WO2015062048A1 - 旋转式压缩机及制冷循环装置 - Google Patents

旋转式压缩机及制冷循环装置 Download PDF

Info

Publication number
WO2015062048A1
WO2015062048A1 PCT/CN2013/086363 CN2013086363W WO2015062048A1 WO 2015062048 A1 WO2015062048 A1 WO 2015062048A1 CN 2013086363 W CN2013086363 W CN 2013086363W WO 2015062048 A1 WO2015062048 A1 WO 2015062048A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
compression chamber
rotary compressor
chamber
exhaust muffler
Prior art date
Application number
PCT/CN2013/086363
Other languages
English (en)
French (fr)
Inventor
小津政雄
向卫民
喻继江
郭宏
杨泾涛
张�诚
高斌
王玲
Original Assignee
广东美芝制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美芝制冷设备有限公司 filed Critical 广东美芝制冷设备有限公司
Priority to AU2013386506A priority Critical patent/AU2013386506B2/en
Priority to PCT/CN2013/086363 priority patent/WO2015062048A1/zh
Priority to US14/773,880 priority patent/US10072661B2/en
Priority to EP13881454.6A priority patent/EP2927499B1/en
Priority to JP2015555552A priority patent/JP6197049B2/ja
Priority to KR1020147028741A priority patent/KR101715067B1/ko
Publication of WO2015062048A1 publication Critical patent/WO2015062048A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0088Lubrication
    • F04C15/0092Control systems for the circulation of the lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/068Silencing the silencing means being arranged inside the pump housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle

Definitions

  • the present invention relates to a rotary compressor and a refrigeration cycle apparatus. Background technique
  • the operating pressure of co 2 is very high, and the housing pressure of the high-pressure rotary compressor in the housing requires 10 0 Pa or more, and the wall thickness of the iron casing needs at least 7 mm, making the manufacturing property and cost large.
  • the HC-based refrigerant such as R 2 90 is highly flammable, it is necessary to limit the amount of sealing to the refrigeration system. Due to such a background, development of a rotary compressor having a low wall thickness and a small amount of refrigerant enclosed on a low-pressure side of a housing is expected in the case of a rotary compressor having a high-pressure casing.
  • Comparison Document 1 USP 2988267 ROTARY COMPRESSOR LUBRICATING ARRAN G EMENT (1961)
  • the present invention aims to solve at least one of the technical problems existing in the prior art. Accordingly, it is an object of the present invention to provide a rotary compressor.
  • Still another object of the present invention is to provide a refrigeration cycle apparatus having the above-described rotary compressor.
  • a rotary compressor includes: a lubricating oil built in a sealed inside of a sealed casing, an electric motor and a rotary compression mechanism inside the casing, and an internal pressure of the casing
  • the compression mechanism has the same suction pressure
  • the compression mechanism includes: a cylinder having a compression chamber, a piston disposed in the compression chamber, and an eccentric shaft for revolving the piston, in the cylinder a sliding piece having a reciprocating motion synchronously with the piston in a sliding vane cavity, at least one of a main bearing and a sub-bearing that slidably support the eccentric shaft and connected to the sliding vane cavity, and the main bearing and the sub-bearing
  • An exhaust muffler provided in the exhaust muffler; the refrigerant of the exhaust muffler passes through the sliding vane cavity, from the compression
  • the exhaust pipe provided in the mechanism is discharged.
  • the rotary compressor of the embodiment of the invention it is possible to effectively lubricate the sliding surface of the slider and control the oil of the entire compressor. As a result, the reliability of the slider can be ensured, and the compressor efficiency caused by the lubrication problem can be prevented from being lowered.
  • a rotary compressor includes: a lubricating oil built in a sealed inside of a sealed casing, an electric motor and a rotary compression mechanism inside the casing, and an internal pressure of the casing
  • the compression mechanism has a corresponding suction pressure
  • the compression mechanism includes: a cylinder having a compression chamber A, a cylinder B having a compression chamber B, a middle partition disposed between the cylinders, and the pressure a piston provided in each of the contraction chamber A and the compression chamber B, an eccentric shaft that revolves the pistons, and a vane chamber A and a vane chamber B provided in each of the cylinder A and the cylinder B a sliding plate in which the pistons are respectively reciprocated, a main bearing connected to the sliding chamber A for sliding support of the eccentric shaft, and a sub-bearing connected to the sliding chamber B, the main bearing and the Each of the sub-bearings includes a main bearing exhaust muffler and a sub-bearing exhaust muffler; the refrig
  • the rotary compressor of the embodiment of the invention it is possible to effectively lubricate the sliding surface of the slider and control the oil of the entire compressor. As a result, the reliability of the slider can be ensured, and the compressor efficiency caused by the lubrication problem can be prevented from being lowered.
  • a rotary compressor includes: a lubricating oil built in a sealed inside of a sealed casing, an electric motor and a rotary compression mechanism inside the casing, and an internal pressure of the casing
  • the compression mechanism has a corresponding suction pressure
  • the compression mechanism includes: a cylinder A having a compression chamber A, a cylinder B having a compression chamber B, and a middle partition provided between the cylinders.
  • a piston provided in each of the compression chamber A and the compression chamber B, an eccentric shaft that revolves the pistons, and a vane chamber A and a vane chamber B provided in each of the cylinder A and the cylinder B a slide piece that reciprocates synchronously with the piston, a main bearing coupled to the slide cavity A for sliding support of the eccentric shaft, and a sub-bearing connected to the slide cavity B, the main bearing And a main bearing exhaust muffler and a sub-bearing exhaust muffler respectively provided in the sub-bearing; the refrigerant discharged from one of the main bearing exhaust muffler or the sub-bearing exhaust muffler passes through the two sliding vanes and The other side of the exhaust muffler Matchmaking flow from the compression mechanism provided in said exhaust pipe.
  • the rotary compressor of the embodiment of the invention it is possible to effectively lubricate the sliding surface of the slider and control the oil of the entire compressor. As a result, the reliability of the slider can be ensured, and the compressor efficiency caused by the lubrication problem can be prevented from being lowered.
  • one end of the exhaust pipe extends into the main bearing exhaust muffler.
  • one end of the exhaust pipe extends into the secondary bearing exhaust muffler.
  • a refrigeration cycle apparatus comprising: a rotary compressor according to the above embodiment of the present invention; an oil separator connected to an exhaust pipe of the rotary compressor; and the rotary pressure a condenser connected to the compressor; An evaporator connected to the rotary compressor; an expansion valve connected between the condenser and the evaporator.
  • the oil separator is in communication with an oil injection hole of a compression chamber opening provided in the rotary compressor, and the oil injection hole passes through a piston provided in the compression chamber. Open and close.
  • the oil separator passes through an intermediate partition provided in the rotary compressor and an oil filling opening of two compression chambers provided in the rotary compressor
  • the holes are connected to each other, and the oil hole is opened and closed by the revolution of the piston provided in each of the compression chambers.
  • the main component of the refrigerant in the rotary compressor is carbonic acid gas or hydrogencarbonate gas
  • the main component of the lubricating oil in the rotary compressor is polymer polyalkylene. Base diol.
  • Figure 1 is a longitudinal sectional view and a refrigeration cycle diagram showing the inside of a rotary compressor in connection with Embodiment 1 of the present invention
  • Figure 2 is a longitudinal sectional view showing the detailed structure of the compression mechanism in relation to the first embodiment
  • Figure 3 is a plan sectional view showing the structure of a compression mechanism in relation to Embodiment 1;
  • Figure 4 is a longitudinal cross-sectional view showing a detailed structure of a compression mechanism in connection with Embodiment 2 of the present invention
  • Figure 5 is a longitudinal sectional view showing the detailed structure of the compression mechanism in relation to the second embodiment
  • Figure 6 is a longitudinal sectional view showing a detailed structure of a compression mechanism in connection with Embodiment 3 of the present invention.
  • Figure 7 is a longitudinal sectional view showing the detailed structure of the compression mechanism in relation to the third embodiment
  • Fig. 8 is a longitudinal sectional view showing the detailed structure of the compression mechanism in relation to the third embodiment. detailed description
  • connection should be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined.
  • Connected, or connected integrally can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meaning of the terms in the present invention can be understood in a specific manner by those skilled in the art.
  • the oil stored in the casing is circulated by the refrigerant in the refrigeration cycle due to the pressure difference between the casing (high-pressure side) and the compressor (low-pressure to high-pressure).
  • the oil is supplied to the compressor in an amount of oil of about 5 to 7 %.
  • the mixture of the discharged oil and the refrigerant is separated in the casing, and the amount of oil discharged to the refrigeration system can be reduced to less than 1%.
  • the oil When the oil is returned to the compressor, the oil can be reused, and the amount of oil that cannot be separated by the oil separator, that is, the amount corresponding to the amount of oil discharged (usually, less than 1% of the circulating amount of the refrigerant) is additionally supplied to the compression.
  • the cavity is fine. It is relatively easy to recover the oil into the interior of the compressor casing, and the oil is recovered into the compressor casing.
  • the compression chamber cannot be reused, so the additional oil supply to the compression chamber is increased. Further, due to the re-expansion loss of the refrigerant contained in the oil returned to the casing, the volumetric efficiency of the compressor is lowered.
  • a lubrication method of a sliding piece is studied, and the oil recycling is further adopted.
  • the way Specifically, about 5% of the oil-containing mixed refrigerant discharged to the exhaust muffler (B) 3 2 provided in the sub-bearing 3 Q is passed from the gas passage (B) 3 3 through the vane chamber 1 2 from the main bearing method
  • the exhaust pipe 6 of the blue 2 5 a is discharged into the oil separator S.
  • the vane 20 is lubricated by supplying oil to the vane gap of the vane 20 due to the pressure difference from the compression chamber 13 (low pressure to high pressure).
  • the oil 7 secured in the oil separator S is discharged from the oil hole 6 2 opening to the compression chamber 13 to lubricate the front end of the slider 24 and the slider 20.
  • the rotary compressor of the embodiment of the invention it is possible to effectively lubricate the sliding surface of the slider and control the oil of the entire compressor. As a result, the reliability of the slider can be ensured, and the compressor efficiency caused by the lubrication problem can be prevented from being lowered.
  • Rotary compressor 1 Q 0 and the refrigeration cycle of the first embodiment of the present invention are as shown in Fig. 1.
  • the 0 0 is composed of a compression mechanism 4 mounted in the inner diameter of the sealed casing 2, and an electric motor 3 disposed at an upper portion thereof.
  • the compression mechanism 4 is composed of a cylinder 1 Q and a main bearing 25 and a sub-bearing 30 fixed in the inner diameter of the casing 2, and they are assembled by screws.
  • the oil separator S is connected to the exhaust pipe 6 and the oil filler pipe 6 1 which are connected to the outer circumference of the main bearing 2 5 .
  • a capillary tube T is disposed between the oil filler pipe 6 1 and the oil separator S in order to adjust the amount of oil supplied to the compression chamber.
  • the upper end of the casing 2 is provided with an intake pipe 5, and the oil pool 8 is sealed with oil 7. Further, the intake pipe 5 may be disposed between the motor 3 and the compression mechanism 4.
  • the low-pressure refrigerant flowing from the intake pipe 5 to the casing 2 cools the motor 3, and is sucked into the cylinder 10 through the inside of the suction cover 65.
  • the high-pressure refrigerant compressed in the cylinder 10 is discharged from the exhaust pipe 6 to the oil separator S through the inside of the compression mechanism 4 as will be described later in detail.
  • the oil contained in the discharged high-pressure refrigerant is separated in the oil separator S.
  • the separated oil is present at the bottom of the oil separator S, and the oil from which the oil has been separated is discharged from the separator exhaust pipe 5 1 to the condenser C.
  • the high-pressure refrigerant condensed in the condenser C flows from the expansion valve V to the evaporator ⁇ into a low-pressure refrigerant, and is sucked into the casing 2 from the intake pipe 5. As a result, it becomes a refrigeration cycle system of a refrigerant cycle. Further, the oil separated in the oil separator S is returned from the oil filler pipe 61 to the compression chamber 13 formed in the cylinder 10 as will be described later.
  • the symbol ⁇ s in Fig. 1 is the pressure of the low-pressure refrigerant, and the symbol P d represents the pressure of the high-pressure refrigerant.
  • Fig. 2 shows a detailed sectional view of the compression mechanism 4.
  • the cylindrical compression chamber 1 3 provided in the middle of the cylinder 1 Q is sealed by the main bearing flange 25 a and the sub bearing flange 30 a.
  • the eccentric shaft 16 is slidably supported by the main bearing 25 and the sub-bearing 30, and the piston 24 disposed in the compression chamber 13 is revolved by the eccentric shaft portion 16b of the eccentric shaft 16.
  • the slider 20 reciprocates together with the revolution of the piston 24, and the slider 20 slides in the slider groove 15 (illustration of Fig. 3) provided in the cylinder 10.
  • a vane chamber 1 connected to the main bearing flange 2 5 a and the sub-bearing flange 30 a and located at the back of the slider 20 2.
  • the reciprocating slider 20 is housed.
  • the slider chamber 12 is also a cavity in which the slider spring 2 1 fixed to the back of the slider 20 can be extended and contracted.
  • the slider 20 reciprocates following the piston 24 by the pressure difference between the back and the tip, so the slider chamber 12 must generally be the high pressure side. Therefore, the vane chamber 12 is in communication with the exhaust muffler (B) 32, typically a high pressure chamber. Thereby, the machined hole for accommodating the vane spring 21 is sealed by the seal plate 23.
  • the bottom surface of the sub-bearing 30 is sealed by the flat plate (B) 3 4, so an exhaust muffler is formed in the sub-bearing 30
  • the exhaust muffler (B) 3 2 has a vent hole for opening the compression chamber 13 , and a disk-shaped exhaust valve 40 switch vent hole 1 4 .
  • the exhaust valve of a rotary compressor generally uses a tongue valve.
  • a highly efficient circular valve is employed in order to reduce the internal volume of the exhaust muffler (B) 32.
  • the gas passage (B) 3 3 and the gas passage (A) 27 of the sub-bearing flange 30 a and the main bearing flange 25 a are respectively provided at the open end of the vane chamber 1 2 Opening. Further, an exhaust pipe 6 is connected to the gas passage (A) 27. The leading end side of the exhaust pipe 6 is connected to the separation cylinder 5 3 formed in the inside of the oil separator S to open to the inside thereof.
  • Main bearing flange 2 5 a has the main bearing suction hole 2 9. Connected cylinder 1 The cylinder suction hole processed in Q 1 7. Therefore, the low-pressure refrigerant of the casing 2 flows from the cover hole 65 5 a into the suction cover 65, flows in the order of the main bearing suction hole 29 and the cylinder suction hole 13 3 a, and is sucked into the compression chamber 13 in.
  • the low-pressure refrigerant sucked into the compression chamber 13 is compressed into a high-pressure refrigerant, discharged from the exhaust hole 14 to the exhaust muffler (B) 3 2, and discharged from the gas passage (B) 3 3 through the vane chamber 1 2
  • the gas pipe 6 is discharged into the separation cylinder 53 of the oil separator S.
  • the oil supply pipe 6 for opening the cylinder suction hole 13 3 a, the oil 7 sucking the oil pool 8 by the pressure drop generated in the cylinder suction hole 13 3 is supplied with a small amount of oil to the compression chamber 13 .
  • the oil supplied from the compression chamber 13 is used not only for the lubrication of the upper and lower flat sliding surfaces of the piston 24 but also for the outer circumference of the piston and the sliding surface of the slider tip, thereby preventing the sliding gap and the outer diameter of the piston due to the pressure difference. Gas leaks. However, lubrication of the sliding surface of the vane 20 hidden in the vane groove 15 is not possible only by supplying oil to the compression chamber.
  • the necessary oil supply amount (G) of the compression chamber 13 is 5%, and the compressor can be gradually increased by G in the performance side of the relevant compressor, and the compressor is made in the range of 5 to 7%.
  • the freezing capacity C 0 P is obtained for the largest experimental data.
  • the high-pressure refrigerant compressed in the compression chamber 13 is an oil-refrigerant mixture containing a refrigerant and a 5% spray oil (hereinafter referred to as a mixed refrigerant), and is exhausted from the exhaust hole 14 through an exhaust muffler (B) 3 2 Gas passage (B) 3 3 through The slide chamber 1 2, from the exhaust pipe 6 connecting the gas passages (A) 27 to the separation cylinder 5 3, further flows through the plurality of fine holes 5 5 provided in the separation cylinder 5 3 to the separator housing 50 . At this time, the oil separated by the pores 5 5 is dropped into the separator housing 50 for storage. Further, the oil separated in the separation cylinder 53 is dropped into the separation cylinder 53 and merges with the oil 7 of the separator casing 50 through the bottom hole 56.
  • a mixed refrigerant hereinafter referred to as a mixed refrigerant
  • the mixed refrigerant entering the sliding gap lubricates the sliding surface of the slider 20 composed of a total of four planes, and prevents leakage of refrigerant from the gap to the compression chamber 13. Therefore, it is possible to prevent not only the abrasion due to the intense sliding of the vane 20 but also the reduction in the volumetric efficiency of the compressor due to the leakage of the high-pressure refrigerant. Further, the oil after the lubrication of the vane 12 is finished flows out toward the compression chamber 13.
  • the amount of oil ( g ) flowing out from the vane chamber 12 through the sliding gap to the compression chamber 13 is about 1% of the refrigerant circulation amount (Q).
  • the amount of discharged oil (g) is 1%
  • the amount of oil flowing out of the exhaust pipe 6 to the oil separator S is G- g , which is 4%.
  • the oil separation efficiency of the oil separator S is 7 5 %
  • the amount of oil discharged from the separator exhaust pipe 5 1 to the refrigeration cycle is 1%
  • the amount of oil secured in the separator casing 50 It is 3%.
  • Figure 3 is a cross-sectional view taken along the line X-X of Figure 2, through a fuel injection pipe 6 1 connecting the main bearing flange 2 5 a, and an oil hole 6 for opening the oil of the separator casing 50 from the compression chamber 13 2 returns to the compression chamber 13 .
  • the oil filling pipe 6 1 can return 3% oil from the oil separator S to the compression chamber 13, the amount of oil (g) flowing out from the sliding chamber 1 2 into the compression chamber 13 is 1%, so If the oil supply amount from the fuel supply pipe 63 is 1%, the oil supply amount of the compression chamber 13 is 5% to ensure the necessary oil supply amount (G). Gp, the oil control of the compressor as a whole can be established. Further, in the present invention, the amount of oil to be injected from the fuel supply pipe 63 is usually equal to the amount of oil discharged to the refrigeration cycle (O C R ).
  • the capillary tube T is an adjustment means for returning the oil secured in the separator housing 50 to the compression chamber 13 in an appropriate amount.
  • if the resistance of the capillary T is too large, the amount of oil injected into the compression chamber will decrease, and the oil stored in the separator housing 50 will increase, so the amount of oil discharged to the refrigeration cycle will increase.
  • the resistance of the capillary T is too small, the separation The oil in the casing 50 is gone, and the high-pressure refrigerant is injected into the compression chamber 13, and the volumetric efficiency of the compressor is lowered.
  • FIG. 3 shows that the gas passage (A) provided in the upper portion of the vane chamber 12 is difficult to assemble the main bearing flange 2 5 a portion when the exhaust pipe 6 is assembled in the upper portion of the vane chamber 12.
  • the connected circuit 2 5 b and the exhaust groove 2 5 c are easily attached to the main bearing flange 25 5 a. Further, since the distance between the exhaust pipe 6 and the oil filler pipe 6 1 is reduced, the arrangement of the oil separator S is also easy.
  • the compression chamber 13 is lubricated by a mixed refrigerant containing 5% of oil, and the mixed refrigerant is introduced into the vane chamber 1 2, whereby the problem of lubrication of the sliding surface of the vane 20 can be solved. Further, the oil 7 recovered by the oil separator S is automatically returned to the compression chamber 13 by the oil filler pipe 6 1 so that the oil circulation system of the compressor is established.
  • Example 2
  • the embodiment 2 shown in Fig. 4 is a design in which an exhaust muffler is disposed on both sides of the sub-bearing 30 and the main bearing 25. Therefore, in addition to the exhaust muffler (B) of the sub-bearing 30, 2, the main bearing 25 also requires an exhaust muffler (A) 26 .
  • the exhaust pipe 6 is disposed in the exhaust muffler on one side, but is disposed in the exhaust muffler (B) 32 in Fig. 4, and is arranged in the exhaust muffler (A) 26 in Fig. 5. Trachea 6 .
  • the embodiment 3 shown in Fig. 6 shows that the slider lubrication method and the oil control method of the first embodiment can be applied to a two-cylinder low-pressure rotary compressor.
  • the compression mechanism 4 of the 2-cylinder rotary compressor 200 is respectively composed of a cylinder (A) 1 Q a and a cylinder (B) 1 0 b having a compression chamber 13 a and a compression chamber 13 b.
  • the intermediate partition 3 6 disposed, the piston 2 4 a and the piston 2 4 b provided in each cylinder, the sliding piece 2 Q a and the sliding piece 2 Q b , and the eccentric shaft 1 for revolving the two pistons 1
  • Main bearing 2 5 and sub-bearing 3 for sliding support of the eccentric shaft 16 and the two cylinder planes respectively
  • the main bearing 2 5 and the sub-bearing 30 have vent holes respectively opened in the compression chamber 1 3 a and the compression chamber 1 3 b
  • the main bearing 2 5 and the auxiliary bearing 3 0 respectively have an exhaust muffler and an exhaust muffler (B) 3 2, that is, exhaust Muffler (A) 2 6 is the main bearing exhaust muffler, exhaust muffler (B) 3 2 is the auxiliary bearing exhaust muffler.
  • the oil supply pipe 63 is connected to the cylinder suction hole (A) 1 1 a.
  • the slider spring 20b omits the slider spring.
  • the oil-containing mixed refrigerant compressed in the compression chamber is discharged to the exhaust muffler (A) 26 and the exhaust muffler (B) 3 2 .
  • the vane 2 0 a and the vane 2 0 b can be lubricated as in the first embodiment.
  • the two vane chambers with a large passage area serve as a refrigerant passage to significantly reduce the exhaust resistance.
  • the exhaust passage can be shortened, so that the exhaust resistance is further lowered.
  • Fig. 7 is an alternative technique of Fig. 6 in which the exhaust pipe 6 is disposed in an exhaust muffler (A) 26.
  • the mixed refrigerant of (B) 3 2 merges with the mixed refrigerant of the exhaust muffler (A) 26 in the order of the vane 2 0 b and the vane 20 a from the gas passage (B) 3 3 .
  • the merged mixed refrigerant is discharged from the exhaust pipe 6 to the oil separator S.
  • This alternative technique like the design of Fig. 6, can supply oil and lubrication to the slider 20 a and the slider 2 0 b.
  • the exhaust pipe 6 may be disposed in the exhaust muffler (B) 32.
  • both the compression chamber 13 a and the compression chamber 13 b need oil supply, so the total oil supply to the compression chamber is compared with the design of the first embodiment. Will increase.
  • the total displacement of the cylinders of 2 is the same as the displacement of one cylinder, and the total sliding area of the sliding parts is 1.5 times or more.
  • the required oil supply (G) required for a 1-cylinder compression chamber is 5%
  • the necessary oil supply (G) required for two compression chambers in two cylinders is increased to 8 to 10%.
  • the oil separated in the oil separator S needs to be uniformly returned to both the compression chamber 1 3 a and the compression chamber 1 3 b.
  • a two-cylinder low-pressure rotary compressor requires a small error in the method of supplying oil to each compression chamber.
  • FIG. 8 shows a method of supplying oil from the oil separator S to the compression chamber 13a and the compression chamber 13b. 2.
  • the oil injection hole 6 through which the front end portion of the oil filler pipe 6 1 connected to the intermediate partition 36 is connected to the compression chamber 13 a and the compression chamber 13 b 2 is a piston of each compression chamber as described in the first embodiment. 2 4 Opening and closing, the required oil can be accurately supplied to each compression chamber. That is, the two oil filling holes 6 2 are one through holes, so there is no error in the position and the aperture of these openings.
  • the circuit including the oil filling pipe 61 and the capillary is one, so it is characterized by two opposing pressures. There is no difference in the amount of oil supplied to the chamber.
  • the required oil supply amount (G) required for each compression chamber is 4%
  • the oil supply amount (g) from the respective sliding chambers through the sliding gap to each of the compression chambers is 0.5%, respectively.
  • the total amount of oil discharged from the exhaust pipe 6 to the oil separator S is 7 % ( 2 G - 2 g ).
  • the required oil supply amount from the fuel supply pipe 6 3 is 1%.
  • the present invention can also be applied to a two-cylinder low-pressure rotary compressor.
  • the disclosed technique can be employed not only in the case where the pressure in the casing is a low pressure side one-cylinder rotary compressor, a two-cylinder rotary compressor, and a swing type rotary compressor.
  • a natural refrigerant such as CO 2 or HC
  • a refrigerant such as an air conditioner, a refrigerating apparatus, or a water heater
  • the disclosed technique can be utilized to realize a low-pressure rotary compressor having high efficiency and reliability.
  • the current mass production equipment can be borrowed, and the manufacturing property is superior.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compressor (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)

Abstract

一种旋转式压缩机及制冷循环装置。旋转式压缩机(100)包括:内置封入密封式壳体(2)内部中的润滑油(7)、壳体(2)内部具有电动式电机(3)及旋转式压缩机构(4),壳体(2)的内压与压缩机机构的吸气压力相当。旋转式压缩机构(4)包括主轴承(25)、副轴承(30)、主轴承(25)和副轴承(30)中至少一方中具备排气消声器。排气消声器的冷媒通过滑片腔(12)从压缩机构(4)的排气管(6)排出。

Description

旋转式压缩机及制冷循环装置 技术领域
本发明涉及一种旋转式压縮机及制冷循环装置。 背景技术
搭载旋转式压縮机的装置在全球普及了, 但这些旋转式压縮机几乎全部都是壳体内 为高压。其原因是因为高压式的旋转式压縮机的能效和成本还有小型化、 以及油的控制 方面等优势。 另一方面, 从地球环保的观点来看, C O 2和 H C等自然冷媒的采用也受 到极大关注, 另外, H C冷媒在旋转式压縮机中的采用计划也在推进中。
但是, c o 2的动作压力非常高, 壳体内为高压的旋转式压縮机的壳体耐压需要 1 0 M p a以上, 铁壳体的壁厚至少需要 7 m m, 使得制造性和成本成为大课题。 另外, R 2 9 0等 H C系冷媒是强可燃性, 所以需要限制对冷冻系统的封入量。 由于这样的背 景, 针对壳体高压的旋转式压縮机, 壳体壁厚较薄且冷媒封入量较少的壳体低压侧的旋 转式压縮机的开发倍受期待。 而且, 使用如所述 C O 2 (碳酸气体) 、 H C (碳酸氢)的 低压式旋转式压縮机的话, 润滑油和冷媒的相溶性(溶解)非常大, 所以油的粘度会进 一步显著降低。
对比文件 1: USP 2988267 ROTARY COMPRESSOR LUBRICATING ARRAN G EMENT (1961年)
对比文件 2:
特开 1 9 9 8— 2 5 9 7 8 7 旋转式密封压縮机及其制冷装置 发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。 为此, 本发明的一个目的在 于提出一种旋转式压縮机。
本发明的再一个目的在于提出一种具有上述旋转式压縮机的制冷循环装置。
根据本发明实施例的旋转式压縮机, 包括: 内置封入密封式壳体内部中的润滑油、 所述壳体内部具有电动式电机及旋转式压縮机构,所述壳体的内压与所述压縮机构的吸 气压力相当, 所述压縮机构包括: 具备压縮腔的气缸、 设在所述压縮腔内的活塞、 使所 述活塞公转的偏心轴、 在所述气缸中具备的滑片腔中与所述活塞同步往复运动的滑片、 滑动支撑所述偏心轴且与所述滑片腔连接的主轴承和副轴承、所述主轴承和所述副轴承 中至少一方中具备的排气消声器; 所述排气消声器的冷媒通过所述滑片腔, 从所述压縮 机构中具备的排气管排出。
根据本发明实施例的旋转式压縮机, 可以有效润滑滑片滑动面、 可以控制整个压縮 机的油。其结果可以确保滑片的可靠性,另外可以防止润滑问题带来的压縮机效率降低。
根据本发明实施例的旋转式压縮机, 包括: 内置封入密封式壳体内部中的润滑油、 所述壳体内部具有电动式电机及旋转式压縮机构,所述壳体的内压与所述压縮机构的吸 气压力相当, 所述压縮机构包括: 具备压縮腔 A的气缸、 具备压縮腔 B的气缸 B、 设在 所述气缸之间的中隔板、所述压縮腔 A和所述压縮腔 B中分别具备的活塞、使这些活塞 公转的偏心轴、在所述气缸 A和所述气缸 B中各自具备的滑片腔 A和滑片腔 B中与所述 活塞分别同步进行往复运动的滑片、对所述偏心轴进行滑动支撑的与所述滑片腔 A连接 的主轴承和与所述滑片腔 B连接的副轴承、所述主轴承和所述副轴承中分别具备主轴承 排气消声器和副轴承排气消声器;从所述主轴承排气消声器排出的冷媒通过所述滑片腔 A ; 从所述副轴承排气消声器排出的冷媒通过所述滑片腔 B ; 这些冷媒从所述中隔板中 具备的排气管排出。
根据本发明实施例的旋转式压縮机, 可以有效润滑滑片滑动面、 可以控制整个压縮 机的油。其结果可以确保滑片的可靠性,另外可以防止润滑问题带来的压縮机效率降低。
根据本发明实施例的旋转式压縮机, 包括: 内置封入密封式壳体内部中的润滑油、 所述壳体内部具有电动式电机及旋转式压縮机构,所述壳体的内压与所述压縮机构的吸 气压力相当, 所述压縮机构包括: 具备压縮腔 A的气缸 A、 具备压縮腔 B的气缸 B、 设 在所述气缸之间具备的中隔板、所述压縮腔 A和所述压縮腔 B中分别具备的活塞、使这 些活塞公转的偏心轴、在所述气缸 A和所述气缸 B中各自具备的滑片腔 A和滑片腔 B中 与所述活塞分别同步进行往复运动的滑片、对所述偏心轴进行滑动支撑的与所述滑片腔 A连接的主轴承和与所述滑片腔 B连接的副轴承、所述主轴承和所述副轴承中分别具备 主轴承排气消声器和副轴承排气消声器;所述主轴承排气消声器或者所述副轴承排气消 声器的一方排出的冷媒通过所述 2个滑片腔后与另一方的排气消声器的冷媒合流,从所 述压縮机构中具备的排气管排出。
根据本发明实施例的旋转式压縮机, 可以有效润滑滑片滑动面、 可以控制整个压縮 机的油。其结果可以确保滑片的可靠性,另外可以防止润滑问题带来的压縮机效率降低。
在本发明的一些示例中, 所述排气管的一端伸入到主轴承排气消声器中。
在本发明的另一些示例中, 所述排气管的一端伸入到副轴承排气消声器中。
根据本发明实施例的制冷循环装置, 包括: 根据本发明上述实施例的的旋转式压縮 机;与所述旋转式压縮机的排气管连接的油分离器;与所述旋转式压縮机相连的冷凝器; 与所述旋转式压縮机相连的蒸发器; 连接在所述冷凝器和所述蒸发器之间的膨胀阀。 在本发明的一些实施例中, 所述油分离器与对所述旋转式压縮机中具备的压縮腔开 口的注油孔连通, 所述注油孔通过所述压縮腔中具备的活塞的公转进行开闭。
在本发明的另一些实施例中, 所述油分离器经过所述旋转式压縮机中具备的中隔板 与对所述旋转式压縮机中具备的 2个压縮腔进行开口的注油孔连通,所述注油孔分别通 过所述各压縮腔中具备的活塞的公转进行开闭。
根据本发明的一些实施例, 所述旋转式压縮机内的冷媒的主要成分为碳酸气体或者 碳酸氢气体, 且所述旋转式压縮机内的润滑油的主要成分为聚合物聚亚烷基二醇。
本发明的附加方面和优点将在下面的描述中部分给出, 部分将从下面的描述中变得 明显, 或通过本发明的实践了解到。 附图说明
本发明的所述和 /或附加的方面和优点从结合下面附图对实施例的描述中将变得明 显和容易理解, 其中:
图 1为与本发明的实施例 1相关、 表示旋转式压縮机内部的纵截面图和制冷循环 图;
图 2为同实施例 1相关、 表示压縮机构详细构造的纵截面图;
图 3为同实施例 1相关、 表示压縮机构构造的平面截面图;
图 4为与本发明实施例 2相关、 表示压縮机构详细构造的纵截面图;
图 5为同实施例 2相关、 表示压縮机构详细构造的纵截面图;
图 6为与本发明实施例 3相关、 表示压縮机构详细构造的纵截面图;
图 7为同实施例 3相关、 表示压縮机构详细构造的纵截面图;
图 8为同实施例 3相关、 表示压縮机构详细构造的纵截面图。 具体实施方式
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至终相 同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附 图描述的实施例是示例性的, 仅用于解释本发明, 而不能理解为对本发明的限制。
在本发明的描述中, 需要理解的是, 术语 "中心" 、 "纵向" 、 "横向" 、 "上" 、 "下" 、 "前" 、 "后" 、 "左" 、 "右" 、 "竖直" 、 "水平" 、 "顶" 、 "底" 、 "内"、 "外"等指示的方位或位置关系为基于附图所示的方位或位置关系, 仅是为了 便于描述本发明和简化描述, 而不是指示或暗示所指的装置或元件必须具有特定的方 位、 以特定的方位构造和操作, 因此不能理解为对本发明的限制。 此外, 术语"第一"、 "第二 "仅用于描述目的, 而不能理解为指示或暗示相对重要性或者隐含指明所指示的 技术特征的数量。 由此, 限定有 "第一" 、 "第二" 的特征可以明示或者隐含地包括一 个或者更多个该特征。 在本发明的描述中, 除非另有说明, "多个 "的含义是两个或两 个以上。
在本发明的描述中, 需要说明的是, 除非另有明确的规定和限定, 术语 "安装" 、 "相连" 、 "连接 "应做广义理解, 例如, 可以是固定连接, 也可以是可拆卸连接, 或 一体地连接; 可以是机械连接, 也可以是电连接; 可以是直接相连, 也可以通过中间媒 介间接相连, 可以是两个元件内部的连通。 对于本领域的普通技术人员而言, 可以具体 情况理解所述术语在本发明中的具体含义。
下面参考图 1-图 8描述根据本发明实施例的旋转式压縮机。
壳体高压式旋转式压縮机中, 壳体里面储存的油由于壳体 (高压侧) 和压縮机 (低 压〜高压)的压差, 通过滑动部品的滑动间隙将按冷冻循环的冷媒循环比 5〜7 %左右 的油量向压縮机供油。 另外, 排出的油和冷媒的混合物在壳体内分离, 对制冷系统的吐 油量可以减少到 1 %以下。
另一方面, 壳体低背压式的旋转式压縮机中, 因为壳体内压为低压, 所以由于压差 的影响, 压差导致油不能供到压縮机中。 因此, 利用气缸吸气孔的压力下降产生的较小 的压降, 将壳体中存的油供应到压縮机中。 其供油量与高压式旋转式压縮机几乎相同。 但是, 为了防止制冷循环的性能劣化, 对冷冻循环的吐油量必须要在 1 %以下、 所以需 要通过分离效率较高的油分离器可以回收油, 返回到压縮机或者壳体的内部。
油回到压縮机的情况下, 可以再次利用油, 油分离器不能分离的油量、 即与吐油量 相当的量(通常、 在冷媒循环量的 1 %以下)追加供油到压縮腔就可以。 油回收到压縮 机壳体内部的方法方面、油回收到压縮机壳体内是比较容易的,但在压縮腔无法再利用, 所以对压縮腔的追加供油量会增加。 另外由于回到壳体的油中所含冷媒的再膨胀损失, 压縮机的容积效率会产生降低的问题。
因此, 采用使油回到压縮机中的方法是有利的, 但即使是该方法, 低压的旋转式压 縮机中, 因为收纳了滑片北部的滑片腔在高压的密封腔中, 所以由于对滑片的滑动间隙 的润滑不足, 会导致产生磨耗的故障。 这样, 为了实现低压式旋转式压縮机, 压縮机内 部的油控制是最重要的课题。
根据本发明的实施例, 对滑片的润滑方法做了研究, 进一步采用了所述油循环利用 的方式。 具体的来说, 排出到副轴承 3 Q中具备的排气消声器( B ) 3 2的大约 5 %的 含油的混合冷媒从气体通道(B ) 3 3通过滑片腔 1 2从连接主轴承法兰 2 5 a的排气 管 6排出到油分离器 S中。 混合冷媒通过滑片腔 1 2 (高压侧) 的时候, 由于与压縮腔 1 3 (低压〜高压) 的压差向滑片 2 0的滑片间隙中供油, 滑片 2 0被润滑。 油分离器 S中确保的油 7从对压縮腔 1 3开口的注油孔 6 2吐油以润滑滑片 2 4和滑片 2 0的 先端。
根据本发明实施例的旋转式压縮机, 可以有效润滑滑片滑动面、 可以控制整个压縮 机的油。其结果可以确保滑片的可靠性,另外可以防止润滑问题带来的压縮机效率降低。
实施例 1 :
本发明的实施例 1的旋转式压縮机 1 Q 0和制冷循环如图 1所示。 旋转式压縮机 1
0 0由安装在密封壳体 2的内径中的压縮机构 4、其上部配置的电动式电机 3组成。压 縮机构 4由气缸 1 Q和壳体 2的内径中固定的主轴承 2 5和副轴承 3 0等组成、它们由 螺钉组装。连接主轴承 2 5外周的排气管 6和注油管 6 1连接了油分离器 S。注油管 6 1和油分离器 S之间为了调整对压縮腔的供油量, 配置了毛细管 T。 另外, 壳体 2的上 端配置了吸气管 5、 油池 8中封入了油 7。 另外, 吸气管 5也可以配置在电机 3和压縮 机构 4之间。
从吸气管 5向壳体 2流入的低压冷媒冷却电机 3后, 通过吸气盖 6 5的内部被吸入 气缸 1 0中。在气缸 1 0中被压縮的高压冷媒、如后详细描述那样通过压縮机构 4的内 部从排气管 6向油分离器 S排出。 排出的高压冷媒中含有的油在油分离器 S中被分离。 分离后的油存在油分离器 S的底部、分离了油的冷媒从分离器排气管 5 1向冷凝器 C排 出。
在冷凝器 C中冷凝的高压冷媒从膨胀阀 V向蒸发器 Ε流动成为低压冷媒,从吸气管 5开始被吸入壳体 2中。 其结果, 成为冷媒循环的制冷循环系统。 而且, 在油分离器 S 分离的油如后所述, 从注油管 6 1回到气缸 10中构成的压縮腔 1 3中。 图 1的符号 Ρ s为低压冷媒的压力、 符号 P d表示高压冷媒的压力。
图 2表示压縮机构 4的详细截面图。 在气缸 1 Q的中间具备的圆柱型压縮腔 1 3、 通过主轴承法兰 2 5 a和副轴承法兰 3 0 a密封。偏心轴 1 6由主轴承 2 5和副轴承 3 0滑动支撑, 在压縮腔 1 3中配置的活塞 2 4、 由偏心轴 1 6的偏心轴部 1 6 b进行公 转。 滑片 2 0与活塞 2 4的公转一起共同往复运动, 且滑片 2 0在气缸 10中具备的滑 片槽 1 5 (图 3的图示) 中滑动。
与主轴承法兰 2 5 a和副轴承法兰 3 0 a相连接且位于滑片 2 0背部的滑片腔 1 2、 收纳了往复运动的滑片 2 0, 另外, 滑片腔 1 2也是固定在滑片 2 0背部的滑片弹 簧 2 1可以伸縮的腔。 滑片 2 0通过其背面和先端的压差追随活塞 2 4进行往复运动, 所以滑片腔 1 2通常必须是高压侧。 因此, 滑片腔 1 2与排气消声器(B ) 3 2连通通 常为高压腔。 从而, 为了收纳滑片弹簧 2 1的加工孔通过密封板 2 3密封。
副轴承 3 0的底面通过平板 ( B ) 3 4密封、 所以副轴承 3 0中形成了排气消声器
( B ) 3 2。 排气消声器 (B ) 3 2中具备对压縮腔 1 3开口的排气孔 1 4, 圆板状的 排气阀 4 0开关排气孔 1 4。旋转式压縮机的排气阀一般采用舌型阀。但实施例 1为了 减小排气消声器 ( B ) 3 2的内容积, 采用了高效的圆形阀。
作为实施例 1的特征, 副轴承法兰 3 0 a和主轴承法兰 2 5 a中分别具备的气体通 道( B ) 3 3和气体通道( A ) 2 7对滑片腔 1 2的开口端开口。 而且, 气体通道(A ) 2 7中连接了排气管 6。排气管 6的先端侧连接了油分离器 S的内部中构成的分离筒 5 3对其内部开口。
主轴承法兰 2 5 a的上部固定了冲压加工的吸气盖 6 5。 主轴承法兰 2 5 a中有主 轴承吸入孔 2 9、 连接了气缸 1 Q中加工的气缸吸气孔 1 7。 因此, 壳体 2的低压冷媒 从盖板孔 6 5 a流入到吸气盖 6 5中, 按主轴承吸入孔 2 9、气缸吸入孔 1 3 a的顺序 流动, 被吸入到压縮腔 1 3中。
被压縮腔 1 3吸入的低压冷媒被压縮成为高压冷媒、 从排气孔 1 4向排气消声器 ( B ) 3 2排出、 从气体通道( B ) 3 3通过滑片腔 1 2从排气管 6排到油分离器 S的 分离筒 5 3中。 在这里、 对气缸吸气孔 1 3 a开孔的供油管 6 3、 利用在气缸吸入孔 1 3 a中生成的压降吸引油池 8的油 7对压縮腔 1 3供少量的油。
压縮腔 1 3供的油、 不但是活塞 2 4的上下平面滑动面和活塞外周、 滑片先端的滑 动面的润滑中使用、 可以防止由于压差产生的从滑动间隙以及从活塞外径的气体泄漏。 但是、只是对该压縮腔供油的话, 在滑片槽 1 5中隐藏的滑片 2 0的滑动面的润滑是不 可能的。
接下来、 为了润滑压縮腔 1 3的活塞 2 4、 滑片 2 0的先端、 有效地压縮冷媒, 使 所需的供油量 ( G ) 为冷冻循环系统中循环的冷媒量 ( Q ) 5 % ( G / Q = 0 . 0 5 ) 。 另外、 压縮腔 1 3的必要供油量(G ) 为 5 %的根据、 可通过在相关压縮机的性能侧定 中逐渐地增加 G,在 5〜 7 %的范围内使压縮机的冷冻能力 C 0 P为最大的试验数据得 到。
压縮腔 1 3中压縮的高压冷媒、 为含冷媒和 5 %的喷雾状油的油冷媒混合物 (以下 称为混合冷媒) 、 从排气孔 1 4通过排气消声器 ( B ) 3 2从气体通道 (B ) 3 3通过 滑片腔 1 2、 从连接气体通道( A ) 2 7的排气管 6到达分离筒 5 3、 进一步通过分离 筒 5 3中具备的多个细孔 5 5流到分离器壳体 5 0中。这时、通过细孔 5 5分离的油下 落到分离器壳体 5 0中储存。另外、分离筒 5 3中分离的油下落到分离筒 5 3中通过底 孔 5 6与分离器壳体 5 0的油 7合流。
所述混合冷媒流动途中, 在高压侧的滑片腔 1 2和压縮腔 1 3 (低压〜高压) 之间 有压差的作用,所以从滑片腔 1 2开始有部分混合冷媒进入滑片 2 0和滑片槽 1 5之间 形成的滑动间隙中。进入滑动间隙中的混合冷媒、润滑了总共 4个平面组成的滑片 2 0 的滑动面、 而且、 防止从间隙向压縮腔 1 3的冷媒泄漏。 因此、 不但可以防止由于滑片 2 0的激烈滑动产生的磨耗, 还可以防止由于高压冷媒泄漏带来的压縮机容积效率降 低。 而且、 结束了滑片 1 2的润滑后的油朝压縮腔 1 3流出。
在此, 推测从滑片腔 1 2经过滑动间隙流出到压縮腔 1 3的油量 ( g ) 在较多的情 况下也大约是冷媒循环量 ( Q ) 的 1 %。 该流出油量 ( g ) 为 1 %的话、 从排气管 6向 油分离器 S中流出的油量为 G— g, 为 4 %。 而且、 如果油分离器 S的油分离效率为 7 5 %的话、从分离器排气管 5 1 向冷冻循环中流出的吐油量为 1 %、在分离器壳体 5 0 中确保的油量为 3 %。
如开篇时所述, 实施例的方法是将分离器壳体 5 0中确保的油回到压縮腔 1 3中。 图 3为图 2的 X— X截面图、通过连接主轴承法兰 2 5 a的注油管 6 1、将分离器壳体 5 0的油 7从对压縮腔 1 3开孔的注油孔 6 2返回到压縮腔 1 3中。
注油孔 6 2由于事先设置了通过公转的活塞 2 4的平面滑动面进行开关的活塞旋 转角度, 所以高压冷媒不会从压縮腔 1 3逆流到注油管 6 1中、 另外、 该设计中高压的 油不会泄露到压縮腔 1 3的低压侧。 因此, 从分离器壳体 5 0可以有效地向压縮腔 1 3 回 3 %的油。另外,在对比文件 1和对比文件 1中, 根据活塞的旋转角度,注油孔开孔, 将油注入到压縮腔中方法及其效果有详细描述。
通过注油管 6 1从油分离器 S向压縮腔 1 3可以回 3 %的油的话、 从所述滑片腔 1 2向压縮腔 1 3流出的油量 ( g ) 为 1 %、 所以从供油管 6 3开始的供油量如果是 1 % 的话, 压縮腔 1 3的供油量为 5 %可以确保必要的供油量 (G ) 。 gp, 压縮机整体的油 控制可以成立。 另外, 本发明中从供油管 6 3出来的所需注入油量、 通常与对制冷循环 的吐油量 (O C R ) 相等。
在这里毛细管 T是将分离器壳体 5 0中确保的油适量地回到压縮腔 1 3中的调整 手段。 δΡ, 毛细管 T的阻力太大的话, 对压縮腔的注油量会减少、 分离器壳体 5 0中存 储的油会增加, 所以对制冷循环的吐油量会增加。 相反毛细管 T的阻力太小的话, 分离 器壳体 5 0的油就没有了、 高压冷媒注入了压縮腔 1 3中, 压縮机的容积效率会降低。 另外图 3表示, 主轴承法兰 2 5 a部位如果将排气管 6组装在滑片腔 1 2上部比较 困难的情况下, 与滑片腔 1 2的上部设置的气体通道(A ) 2 7连通的回路 2 5 b和排 气槽 2 5 c如果在主轴承法兰 2 5 a上追加的话, 排气管 6的安装就容易了。 另外, 排 气管 6和注油管 6 1的距离会减小, 所以油分离器 S的配置也容易。
如上所述, 实施例 1为通过含有 5 %的油的混合冷媒润滑压縮腔 1 3、 而且将混合 冷媒导入到滑片腔 1 2中、 可以解决滑片 2 0的滑动面润滑的课题。 另外, 通过油分离 器 S回收的油 7由于注油管 6 1 自动的回到压縮腔 1 3中、这样压縮机的油循环体系就 建立了。 实施例 2 :
图 4所示实施例 2为在副轴承 3 0和主轴承 2 5两侧配置排气消声器的设计。 因 此, 除了副轴承 3 0的排气消声器 (B ) 3 2、 主轴承 2 5也需要排气消声器 (A ) 2 6。 排气管 6配置在某一侧的排气消声器中就可以了、 但图 4中在排气消声器(B ) 3 2中配置、 图 5则在排气消声器 (A ) 2 6中配置了排气管 6 。
主轴承 2 5中, 从对压縮腔 1 3开口的排气孔 1 4向排气消声器 (A ) 2 6排出的 混合冷媒通过滑片腔 1 2与排气消声器( B ) 3 2的高压冷媒合流从排气管 6向油分离 器 S流出。 其后, 按与实施例 1相同的路线分离油、 冷媒排出到制冷循环中。 另外, 在 油分离器 S中分离的油从注油管 6 1回到压縮腔 1 3中。而且, 图 5中通过滑片腔 1 2 的冷媒的流动虽然为相反的, 但图 5和图 4可以得到相同的效果。 实施例 3 :
图 6所示的实施例 3表示、 实施例 1的滑片润滑方法、 油控制法在 2气缸的低压式 旋转式压縮机中可以得到应用。
2气缸旋转式压縮机 2 0 0的压縮机构 4、 分别由具备压縮腔 1 3 a和压縮腔 1 3 b的气缸 ( A ) 1 Q a和气缸 ( B ) 1 0 b , 其间配置的中隔板 3 6、 各气缸中具备的 活塞 2 4 a和活塞 2 4 b、滑片 2 Q a和滑片 2 Q b、使所述 2个活塞公转的偏心轴 1
6、对偏心轴 1 6进行滑动支撑与所述 2个气缸平面分别连接的主轴承 2 5和副轴承 3
0等构成。
主轴承 2 5和副轴承 3 0具备分别在压縮腔 1 3 a和压縮腔 1 3 b开口的排气孔
1 4、 主轴承 2 5和副轴承 3 0分别具备排气消声器和排气消声器( B ) 3 2, 即排气 消声器 (A ) 2 6为主轴承排气消声器, 排气消声器 ( B ) 3 2为副轴承排气消声器。 另外、 气缸吸入孔 (A ) 1 1 a中连接了供油管 6 3。 而且、 如对比文件 2所记载的那 样、 滑片 2 0 b省略了滑片弹簧。
从主轴承吸入孔 2 9流入的低压冷媒、 从气缸吸入孔 (A ) 1 1 a通过压縮腔 1 3 a、 以及通过中隔板 3 6从气缸吸入孔 ( B ) 1 1 b吸入压縮腔 1 3 b中。 分别在压縮 腔中压縮的、 含油的混合冷媒排出到排气消声器 (A ) 2 6和排气消声器 (B ) 3 2 。 排气消声器 (A ) 2 6的混合冷媒通过气体通道 (A ) 2 7流入滑片腔 (A ) 1 2 a , 排气消声器 ( B ) 3 2的混合冷媒经过气体通道 ( B ) 3 3流入滑片腔 ( B ) 1 2 b。 这些混合冷媒在连接中隔板气孔 3 7中的排气管 6中合流排出到油分离器 S中。
由于混合冷媒分别通过滑片腔 (A ) 1 2 a和滑片腔 ( B ) 1 2 b、 与实施例 1一 样可以润滑滑片 2 0 a和滑片 2 0 b。另外、通道面积大的两个滑片腔作为冷媒通路利 用使排气阻力显著下降。并进一步通过将中隔板 3 6配置在排气管 6中可以縮短排气通 道, 所以排气阻力进一步降低。 通过这些效果, 压縮机的压縮损失降低, 压縮机效率得 到改善。
图 7为图 6的替代技术、 将排气管 6配置在排气消声器 (A ) 2 6中。 排气消声器
( B ) 3 2的混合冷媒从气体通道( B ) 3 3开始按滑片 2 0 b和滑片 2 0 a的顺序通 过与排气消声器(A ) 2 6的混合冷媒合流。 合流的混合冷媒从排气管 6排到油分离器 S中。 本替代技术也和图 6的设计一样, 可以向滑片 2 0 a和滑片 2 0 b供油和润滑。 另外、 在图 7中、 排气管 6可以配置在排气消声器 (B ) 3 2中也可以。
2气缸的低压式旋转式压縮机中、 压縮腔 1 3 a和压縮腔 1 3 b两方都需要供油、 所以与实施例 1的设计进行比较对压縮腔的总供油量会增加。 2的气缸的总排量即使与 1个气缸的排量相同、 滑动部品的总滑动面积会在 1 . 5倍以上。
比如 1气缸的压縮腔所需的必要供油量 (G ) 为 5 %的话、 2气缸中对 2个压縮腔 所需的必要供油量 (G ) 总共增加到 8〜 1 0 %。 而且、 在油分离器 S中分离的油、 需 要均匀地返回到压縮腔 1 3 a和压縮腔 1 3 b两方。 由于这样的背景、 2气缸的低压式 旋转式压縮机中、 对各压縮腔的供油方法方面需要误差较小的方法。
作为解决该课题的对策、 图 8表示的是从油分离器 S向压縮腔 1 3 a和压縮腔 1 3 b的供油方法。在中隔板 3 6中连接的注油管 6 1的先端部对压縮腔 1 3 a和压縮腔 1 3 b贯通的注油孔 6 2、如实施例 1所述由各压縮腔的活塞 2 4进行开闭、可以将所需 要的油准确地供到各压縮腔中。 即、 2个注油孔 6 2是一个通孔, 所以这些开口位置和 孔径没有误差。 另外, 包括注油管 6 1和毛细管的回路是 1个, 所以其特点是 2个对压 縮腔的供油量方面不会产生差别。
另外、 各压縮腔所需的必要供油量 (G ) 为 4 %、 从各滑片腔经过滑动间隙向各压 縮腔供油的供油量( g )分别为 0 . 5 %的话、 从排气管 6到油分离器 S的总吐油量为 7 % ( 2 G - 2 g ) 。 而且、 从油分离器 S向制冷循环排出的吐油量如果是 1 %的话、 从供油管 6 3出来的必要供油量为 1 %。这样实施例 3中、本发明也可以应用到 2气缸 的低压式旋转式压縮机中。
本发明的揭示技术不但是以壳体内压力为低压侧 1气缸旋转式压縮机、 2气缸旋转 式压縮机和摇摆式旋转式压縮机中也是可以采用的。 空调器、 制冷装置、 热水器等中冷 媒使用了 C O 2、 H C等自然冷媒时, 可以活用本发明的揭示技术, 完成效率和可靠性 较高的低压式旋转式压縮机。 另外, 可以借用目前的量产设备, 制造性优越。
在本说明书的描述中, 参考术语 "一个实施例"、 "一些实施例"、 "示意性实施例"、 "示 例"、 "具体示例"、 或 "一些示例"等的描述意指结合该实施例或示例描述的具体特征、 结 构、 材料或者特点包含于本发明的至少一个实施例或示例中。 在本说明书中, 对所述术语 的示意性表述不一定指的是相同的实施例或示例。 而且, 描述的具体特征、 结构、 材料或 者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例, 本领域的普通技术人员可以理解: 在不脱 离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、 修改、 替换和变型, 本发明的范围由权利要求及其等同物限定。

Claims

权利要求书
1、 一种旋转式压縮机, 其特征在于, 包括: 内置封入密封式壳体内部中的润滑油、 所述壳体内部具有电动式电机及旋转式压縮机构,
所述壳体的内压与所述压縮机构的吸气压力相当,
所述压縮机构包括:
具备压縮腔的气缸、 设在所述压縮腔内的活塞、 使所述活塞公转的偏心轴、 在所述 气缸中具备的滑片腔中与所述活塞同步往复运动的滑片、滑动支撑所述偏心轴且与所述 滑片腔连接的主轴承和副轴承、所述主轴承和所述副轴承中至少一方中具备的排气消声 器;
所述排气消声器的冷媒通过所述滑片腔, 从所述压縮机构中具备的排气管排出。
2、 一种旋转式压縮机, 其特征在于, 包括: 内置封入密封式壳体内部中的润滑油、 所述壳体内部具有电动式电机及旋转式压縮机构,
所述壳体的内压与所述压縮机构的吸气压力相当,
所述压縮机构包括:
具备压縮腔 A的气缸、 具备压縮腔 B的气缸 B、 设在所述气缸之间的中隔板、 所述 压縮腔 A和所述压縮腔 B中分别具备的活塞、使这些活塞公转的偏心轴、在所述气缸 A 和所述气缸 B中各自具备的滑片腔 A和滑片腔 B中与所述活塞分别同步进行往复运动 的滑片、对所述偏心轴进行滑动支撑的与所述滑片腔 A连接的主轴承和与所述滑片腔 B 连接的副轴承、所述主轴承和所述副轴承中分别具备主轴承排气消声器和副轴承排气消 声器;
从所述主轴承排气消声器排出的冷媒通过所述滑片腔 A ;
从所述副轴承排气消声器排出的冷媒通过所述滑片腔 B;
这些冷媒从所述中隔板中具备的排气管排出。
3、 一种旋转式压縮机, 其特征在于, 包括: 内置封入密封式壳体内部中的润滑油、 所述壳体内部具有电动式电机及旋转式压縮机构,
所述壳体的内压与所述压縮机构的吸气压力相当,
所述压縮机构包括:
具备压縮腔 A的气缸 A、具备压縮腔 B的气缸 B、设在所述气缸之间具备的中隔板、 所述压縮腔 A和所述压縮腔 B中分别具备的活塞、使这些活塞公转的偏心轴、在所述气 缸 A和所述气缸 B中各自具备的滑片腔 A和滑片腔 B中与所述活塞分别同步进行往复 运动的滑片、对所述偏心轴进行滑动支撑的与所述滑片腔 A连接的主轴承和与所述滑片 腔 B连接的副轴承、所述主轴承和所述副轴承中分别具备主轴承排气消声器和副轴承排 气消声器;
所述主轴承排气消声器或者所述副轴承排气消声器的一方排出的冷媒通过所述 2个 滑片腔后与另一方的排气消声器的冷媒合流, 从所述压縮机构中具备的排气管排出。
4、 根据权利要求 3 所述的旋转式压縮机, 其特征在于, 所述排气管的一端伸入到 主轴承排气消声器中。
5、 根据权利要求 3 所述的旋转式压縮机, 其特征在于, 所述排气管的一端伸入到 副轴承排气消声器中。
6、 一种制冷循环装置, 其特征在于, 包括:
根据权利要求 1-5中任一项所述的旋转式压縮机;
与所述旋转式压縮机的排气管连接的油分离器;
与所述旋转式压縮机相连的冷凝器;
与所述旋转式压縮机相连的蒸发器;
连接在所述冷凝器和所述蒸发器之间的膨胀阀。
7、 根据权利要求 6所述的制冷循环装置, 其特征在于, 所述油分离器与对所述旋 转式压縮机中具备的压縮腔开口的注油孔连通,所述注油孔通过所述压縮腔中具备的活 塞的公转进行开闭。
8、 根据权利要求 6所述的制冷循环装置, 其特征在于, 所述油分离器经过所述旋 转式压縮机中具备的中隔板与对所述旋转式压縮机中具备的 2 个压縮腔进行开口的注 油孔连通, 所述注油孔分别通过所述各压縮腔中具备的活塞的公转进行开闭。
9、 根据权利要求 6-8 中任一项所述的制冷循环装置, 其特征在于, 所述旋转式压 縮机内的冷媒的主要成分为碳酸气体或者碳酸氢气体,且所述旋转式压縮机内的润滑油 的主要成分为聚合物聚亚烷基二醇。
PCT/CN2013/086363 2013-10-31 2013-10-31 旋转式压缩机及制冷循环装置 WO2015062048A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2013386506A AU2013386506B2 (en) 2013-10-31 2013-10-31 Rotary Compressor and Refrigerating Cycle Device
PCT/CN2013/086363 WO2015062048A1 (zh) 2013-10-31 2013-10-31 旋转式压缩机及制冷循环装置
US14/773,880 US10072661B2 (en) 2013-10-31 2013-10-31 Rotatory compressor and refrigerating cycle device
EP13881454.6A EP2927499B1 (en) 2013-10-31 2013-10-31 Rotation type compressor and refrigeration cycle apparatus
JP2015555552A JP6197049B2 (ja) 2013-10-31 2013-10-31 ロータリ式圧縮機及び冷凍サイクル装置
KR1020147028741A KR101715067B1 (ko) 2013-10-31 2013-10-31 회전식 압축기 및 냉각 순환 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/086363 WO2015062048A1 (zh) 2013-10-31 2013-10-31 旋转式压缩机及制冷循环装置

Publications (1)

Publication Number Publication Date
WO2015062048A1 true WO2015062048A1 (zh) 2015-05-07

Family

ID=53003165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086363 WO2015062048A1 (zh) 2013-10-31 2013-10-31 旋转式压缩机及制冷循环装置

Country Status (6)

Country Link
US (1) US10072661B2 (zh)
EP (1) EP2927499B1 (zh)
JP (1) JP6197049B2 (zh)
KR (1) KR101715067B1 (zh)
AU (1) AU2013386506B2 (zh)
WO (1) WO2015062048A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031814A (ja) * 2015-07-29 2017-02-09 東芝キヤリア株式会社 圧縮機及び冷凍サイクル装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM472176U (zh) * 2013-11-07 2014-02-11 Jia Huei Microsystem Refrigeration Co Ltd 迴轉式壓縮機改良
CN106870365B (zh) * 2015-12-11 2019-06-18 上海海立电器有限公司 引压结构以及两级压缩机
CN105757798B (zh) * 2016-03-03 2018-11-27 美的集团武汉制冷设备有限公司 空调系统和空调系统的控制方法
CN107202444A (zh) * 2017-07-31 2017-09-26 广东美芝制冷设备有限公司 制冷系统
CN107642381A (zh) * 2017-09-27 2018-01-30 重庆华稷新能源科技有限公司 一种滚动转子膨胀机或压缩机
JP7022272B2 (ja) 2017-09-29 2022-02-18 ダイキン工業株式会社 油分離器
AU2019454057B2 (en) * 2019-06-24 2023-02-16 Guangdong Meizhi Precision-Manufacturing Co., Ltd. Compressor and heat exchange system
CN110185623A (zh) * 2019-06-25 2019-08-30 北京工业大学 一种吸气和排气相互独立的多缸压缩机
CN111120329B (zh) * 2019-12-26 2021-11-05 珠海格力节能环保制冷技术研究中心有限公司 一种具有泵体润滑结构的旋转式压缩机和空调器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2988267A (en) 1957-12-23 1961-06-13 Gen Electric Rotary compressor lubricating arrangement
JPH10259787A (ja) 1997-01-17 1998-09-29 Toshiba Corp ロータリ式密閉形圧縮機および冷凍サイクル装置
JP2005054742A (ja) * 2003-08-07 2005-03-03 Matsushita Electric Ind Co Ltd 密閉型回転式圧縮機
JP4174766B2 (ja) * 2003-10-06 2008-11-05 三菱電機株式会社 冷媒圧縮機
CN101354041A (zh) * 2008-09-04 2009-01-28 广东美芝制冷设备有限公司 壳体低背压的旋转式压缩机的润滑装置及其控制方法
CN101526084A (zh) * 2009-04-06 2009-09-09 广东美芝制冷设备有限公司 壳体低压式旋转压缩机
CN202659512U (zh) * 2012-05-08 2013-01-09 珠海格力电器股份有限公司 一种壳体内低压的旋转压缩机

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3003684A (en) * 1957-05-29 1961-10-10 Gen Electric Refrigeration apparatus
JP2507047B2 (ja) * 1989-05-09 1996-06-12 松下電器産業株式会社 2段圧縮型回転圧縮機
JP3219519B2 (ja) 1993-02-12 2001-10-15 三洋電機株式会社 冷凍装置
JPH08247065A (ja) * 1995-03-15 1996-09-24 Toshiba Corp ロータリコンプレッサ
US5542831A (en) * 1995-05-04 1996-08-06 Carrier Corporation Twin cylinder rotary compressor
JP4073622B2 (ja) 2000-12-18 2008-04-09 サンデン株式会社 電動式圧縮機
JP3723458B2 (ja) * 2001-02-14 2005-12-07 三洋電機株式会社 回転圧縮機
TWI263762B (en) 2002-08-27 2006-10-11 Sanyo Electric Co Multi-stage compression type rotary compressor and a setting method of displacement volume ratio for the same
WO2009028261A1 (ja) * 2007-08-28 2009-03-05 Mitsubishi Electric Corporation ロータリ圧縮機
JPWO2012117599A1 (ja) * 2011-02-28 2014-07-07 三洋電機株式会社 多段圧縮式ロータリコンプレッサ及び圧縮式ロータリコンプレッサ
JP6019385B2 (ja) * 2012-04-17 2016-11-02 パナソニックIpマネジメント株式会社 圧縮機
CN203146331U (zh) * 2012-10-22 2013-08-21 珠海格力电器股份有限公司 一种新型旋转压缩机
KR101710350B1 (ko) * 2014-12-04 2017-02-27 광동 메이지 컴프레셔 컴퍼니 리미티드 저배압 회전식 압축기

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2988267A (en) 1957-12-23 1961-06-13 Gen Electric Rotary compressor lubricating arrangement
JPH10259787A (ja) 1997-01-17 1998-09-29 Toshiba Corp ロータリ式密閉形圧縮機および冷凍サイクル装置
JP2005054742A (ja) * 2003-08-07 2005-03-03 Matsushita Electric Ind Co Ltd 密閉型回転式圧縮機
JP4174766B2 (ja) * 2003-10-06 2008-11-05 三菱電機株式会社 冷媒圧縮機
CN101354041A (zh) * 2008-09-04 2009-01-28 广东美芝制冷设备有限公司 壳体低背压的旋转式压缩机的润滑装置及其控制方法
CN101526084A (zh) * 2009-04-06 2009-09-09 广东美芝制冷设备有限公司 壳体低压式旋转压缩机
CN202659512U (zh) * 2012-05-08 2013-01-09 珠海格力电器股份有限公司 一种壳体内低压的旋转压缩机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2927499A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031814A (ja) * 2015-07-29 2017-02-09 東芝キヤリア株式会社 圧縮機及び冷凍サイクル装置

Also Published As

Publication number Publication date
EP2927499A1 (en) 2015-10-07
KR20150085469A (ko) 2015-07-23
EP2927499A4 (en) 2016-07-06
JP6197049B2 (ja) 2017-09-13
US10072661B2 (en) 2018-09-11
JP2016511810A (ja) 2016-04-21
EP2927499B1 (en) 2020-04-29
US20160231038A1 (en) 2016-08-11
AU2013386506A1 (en) 2015-05-14
AU2013386506B2 (en) 2016-01-28
KR101715067B1 (ko) 2017-03-10

Similar Documents

Publication Publication Date Title
WO2015062048A1 (zh) 旋转式压缩机及制冷循环装置
CN101506597B (zh) 冷冻循环装置以及用于该冷冻循环装置的流体机械
CN103573624B (zh) 旋转式压缩机及制冷循环装置
US8172558B2 (en) Rotary expander with discharge and introduction passages for working fluid
WO2009059488A1 (fr) Compresseur rotatif à basse pression dans l'enveloppe et procédés de commande du milieu froid et de l'huile de ce compresseur, et utilisation de celui-ci
JP5905005B2 (ja) 多気筒回転式圧縮機及び冷凍サイクル装置
JP2008224053A (ja) 冷凍装置
JP2003148366A (ja) 多段気体圧縮機
CN112752934B (zh) 多级压缩系统
JP6791233B2 (ja) 多段圧縮システム
US11346221B2 (en) Backpressure passage rotary compressor
JPWO2012042825A1 (ja) 回転式圧縮機
JP2020094762A (ja) 多段圧縮システム
JP6702401B1 (ja) 多段圧縮システム
JP6910534B2 (ja) ロータリ圧縮機
JP7194877B2 (ja) 冷凍サイクル装置
KR20150088037A (ko) 밀폐형 로터리 압축기
US11428226B2 (en) Multistage compression system
JP5045471B2 (ja) 膨張機
JP2003206877A (ja) 密閉型回転式圧縮機
JP2011163257A (ja) 密閉型圧縮機
KR100557059B1 (ko) 스크롤 압축기
JP5927407B2 (ja) ロータリ圧縮機
JP2008038766A (ja) 圧縮機
JP2013119802A (ja) ロータリ圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013386506

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2013881454

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147028741

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015555552

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14773880

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE