WO2015064029A1 - 高強度熱延鋼板およびその製造方法 - Google Patents

高強度熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2015064029A1
WO2015064029A1 PCT/JP2014/005210 JP2014005210W WO2015064029A1 WO 2015064029 A1 WO2015064029 A1 WO 2015064029A1 JP 2014005210 W JP2014005210 W JP 2014005210W WO 2015064029 A1 WO2015064029 A1 WO 2015064029A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
hot
steel sheet
rolled steel
strength
Prior art date
Application number
PCT/JP2014/005210
Other languages
English (en)
French (fr)
Inventor
典晃 ▲高▼坂
山崎 和彦
聡 堤
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201480059048.8A priority Critical patent/CN105683402B/zh
Publication of WO2015064029A1 publication Critical patent/WO2015064029A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to a high-strength hot-rolled steel sheet having high tensile strength (TS): 980 MPa or more, excellent material stability, and weldability, and a method for producing the same, useful for the use of automobile members.
  • TS tensile strength
  • the steel sheet having a high tensile strength of 980 MPa or more has good material stability and weldability.
  • various studies have been made on material stability and weldability of high-strength hot-rolled steel sheets. For example, the following techniques have been disclosed.
  • Patent Document 1 includes mass%, C: 0.01% to less than 0.08%, Si: 0.06 to 2.0%, Mn: 0.96 to 3.0%, P ⁇ 0.10%, S ⁇ 0.01%, Al: 0.005 to 0.3%, N ⁇ 0.01%, Ti: 0.01 to 0.20%, Mn-Si> 0.9%, and 0.75 ⁇ (C% / 12) / (Ti% / 48 + Nb% / 93 + Mo% / 96 + V% / 51- (N% / 14-S% / 32) ⁇ 1.25
  • the finishing temperature is 900 ° C. or higher and the steel is wound at 400 to 600 ° C.
  • a technology for producing a hot-rolled steel sheet having excellent material uniformity with a tensile strength of 540 MPa or more has been disclosed.
  • Patent Document 2 includes mass%, C: 0.05 to 0.12%, Si: 0.5% or less, Mn: 0.8 to 1.8%, P: 0.030% or less, S: 0.01% or less, Al: 0.005 to 0.1%, N : 0.01% or less, Ti: 0.030 to 0.080%, with the balance consisting of Fe and inevitable impurities, with a structure containing polygonal ferrite in a fraction of 70% or more, and in precipitates with a size of less than 20 nm
  • a technique for making a high-strength hot-rolled steel sheet having excellent strength uniformity with small strength variation within the coil by making it 50% or more is disclosed.
  • Patent Document 3 in mass%, C: more than 0.030% to less than 0.10%, Si: 0.35 to 0.80%, Mn: 1.7 to 3.2%, P: 0.001 to 0.02%, S: 0.0001 to 0.006%, Al: Contains 0.060% or less, N: 0.0001 to 0.0070%, Ti: 0.01 to 0.055%, Nb: 0.012 to 0.055%, Mo: 0.07 to 0.55%, B: 0.0005 to 0.0040%, the balance being iron and inevitable impurities
  • the X-ray intensity ratio of the ⁇ 110 ⁇ plane parallel to the plate surface in the plate thickness 1/8 layer of the steel sheet is 1.0 or more, the yield ratio is 0.68 or more and less than 0.92, and the maximum tensile strength (TS) is 780 MPa or more, and a technology for producing a hot-rolled steel sheet having excellent weldability and ductility has been disclosed.
  • Patent Document 3 discloses that the C content is reduced, and six kinds of elements of Si, Mn, Ti, Nb, Mo, and B are simultaneously added within a predetermined range, thereby freezing the shape during pressing. It is described that a good weldability can be obtained while at the same time increasing the yield ratio to such an extent that does not deteriorate.
  • Patent Document 3 can improve the weldability of a hot-rolled steel sheet, but cannot necessarily obtain a hot-rolled steel sheet having a tensile strength of 980 MPa or more.
  • Ti 0.01 to 0.055%
  • Nb 0.012 to 0.055%
  • Mo 0.07 to 0.55%
  • B 0.0005 to 0.0040% are added simultaneously. Is a disadvantage in terms of cost.
  • Patent Document 3 describes that bainite or bainitic ferrite is suitable as the main phase of the hot-rolled steel sheet.
  • Mo is an element that makes bainite formation unstable. Therefore, in the technique disclosed in Patent Document 3, since Mo is added by 0.07% or more, a hot-rolled steel sheet having excellent material stability cannot be obtained.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a high-strength hot-rolled steel sheet having a tensile strength of 980 MPa or more and excellent in material stability and weldability.
  • the present inventors have intensively studied various factors that affect the strength, material stability, and weldability of hot-rolled steel sheets.
  • a technique for improving the steel sheet strength a technique can be considered in which the matrix structure of the hot-rolled steel sheet is a low-temperature transformation phase such as bainite or martensite.
  • bainite a low-temperature transformation phase
  • martensite has higher strength than bainite, but has poor toughness. Therefore, when a steel sheet mainly composed of martensite is applied to an automobile member, various troubles such as a reduction in impact energy absorption ability of the member are caused.
  • the present inventors have focused on bainite having an excellent balance between strength and toughness, and have intensively studied various factors that achieve both weldability and material stability while maintaining the strength of a hot rolled steel sheet mainly composed of bainite. did.
  • the weldability of steel decreases as the C content of the steel increases.
  • C is a solid solution strengthening element. If the C content is reduced, insufficient strength of steel becomes a problem. Further, if the C content is reduced, ferrite, which is a soft structure, is likely to be generated, so that insufficient strength of the steel is also a problem.
  • the present inventors first made a means to set the main phase of the hot-rolled steel sheet to bainite and the tensile strength to be 980 MPa or more while limiting the C content that adversely affects weldability to the minimum necessary.
  • a hot-rolled steel sheet with a tensile strength of 980 MPa or more can be obtained if precipitation of the ferrite phase can be suppressed. I found it.
  • the C content is suppressed to a predetermined amount or less, and by optimizing the Ti and V contents, the weldability is good and the precipitation of the ferrite phase is suppressed. It was found that a hot rolled steel sheet with a bainite main phase having a tensile strength of 980 MPa or more can be obtained.
  • the present inventors examined the material stability of hot-rolled steel sheets containing bainite as the main phase. And after the investigation, it was clarified that the cause of the deterioration of the material stability was the fluctuation of the coiling temperature during the production of the hot-rolled steel sheet. Also, it is very difficult to stabilize the coiling temperature because the coiling temperature range for obtaining the bainite phase reaches the transition boiling region by cooling at the run-out table, and because it reaches the transition boiling region. That was also confirmed at the same time.
  • the present inventors examined means for reducing the sensitivity of the material to fluctuations in the winding temperature. As a result, we obtained the knowledge that it is effective to increase the bainite transformation start temperature (Bs point) and widen the temperature range causing bainite transformation by adding an appropriate amount of Si to the steel material of the hot-rolled steel sheet. It was. Moreover, the knowledge that the weldability of a hot-rolled steel sheet is also improved by the addition of Si was obtained.
  • the HAZ part may be softened due to welding heat history, and a desired strength may not be obtained.
  • the Si content of the steel sheet is optimized, the softening amount in the HAZ part can be greatly reduced by the solid solution strengthening ability of Si.
  • the present inventors have obtained the knowledge that by optimizing the Si content of the hot-rolled steel sheet, a high-strength hot-rolled steel sheet having a bainite main phase excellent in weldability and material stability can be obtained. It was.
  • the present invention has been completed based on the above findings, and the gist thereof is as follows.
  • the steel material is heated and hot-rolled, and then cooled, wound, and made into a hot-rolled steel sheet
  • the steel material is, in mass%, C: 0.09% to 0.17%, Si: Over 1.0%, 1.6% or less, Mn: 1.5% or more, 2.5% or less, P: 0.03% or less, S: 0.005% or less, Al: 0.08% or less, N: 0.0080% or less, Ti: 0.09% or more, 0.14% or less, V : 0.05% or more and 0.25% or less, Cr, Ni and Mo contents are limited to 0.06% or less (including 0%) respectively, and the balance is composed of Fe and unavoidable impurities, and heating by heating The temperature is 1150 ° C.
  • the hot rolling finish rolling temperature is 850 ° C. or higher
  • the cooling is started within 3 s after the hot rolling finish rolling is finished, and the average cooling rate of the cooling is 15 ° C. / s or higher
  • the winding temperature of the winding is 350 ° C. or higher and 550 ° C. or lower.
  • [5] A method for producing a high-strength hot-rolled steel sheet according to [4], further containing, in addition to the above composition, B: 0.0001% to 0.005% by mass%.
  • a high-strength hot-rolled steel sheet having a tensile strength of 980 MPa or more with good toughness can be obtained.
  • the high-strength hot-rolled steel sheet according to the present invention is excellent in material stability and weldability, it is suitable for use as a structural member for buildings or automobiles.
  • the high-strength hot-rolled steel sheet according to the present invention has the excellent characteristics as described above, further application development of the high-strength hot-rolled steel sheet is possible, and there is a remarkable industrial effect.
  • C 0.09% or more and 0.17% or less
  • C has an effect of promoting the formation of a bainite phase.
  • C is a solid solution strengthening element and has an effect of increasing the strength of the bainite phase.
  • the C content needs to be 0.09% or more.
  • the C content exceeds 0.17%, a problem of deterioration in weldability due to an increase in hardness difference in the HAZ portion becomes obvious.
  • the cooling rate close to the molten metal portion is large, a martensite structure is formed, and the hardness of the martensite structure increases as the C content increases.
  • the C content is 0.09% or more and 0.17% or less.
  • the C content is greater than 0.10%.
  • the C content is 0.16% or less.
  • Si more than 1.0% and 1.6% or less Si is an element that suppresses coarse oxides and cementite that inhibit the toughness of steel and contributes to solid solution strengthening.
  • Si increases the bainite transformation start temperature (Bs point) in the cooling and winding process after the hot rolling, and has the effect of expanding the temperature range that causes bainite transformation. Therefore, it is also an element effective for improving the material stability of the hot-rolled steel sheet.
  • Si has an effect of suppressing softening in the HAZ part of steel, and is an important element for improving the weldability of hot-rolled steel sheets.
  • Si is an extremely important element in the present invention, and in order to obtain the above effect, the Si content needs to be more than 1.0%.
  • Si content when the Si content exceeds 1.6%, the toughness of the hot-rolled steel sheet decreases. Therefore, Si content shall be more than 1.0% and 1.6% or less.
  • the Si content is 1.1% or more.
  • the Si content is 1.5% or less.
  • Mn 1.5% or more and 2.5% or less Mn has an action of suppressing nucleation of the ferrite phase and is an important element contributing to an increase in strength of the hot-rolled steel sheet.
  • the Mn content needs to be 1.5% or more.
  • the Mn content is 1.5% or more and 2.5% or less.
  • the Mn content is 1.6% or more.
  • the Mn content is 2.4% or less.
  • the contents of C, Si, and Mn are adjusted to satisfy the following formula (1): It is desirable to do. 15 ⁇ ⁇ 198 ⁇ [% C] + 220 ⁇ [% Si] ⁇ 80 ⁇ [% Mn] ⁇ 150 (1)
  • [% C], [% Si], and [% Mn] are the contents (mass%) of C, Si, and Mn, respectively.
  • the coefficient in the middle of equation (1) is the degree of influence of each element of C, Si, and Mn on the temperature at which a bainite phase is obtained in the cooling and winding process after hot rolling when manufacturing a hot-rolled steel sheet. Is shown.
  • the smaller the value of the middle side of the equation (1) the narrower the temperature range at which the bainite phase is obtained, and the material stability of the hot-rolled steel sheet decreases.
  • the value of the middle side of the formula (1) is 15 or more.
  • the value of the middle side of the formula (1) becomes excessively large, the ferrite phase may precipitate and the strength of the hot-rolled steel sheet may be reduced.
  • P 0.03% or less P segregates at the grain boundary and becomes the starting point of grain boundary cracking during processing of the steel.
  • P is a harmful element that deteriorates the workability of the hot-rolled steel sheet
  • the P content is limited to 0.03% or less in order to avoid the above problems.
  • it is 0.02% or less.
  • S 0.005% or less S is present as an inclusion such as MnS in steel. This inclusion extends during hot rolling when producing a hot-rolled steel sheet. The inclusions thus extended adversely affect the workability of the hot-rolled steel sheet because it becomes a starting point of cracking during processing. Therefore, in the present invention, it is preferable to reduce the S content as much as possible, and it is 0.005% or less. Preferably it is 0.003% or less.
  • Al 0.08% or less
  • Al is an element that acts as a deoxidizer.
  • the Al content is preferably 0.02% or more.
  • Al forms an oxide or the like and becomes a starting point of voids during bending, so if the Al content exceeds 0.08%, an adverse effect on the bendability of the hot-rolled steel sheet becomes obvious. Therefore, the Al content is 0.08% or less. Preferably it is 0.06% or less.
  • N 0.0080% or less N is combined with Ti at the stage of steelmaking and continuous casting to form TiN.
  • Coarse TiN tends to be a ferrite nucleation site.
  • solid solution Ti decreases, so the hardenability of the steel decreases and a ferrite phase is easily generated, and it is difficult to obtain a hot rolled steel sheet with a tensile strength of 980 MPa or more.
  • N content shall be 0.0020% or more.
  • Ti 0.09% or more and 0.14% or less
  • Ti is an element that, when present in a hot-rolled steel sheet in a solid solution state, suppresses nucleation of the ferrite phase and substantially contributes to increasing the strength of the hot-rolled steel sheet. .
  • the Ti content needs to be 0.09% or more.
  • the Ti content is excessively high, coarse TiC cannot be dissolved in the heating stage of the slab (steel material) when manufacturing a hot-rolled steel sheet.
  • Coarse TiC tends to be a stress concentration part, which reduces the toughness and workability of hot-rolled steel sheets. Therefore, the Ti content is 0.14% or less.
  • the Ti content is 0.10% or more.
  • the Ti content is 0.13% or less.
  • V 0.05% or more and 0.25% or less V is one of the important elements in the present invention.
  • V like Ti, has an effect of suppressing nucleation of the ferrite phase in a solid solution state.
  • the present invention is characterized by containing an appropriate amount of Si. If Si, which is a ferrite-forming element, is contained, ferrite transformation starts during cooling on the runout table, and a desired bainite structure cannot be obtained. As a result of investigations by the present inventors, it has been confirmed that desired hardenability can be ensured even when a predetermined amount of Si is contained by adding Ti and V in combination. It was. In addition to the effect of improving hardenability, it was also confirmed that when an appropriate amount of V is contained, the lath structure of bainite is refined.
  • the V content needs to be 0.05% or more. Further, the V content is preferably 0.08% or more, more preferably 0.1% or more. On the other hand, if the V content exceeds 0.25%, the toughness of the hot-rolled steel sheet is significantly reduced. Therefore, the V content is limited to 0.25% or less. Preferably, the V content is 0.23% or less.
  • Cr 0% or more and 0.06% or less
  • Ni 0% or more and 0.06% or less
  • Mo 0% or more and 0.06% or less
  • All Cr, Ni and Mo are cooled after hot rolling when producing hot-rolled steel sheets.
  • -It is an element which lowers the bainite start temperature in a winding process. Therefore, when the content of Cr, Ni, and Mo increases, cooling at the runout table reaches the transition boiling region, and the coiling temperature becomes unstable, resulting in deterioration of the material stability of the hot rolled steel sheet. For these reasons, it is desirable to reduce the contents of Cr, Ni, and Mo as much as possible. However, each of up to 0.06% is acceptable, so the upper limit was set to 0.06%. Further, the content of these elements is preferably 0.04% or less, and may be reduced to the impurity level. Furthermore, the content of these elements is more preferably 0%. The total content of these elements is preferably 0.1% or less.
  • B 0.0001% or more and 0.005% or less
  • B is an element that is easily segregated at grain boundaries, has an effect of suppressing the start of austenite ⁇ ferrite transformation, and improves the material stability of the hot-rolled steel sheet.
  • the B content is preferably 0.0001% or more.
  • the B content is preferably 0.005% or less, and more preferably 0.0003% or more. More preferably, the B content is 0.003% or less.
  • the hot-rolled steel sheet of the present invention may contain the following elements.
  • Ca 0.0001% or more and 0.005% or less
  • REM One or two selected from 0.0001% or more and 0.005% or less
  • Ca REM (REM: Sc, Y and lanthanoid elements with atomic numbers 57 to 71) are steel It is an element effective for controlling the form of inclusions and suppressing the generation of voids generated from the inclusions.
  • the content of Ca and REM is preferably 0.005% or less.
  • Ca 0.0003% or more is more preferable. Further, Ca is more preferably 0.002% or less. Moreover, it is more preferable to set it as REM: 0.0003% or more. Further, REM is more preferably 0.002% or less. Furthermore, when both Ca and REM are contained, the total content of Ca and REM is preferably 0.0002% or more. In this case, the total content of Ca and REM is preferably 0.006% or less. In this case, the total content of Ca and REM is more preferably 0.0003% or more. In this case, the total content of Ca and REM is more preferably 0.002% or less.
  • components other than those described above are Fe and inevitable impurities.
  • Inevitable impurities include, for example, Se, Te, Po, As, Bi, Ge, Pb, Ga, In, Tl, Zn, Cd, Hg, Ag, Au, Pd, Pt, Co, Rh, Ir, Ru, Os. , Tc, Re, Ta, Be, Sr, Sb, Cu, Sn, Mg and the like, and the content of these is preferably 0.1% or less in total.
  • the hot-rolled steel sheet of the present invention mainly has a bainite phase with an excellent strength-toughness balance.
  • the bainite phase in the present invention is intended for upper bainite, lower bainite, and bainitic ferrite.
  • the area ratio of the bainite phase is 80% or more. It is preferably over 85%, and more preferably 90% or more in the case of a hot-rolled steel sheet that particularly requires material stability.
  • the hot-rolled steel sheet of the present invention has a bainite single-phase structure, the case where the area ratio of the bainite phase is 100% is included.
  • examples of the structure include a ferrite phase, a martensite phase, and a retained austenite phase.
  • the total area ratio of the martensite phase and the retained austenite phase is preferably 7% or less, and more preferably 5% or less.
  • Fe precipitation amount 0.50% or less
  • the hardness (strength) of the bainite phase greatly decreases as the amount of dissolved C decreases. Therefore, in order to obtain a tensile strength of 980 MPa or more in a hot-rolled steel sheet having bainite as the main phase, it is necessary to ensure a solid solution C amount of a certain amount or more.
  • C that is not in a solid solution state is mainly precipitated as cementite. Therefore, if the precipitation of cementite is suppressed, a sufficient amount of solute C can be ensured, and the desired hot-rolled steel sheet strength can be obtained.
  • the precipitation amount of cementite (Fe 3 C) can be determined by analyzing the precipitation amount of Fe. And when the amount of Fe precipitation exceeds 0.50% by mass%, the amount of cementite precipitation increases and the amount of solute C becomes insufficient. As a result, the desired hot-rolled steel sheet strength cannot be obtained. Therefore, the Fe precipitation amount is limited to 0.50% or less. Preferably it is 0.40% or less.
  • the hardness (strength) of the bainite phase is also affected by the average lath interval of the bainite lath.
  • the bainite lath has a rectangular shape, and the long side length and the short side length can be defined.
  • the short side length is the lath interval, when the average lath interval exceeds 400 nm, the material stability of the hot-rolled steel sheet tends to deteriorate.
  • the average lath interval of the bainite phase is preferably 400 nm or less.
  • V has the effect of reducing the lath of the bainite phase.
  • the V content is preferably 0.1% or more.
  • the thickness of the hot-rolled steel sheet of the present invention is not particularly limited, but is preferably 1.6 mm or more and 10 mm or less.
  • the manufacturing method of this invention hot rolled sheet steel is demonstrated.
  • a steel material (steel slab) having the above composition is heated and hot-rolled, and then cooled, wound, and made into a hot-rolled steel sheet.
  • the heating temperature of the heating is 1150 ° C. or more and 1350 ° C. or less
  • the hot rolling finish rolling temperature is 850 ° C. or more
  • the cooling is started within 3 s after finishing the hot rolling finish rolling, and the cooling
  • the average cooling rate is 15 ° C./s or more
  • the winding temperature immediately before the winding step is 350 ° C. or more and 550 ° C. or less.
  • the method for melting steel is not particularly limited, and a known melting method such as a converter or an electric furnace can be employed. Further, secondary refining may be performed in a vacuum degassing furnace. Thereafter, the slab (steel material) is preferably formed by a continuous casting method from the viewpoint of productivity and quality, but the slab may be formed by a known casting method such as an ingot-bundling rolling method or a thin slab continuous casting method. .
  • TiN precipitates mainly during continuous casting. However, as described above, coarsened TiN causes a reduction in the strength of the hot-rolled steel sheet. In order to suppress the coarsening of TiN, it is preferable to suppress the TiN particle growth by setting the casting speed during continuous casting to 1.0 m / min or more and to reduce the TiN size to 5 ⁇ m or less.
  • Heating temperature of the steel material 1150 ° C. or higher and 1350 ° C. or lower
  • the steel material obtained as described above is hot-rolled.
  • the steel material is heated prior to hot rolling to be substantially homogeneous austenite.
  • the heating temperature of the steel material is below 1150 ° C., coarse carbides do not dissolve, so the amount of solute C decreases, and the strength of the finally obtained hot-rolled steel sheet significantly decreases.
  • the heating temperature exceeds 1350 ° C., the amount of oxide scale generated increases, the scale bites, and the steel sheet surface properties deteriorate.
  • the heating temperature of the steel material is set to 1150 ° C or higher and 1350 ° C or lower. Preferably they are 1150 degreeC or more and 1320 degrees C or less. However, when hot rolling the steel material, if the steel material after casting is in the temperature range of 1150 ° C or higher and 1350 ° C or lower, or if the carbide of the steel material is dissolved, the steel material is heated. Direct rolling may be performed without any problem.
  • the holding time of the steel material at the above heating temperature is not particularly limited. However, if the holding time becomes too long, a decarburized layer is formed on the surface of the steel material, and there is a concern about a decrease in fatigue resistance and a decrease in yield due to scale loss. . Therefore, the holding time of the steel material at the heating temperature is preferably less than 3600 s, and more preferably 2400 s or less. The holding time is a holding time in a temperature range of 1200 ° C. or higher at which scale growth becomes remarkable.
  • Hot rolling usually consists of rough rolling and finish rolling, but the rough rolling conditions are not particularly limited. For example, when casting a slab (steel material) by a thin slab continuous casting method, rough rolling may be omitted.
  • Hot rolling finish rolling temperature When rolled at a temperature of 850 ° C. or higher and lower than 850 ° C., the rolling load of the steel of the present invention is remarkably increased, making it difficult or impossible to produce. Further, when rolling at a temperature lower than 850 ° C., the austenite phase is excessively processed, so that the austenite ⁇ ferrite transformation proceeds in the cooling process after finish rolling, and a desired structure cannot be obtained.
  • the finish rolling temperature is 850 ° C. or higher.
  • the finish rolling temperature is 870 ° C or higher.
  • the finish rolling temperature is 960 ° C. or lower.
  • Time to start forced cooling after finishing rolling within 3s If more than 3 seconds elapse after finishing rolling to start forced cooling, austenite ⁇ ferrite transformation starts and the desired The organization cannot be obtained. Moreover, if the steel plate after finish rolling is kept in a high temperature state for a long time, carbides are generated by strain-induced precipitation, and the amount of solute C that contributes to increasing the strength of the steel plate is reduced. Therefore, in the present invention, for the purpose of suppressing ferrite transformation and the purpose of suppressing strain-induced precipitation, it is necessary to start forced cooling immediately after completion of hot rolling, and forced cooling within at least 3 seconds after finishing rolling. To start. Preferably it is within 2 s.
  • the average cooling rate after finish rolling is 15 ° C./s or more.
  • the average cooling rate after finish rolling is 15 ° C./s or more.
  • the average cooling rate is preferably 150 ° C./s or less.
  • Winding temperature 350 ° C. or higher and 550 ° C. or lower
  • an appropriate winding temperature for obtaining a bainite phase is 350 ° C. or higher and 550 ° C. or lower.
  • the coiling temperature is lower than 350 ° C.
  • a martensite phase and a retained austenite phase are generated, and the material stability of the hot-rolled steel sheet is lowered.
  • the coiling temperature exceeds 550 ° C., the ferrite transformation proceeds, so that a hot rolled steel sheet having a tensile strength of 980 MPa or more cannot be obtained.
  • the coiling temperature is 350 ° C. or higher and 550 ° C. or lower.
  • a preferable winding temperature range is 350 ° C. or more and 500 ° C. or less.
  • the temperature at which forced cooling is stopped is preferably 350 ° C. or higher and 550 ° C. or lower, and more preferably 350 ° C. or higher and 500 ° C. or lower, like the coiling temperature.
  • a hot rolled steel sheet having a thickness of 2.0 to 8.0 mm was obtained by subjecting a steel material having a thickness of 250 mm having the composition shown in Table 1 to hot rolling under the hot rolling conditions shown in Table 2.
  • the average cooling rate described in Table 2 is an average cooling rate from the finish rolling temperature to the cooling stop temperature.
  • the microstructure of the obtained hot-rolled steel sheet was observed, and the area ratio of the bainite phase and the average lath spacing of the bainite lath were obtained. Moreover, the extraction residue analysis was performed about the obtained hot-rolled steel plate, and the amount of Fe precipitation was calculated
  • the area ratio of the bainite phase In the obtained hot-rolled steel sheet, the corrosion appearing structure with 5% nital was magnified 1000 times with a scanning optical microscope at the central part of the cross section parallel to the rolling direction. I took 10 fields of view.
  • the bainite phase is a structure having a form in which corrosion marks and cementite are observed in the grains.
  • the area ratio of the bainite phase was determined by separating the bainite phase and the phases other than the bainite phase (ferrite phase, martensite phase, etc.) by image analysis and calculating the area ratio of the bainite phase with respect to the observation field.
  • Average lath spacing Samples were prepared from the center of the thickness of the obtained hot-rolled steel sheet by a thin film method, and observed with a transmission electron microscope (magnification: 135000 times). The interval was measured, and the average value of the obtained lath intervals was defined as the average lath interval.
  • Welding test Arc welding was performed using the obtained hot-rolled steel sheet to produce a welding sample.
  • the weld sample was prepared by butt-welding sides of a length (300 mm) of a sample having a width of 200 mm and a length of 300 mm taken from the same hot-rolled steel sheet. A sample having a width of 200 mm and a length of 300 mm was collected so that the length direction of the sample coincided with the rolling direction.
  • Welding conditions are: plate gap: 1mm, welding current: 180A, welding voltage: 20V, welding wire: Kobe Steel MG-50 (wire diameter: 1.2mm), welding speed: 80cm / min, shielding gas: CO 2 (80 %) + Ar (20%) butt welding.
  • JIS No. 5 tensile test pieces were prepared from each welded sample, and when evaluating the “strength characteristics” of the “(3) tensile test” in accordance with the provisions of JIS Z 2241 (2011).
  • a tensile test was performed under the same tensile conditions as the tensile test performed.
  • the JIS No. 5 tensile test piece was prepared so that the weld bead portion of the weld sample crossed in the width direction of the test piece at the center of the distance between the test piece scores.
  • the crosshead speed in the tensile test was 10 mm / min.
  • the maximum load until breakage was measured by a tensile test, and a value obtained by dividing the maximum load by the plate thickness in order to eliminate the influence of the plate thickness was obtained.
  • the fracture position of the weld sample was confirmed.
  • the tensile strength is 980 MPa or more
  • the variation in tensile strength is 40 MPa or less
  • the value obtained by dividing the maximum load of the weld sample tensile test by the plate thickness is 22 kN / mm or more.
  • the evaluation was good as “ ⁇ ” as the material required in the present invention. On the other hand, if any one of the above conditions is not satisfied, the evaluation is “bad”.
  • the hot-rolled steel sheets of the examples of the present invention all have a tensile strength TS: 980 MPa or more, and are excellent in material stability and weldability.
  • the hot-rolled steel sheet of the comparative example outside the scope of the present invention does not have a predetermined high strength, or does not have good material stability and weldability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 材質安定性および溶接性に優れた高強度熱延鋼板およびその製造方法を提供する。 質量%で、C:0.09%以上0.17%以下、Si:1.0%超1.6%以下、Mn:1.5%以上2.5%以下、P:0.03%以下、S:0.005%以下、Al:0.08%以下、N:0.0080%以下、Ti:0.09%以上0.14%以下およびV:0.05%以上0.25%以下を含有し、Cr、NiおよびMoの含有量をそれぞれ0.06%以下(0%を含む)に制限し、残部がFeおよび不可避的不純物からなる組成とし、ベイナイト相の面積率が80%以上であり、Fe析出量が0.50%以下である組織とすることにより、材質安定性および溶接性に優れた引張強さ980MPa以上の高強度熱延鋼板とする。

Description

高強度熱延鋼板およびその製造方法
 本発明は、自動車用部材の使途に有用な、引張強さ(TS):980MPa以上の高強度と優れた材質安定性、溶接性を兼ね備えた高強度熱延鋼板およびその製造方法に関する。
 近年地球環境保全の観点から、自動車業界全体でCO2排出量削減を目的とした自動車の燃費改善が指向されている。この動向を受け、トラック等の大型自動車でも燃費改善の要望が高まってきている。燃費改善には、使用部材の薄肉化による自動車車体の軽量化が有効である。また、衝突時における乗員の安全を確保すべく、自動車車体を強化し、自動車車体の衝突安全性を向上することも要求されている。このような観点から、自動車部材用素材として、軽量化と安全性との両立が可能な高強度熱延鋼板が使用されるようになり、その使用量は年々増加しつつある。
 一方、鋼板の高強度化に伴い、鋼板長手方向の材質安定性が悪化する傾向にある。材質が不安定であると、鋼板を所定形状の部材にプレス成形する際、CAE(Computer Assisted Engineering)による予測精度が低下したり、スプリングバック量の制御が困難となり、部材の寸法精度が悪化する。また、鋼板の高強度化に伴い、溶接性も悪化する傾向にある。高強度鋼板は、一般に合金濃度が高くなるため、溶接性が問題となる場合が多く、特に溶接における熱影響部(HAZ部)での軟化の悪影響が顕在化し易い。自動車製造ラインでは多くの場合、自動車部材同士をスポット溶接やアーク溶接により接合する。この場合、上記の如く熱影響部が軟化すると、熱影響部で強度不足になる等、様々な支障をきたす。
 以上の理由により、引張強さを980MPa以上にまで高強度化した鋼板では、材質安定性や溶接性が良好であることが望まれている。
 これまでに、高強度熱延鋼板の材質安定性や溶接性について種々の検討がなされており、例えば次のような技術が公開されている。
 特許文献1には、質量%で、C:0.01%~0.08%未満、Si:0.06~2.0%、Mn:0.96~3.0%、P≦0.10%、S≦0.01%、Al:0.005~0.3%、N≦0.01%、Ti:0.01~0.20%を含み、かつMn-Si>0.9%を満足し、かつ0.75≦(C%/12)/(Ti%/48+Nb%/93+Mo%/96+V%/51-N%/14-S%/32)≦1.25を満足する、残部がFeおよび不可避的不純物からなる鋼を熱間圧延する際に、仕上げ温度を900℃以上とし、かつ400~600℃で巻き取ることで、引張強さが540MPa以上の材質均一性に優れた熱延鋼板とする技術が公開されている。
 特許文献2には、質量%で、C:0.05~0.12%、Si:0.5%以下、Mn:0.8~1.8%、P:0.030%以下、S:0.01%以下、Al:0.005~0.1%、N:0.01%以下、Ti:0.030~0.080%を含有し、残部がFeおよび不可避的不純物からなる組成とし、ポリゴナルフェライトを70%以上の分率で含む組織とし、かつサイズ20nm未満の析出物中に存在するTiの量をTi*(Ti*=[Ti]-48÷14×[N]、[Ti]および[N]はそれぞれ鋼板のTiおよびNの成分組成(質量%))の値の50%以上とすることで、コイル内での強度バラツキの小さい強度均一性に優れた高強度熱延鋼板とする技術が公開されている。
 特許文献3には、質量%で、C:0.030%超~0.10%未満、Si:0.35~0.80%、Mn:1.7~3.2%、P:0.001~0.02%、S:0.0001~0.006%、Al:0.060%以下、N:0.0001~0.0070%、Ti:0.01~0.055%、Nb:0.012~0.055%、Mo:0.07~0.55%、B:0.0005~0.0040%、を含有し、残部が鉄および不可避的不純物からなる組成とし、鋼板の板厚1/8層における板面と平行な{110}面のX線強度比を1.0以上とすることで、降伏比が0.68以上0.92未満、かつ、引張最高強度(TS)が780MPa以上であり、溶接性と延性に優れた熱延鋼板とする技術が公開されている。また、特許文献3には、C含有量を低減し、かつ、Si、Mn、Ti、Nb、Mo、Bの6種類の元素を所定の範囲で同時に添加することで、プレス時の形状凍結性が劣化しない程度に降伏比を適度に高めると同時に良好な溶接性が得られると記載されている。
特開2006-213957号公報 特開2009-185361号公報 特開2005-105361号公報
 しかしながら、特許文献1、2に公開された技術では、十分な強度を確保することができず、引張強さ980MPa以上の熱延鋼板は得られない。また、特許文献1、2に公開された技術では、熱延鋼板の溶接性について検討されておらず、熱延鋼板を溶接すると熱影響部が軟化するおそれがある。
 特許文献3に公開された技術では、熱延鋼板の溶接性を改善し得るが、必ずしも引張強さ980MPa以上の熱延鋼板は得られない。また、特許文献3に公開された技術では、SiおよびMnに加えてTi:0.01~0.055%、Nb:0.012~0.055%、Mo:0.07~0.55%、B:0.0005~0.0040%を同時に添加することを必須としているため、コスト面で不利である。更に、特許文献3には、熱延鋼板の主相としてベイナイトまたはベイニティックフェライトが適していると記載されているが、後述するようにMoはベイナイトの生成を不安定にする元素である。したがって、特許文献3に公開された技術では、Moを0.07%以上も添加するため、材質安定性に優れた熱延鋼板は得られない。
 以上のように、従来技術では、材質安定性および溶接性が良好な引張強さ:980MPa以上の高強度熱延鋼板を得ることは困難であった。
 本発明は、かかる事情に鑑みてなされたものであって、980MPa以上の引張強さを有し、材質安定性および溶接性にも優れた高強度熱延鋼板を提供することを目的とする。
 上記課題を解決すべく、本発明者らは、熱延鋼板の強度、材質安定性および溶接性に影響を及ぼす各種要因について鋭意検討した。
 鋼板強度を向上させる手法としては、熱延鋼板の母相組織をベイナイトやマルテンサイトといった低温変態相とする手法が考えられる。しかし、マルテンサイトは、ベイナイトよりも高強度であるものの靭性に乏しい。そのため、マルテンサイトを主たる組織とする鋼板を自動車部材に適用した場合には、部材の衝撃エネルギー吸収能が低下する等、様々な支障をきたす。
 そこで、本発明者らは、強度-靭性バランスに優れたベイナイトに着目し、ベイナイトを主相とする熱延鋼板の強度を維持しつつ溶接性と材質安定性とを両立させる諸因子について鋭意検討した。
 一般的に、鋼のC含有量が高くなるにつれて、鋼の溶接性は低下する。一方、Cは固溶強化元素であり、C含有量を低減すると鋼の強度不足が問題となる。また、C含有量を低減すると、軟質な組織であるフェライトが生成し易くなるため、やはり鋼の強度不足が問題となる。
 上記の問題を踏まえ、本発明者らは先ず、溶接性に悪影響をもたらすC含有量を必要最低限に制限しつつ熱延鋼板の主相をベイナイトとし、且つ引張強さを980MPa以上とする手段について検討した。その結果、鋼板の高強度化に寄与するCの含有量を低減した場合であっても、フェライト相の析出を抑制することができれば、引張強さ:980MPa以上の熱延鋼板が得られることを突き止めた。また、フェライト相の核生成を抑制するのに有効な元素を網羅的に調査した結果、TiとVを複合添加した熱延鋼板とすることが効果的であることが判明した。そして、更に検討を進めた結果、C含有量を所定量以下に抑制するとともに、TiとVの含有量を最適化することにより、溶接性が良好であり且つフェライト相の析出が抑制された組織を有し、引張強さが980MPa以上であるベイナイト主相の熱延鋼板が得られるという知見を得た。
 次に、本発明者らは、ベイナイトを主相とする熱延鋼板の材質安定性について検討した。そして、材質安定性を悪化させる原因が、熱延鋼板製造時における巻取り温度の変動であることを、調査の末に明らかとした。また、ベイナイト相を得るための巻取り温度範囲がランアウトテーブルでの冷却で遷移沸騰領域に差し掛かること、そして遷移沸騰領域に差し掛かるがゆえに巻取り温度を安定化させることが非常に困難であるということも、同時に確認された。
 そこで、本発明者らは、巻取り温度の変動に対する材質の感受性を低減させる手段について検討した。その結果、熱延鋼板の鋼素材に適正量のSiを添加することにより、ベイナイト変態開始温度(Bs点)を上昇させ、ベイナイト変態を生じさせる温度域を広げることが有効であるという知見を得た。また、このSi添加により、熱延鋼板の溶接性も改善されるという知見を得た。
 一般的に、ベイナイト等の低温変態相を主相とする高強度鋼板を溶接すると、溶接熱履歴によりHAZ部が軟化し、所望の強度が得られなくなる場合がある。このような問題に対し、鋼板のSi含有量を適正化すると、Siの固溶強化能によりHAZ部での軟化量を大幅に低減することができる。以上のように、本発明者らは、熱延鋼板のSi含有量を適正化することにより、溶接性および材質安定性に優れたベイナイト主相の高強度熱延鋼板が得られるという知見を得た。
 本発明は、上記の知見に基づき完成されたものであり、その要旨は次のとおりである。[1] 質量%で、C:0.09%以上0.17%以下、Si:1.0%超1.6%以下、Mn:1.5%以上2.5%以下、P:0.03%以下、S:0.005%以下、Al:0.08%以下、N:0.0080%以下、Ti:0.09%以上0.14%以下、V:0.05%以上0.25%以下を含有し、Cr、NiおよびMoの含有量をそれぞれ0.06%以下(0%を含む)に制限し、残部がFeおよび不可避的不純物からなる組成を有し、ベイナイト相の面積率が80%以上であり、Fe析出量が0.50%以下である組織を有し、引張強さが980MPa以上である高強度熱延鋼板。
[2] [1]において、前記組成に加えて更に、質量%でB :0.0001%以上0.005%以
下を含有する高強度熱延鋼板。
[3] [1]または[2]において、前記組成に加えて更に、質量%でCa:0.0001%以上0.005%以下、REM:0.0001%以上0.005%以下のうちから選ばれる1種または2種を含有する高強度熱延鋼板。
[4] 鋼素材を加熱し、熱間圧延を施した後、冷却し、巻き取り、熱延鋼板とするにあたり、前記鋼素材を、質量%で、C:0.09%以上0.17%以下、Si:1.0%超1.6%以下、Mn:1.5%以上2.5%以下、P:0.03%以下、S:0.005%以下、Al:0.08%以下、N:0.0080%以下、Ti:0.09%以上0.14%以下、V:0.05%以上0.25%以下を含有し、Cr、NiおよびMoの含有量をそれぞれ0.06%以下(0%を含む)に制限し、残部がFeおよび不可避的不純物からなる組成とし、前記加熱の加熱温度を1150℃以上1350℃以下とし、前記熱間圧延の仕上げ圧延温度を850℃以上とし、前記冷却を熱間圧延の仕上げ圧延終了後3s以内に開始し、前記冷却の平均冷却速度を15℃/s以上とし、前記巻き取りの巻取り温度を350℃以上550℃以下とする高強度熱延鋼板の製造方法。
[5] [4]において、前記組成に加えて更に、質量%でB :0.0001%以上0.005%以下を含有する高強度熱延鋼板の製造方法。
[6] [4]または[5]において、前記組成に加えて更に、質量%でCa:0.0001%以上0.005%以下、REM:0.0001%以上0.005%以下のうちから選ばれる1種または2種を含有する高強度熱延鋼板の製造方法。
 本発明によると、靱性が良好な引張強さ:980MPa以上の高強度熱延鋼板が得られる。また、本発明による高強度熱延鋼板は、材質安定性および溶接性にも優れているため、建築用や自動車用の構造部材等の使途に好適である。更に、本発明による高強度熱延鋼板は、上記のような優れた特性を具えるため、高強度熱延鋼板の更なる用途展開が可能となり、産業上格段の効果を奏する。
 以下に、本発明について具体的に説明する。
 先ず、本発明熱延鋼板の成分組成の限定理由について説明する。なお、以下の成分組成を表す%は、特に断らない限り質量%(mass%)を意味するものとする。
 C :0.09%以上0.17%以下
 Cは、ベイナイト相の生成を促進する効果を有する。また、Cは、固溶強化元素であり、ベイナイト相の強度を上昇させる効果も有する。引張強さ:980MPaの熱延鋼板を得るためには、C含有量を0.09%以上とする必要がある。一方、C含有量が0.17%を超えると、HAZ部での硬度差増大に起因した溶接性が低下する問題が顕在化する。溶融金属部に近い冷却速度が大きい領域ではマルテンサイト組織となり、また、マルテンサイト組織の硬度はC量増大に伴い上昇する。0.17%を超えるC量を含有した場合、このマルテンサイト組織となり硬化する領域と、母材に近い領域、すなわち冷却速度が小さく軟化する領域との硬度差が大きくなる。このため、軟化領域で溶接継手が破断し易くなり、溶接継手の引張強さが低下する。したがって、C含有量は0.09%以上0.17%以下とする。好ましくは、C含有量は0.10%超である。また、好ましくは、C含有量は0.16%以下である。
 Si:1.0%超1.6%以下
 Siは、鋼の靭性を阻害する粗大な酸化物やセメンタイトを抑制し、且つ、固溶強化にも寄与する元素である。また、Siは、熱延鋼板を製造する際、熱間圧延終了後の冷却・巻取り工程でのベイナイト変態開始温度(Bs点)を上昇させ、ベイナイト変態を生じさせる温度域を広げる作用を有するため、熱延鋼板の材質安定性向上に有効な元素でもある。更に、Siは、鋼のHAZ部での軟化を抑制する作用を有し、熱延鋼板の溶接性改善に重要な元素である。
 以上のように、Siは、本発明において極めて重要な元素であり、上記の効果を得るにはSi含有量を1.0%超とする必要がある。一方、Si含有量が1.6%を超えると、熱延鋼板の靱性が低下する。したがって、Si含有量は1.0%超1.6%以下とする。好ましくは、Si含有量は1.1%以上である。また、好ましくは、Si含有量は1.5%以下である。
 Mn:1.5%以上2.5%以下
 Mnは、フェライト相の核生成を抑制する作用を有し、熱延鋼板の強度上昇に寄与する重要な元素である。後述する所望の金属組織を得るには、Mn含有量を1.5%以上とする必要がある。一方、Mn含有量が2.5%を超えると、鋼の鋳造性が著しく低下し、熱延鋼板の生産性が大幅に低下する。したがって、Mn含有量は1.5%以上2.5%以下とする。好ましくは、Mn含有量は1.6%以上である。また、好ましくは、Mn含有量は2.4%以下である。
 なお、ベイナイト相を得るための巻取り温度感受性を鈍化させ、熱延鋼板の材質安定性を向上させる観点からは、以下の(1)式を満たすようにC、Si、Mnの含有量を調整することが望ましい。
 15≦-198×[%C]+220×[%Si]-80×[%Mn]≦150 …(1)
 (1)式において、[%C]、[%Si]、[%Mn]はそれぞれC、Si、Mnの含有量(質量%)である。(1)式中辺の係数は、C、SiおよびMnの各元素が、熱延鋼板を製造する際、熱間圧延終了後の冷却・巻取り工程でベイナイト相が得られる温度に及ぼす影響度合いを示している。また、(1)式中辺の値が小さいほど、ベイナイト相が得られる温度域が狭まり、熱延鋼板の材質安定性が低下する。
 ベイナイトを主相とする熱延鋼板の材質安定性が要求される本発明においては、(1)式中辺の値を15以上とすることが好ましい。一方、(1)式中辺の値が過度に大きくなると、フェライト相が析出して熱延鋼板の強度が低下するおそれがある。強度低下の要因となるフェライト相の析出を抑制するには、(1)式中辺の値を150以下とすることが好ましい。なお、より好ましくは、(1)式中辺の値は30以上である。また、より好ましくは、(1)式中辺の値は140以下である。
 P :0.03%以下
 Pは、粒界に偏析して鋼の加工時に粒界割れの起点となる。このように、Pは、熱延鋼板の加工性を劣化させる有害な元素であるため、その含有量を極力低減することが好ましい。本発明では、上記問題点を回避すべく、P含有量を0.03%以下に制限する。好ましくは0.02%以下である。
 S :0.005%以下
 Sは、鋼中でMnSなどの介在物として存在する。この介在物は、熱延鋼板を製造する際、熱間圧延中に伸展する。このように伸展した介在物は、加工時に割れの起点となるため、熱延鋼板の加工性に悪影響を及ぼす。したがって、本発明では、S含有量を極力低減することが好ましく、0.005%以下とする。好ましくは0.003%以下である。
 Al:0.08%以下
 Alは、脱酸剤として作用する元素である。このような効果を得るためには、Al含有量を0.02%以上とすることが好ましい。一方で、Alは、酸化物等を形成して曲げ加工時にボイドの起点となるため、Al含有量が0.08%を超えると熱延鋼板の曲げ性への悪影響が顕在化する。したがって、Al含有量は0.08%以下とする。好ましくは0.06%以下である。
 N :0.0080%以下
 Nは、製鋼、連続鋳造の段階でTiと結合してTiNを形成する。粗大なTiNは、フェライト核生成サイトになり易い。そのうえ、TiNが形成されると、固溶Tiが減少するため、鋼の焼入性が低下してフェライト相が生成し易くなり、引張強さ:980MPa以上の熱延鋼板を得ることが困難となる。したがって、本発明では、粗大なTiNの形成を抑制する必要があり、N含有量を0.0080%以下に制限する。好ましくは0.0070%以下である。但し、Nを低減しすぎると、TiNによる結晶粒の成長を抑制する作用がなくなり、結晶粒が粗大化して鋼板の靭性が低下する。このため、N含有量は0.0020%以上とすることが好ましい。
 Ti:0.09%以上0.14%以下
 Tiは、固溶状態で熱延鋼板に存在している場合、フェライト相の核生成を抑制し、実質的に熱延鋼板の高強度化に寄与する元素である。このような効果を得るには、Ti含有量を0.09%以上とする必要がある。一方、Ti含有量が過剰に高くなると、熱延鋼板を製造する際、スラブ(鋼素材)の加熱段階で粗大なTiCを溶解することができない。粗大なTiCは応力集中部になり易く、熱延鋼板の靱性や加工性を低下させる。したがって、Ti含有量は0.14%以下とする。好ましくは、Ti含有量は0.10%以上である。また、好ましくは、Ti含有量は0.13%以下である。
 V :0.05%以上0.25%以下
 Vは、本発明において重要な元素のひとつである。Vは、Tiと同様に固溶状態でフェライト相の核生成を抑制する効果がある。本発明は、Siを適量含有させることを特徴のひとつとする。フェライト生成元素であるSiを含有させると、フェライト変態がランアウトテーブル上での冷却中に開始してしまい、所望のベイナイト組織が得られなくなる。このような問題に対し、本発明者らによる検討の結果、TiとVとを複合添加することにより、所定量のSiを含有する場合であっても所望の焼入性を確保できることが確認された。また、この焼入性向上効果に加え、Vを適量含有すると、ベイナイトのラス構造が微細化することも確認された。これらの効果を得るには、V含有量を0.05%以上とする必要がある。また、V含有量は、好ましくは、0.08%以上、より好ましくは、0.1%以上である。一方、V含有量が0.25%を超えると、熱延鋼板の靱性が著しく低下する。したがって、V含有量は0.25%以下に限定する。また、好ましくは、V含有量は0.23%以下である。
 Cr:0%以上0.06%以下、Ni:0%以上0.06%以下、Mo:0%以上0.06%以下
 Cr、Ni、Moはいずれも、熱延鋼板を製造する際、熱間圧延終了後の冷却・巻取り工程でのベイナイト開始温度を低下させる元素である。したがって、Cr、Ni、Moの含有量が高くなると、ランアウトテーブルでの冷却が遷移沸騰領域に差し掛かり、巻取り温度が不安定となる結果、熱延鋼板の材質安定性が悪化する。このような理由により、Cr、Ni、Moの含有量は可能な限り低減することが望ましいが、それぞれ0.06%までは許容できるため、上限量を0.06%とした。また、これらの元素の含有量は、それぞれ0.04%以下とすることが好ましく、不純物レベルまで低減してもよい。更に、これらの元素の含有量は、いずれも0%とすることがより一層好ましい。なお、これらの元素の合計含有量は、0.1%以下とすることが好ましい。
 以上が本発明の熱延鋼板における基本組成であるが、上記した基本組成に加えて更に、以下の元素を含有してもよい。
 B :0.0001%以上0.005%以下
 Bは、粒界に偏析し易く、オーステナイト→フェライト変態の開始を抑制する効果があり、熱延鋼板の材質安定性を高める元素である。このような効果を得るには、B含有量を0.0001%以上にすることが好ましい。一方、B含有量が0.005%を超えると上記効果が飽和するため、B含有量は0.005%以下にすることが好ましく、より好ましくは、0.0003%以上である。また、より好ましくは、B含有量は0.003%以下である。
 また、本発明の熱延鋼板は、以下の元素を含有してもよい。
 Ca:0.0001%以上0.005%以下、REM:0.0001%以上0.005%以下のうちから選ばれる1種または2種
 Ca、REM(REM:Sc、Yおよび原子番号57から71までのランタノイド元素)は、鋼中の介在物の形態を制御し、介在物から発生するボイド発生を抑制するのに有効な元素である。このような効果を得るには、Ca、REMのうちから選ばれる1種以上を含有することが好ましく、これらの元素の含有量はいずれも0.0001%以上とすることが好ましい。一方、これらの元素はいずれも、含有量が0.005%を超えると上記効果が飽和するため、Ca、REMの含有量はいずれも0.005%以下とすることが好ましい。また、Ca:0.0003%以上とすることがより好ましい。また、Ca:0.002%以下とすることがより好ましい。また、REM:0.0003%以上とすることがより好ましい。また、REM:0.002%以下とすることがより好ましい。更に、Ca、REMの両者を含有する場合には、CaとREMの合計含有量を0.0002%以上とすることが好ましい。また、この場合、CaとREMの合計含有量を0.006%以下とすることが好ましい。更に、この場合、CaとREMの合計含有量を0.0003%以上とすることがより好ましい。また、この場合、CaとREMの合計含有量を0.002%以下とすることがより好ましい。
 なお、本発明の熱延鋼板において、上記以外の成分は、Feおよび不可避的不純物である。
 不可避的不純物としては、例えばSe、Te、Po、As、Bi、Ge、Pb、Ga、In、Tl、Zn、Cd、Hg、Ag、Au、Pd、Pt、Co、Rh、Ir、Ru、Os、Tc、Re、Ta、Be、Sr、Sb、Cu、Sn、Mg等が挙げられ、これらの含有量は合計で0.1%以下とすることが好ましい。
 次に、本発明熱延鋼板の組織の限定理由について説明する。
 ベイナイト相の面積率:80%以上
 本発明の熱延鋼板は、強度-靱性バランスに優れたベイナイト相を主たる組織とする。本発明におけるベイナイト相は、上部ベイナイト、下部ベイナイト、ベイニティックフェライトを対象とする。
 ベイナイト相の面積率が80%未満であると、引張強さ:980MPa以上の熱延鋼板が得られなくなるうえ、材質ばらつきが大きくなる。したがって、ベイナイト相の面積率は80%以上とする。好ましくは85%超であり、材質安定性が特に要求される熱延鋼板の場合には、90%以上とすることがより好ましい。
 本発明の熱延鋼板は、ベイナイト単相組織とすることが好ましいため、ベイナイト相の面積率を100%とする場合も含む。
 ベイナイト相以外の組織を含有する場合には、当該組織としてフェライト相、マルテンサイト相および残留オーステナイト相が挙げられる。但し、マルテンサイト相や残留オーステナイト相が存在した状態であると、熱延鋼板の材質安定性が低下する。そのため、マルテンサイト相および残留オーステナイト相の面積率は、合計で7%以下とすることが好ましく、5%以下とすることがより好ましい。
 Fe析出量:0.50%以下
 ベイナイト相の硬度(強度)は、固溶C量の減少に伴い大きく低下する。それゆえ、ベイナイトを主相とする熱延鋼板において、引張強さ:980MPa以上を得るには、一定量以上の固溶C量を確保する必要がある。ベイナイトを主相とする熱延鋼板の場合、固溶状態でないCは主にセメンタイトとして析出する。そのため、セメンタイトの析出を抑制すれば、十分な固溶C量を確保することができ、延いては所望の熱延鋼板強度が得られる。
 セメンタイト(Fe3C)の析出量は、Fe析出量を分析することにより求められる。そして、Fe析出量が質量%で0.50%を上回る場合には、セメンタイトの析出量が増加し、固溶C量が不十分となる結果、所望の熱延鋼板強度が得られなくなる。したがって、Fe析出量を0.50%以下に限定する。好ましくは0.40%以下である。
 なお、ベイナイト相の硬度(強度)は、ベイナイトラスの平均ラス間隔にも影響される。ベイナイトラスは、長方形の形態を成しており、長辺側長さと短辺側長さを定義することができる。短辺側長さをラス間隔とすると、平均ラス間隔が400nmを超える場合には、熱延鋼板の材質安定性が悪化する傾向にある。したがって、ベイナイト相の平均ラス間隔は400nm以下とすることが好ましい。前述のとおり、Vはベイナイト相のラスを微細化する効果がある。ベイナイト相の平均ラス間隔が400nm以下の組織を安定的に得るには、V含有量を0.1%以上にすることが好ましい。
 以上のように、熱延鋼板の組成と組織を最適化することで、溶接性および材質安定性に優れた引張強さ:980MPa以上の高強度熱延鋼板が得られる。なお、本発明の熱延鋼板の板厚は特に限定されないが、1.6mm以上10mm以下とすることが好ましい。
 次に、本発明熱延鋼板の製造方法について説明する。
 本発明は、上記した組成の鋼素材(鋼スラブ)を加熱し、熱間圧延を施した後、冷却し、巻き取り、熱延鋼板とする。この際、前記加熱の加熱温度を1150℃以上1350℃以下とし、前記熱間圧延の仕上げ圧延温度を850℃以上とし、前記冷却を熱間圧延の仕上げ圧延終了後3s以内に開始し、前記冷却の平均冷却速度を15℃/s以上とし、前記巻き取り工程直前の巻取り温度を350℃以上550℃以下とすることを特徴とする。
 本発明において、鋼の溶製方法は特に限定されず、転炉、電気炉等、公知の溶製方法を採用することができる。また、真空脱ガス炉にて2次精錬を行ってもよい。その後、生産性や品質上の問題から連続鋳造法によりスラブ(鋼素材)とするのが好ましいが、造塊-分塊圧延法、薄スラブ連鋳法等、公知の鋳造方法でスラブとしても良い。なお、TiNは主に連続鋳造時に析出するが、先述のとおり粗大化したTiNは熱延鋼板の強度低下を招来する。TiNの粗大化を抑制するには、連続鋳造時の鋳造速度を1.0m/min以上とすることでTiNの粒子成長を抑制し、TiNのサイズを5μm以下にすることが好ましい。
 鋼素材の加熱温度:1150℃以上1350℃以下
 上記の如く得られた鋼素材に熱間圧延を施すが、本発明においては、熱間圧延に先立ち鋼素材を加熱して実質的に均質なオーステナイト相とし、粗大な炭化物を溶解する必要がある。鋼素材の加熱温度が1150℃を下回ると、粗大な炭化物が溶解しないため、固溶C量が減少することになり、最終的に得られる熱延鋼板の強度が著しく低下する。一方、上記加熱温度が1350℃を上回ると、酸化スケールの生成量が増加し、スケールが噛み込み、鋼板表面性状を悪化させる。
 以上の理由により、鋼素材の加熱温度は1150℃以上1350℃以下とする。好ましくは1150℃以上1320℃以下である。但し、鋼素材に熱間圧延を施すに際し、鋳造後の鋼素材が1150℃以上1350℃以下の温度域にある場合、或いは鋼素材の炭化物が溶解している場合には、鋼素材を加熱することなく直送圧延してもよい。上記加熱温度での鋼素材の保持時間は特に限定されないが、保持時間が長くなり過ぎると、鋼素材表面に脱炭層が形成され、耐疲労性の低下やスケールロスによる歩留まり低下などが懸念される。したがって、上記加熱温度での鋼素材の保持時間は、3600s未満とすることが好ましく、2400s以下とすることがより好ましい。なお、上記保持時間は、スケールの成長が顕著になる1200℃以上の温度域での保持時間とする。
 鋼素材を上記加熱温度に加熱したのち、熱間圧延を施す。熱間圧延は通常、粗圧延と仕上げ圧延とからなるが、粗圧延条件については特に限定されない。また、例えば薄スラブ連鋳法によりスラブ(鋼素材)を鋳造する場合には、粗圧延を省略してもよい。
 熱間圧延の仕上げ圧延温度:850℃以上
 850℃を下回る温度で圧延すると、本発明鋼においては圧延荷重が著しく上昇し、製造が困難、もしくは不可能となる。更に、850℃を下回る温度で圧延すると、過度にオーステナイト相が加工された状態となるため、オーステナイト→フェライト変態が仕上げ圧延後の冷却過程で進行してしまい、所望の組織が得られなくなる。以上の理由により、仕上げ圧延温度は850℃以上とする。好ましくは、仕上げ圧延温度は870℃以上である。また、好ましくは、仕上げ圧延温度は960℃以下である。
 仕上げ圧延終了後、強制冷却を開始するまでの時間:3s以内
 仕上げ圧延終了後、強制冷却を開始するまでに3秒超の時間が経過する場合には、オーステナイト→フェライト変態が開始し、所望の組織が得られなくなる。また、仕上げ圧延終了後の鋼板を、高温状態に長時間保持すると、ひずみ誘起析出により炭化物が生成し、鋼板の高強度化に寄与する固溶C量が減少する。したがって、本発明では、フェライト変態を抑制する目的や、ひずみ誘起析出を抑制する目的で、熱間圧延終了後速やかに強制冷却を開始する必要があり、仕上げ圧延終了後、少なくとも3s以内に強制冷却を開始する。好ましくは2s以内である。
 平均冷却速度:15℃/s以上
 仕上げ圧延終了後、オーステナイト→フェライト変態開始を抑制するためには、出来る限り速やかに巻取り温度まで冷却する必要がある。仕上げ圧延後の強制冷却の平均冷却速度が15℃/sを下回ると、フェライト相が生成し、所望の組織が得られなくなる。したがって、仕上げ圧延終了後の平均冷却速度は15℃/s以上とする。好ましくは30℃/s以上である。但し、特に板厚が3.2mm以下の鋼板においては、過度に冷却速度が大きくなると、冷却停止温度の制御が困難となり、熱延鋼板の材質安定性が低下する。したがって、平均冷却速度は150℃/s以下とすることが好ましい。
 巻取り温度:350℃以上550℃以下
 本発明鋼において、ベイナイト相を得るための適切な巻取り温度は350℃以上550℃以下である。巻取り温度が350℃を下回ると、マルテンサイト相や残留オーステナイト相が生成し、熱延鋼板の材質安定性が低下する。一方、巻取り温度が550℃を上回ると、フェライト変態が進行するため、引張強さ:980MPa以上の熱延鋼板を得ることができなくなる。以上の理由により、巻取り温度は350℃以上550℃以下とする。好ましい巻取り温度の範囲は、350℃以上500℃以下である。なお、強制冷却を停止する温度は、巻取り温度と同様に、350℃以上550℃以下とすることが好ましく、350℃以上500℃以下とすることがより好ましい。
 表1に示す組成を有する肉厚250mmの鋼素材に、表2に示す熱延条件で熱間圧延を施し、板厚2.0~8.0mmの熱延鋼板とした。なお、表2に記載の平均冷却速度は、仕上げ圧延温度から冷却停止温度までの平均冷却速度である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 得られた熱延鋼板について組織観察を行い、ベイナイト相の面積率、ベイナイトラスの平均ラス間隔を求めた。また、得られた熱延鋼板について抽出残渣分析を行い、Fe析出量を求めた。更に、得られた熱延鋼板について、引張試験および溶接試験を行い、機械的特性(強度、材質安定性等)および溶接性を評価した。組織観察、抽出残渣分析および各種試験の方法は、次のとおりとした。
(1)組織観察
 ベイナイト相の面積率
 得られた熱延鋼板の、圧延方向に平行な断面の板厚中心部について、5%ナイタールによる腐食現出組織を走査型光学顕微鏡で1000倍に拡大して10視野分撮影した。ベイナイト相は粒内に腐食痕やセメンタイトが観察される形態を有する組織である。ベイナイト相の面積率は、画像解析によりベイナイト相とベイナイト相以外の相(フェライト相、マルテンサイト相等)とを分離し、観察視野に対するベイナイト相の面積率によって求めた。
 平均ラス間隔
 得られた熱延鋼板の板厚中央部から薄膜法によってサンプルを作製し、透過型電子顕微鏡(倍率:135000倍)で観察を行い、各サンプルにつき50箇所以上のベイナイトラス組織についてラス間隔を測定し、得られたラス間隔の平均値を平均ラス間隔とした。
(2)抽出残渣分析
 得られた熱延鋼板の板厚中央の位置からサンプルを採取し、10%AA系電解液(10vol%アセチルアセトン-1mass%塩化テトラメチルアンモニウム-メタノール)中で、サンプルの約0.2gを電流密度20mA/cm2で定電流電解した。次いで、定電流電解後の電解液を0.2μmのフィルターで濾過捕集し、捕集物に含まれるFe量をICP発光分析装置により定量した。電解したサンプル質量と、捕集物に含まれるFe量から、析出Fe量(質量比)を求めた。
(3)引張試験
 強度特性
 得られた熱延鋼板から、引張方向が圧延方向と垂直方向となるJIS5号引張試験片を作製し、JIS Z 2241(2011)の規定に準拠した引張試験を3回行い、平均の降伏強さ(YS)、引張強さ(TS)、全伸び(El)を求めた。引張試験のクロスヘッドスピードは、10mm/minとした。なお、降伏強さは、下降伏点または0.2%耐力とした。
 材質安定性(引張強さのばらつき)
 得られた熱延鋼板から、引張方向が圧延方向と垂直方向となるJIS5号引張試験片を計153枚作製した。具体的には、巻取り後の各熱延鋼板(熱延コイル)について、51箇所の長手方向位置(コイル長手方向を50等分した位置、コイル長手方向の先端位置、およびコイル長手方向の尾端位置)を特定し、各長手方向位置において、板幅方向中央部から上記JIS5号引張試験片を各長手方向位置につき3枚ずつ採取した。
 熱延鋼板毎に、153枚の引張試験片を用いてJIS Z 2241(2011)の規定に準拠した引張試験を行い、全引張試験片(計153個)の引張強さの標準偏差(引張強さのばらつき)を求めた。
(4)溶接試験
 得られた熱延鋼板を用いてアーク溶接を行い、溶接サンプルを作製した。溶接サンプルは、同一熱延鋼板から採取した幅200mm×長さ300mmのサンプルの長さ(300mm)の辺同士を突き合わせ溶接して作製した。なお、幅200mm×長さ300mmのサンプルは、サンプルの長さ方向が圧延方向と一致するように採取した。溶接条件は、板隙:1mm、溶接電流:180A、溶接電圧:20V、溶接ワイヤ:神戸製鋼製MG-50(ワイヤ径:1.2mm)、溶接速度:80cm/min、シールドガス:CO2(80%)+Ar(20%)の突き合わせ溶接とした。
 次いで、各溶接サンプルから、JIS5号引張試験片を3枚ずつ作製し、JIS Z 2241(2011)の規定に準拠して、前記「(3)引張試験」の「強度特性」を評価する際に実施した引張試験と同一の引張条件で引張試験を行った。JIS5号引張試験片は、溶接サンプルの溶接ビード部が、試験片評点間距離中央部の試験片幅方向に横切るように作製した。また、引張試験のクロスヘッドスピードは、10mm/minとした。
 引張試験により、破断までの最大荷重を計測し、板厚の影響を除くために最大荷重を板厚で除した値を求めた。また、溶接サンプルの破断位置を確認した。
 以上の結果を表3に示す。表3において、引張強さが980MPa以上、引張強さのばらつき(引張強さの標準偏差)が40MPa以下であり、溶接サンプル引張試験の最大荷重を板厚で除した値が22kN/mm以上、且つ溶接サンプル引張試験の破断が母材破断である場合は、本発明で求める材質のものとして評価を良好“○”とした。一方、上記条件のいずれか1つでも満足しない場合は、評価を不良“×”とした。
Figure JPOXMLDOC01-appb-T000003
 本発明例の熱延鋼板はいずれも、引張強さTS:980MPa以上であり、材質安定性および溶接性にも優れている。一方、本発明の範囲を外れる比較例の熱延鋼板は、所定の高強度が得られていないか、良好な材質安定性、溶接性が得られていない。

Claims (6)

  1.  質量%で、
    C :0.09%以上0.17%以下、 Si:1.0%超1.6%以下、
    Mn:1.5%以上2.5%以下、  P :0.03%以下、
    S :0.005%以下、      Al:0.08%以下、
    N :0.0080%以下、     Ti:0.09%以上0.14%以下、
    V :0.05%以上0.25%以下
    を含有し、Cr、NiおよびMoの含有量をそれぞれ0.06%以下(0%を含む)に制限し、残部がFeおよび不可避的不純物からなる組成を有し、ベイナイト相の面積率が80%以上であり、Fe析出量が0.50%以下である組織を有し、引張強さが980MPa以上である高強度熱延鋼板。
  2.  前記組成に加えて更に、質量%でB :0.0001%以上0.005%以下を含有する請求項1に記載の高強度熱延鋼板。
  3.  前記組成に加えて更に、質量%でCa:0.0001%以上0.005%以下、REM:0.0001%以上0.005%以下のうちから選ばれる1種または2種を含有する請求項1または2に記載の高強度熱延鋼板。
  4.  鋼素材を加熱し、熱間圧延を施した後、冷却し、巻き取り、熱延鋼板とするにあたり、前記鋼素材を、質量%で、
    C :0.09%以上0.17%以下、 Si:1.0%超1.6%以下、
    Mn:1.5%以上2.5%以下、  P :0.03%以下、
    S :0.005%以下、      Al:0.08%以下、
    N :0.0080%以下、     Ti:0.09%以上0.14%以下、
    V :0.05%以上0.25%以下
    を含有し、Cr、NiおよびMoの含有量をそれぞれ0.06%以下(0%を含む)に制限し、残部がFeおよび不可避的不純物からなる組成とし、前記加熱の加熱温度を1150℃以上1350℃以下とし、前記熱間圧延の仕上げ圧延温度を850℃以上とし、前記冷却を熱間圧延の仕上げ圧延終了後3s以内に開始し、前記冷却の平均冷却速度を15℃/s以上とし、前記巻き取りの巻取り温度を350℃以上550℃以下とする高強度熱延鋼板の製造方法。
  5.  前記組成に加えて更に、質量%でB :0.0001%以上0.005%以下を含有する請求項4に記載の高強度熱延鋼板の製造方法。
  6.  前記組成に加えて更に、質量%でCa:0.0001%以上0.005%以下、REM:0.0001%以上0.005%以下のうちから選ばれる1種または2種を含有する請求項4または5に記載の高強度熱延鋼板の製造方法。
PCT/JP2014/005210 2013-10-29 2014-10-15 高強度熱延鋼板およびその製造方法 WO2015064029A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480059048.8A CN105683402B (zh) 2013-10-29 2014-10-15 高强度热轧钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-224230 2013-10-29
JP2013224230A JP5821929B2 (ja) 2013-10-29 2013-10-29 材質安定性および溶接性に優れた高強度熱延鋼板およびその製造方法

Publications (1)

Publication Number Publication Date
WO2015064029A1 true WO2015064029A1 (ja) 2015-05-07

Family

ID=53003663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005210 WO2015064029A1 (ja) 2013-10-29 2014-10-15 高強度熱延鋼板およびその製造方法

Country Status (4)

Country Link
JP (1) JP5821929B2 (ja)
CN (1) CN105683402B (ja)
TW (1) TWI525200B (ja)
WO (1) WO2015064029A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112996626A (zh) * 2018-11-19 2021-06-18 株式会社神户制钢所 接合结构体和接合结构体的制造方法
CN116288046A (zh) * 2023-02-16 2023-06-23 唐山钢铁集团有限责任公司 具有良好折弯性能的q690d热轧钢带及生产方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106756539B (zh) * 2016-12-05 2018-05-18 北京科技大学 一种具有纳米析出相的耐疲劳高强钢及其制备方法
CN114107791B (zh) * 2020-08-31 2023-06-13 宝山钢铁股份有限公司 一种980MPa级全贝氏体型超高扩孔钢及其制造方法
TWI796087B (zh) * 2022-01-12 2023-03-11 中國鋼鐵股份有限公司 熱軋鋼材與其製作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087143A (ja) * 1998-09-10 2000-03-28 Nkk Corp ベイナイト系高張力熱延鋼帯の製造方法
JP2009084637A (ja) * 2007-09-28 2009-04-23 Kobe Steel Ltd 疲労特性及び伸びフランジ性に優れた高強度熱延鋼板
JP2012062562A (ja) * 2010-09-17 2012-03-29 Jfe Steel Corp 打抜き加工性に優れた高強度熱延鋼板およびその製造方法
JP2012251200A (ja) * 2011-06-02 2012-12-20 Sumitomo Metal Ind Ltd 熱延鋼板の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1473376B1 (en) * 2002-02-07 2015-11-18 JFE Steel Corporation High strength steel plate and method for production thereof
WO2003087414A1 (en) * 2002-03-29 2003-10-23 Nippon Steel Corporation High tensile steel excellent in high temperature strength and method for production thereof
JP5348071B2 (ja) * 2010-05-31 2013-11-20 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP5126326B2 (ja) * 2010-09-17 2013-01-23 Jfeスチール株式会社 耐疲労特性に優れた高強度熱延鋼板およびその製造方法
US20160068937A1 (en) * 2013-04-15 2016-03-10 Jfe Steel Corporation High-strength hot-rolled steel sheet and method for producing the same (as amended)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087143A (ja) * 1998-09-10 2000-03-28 Nkk Corp ベイナイト系高張力熱延鋼帯の製造方法
JP2009084637A (ja) * 2007-09-28 2009-04-23 Kobe Steel Ltd 疲労特性及び伸びフランジ性に優れた高強度熱延鋼板
JP2012062562A (ja) * 2010-09-17 2012-03-29 Jfe Steel Corp 打抜き加工性に優れた高強度熱延鋼板およびその製造方法
JP2012251200A (ja) * 2011-06-02 2012-12-20 Sumitomo Metal Ind Ltd 熱延鋼板の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112996626A (zh) * 2018-11-19 2021-06-18 株式会社神户制钢所 接合结构体和接合结构体的制造方法
CN116288046A (zh) * 2023-02-16 2023-06-23 唐山钢铁集团有限责任公司 具有良好折弯性能的q690d热轧钢带及生产方法

Also Published As

Publication number Publication date
TWI525200B (zh) 2016-03-11
JP2015086411A (ja) 2015-05-07
CN105683402B (zh) 2018-08-07
TW201522663A (zh) 2015-06-16
CN105683402A (zh) 2016-06-15
JP5821929B2 (ja) 2015-11-24

Similar Documents

Publication Publication Date Title
JP5516784B2 (ja) 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
JP4844687B2 (ja) 低降伏比高強度高靭性鋼板及びその製造方法
WO2013145771A1 (ja) 耐歪時効特性に優れた低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
JP5076658B2 (ja) 大入熱溶接用鋼材
JP6435122B2 (ja) 冷間プレス成形角形鋼管用厚鋼板、冷間プレス成形角形鋼管、及び溶接方法
JP5760519B2 (ja) 靭性に優れる圧延h形鋼およびその製造方法
JP5765497B1 (ja) 溶接部品質の優れた電縫鋼管及びその製造方法
JPWO2014080818A1 (ja) H形鋼及びその製造方法
JP6409598B2 (ja) 靭性に優れた高強度極厚h形鋼及びその製造方法
JP5045074B2 (ja) 低降伏比を有する高張力薄肉鋼板およびその製造方法
JP2018053281A (ja) 角形鋼管
JP5045073B2 (ja) 低降伏比を有する非調質高張力厚鋼板およびその製造方法
JP5821929B2 (ja) 材質安定性および溶接性に優れた高強度熱延鋼板およびその製造方法
JP5034290B2 (ja) 低降伏比高強度厚鋼板およびその製造方法
JP2017193759A (ja) 厚鋼板およびその製造方法
JP2017071827A (ja) H形鋼及びその製造方法
JP5365145B2 (ja) 大入熱溶接部靭性に優れた建築用低降伏比鋼板およびその製造方法
JP2019199649A (ja) 非調質低降伏比高張力厚鋼板およびその製造方法
JP2011214053A (ja) 超大入熱溶接部靭性に優れた低降伏比建築構造用厚鋼板およびその製造方法
JP2009287081A (ja) 高張力鋼とその製造方法
WO2016060141A1 (ja) 大入熱溶接用鋼材
JP4848960B2 (ja) 薄肉低降伏比高張力鋼板およびその製造方法
JP2005068478A (ja) 超大入熱溶接熱影響部靱性に優れた低降伏比高張力厚鋼板の製造方法
JP2013049894A (ja) 高靭性大入熱溶接用鋼およびその製造方法
JPWO2019180957A1 (ja) 圧延h形鋼及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858074

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201602626

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14858074

Country of ref document: EP

Kind code of ref document: A1