A (ja) * 2005-01-28 2006-08-10 Nec Corp メチレンジスルホニルクロライド及びその誘導体の製造方法
WO2007125736A1 (ja) * 2006-04-26 2007-11-08 Sumitomo Seika Chemicals Co., Ltd. メチレンジスルホネート化合物の製造方法
US20090176805A1 (en) * 2007-11-27 2009-07-09 Cronyn Marshall W Derivatives of ethylene methanedisulfonate as cancer chemotherapeutic agents
JP2012131724A (ja) * 2010-12-21 2012-07-12 Central Glass Co Ltd 環状ジスルホン酸エステル化合物の製造方法
JP2013203698A (ja) * 2012-03-28 2013-10-07 Sumitomo Seika Chem Co Ltd リン含有スルホン酸エステル化合物、非水電解液用添加剤、非水電解液、及び、蓄電デバイス
JP2014062076A (ja) * 2012-09-24 2014-04-10 Sumitomo Seika Chem Co Ltd メチレンジスルホニルクロライド化合物、メチレンジスルホン酸化合物およびメチレンジスルホネート化合物の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336155A (ja) * 2004-04-28 2005-12-08 Sumitomo Chemical Co Ltd 環式ジスルホン酸エステルの製造方法
JP2006188449A (ja) * 2005-01-05 2006-07-20 Sumitomo Chemical Co Ltd 環式ジスルホン酸エステルの製造方法
JP2006206515A (ja) * 2005-01-28 2006-08-10 Nec Corp メチレンジスルホニルクロライド及びその誘導体の製造方法
WO2007125736A1 (ja) * 2006-04-26 2007-11-08 Sumitomo Seika Chemicals Co., Ltd. メチレンジスルホネート化合物の製造方法
US20090176805A1 (en) * 2007-11-27 2009-07-09 Cronyn Marshall W Derivatives of ethylene methanedisulfonate as cancer chemotherapeutic agents
JP2012131724A (ja) * 2010-12-21 2012-07-12 Central Glass Co Ltd 環状ジスルホン酸エステル化合物の製造方法
JP2013203698A (ja) * 2012-03-28 2013-10-07 Sumitomo Seika Chem Co Ltd リン含有スルホン酸エステル化合物、非水電解液用添加剤、非水電解液、及び、蓄電デバイス
JP2014062076A (ja) * 2012-09-24 2014-04-10 Sumitomo Seika Chem Co Ltd メチレンジスルホニルクロライド化合物、メチレンジスルホン酸化合物およびメチレンジスルホネート化合物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SONNTAG,N.O.: "The reactions of aliphatic acid chlorides", CHEMICAL REVIEWS, vol. 52, 1953, WASHINGTON, DC, UNITED STATES, pages 237 - 416 *

Also Published As

Publication number Publication date
TW201527266A (zh) 2015-07-16

Similar Documents

Publication Publication Date Title
Zafrani et al. Diethyl bromodifluoromethylphosphonate: a highly efficient and environmentally benign difluorocarbene precursor
WO2015064712A1 (ja) メチレンジスルホン酸化合物の製造方法
JP2014201545A (ja) 2−ヒドロキシメチル−2,3−ジヒドロ−チエノ[3,4−b][1,4]ジオキシン−5,7−ジカルボン酸ジアルキルエステルの製造方法
JP5930930B2 (ja) メチレンジスルホニルクロライド化合物、メチレンジスルホン酸化合物およびメチレンジスルホネート化合物の製造方法
JP6694990B2 (ja) 5−(トリフルオロメチル)ピリミジン誘導体及びその製造方法
JP5667913B2 (ja) 2,3−ジクロロピリジンの製造方法
JP2005325116A (ja) 5−ブロモ−2,2−ジフルオロベンゾ−[1,3]−ジオキソールの製造方法
JP6086163B2 (ja) 2’−トリフルオロメチル基置換芳香族ケトンの製造方法
WO2015064711A1 (ja) メチレンジスルホニルクロライド化合物の製造方法
JP6429105B2 (ja) ジアリールヨードニウム塩
TW202124349A (zh) 2-鹵化苯甲酸類的製造方法
JP5071795B2 (ja) ベンゾオキサチイン化合物の製造方法
KR102585411B1 (ko) 5-플루오로-1h-피라졸-4-카르보닐 플루오라이드의 제조 방법
JP2016222548A (ja) ヨウ化アルキル化合物の製造方法
JP4600054B2 (ja) ビフェニル誘導体の製法
JP5482233B2 (ja) ジアリールジスルフィド化合物の製造方法
Yang et al. The synthesis of 4-tosyloxy-2-substituted phenols using new solid pyridinium salt supported [hydroxyl (tosyloxy) iodo] benzene reagents
HU192070B (en) Process for transforming carboxy group into trichloro-methyl group
EP3406595B1 (en) Method for producing 2-aminonicotinic acid benzyl ester derivative
JP4635251B2 (ja) 有機ビスマス化合物およびその製法
WO2015146561A1 (ja) 臭化芳香族エステル化合物の製造方法
KR20230155447A (ko) 3-브로모-1-(3-클로로피리딘-2-일)-1h-피라졸-5-카르복실산에스테르의 제조 방법
KR20230060027A (ko) 비대칭형 포스페이트계 화합물의 제조방법
JP5573079B2 (ja) 3−メルカプト−1−プロパノールの製造方法
JP2008100951A (ja) 2−シクロペンタデセノンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14857763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP