WO2015060356A1 - 酸素吸収剤の保存方法 - Google Patents

酸素吸収剤の保存方法 Download PDF

Info

Publication number
WO2015060356A1
WO2015060356A1 PCT/JP2014/078132 JP2014078132W WO2015060356A1 WO 2015060356 A1 WO2015060356 A1 WO 2015060356A1 JP 2014078132 W JP2014078132 W JP 2014078132W WO 2015060356 A1 WO2015060356 A1 WO 2015060356A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
aqueous solution
oxygen absorbent
alloy
component
Prior art date
Application number
PCT/JP2014/078132
Other languages
English (en)
French (fr)
Inventor
隆一郎 河合
田中 宏和
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020167004957A priority Critical patent/KR20160074452A/ko
Priority to JP2015543888A priority patent/JP6578947B2/ja
Priority to EP14856142.6A priority patent/EP3061523A4/en
Priority to US15/028,827 priority patent/US20160250617A1/en
Priority to CN201480057761.9A priority patent/CN105658320A/zh
Publication of WO2015060356A1 publication Critical patent/WO2015060356A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3409Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • A23L3/3418Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere, e.g. partial vacuum, comprising only CO2, N2, O2 or H2O
    • A23L3/3427Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere, e.g. partial vacuum, comprising only CO2, N2, O2 or H2O in which an absorbent is placed or used
    • A23L3/3436Oxygen absorbent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28026Particles within, immobilised, dispersed, entrapped in or on a matrix, e.g. a resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • B22F1/147Making a dispersion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium

Definitions

  • the present invention relates to a method for storing an oxygen absorbent, and more particularly to a method for storing an oxygen absorbent that can absorb and remove oxygen even in a low humidity atmosphere.
  • oxygen absorbers deoxygenating agents
  • an oxygen scavenger that removes oxygen in the atmosphere is placed inside the sealed package together with the object, and the inside of the sealed package is made oxygen-free, thereby causing oxidative degradation, mold, This technology suppresses discoloration and the like.
  • oxygen absorbers that remove oxygen in the atmosphere have been proposed from various inorganic materials and organic materials. Among them, there is no moisture that is 30% RH (25 ° C.) or less using a metal obtained by removing aluminum from an alloy composed of aluminum and iron, or an alloy composed of aluminum and nickel using an aqueous sodium hydroxide solution.
  • An oxygen absorbent that can absorb and remove oxygen in the atmosphere at a level equivalent to that of a conventional oxygen scavenger has been developed (for example, International Publication No. 2012/105457).
  • an oxygen absorbent comprising a metal obtained as described above is stored by being immersed in an acid or an aqueous solution having a buffer function. It is also disclosed that the oxygen absorbent can be stored stably for a long period of time while maintaining the oxygen absorption activity.
  • oxygen absorbers described in the above patent documents react sensitively to acidic aqueous solutions, so immerse the oxygen absorbent in an aqueous solution having an acid or buffer function. Even in such a case, the oxygen absorbent cannot be stored while maintaining sufficient oxygen absorption performance.
  • the present invention solves the above-mentioned problems in the prior art, and as a method for storing an oxygen absorbent having an ability to absorb oxygen in the atmosphere even in an atmosphere with little or no moisture, the safety is high and low.
  • An object of the present invention is to provide a method capable of stably storing an oxygen absorbent for a long time while maintaining sufficient oxygen absorption performance at a low price.
  • the present inventors perform elution treatment of the component (B) with a base such as sodium hydroxide when producing the oxygen absorbent, and therefore, in the micropores formed in the metal by the elution treatment of the component (B).
  • metal hydroxide such as aluminum hydroxide remains, and this residue cannot be completely removed even after the water washing step, and this residue gradually elutes into the water when the oxygen absorbent is stored in water. I noticed going.
  • the metal oxide such as aluminum hydroxide eluted in the aqueous solution is deposited on the surface of the oxygen absorbent over time. I suspected that it has declined.
  • the present invention provides the following [1] to [4].
  • [1] (A) at least one transition metal selected from the group consisting of iron, cobalt, nickel, and copper; (B) aluminum; Is an oxygen absorbent made of a metal obtained by subjecting an alloy containing a metal to a basic aqueous solution treatment to elute and remove at least a part of the aluminum (B), and has a specific surface area of 10 m 2 measured by the BET method.
  • An oxygen absorbent that is greater than / g The oxygen absorbent is stored by being immersed in an aqueous solution containing a chelating agent.
  • a method for preserving an oxygen absorbent comprising: [2] The method for storing an oxygen absorbent according to [1], wherein the chelating agent is a hydroxycarboxylic acid salt. [3] The method for storing an oxygen absorbent according to [1] or [2], wherein the content of the chelating agent in the aqueous solution is 0.1 to 20 parts by mass with respect to 100 parts by mass of the oxygen absorbent. . [4] The method for storing an oxygen absorbent according to any one of [1] to [3], wherein the pH of the aqueous solution is 7 to 12.
  • an oxygen absorbent of the present invention after the production of the oxygen absorbent, it can be stably stored, and even after long-term storage, the oxygen absorption activity equivalent to that immediately after the production can be maintained, Even in an atmosphere where there is no or almost no oxygen, oxygen in the atmosphere can be absorbed and removed at a level equivalent to the conventional deoxygenation ratio.
  • the method for storing an oxygen absorbent according to the present invention includes a step of preparing an oxygen absorbent and a step of storing the prepared oxygen absorbent by immersing it in an aqueous solution containing a chelating agent.
  • the oxygen absorbent according to this embodiment includes the following two components (A) and (B): (A) at least one transition metal selected from the group consisting of iron, cobalt, nickel, and copper; B) A metal obtained by bringing an alloy containing aluminum into contact with a basic aqueous solution and eluting and removing at least a part of the component (B) from the alloy.
  • the “oxygen absorber” refers to an agent that can selectively absorb oxygen from the ambient atmosphere in which the agent is installed.
  • the transition metal that can be used as the component (A) is selected from iron, cobalt, nickel, and copper.
  • the transition metals described above may be used alone or in combination of two or more.
  • an Fe—Ni alloy may be used as component (A).
  • the component (A) is preferably iron or nickel, and more preferably iron. Among these, iron is preferable because it is safe and inexpensive.
  • aluminum is used as a component (B) which comprises an oxygen absorber.
  • the alloy used in the present embodiment includes the component (A) and the component (B) described above, but the alloy may further contain molybdenum, chromium, titanium, vanadium, tungsten, or the like as an additive metal. Good. Additional components such as cyanic acids may be further included.
  • the alloy containing the component (A) and the component (B) as described above can be prepared by a melting method.
  • the composition ratio of the component (A) and the component (B) is preferably 20 to 80% by mass when the component (A) is 20 to 80% by mass, and more Preferably, when component (A) is 30 to 70% by mass, component (B) is 30 to 70% by mass.
  • the component (A) is iron or nickel
  • the ratio of iron or nickel is preferably 30 to 55% by mass
  • the ratio of aluminum is preferably 45 to 70% by mass. .
  • alloy may be subjected to a basic aqueous solution treatment as it is, but it is usually subjected to a basic aqueous solution treatment after being finely pulverized.
  • alloy includes not only a single composition having a specific crystal structure but also a mixture thereof and a mixture of metals themselves.
  • the alloy As a method for finely pulverizing the alloy, a conventional method for crushing and pulverizing metals can be used as appropriate.
  • the alloy is pulverized with a jaw crusher, a roll crusher, a hammer mill, etc. Accordingly, it can be finely pulverized with a ball mill.
  • the molten alloy may be pulverized by a rapid solidification method such as an atomizing method.
  • the atomizing method when used, it is preferably performed in an inert gas such as an argon gas.
  • a method described in JP-A-5-23597 can be used.
  • the particle size of the obtained alloy powder is preferably in the range of 5 to 200 ⁇ m, and the particle size distribution is preferably as narrow as possible. From the viewpoint of eliminating particles having a large particle size or aligning the particle size distribution, sieving (classification) may be appropriately performed using a commercially available sieve (for example, 200 mesh). In the case of the atomizing method, the powder tends to be nearly spherical and the particle size distribution tends to be narrow.
  • the particle size of the alloy powder can be measured using a particle size-shape distribution measuring device or the like.
  • the alloy or alloy powder obtained as described above is subjected to a basic aqueous solution treatment to elute and remove at least part of the component (B) from the alloy. That is, as the oxygen absorbent used in the storage method according to the present invention, a metal obtained after eluting and removing at least a part of the component (B) from the alloy is used.
  • the basic aqueous solution the component (A) does not dissolve or hardly dissolves, while the component (B) can be dissolved and removed, that is, the component (B) is leached (eluted) from the alloy. Any one can be used as long as it can be used.
  • Examples of the base in the basic aqueous solution include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide and magnesium hydroxide; sodium carbonate and potassium carbonate. Alkali metal carbonates such as ammonia can be used. About these basic aqueous solution, you may use it in combination of 2 or more types as needed.
  • an aqueous solution of an alkali metal or alkaline earth metal hydroxide as the basic aqueous solution, and more preferably an aqueous sodium hydroxide solution.
  • sodium hydroxide when sodium hydroxide is used as the basic aqueous solution, it is easy to remove excess sodium hydroxide by washing with water and to remove the eluted aluminum. Therefore, the effect of reducing the number of washings is expected. it can.
  • the alloy powder In the basic aqueous solution treatment, usually, if an alloy powder, the alloy powder is gradually added to the basic aqueous solution while stirring, but the alloy powder is put in water and a more concentrated basic aqueous solution is added here. It may be dripped.
  • the concentration of the basic aqueous solution used is, for example, 5 to 60% by mass, and more specifically, for example, in the case of sodium hydroxide, 10 to 40% by mass is preferable.
  • the aqueous solution treatment it is preferable to use the aqueous solution at a temperature of about 20 to 120 ° C., for example.
  • the temperature of the basic aqueous solution is 25 to 100 ° C.
  • the treatment time for which the alloy or alloy powder is subjected to the basic aqueous solution treatment may vary depending on the shape, state, and amount of the alloy used, the concentration of the basic aqueous solution, the temperature at the time of treatment, etc. It may be about 30 to 300 minutes.
  • the elution amount of the component (B) from the alloy can be adjusted by the treatment time.
  • At least a part of the component (B) is eluted and removed from the alloy by a basic aqueous solution treatment.
  • “leaving and removing at least a part of the component (B)” means to elute and remove a part of the component (B) from the alloy containing the component (A) and the component (B), It is meant to include the case where all of component (B) is eluted and removed from the alloy.
  • the possibility that a part of component (A) dissolves as a result cannot be denied, so only “component (B)” is included in “at least a part of component (B)”. It is not necessary to interpret the present invention only when it is eluted by a basic aqueous solution treatment.
  • the rate of elution of the component (B) from the alloy can be represented by the content (residual rate based on mass) of the component (B) in the metal obtained by elution removal.
  • the content of the component (B) is preferably 0.1 to 60% by mass, more preferably 1 to 40%. % By mass. More specifically, for example, when the alloy is an Al—Fe alloy, the aluminum content in the metal obtained by elution removal of aluminum by the basic aqueous solution treatment is preferably 0.1 to 50% by mass. More preferably, it is 1 to 40% by mass, and further preferably 1 to 5% by mass.
  • content of the component (B) in the metal used for an oxygen absorber can be measured by IPC method, for example.
  • the metal hydroxide of component (A) and / or component (B) may be formed on the alloy surface by the basic aqueous solution treatment.
  • the metal hydroxide can be removed from the alloy. That is, after the component (B) is eluted from the alloy, the metal hydroxide can be removed by washing with a basic aqueous solution having a higher concentration.
  • the metal obtained as described above has a porous shape (or a porous body).
  • the multi-milky shape means a state having a large number of pores on the surface and inside that can be confirmed with an electron microscope.
  • the degree of the porous shape of the metal can be expressed by its specific surface area.
  • the specific surface area of the metal used in the oxygen absorbent of the present invention by the BET method is 10 m 2 / g or more, preferably 20 m 2 / g or more, more preferably 40 m 2 / g or more, and still more preferably. 80 m 2 / g or more.
  • the specific surface area of the resulting porous metal is about 10 to 120 m 2 / g
  • the specific surface area is about 0.07 to 0.13 m 2 / g, and it is clear whether it is a porous shape.
  • the degree of the multi-milky shape possessed by the metal can also be expressed by bulk density.
  • the bulk density of the oxygen absorbent (metal) obtained as described above is 2 g / cm 3 or less, and preferably 1.5 g / cm 3 or less. In the case of ordinary iron powder (reduced iron powder or atomized iron powder) that is not porous, the bulk density is about 2 to 3 g / cm 3 .
  • the bulk density can be measured according to JIS Z2504.
  • the porous metal used as the oxygen absorbent has a high oxygen absorption activity, and therefore has a low humidity condition (for example, a condition of 30% RH (relative humidity) (25 ° C.) or lower). Even under an atmosphere, it can be suitably used as an oxygen absorbent. Needless to say, it can be suitably used as an oxygen absorbent even in an atmosphere of high humidity conditions (for example, conditions of 100% RH (relative humidity) (25 ° C.)).
  • the metal obtained as described above is at least 5 mL / g oxygen, more preferably 10 mL / g oxygen in a low humidity atmosphere of 30% RH (relative humidity) (25 ° C.) or less. Can be absorbed. Further, when the metal is used as an oxygen absorbent, the oxygen absorption amount is, for example, 5 to 150 mL / g in a low humidity atmosphere of 30% RH (relative humidity) (25 ° C.) or less.
  • the present invention by immersing and storing a metal oxygen absorbent in an aqueous solution containing a chelating agent, it becomes possible to stably store after production, even after long-term storage, immediately after production.
  • the oxygen absorption activity equivalent to the above can be maintained, and even in an atmosphere with little or no moisture, oxygen in the atmosphere can be absorbed and removed at a level equivalent to that of a conventional oxygen scavenger.
  • the oxygen absorbing activity of the oxygen absorbent can be maintained by using an aqueous solution containing a chelating agent, but the following mechanism is assumed. That is, when the oxygen absorbent is produced as described above, the elution treatment of the component (B) is performed with a base such as sodium hydroxide, and therefore, in the micropores formed in the metal by the elution treatment of the component (B). Remains aluminum hydroxide or the like. Even after the water washing step, aluminum hydroxide and the like cannot be completely removed, and when the oxygen absorbent is stored in water, aluminum hydroxide and the like are gradually eluted in the water.
  • a base such as sodium hydroxide
  • an aqueous solution containing a chelating agent is used as the aqueous solution for immersing the oxygen absorbent.
  • the pH of the aqueous solution is preferably 7 to 12, more preferably 8 to 12, and further preferably 10 to 11.
  • the pH of the aqueous solution is within the above range, dissolution of the iron (Fe) component in the oxygen absorbent can be further suppressed.
  • the substance that can be used as the chelating agent is not particularly limited, and specifically, hydroxycarboxylic acids such as glycolic acid, lactic acid, malic acid, tartaric acid, citric acid, darconic acid, heptonic acid, and the like.
  • Salts of dicarboxylic acids such as succinic acid, malonic acid, oxalic acid and phthalic acid; salts of polycarboxylic acids such as polyacrylic acid and polymaleic acid: glycine, nitrilotriacetic acid, ethylenediaminetetraacetic acid (EDTA), hydroxyethyl Aminocarboxylic acids and salts thereof such as ethylenediaminetriacetic acid (HEDTA), diethylenetriaminepentaacetic acid, polyaminopolycarboxylic acid; etidronic acid (HEDP), nitrilotris (methylenephosphonic acid) (ATMP), ethylenediaminetetramethylenephosphonic acid (EDTMP), etc.
  • dicarboxylic acids such as succinic acid, malonic acid, oxalic acid and phthalic acid
  • salts of polycarboxylic acids such as polyacrylic acid and polymaleic acid: glycine, nitrilo
  • Phosphite chelate And salts thereof ethylenediamine, diethylenetriamine, at least one selected from an amine type chelating agents such as triethylene tetramine or a combination of two or more thereof may be used.
  • a salt of hydroxycarboxylic acid is preferable, an alkali metal salt of hydroxycarboxylic acid is more preferable, sodium lactate, sodium malate, sodium tartrate, sodium citrate, gluconic acid Sodium is more preferable, and sodium tartrate, sodium citrate, and sodium gluconate are particularly preferable.
  • a chelating resin can also be suitably used as the chelating agent used in the present invention.
  • substances that can be used as the chelating resin include Amberlite IRC748 (manufactured by Organo Corporation), Diaion CR11 (manufactured by Mitsubishi Chemical Corporation), and the like.
  • the content of the chelating agent in the aqueous solution is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the oxygen absorbent, more The amount is preferably 1 to 10 parts by mass, particularly preferably 2 to 5 parts by mass.
  • the oxygen absorbent is immersed in an aqueous solution having a mass twice or more the mass of the oxygen absorbent and stored at room temperature or lower.
  • the oxygen absorbent can be sufficiently immersed in the aqueous solution.
  • the oxygen absorbent When using an oxygen absorbent stored in an aqueous solution containing a chelating agent, the oxygen absorbent may be taken out from the aqueous solution and dried. However, since the oxygen absorbent is easily oxidized and deteriorated in the air as described above, the influence of oxygen is eliminated as much as possible by means such as vacuum drying in order not to impair the oxygen absorption activity. It is desirable to use after drying under conditions.
  • the oxygen absorbent according to the present invention is easily oxidized and deteriorated in the air, the oxygen absorbent is mixed (kneaded) with the resin when used, and the obtained oxygen absorbent resin Can be used in form.
  • thermoplastic resins such as polyolefin resins, polyester resins, polyamide resins, polyvinyl alcohol resins, and chlorine resins can be used.
  • polyethylene, polypropylene, ethylene-vinyl acetate copolymer, elastomer, or a mixture thereof can be suitably used.
  • the relative humidity (RH) of the atmosphere in which the low moisture content articles are stored is preferably 20-70%, more preferably 20-50%. It is.
  • the moisture content of the low moisture content article is preferably 50% by weight or less, more preferably 30% by weight or less, and particularly preferably 10% by weight or less.
  • low moisture content articles packaged products that require low humidity storage conditions
  • powders for example, powders, granular foods (powder soups, powdered beverages, powdered confectionery, seasonings, cereal flour, nutritional foods, health foods, coloring
  • fragrances, flavorings, spices powders, granule drugs (powdered powders, powdered soaps, toothpastes, industrial chemicals), and molded articles (tablet type), etc.
  • granular foods powders, granular foods (powder soups, powdered beverages, powdered confectionery, seasonings, cereal flour, nutritional foods, health foods, coloring
  • fragrances, flavorings, spices powders
  • granule drugs poowdered powders, powdered soaps, toothpastes, industrial chemicals
  • molded articles tablette type
  • a certain food, medicine, etc. can be illustrated.
  • oxygen in the atmosphere is at a level equivalent to that of a conventional oxygen scavenger, even in an atmosphere with little or no moisture. It can be absorbed and removed.
  • it can be suitably used for applications such as deoxidizing the atmosphere of dry foods, pharmaceuticals, and electronic material packages that are difficult to apply conventional oxygen scavengers.
  • dry foods such as powder seasonings, powdered coffee, coffee beans, rice, tea, beans, rice crackers, rice crackers, and health foods such as pharmaceuticals and vitamins.
  • An oxygen-absorbing package is obtained by packaging the above-described oxygen absorbent or oxygen-absorbing resin composition with a packaging material using a breathable packaging material in whole or in part.
  • a packaging material two breathable packaging materials are bonded together to form a bag, or one breathable packaging material and one non-breathable packaging material are bonded together to form a bag. Or a bag made by folding one breathable packaging material and sealing the green parts excluding the bent part.
  • a packaging material that transmits oxygen and carbon dioxide can be used as the breathable packaging material. Examples of such a breathable packaging material include those obtained by imparting breathability to a conventionally known plastic film in addition to paper and non-woven fabric.
  • Al (aluminum) powder and Fe (iron) powder were mixed at a ratio of 50% by mass and dissolved in nitrogen to obtain an Al—Fe alloy.
  • the obtained Al—Fe alloy was pulverized using a jaw crusher, a roll crusher and a pole mill, and the pulverized product was classified using a node having an opening of 200 mesh (0.075 mm), and the particle size was 200 mesh or less.
  • Al-Fe alloy powder was obtained. 150 g of the Al—Fe alloy powder obtained in this way was stirred and mixed in a 30% by mass aqueous sodium hydroxide solution at 50 ° C.
  • the porous alloy powder was prepared by a reaction in an aqueous solution in order to avoid contact with oxygen.
  • the obtained porous alloy powder was vacuum dried at 200 Pa or less and 80 ° C. for 2 hours to obtain a dried product of Al—Fe porous alloy powder.
  • the bulk density of the obtained alloy powder was 0.9 g / cm 3 (measured according to JIS Z2504).
  • 0.5g of the obtained alloy powder is packed in a breathable sachet, put in a gas barrier bag (Al foil laminated plastic bag) together with a desiccant, and filled with 50 mL of air (oxygen concentration 20.9% by volume) and sealed.
  • the oxygen concentration after storage at 25 ° C. for 7 days was 9.1% by volume.
  • the oxygen absorption amount was 130 mL / g.
  • the average particle size of the obtained Al—Fe porous alloy powder was measured using a particle size-shape distribution measuring device (“PITA-2” manufactured by Seishin Enterprise Co., Ltd.), the average particle size was 31 ⁇ m. there were. Furthermore, when the specific surface area of the obtained Al—Fe porous alloy powder was measured using an automatic specific surface area measuring device (“Gemini VII2390” manufactured by Shimadzu Corporation), the specific surface area was 100 m 2 / g. It was.
  • Example 2 The same measurement as in Example 1 was performed except that the amount of sodium tartrate used in Example 1 was changed to 5 g, and the oxygen absorption performance maintenance rate was calculated. The results were as shown in Table 1 below.
  • Example 3 The same measurement as in Example 1 was performed except that the sodium tartrate used in Example 1 was changed to sodium gluconate, and the oxygen absorption performance maintenance rate was calculated. The results were as shown in Table 1 below.
  • Example 1 Comparative Example 1 In Example 1, except that sodium tartrate was not added to the water slurry, the same measurement as in Example 1 was performed, and the oxygen absorption performance maintenance rate was calculated. The results were as shown in Table 1 below.
  • Comparative Example 2 The same measurement as in Example 1 was performed except that sodium tartrate used in Example 1 was changed to citric acid, and the oxygen absorption performance maintenance rate was calculated. The results were as shown in Table 1 below.
  • Comparative Example 3 100 g of a pH 6 citrate-sodium citrate buffer solution prepared to have a concentration of 0.2 M was added to 200 g of an aqueous slurry containing 100 g of an oxygen absorbent composed of an Al—Fe porous alloy powder used in Example 1. Except for the addition and storage, the same measurement as in Example 1 was performed, and the oxygen absorption performance maintenance ratio was calculated. The results were as shown in Table 1 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

 本発明による酸素吸収剤の保存方法は、(A)鉄、コバルト、ニッケル、および銅からなる群より選択される少なくとも1種の遷移金属と(B)アルミニウムとを含む合金を、塩基性水溶液処理に供して、前記アルミニウム(B)の少なくとも一部を溶出除去して得られる金属からなる酸素吸収剤であって、BET法により測定される比表面積が10m/g以上である酸素吸収剤を準備し、前記酸素吸収剤を、キレート剤を含有する水溶液に浸潰して保存することを含む。

Description

酸素吸収剤の保存方法
 本発明は、酸素吸収剤の保存方法に関し、より詳しくは、低湿度の雰囲気中でも酸素を吸収、除去することができる酸素吸収剤の保存方法に関する。
 食品や医薬品などの保存技術の一つとして酸素吸収剤(脱酸素剤)による保存技術がある。具体的には、雰囲気中の酸素を除去する脱酸素剤を対象物と共に密閉包装体の内部に入れて、密閉包装体の内部を無酸素状態にすることによって、対象物の酸化劣化、カビ、変色などを抑制する技術である。
 これまでに雰囲気中の酸素を除去する脱酸素剤として、各種無機系材料からなるものおよび有機系材料からなるものが提案されている。中でも、アルミニウムと鉄からなる合金、または、アルミニウムとニッケルからなる合金から水酸化ナトリウム水溶液を用いてアルミニウムを取り除いた金属を用いて、30%RH(25℃)以下であるような水分が無いか殆ど無い雰囲気中であっても、雰囲気中の酸素を従来の脱酸素剤と同等のレベルで吸収、除去し得る酸素吸収剤が開発されている(例えば、国際公開第2012/105457号等)。
 また、国際公開第2012/105457号には、上記のようにして得られた金属からなる酸素吸収剤を、酸または緩衝機能を持った水溶液中に浸潰して保存することにより、酸素吸収剤の酸素吸収活性を維持しながら、長期安定的に酸素吸収剤を保存できることも開示されている。
国際公開第2012/105457号
 しかしながら、上記特許文献に記載された酸素吸収剤、特に酸素吸収性能が高い酸素吸収剤は、酸性水溶液に敏感に反応してしまうため、酸素吸収剤を酸または緩衝機能を持った水溶液中に浸漬しても、十分な酸素吸収性能を維持しながら酸素吸収剤を保存できない場合があった。
 本発明は、従来技術における上記課題を解決し、水分が無いか殆ど無い雰囲気下であっても雰囲気中の酸素を吸収する能力をもつ酸素吸収剤の保存方法として、安全性が高く、かつ低価格で、十分な酸素吸収性能を維持しながら長期安定的に酸素吸収剤を保存できる方法を提供することを目的とする。
 本発明者らは、酸素吸収剤を製造する際に、成分(B)の溶出処理を水酸化ナトリウム等の塩基により行うため、成分(B)の溶出処理によって金属に形成された微細孔中に、水酸化アルミニウム等の金属水酸化物が残存し、水洗工程を経てもこの残存物が完全に除去できず、この残存物が、酸素吸収剤を水中保管した際に水中に徐々に溶出していくことに気付いた。そして、酸素吸収剤を水溶液中に保存すると、水溶液中に溶出した水酸化アルミニウム等の金属酸化物が、酸素吸収剤表面に継時的に析出していくことにより、酸素吸収剤の酸素吸収活性が低下しているのではないかと推測した。さらなる検討の結果、金属水酸化物が水溶液中に浸潰しても、水溶液にキレート剤を添加することで、酸素吸収剤の酸素吸収活性を維持しながら保存できるとの知見を得た。本発明はかかる知見によるものである。
 すなわち、本発明は、以下の[1]~[4]を提供する。
[1](A)鉄、コバルト、ニッケル、および銅からなる群より選択される少なくとも1種の遷移金属と、
 (B)アルミニウムと、
を含む合金を、塩基性水溶液処理に供して、前記アルミニウム(B)の少なくとも一部を溶出除去して得られる金属からなる酸素吸収剤であって、BET法により測定される比表面積が10m/g以上である酸素吸収剤を準備し、
 前記酸素吸収剤を、キレート剤を含有する水溶液に浸潰して保存する、
ことを含んでなる、酸素吸収剤の保存方法。
[2]前記キレート剤が、ヒドロキシカルボン酸の塩である、[1]に記載の酸素吸収剤の保存方法。
[3]前記水溶液中のキレート剤の含有量が、前記酸素吸収剤100質量部に対して0.1~20質量部である、[1]または[2]に記載の酸素吸収剤の保存方法。
[4]前記水溶液のpHが、7~12である、[1]~[3]のいずれかに記載の酸素吸収剤の保存方法。
 本発明の酸素吸収剤の保存方法によれば、酸素吸収剤の製造後、安定的に保存が可能になり、長期保存後であっても、製造直後と同等の酸素吸収活性を維持でき、水分が無いかまたは殆ど無い雰囲気中であっても、雰囲気中の酸素を従来の脱酸素割と同等のレベルで、吸収、除去し得ることができる。
 以下、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。
 本発明による酸素吸収剤の保存方法は、酸素吸収剤を準備する工程と、準備した酸素吸収剤を、キレート剤を含有する水溶液に浸潰して保存する工程と、を含む。以下、各工程について詳述する。
<酸素吸収剤の準備工程>
 本実施態様による酸素吸収剤は、下記の(A)および(B)の2成分、即ち、(A)鉄、コバルト、ニッケル、銅からなる群より選択される少なくとも1種の遷移金属と、(B)アルミニウムとを含む合金を、塩基性水溶液に接触させて、前記合金から成分(B)の少なくとも一部を溶出除去して得られる金属を含んでなるものである。なお、本明細書において、「酸素吸収剤」とは、かかる剤を設置した周囲の雰囲気中から酸素を選択的に吸収することができるものをいう。
 成分(A)として使用可能な遷移金属は、鉄、コバルト、ニッケル、銅から選択されるものである。上記した遷移金属は、単独でも2種以上を組み合わせて用いても良く、例えば、鉄とニッケルが選択される場合、成分(A)として、Fe-Ni合金を使用しても良い。成分(A)としては、好ましくは、鉄、またはニッケルであり、より好ましくは、鉄である。このうち、鉄は、安全性が高く安価であるため好ましい。また、酸素吸収剤を構成する成分(B)としては、アルミニウムを使用する。
 本実施形態で用いる合金は、上記した成分(A)と成分(B)とを含むが、合金には、添加金属として、さらに、モリブデン、クロム、チタン、バナジウム、タングステンなどが含まれていてもよい。シアン酸類等の添加成分がさらに含まれていてもよい。
 上記したような成分(A)と成分(B)とを含む合金は、溶融法により調製することができる。このとき、成分(A)と成分(B)との組成の割合は、好ましくは、成分(A)が20~80質量%であるとき、成分(B)は20~80質量%であり、より好ましくは、成分(A)が30~70質量%であるとき、成分(B)は30~70質量%である。より具体的な例を挙げると、成分(A)が、鉄またはニッケルである場合、鉄またはニッケルの割合は30~55質量%であり、アルミニウムの割合が45~70質量%であることが好ましい。
 得られる合金は、そのまま、塩基性水溶液処理に供してもよいが、通常は、微粉砕した後に、塩基性水溶液処理に供する。なお、本明細書において「合金」とは、特定の結晶構造を有している単一組成のもののみならず、それらの混合物および金属自体の混合物を含むものとする。
 合金を微粉砕する方法としては、慣用の金属の解砕および粉砕のための方法を適宜使用することができ、例えば、ジョークラッシャーや、ロールクラッシャー、ハンマーミル等で合金を粉砕し、さらに必要に応じてボールミルで微粉砕することができる。あるいは、前記合金の溶湯をアトマイズ法等の急冷凝固法により微粉化してもよい。ここでアトマイズ法による場合には、アルゴンガス等の不活性ガス中で行なうのが好ましい。アトマイズ法としては、例えば特開平5-23597号公報に記載の方法を使用することができる。
 得られる合金粉末の粒径は、5~200μmの範囲内となることが好ましく、またこの粒径分布はできるだけ狭いことが好ましい。粒径の大きなものを排除したり、粒径分布をそろえたりする観点から、市販の篩(例えば、200メッシュなど)を使用して篩い分け(分級)を適宜行っても良い。なお、アトマイズ法による場合、粉末は球状に近くなる傾向にあり、また、粒径分布を狭くできる傾向にある。なお、合金粉末の粒径は、粒度-形状分布測定器等を用いて測定することができる。
 次いで、上記のようにして得られた合金または合金粉末を、塩基性水溶液処理に供して、合金から、成分(B)の少なくとも一部を溶出させ除去する。すなわち、本発明による保存方法において使用される酸素吸収剤としては、上記合金から成分(B)の少なくとも一部を溶出させ除去した後に得られる金属が使用される。塩基性水溶液としては、成分(A)を溶解しないか、または殆ど溶解しないものである一方で、成分(B)を溶解させて除去できるもの、すなわち合金から成分(B)を浸出(溶出)させることができるものであれば特に制限はなく、いずれのものも使用可能である。塩基性水溶液における塩基としては、例えば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物;水酸化カルシウム、水酸化マグネシウムなどのアルカリ土類金属の水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;アンモニアなどを使用することができる。これら塩基性水溶液については、必要に応じて2種以上を適宜組み合わせて用いてもよい。
 本実施形態によれば、塩基性水溶液としてアルカリ金属やアルカリ土類金属の水酸化物の水溶液を用いることが好ましく、より好ましくは、水酸化ナトリウム水溶液である。例えば、塩基性水溶液として水酸化ナトリウムを用いると、水洗により過剰量の水酸化ナトリウムを除去し、また溶出したアルミニウムを除去することが容易であり、このため、水洗回数を削減できるという効果が期待できる。
 塩基性水溶液処理において、通常は、合金粉末であれば、合金粉末を塩基性水溶液中へ撹拌しながら少しずつ投入するが、合金粉末を水中にいれておき、ここにさらに濃厚な塩基性水溶液を滴下してもよい。
 塩基性水溶液処理において、使用する塩基性水溶液の濃度は、例えば、5~60質量%であり、より具体的には、例えば水酸化ナトリウムの場合、10~40質量%が好ましい。
 塩基性水溶液処理においては、水溶液の温度を、例えば、20~120℃程度に加温して使用することが好ましい。好ましくは、塩基性水溶液の温度は25~100℃である。
 合金または合金粉末を塩基性水溶液処理に供しておく処理時間は、使用する合金の形状、状態、およびその量、塩基性水溶液の濃度、処理する際の温度等により変化し得るが、通常は、30~300分間程度であってよい。処理時間により、合金からの成分(B)の溶出量を調整することもできる。
 本実施形態においては、塩基性水溶液処理によって、合金から、成分(B)の少なくとも一部を溶出除去する。ここで、「成分(B)の少なくとも一部」を溶出除去するとは、成分(A)および成分(B)を含む合金から、成分(B)の一部を溶出させ除去することに加えて、成分(B)の全部を合金から溶出させ除去する場合も包含することを意味する。なお、成分(B)の溶出の過程では、結果として成分(A)の一部が溶解する可能性も否定できないので、「成分(B) の少なくとも一部」には、成分(B) のみが塩基性水溶液処理によって溶出される場合に限定して解釈する必要はない。
 塩基性水溶液処理によって、成分(B)の少なくとも一部、好ましくはその大部分が合金から溶出する。合金からの成分(B)の溶出の割合は、溶出除去によって得られる金属における成分(B)の含有率(質量基準の残存率)で示すことができる。
 酸素吸収剤として用いられる金属(即ち、成分(B)を溶出した後の金属)において、成分(B)の含有率は、好ましくは0.1~60質量%であり、より好ましくは1~40質量%である。より具体的には、例えば、合金が、Al-Fe合金である場合、塩基性水溶液処理によるアルミニウムの溶出除去によって得られる金属におけるアルミニウムの含有率は、好ましくは0.1~50質量%であり、より好ましくは1~40質量%、さらに好ましくは1~5質量%である。なお、酸素吸収剤に用いられる金属中の成分(B)の含有量は、例えば、IPC法により測定することができる。
 塩基性水溶液処理によって、成分(A)および/または成分(B)の金属水酸化物が、合金表面に形成される場合がある。酸素吸収剤の酸素吸収性能を向上させるために、合金から金属水酸化物を除去することができる。すなわち、合金から成分(B)を溶出した後、さらに濃度の高い塩基性水溶液で洗浄することにより、金属水酸化物を除去することができる。
 上記のようにして得られた金属は、多孔質形状(または多孔体)を有している。ここで、多乳質形状とは、電子顕微鏡にて確認できる程度の多数の細孔を表面および内部に有している状態をいう。本発明においては、金属が有する多孔質形状の程度は、その比表面積で表すことができる。具体的には、本発明の酸素吸収剤に用いられる金属のBET法による比表面積は10m/g以上であり、好ましくは20m/g以上、より好ましくは40m/g以上、さらに好ましくは80m/g以上である。
 例えば、本実施形態において成分(A)として鉄を用いた場合、得られる多孔質形状の金属の比表面積(BET法によるもの)は、10~120m/g程度である一方で、多孔質ではない通常の鉄粉(還元鉄粉またはアトマイズ鉄粉)の場合、その比表面積は0.07~0.13m/g程度であり、多孔質形状であるか否かは明らかである。
 また、金属が有する多乳質形状の程度は、かさ密度で表すこともできる。上記のようにして得られる酸素吸収剤(金属)のかさ密度は、2g/cm以下であり、好ましくは、1.5g/cm以下である。なお、多孔質ではない通常の鉄粉(還元鉄粉またはアトマイズ鉄粉)の場合、そのかさ密度は、2~3g/cm程度である。なお、かさ密度は、JIS Z2504に準拠して測定することができる。
 本実施形態において、酸素吸収剤として用いられる多孔質の金属は、高い酸素吸収活性を有しているため、低湿度条件(例えば、30%RH(相対湿度)(25℃)以下の条件)の雰囲気下であっても、酸素吸収剤として好適に使用することができる。無論、高湿度条件(例えば、100%RH(相対湿度)(25℃)の条件)の雰囲気下であっても、酸素吸収剤として好適に使用できることは言うまでもない。
 したがって、上記のようにして得られた金属は、30%RH(相対湿度)(25℃)以下の低湿度の雰囲気において、少なくとも5mL/g以上の酸素、より好ましくは10 mL/g以上の酸素を吸収し得る。また、当該金属を酸素吸収剤として使用した場合の酸素吸収量は、例えば、30%RH(相対湿度)(25℃)以下の低湿度の雰囲気において、5~150mL/gとなる。
<酸素吸収剤の保存工程>
 上記した金属は、成分(B)の溶出除去処理を行った後、通常は水洗が行われる。このようにして得られた金属または金属粉末は、大気中では直ちに酸化し、酸素吸収活性を失ってしまう。したがって、成分(A)と成分(B)とを含む合金を塩基性水溶液処理した後は、合金を酸素に極力触れさせないように配慮する必要がある。そのため、上記した一連の処理を水溶液中および水中で行ってそのまま保存したり、無酸素雰囲気、または不活性ガス雰囲気で保存することが考えられる。しかしながら、水中で当該金属を保存した場合、酸素吸収活性の急激な低下は防げるものの、経時的に酸素吸収活性が低下してしまうことが判明した。また、無酸素雰囲気、または不活性雰囲気で保存を行うには、装置等が必要になるためコスト増加を招く。
 本発明においては、キレート剤を含有させた水溶液中に金属からなる酸素吸収剤を浸漬させて保存することにより、製造後安定的に保存が可能になり、長期保存後であっても、製造直後と同等の酸素吸収活性を維持でき、水分が無いか殆ど無い雰囲気中であっても、雰囲気中の酸素を、従来の脱酸素剤と同等のレベルで、吸収、除去し得ることができる。
 本発明において、キレート剤を含有させた水溶液を用いることで、酸素吸収剤の酸素吸収活性を維持できる理由については明らかではないが、例えば以下の機構が推測される。すなわち、上記したように酸素吸収剤を製造する際に、成分(B)の溶出処理を水酸化ナトリウム等の塩基により行うため、成分(B)の溶出処理によって金属に形成された微細孔中には、水酸化アルミニウム等が残存する。水洗工程を経ても水酸化アルミニウム等が完全に除去できず、酸素吸収剤を水中で保存すると水中に水酸化アルミニウム等が徐々に溶出する。その後、アルミニウムを含む化合物が酸素吸収剤表面に析出して酸素吸収の活性点を閉塞する可能性が考えられる。しかしながら、キレート剤を含有させた水溶液を用いることで、キレート剤がアルミニウムイオンを封鎖する。これにより、析出物による活性点の閉塞を防いでいるものと推測される。
 酸素吸収剤を浸潰させる保存媒体としては、安全性およびコストの観点からは水が適している。したがって、酸素吸収剤を浸潰させる水溶液としては、キレート剤を含有させた水溶液が用いられる。なお、水溶液のpHは7~12が好ましく、8~12がより好ましく、10~11がさらに好ましい。水溶液のpHを上記範囲内とした場合、酸素吸収剤中の鉄(Fe)成分の溶解をより抑制することができる。
 上記したようなキレート剤として使用可能な物質としては、特に制限されるものではなく、具体的には、グリコール酸、乳酸、リンゴ酸、酒石酸、クエン酸、ダルコン酸、ヘプトン酸等のヒドロキシカルボン酸の塩;コハク酸、マロン酸、シュウ酸、フタル酸等のジカルボン酸の塩;ポリアクリル酸、ポリマレイン酸等のポリカルボン酸の塩:グリシン、ニトリロ三酢酸、エチレンジアミン四酢酸(EDTA)、ヒドロキシエチルエチレンジアミン三酢酸(HEDTA)、ジエチレントリアミン五酢酸、ポリアミノポリカルボン酸等のアミノカルボン酸およびその塩;エチドロン酸(HEDP)、ニトリロトリス(メチレンホスホン酸)(ATMP)、エチレンジアミンテトラメチレンホスホン酸(EDTMP) 等の亜りん酸系キレート剤およびその塩;エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等のアミン系キレート剤などから選ばれる少なくとも1種、または2種以上を組合せて使用できる。これらの中でも、生体への安全性、コスト面等から、ヒドロキシカルボン酸の塩が好ましく、ヒドロキシカルボン酸のアルカリ金属塩がより好ましく、乳酸ナトリウム、リンゴ酸ナトリウム、酒石酸ナトリウム、クエン酸ナトリウム、グルコン酸ナトリウムがさらに好ましく、酒石酸ナトリウム、クエン酸ナトリウム、グルコン酸ナトリウムが特に好ましい。
 また、本発明において使用するキレート剤として、キレート樹脂も好適に使用できる。キレート樹脂として使用可能な物質を例示すると、アンバーライトIRC748(オルガノ株式会社製)、ダイヤイオンCR11(三菱化学株式会社製)などが使用できる。
 また、本実施形態による酸素吸収剤の保存方法においては、水溶液中のキレート剤の含有量が、酸素吸収剤100質量部に対して0.1~20質量部であるであることが好ましく、より好ましくは1~10質量部であり、特に好ましくは2~5質量部である。キレート剤の濃度を上記範囲とすることで、酸素吸収剤の製造直後の酸素吸収活性をより一層維持しておくことができる。
 本実施形態においては、酸素吸収剤の質量の2倍量以上の質量の水溶液中に酸素吸収剤を浸潰させ、常温以下で保存することが好ましい。水溶液の量を酸素吸収剤の2倍以上とすることにより、酸素吸収剤を十分に水溶液中に浸漬することができる。
<酸素吸収剤の使用方法>
 キレート剤を含有する水溶液中に保存した酸素吸収剤を使用するに際しては、当該水溶液から酸素吸収剤を取り出して乾燥させればよい。但し、酸素吸収剤は、上記したように大気中では酸化し劣化し易いものであることから、酸素吸収活性を損なわないために、例えば、真空乾燥などの手段により、酸素による影響をできるだけ排除した条件にて、乾燥を行い、使用することが望ましい。
 上記したように、本発明による酸素吸収剤は、大気中では酸化し劣化し易いものであることから、使用に際しては、酸素吸収剤を樹脂に混合(混練)し、得られる酸素吸収性樹脂の形態で使用することができる。
 使用できる樹脂として、その種類に特に制限はないが、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリビニルアルコール樹脂および塩素系樹脂等の熱可塑性樹脂を使用することができる。特に、ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体、エラストマー、またはこれらの混合物を好適に使用することができる。
 低湿度の保存条件を必要とする低水分含有物品を保存するためには、低水分含有物品を保存する雰囲気の相対湿度(RH)は、好ましくは20~70%、より好ましくは20~50%である。低水分含有物品の水分含有率は、好ましくは50重量%以下、より好ましくは30重量%以下、特に好ましくは10重量%以下のものが全て該当する。低湿度の保存条件を必要とする低水分含有物品(被包装物)として、例えば、粉末、顆粒食品類(粉末スープ、粉末飲料、粉末菓子、調味料、穀物粉、栄養食品、健康食品、着色料、着香料、香辛料)、粉末、顆粒薬品(散薬類、粉石鹸、歯磨粉、工業薬品)、これらの成形体(錠剤型)などの、水分の増加を嫌い、異物の混入を避ける必要のある食品、薬品等を例示することができる。特に、後記するような酸素吸収性包装体に、これら被包装物を充填した場合、水分が無いか殆ど無い雰囲気中であっても、雰囲気中の酸素を、従来の脱酸素剤と同等のレベルで、吸収、除去し得ることが可能である。したがって、従来の脱酸素剤の適用の難しかった水分を嫌う乾燥食品、医薬品、電子材料のパッケージの雰囲気中を脱酸素状態にするなどの用途に好適に使用することができる。例えば、粉末調味料、粉末コーヒー、コーヒー豆、米、茶、豆、おかき、せんべい等の乾燥食品や医薬品、ビタミン剤等の健康食品に好適に使用することができる。
 本発明の別の態様による酸素吸収性包装体は、上記した酸素吸収剤または酸素吸収性樹脂組成物を、通気性包装材を全部または一部に用いた包装材で包装したものである。ここで、包装材としては、2枚の通気性包装材を貼り合わせて袋状としたものや、1枚の通気性包装材と1枚の非通気性包装材とを貼り合わせて袋状としたもの、あるいは、1枚の通気性包装材を折り曲げ、折り曲げ部を除く緑部同士をシールして袋状としたものが挙げられる。また、通気性包装材としては、酸素と二酸化炭素とを透過する包装材を使用できる。このような通気性包装材としては、紙や不織布の他、従来公知のプラスチックフィルムに通気性を付与したものが挙げられる。
 以下、本発明を実施例によりさらに具体的に説明するが、本発明は以下の実施例により限定されるものではない。
<酸素吸収剤の製造および評価>
 Al(アルミニウム)粉とFe(鉄)粉とを、それぞれ50質量%の割合で混合し、窒素中で溶解して、Al-Fe合金を得た。次いで、得られたAl-Fe合金を、ジョークラッシャー、ロールクラッシャーおよびポールミルを用いて粉砕し、粉砕物を目開き200メッシュ(0.075mm)の節を用いて分級し、粒径が200メッシュ以下のAl-Fe合金粉を得た。このようにして得られたAl-Fe合金粉150gを、30質量%の水酸化ナトリウム水溶液中に50℃で1時間撹拌混合した後、濾別を行い、更に40質量% 水酸化ナトリウム水溶液中で50℃で1時間攪拌混合を行った。続いて、混合溶液を静置し、上層液を取り除いた。残った沈殿物をpHが11以下になるまで蒸留水で洗浄し、Al-Fe多孔質合金粉を得た。このように、多孔質合金粉は、酸素に接触させることを回避すべく水溶液中での反応により作製した。
 得られた多孔質合金粉を、200Pa以下、80℃で2時間、真空乾燥してAl-Fe多孔質合金粉の乾燥物を得た。得られた合金粉のかさ密度は0.9g/cm(JIS Z2504に準拠して測定)であった。得られた合金粉0.5gを、通気性小袋内に包装し、乾燥剤と共にガスバリア袋(Al箔ラミネートプラスチック袋)に入れ、50mLの空気(酸素濃度20.9容量%)を充填して密封し、25℃で7日間保存した後の酸素濃度を測定したところ、9.1容量%であった。ガスバリア袋内の減少した酸素濃度から酸素吸収量を算出した結果、酸素吸収量は130mL/gであった。
 また、得られたAl-Fe多孔質合金粉の平均粒径を、粒度-形状分布測定器(株式会社セイシン企業製「PITA-2」)を使用して測定したところ、平均粒径は31μmであった。さらに、得られたAl-Fe多孔質合金粉の比表面積を、自動比表面積測定装置(株式会社島津製作所製「ジェミニVII2390」)を使用して測定したところ、比表面積は100m/gであった。
実施例1
 上記のようにして得られたAl-Fe多孔質合金粉からなる酸素吸収剤100gを含む水スラリー300gに、キレート剤として酒石酸ナトリウムを2g添加して保存した。保存開始から14日後、28日後および56日後に酸素吸収剤の一部をサンプリングし、200Pa以下、80℃で水分量1質量%以下になるまで真空乾燥を行った。その後、上記と同様にして酸素濃度の測定を行い、酸素吸収剤の酸素吸収量を算出した。得られた酸素吸収量から、下記式を用いて酸素吸収性能維持率(%)を算出した。
 酸素吸収性能維持率(%)
 =(保存後の酸素吸収量)/(調製直後の酸素吸収量=130)×100
 結果は下記の表1に示される通りであった。
実施例2
 実施例1において用いた酒石酸ナトリウムの添加量を、5gに変更した以外は実施例1と同様の測定を行い、酸素吸収性能維持率を算出した。結果は下記の表1に示される通りであった。
実施例3
 実施例1おいて用いた酒石酸ナトリウムを、グルコン酸ナトリウムに変更した以外は実施例1と同様の測定を行い、酸素吸収性能維持率を算出した。結果は下記の表1に示される通りであった。
比較例1
 実施例1において、水スラリーに酒石酸ナトリウムの添加しなかった以外は、実施例1と同様の測定を行い、酸素吸収性能維持率を算出した。結果は下記の表1に示される通りであった。
比較例2
 実施例1 において用いた酒石酸ナトリウムをクエン酸に変更した以外は実施例1と同様の測定を行い、酸素吸収性能維持率を算出した。結果は下記の表1に示される通りであった。
比較例3
 実施例1において用いたAl-Fe多孔質合金粉からなる酸素吸収剤100gを含む水スラリー200gに、濃度が0.2Mとなるように調製されたpH6のクエン酸-クエン酸ナトリウム緩衝液を100g添加して保存したこと以外は実施例1と同様の測定を行い、酸素吸収性能維持率を算出した。結果は下記の表1に示される通りであった。
Figure JPOXMLDOC01-appb-T000001
 保存液にキレート剤を含有する水溶液を用いた実施例1~5では、28日後の酸素吸収性維持率が76~91%と高い値であり、酸素吸収剤の性能低下を抑制できることがわかる。一方、水やクエン酸水溶液などを酸素吸収剤の保存液として用いた比較例1~3では28日後の酸素吸収性能維持率11~66%となり、酸素吸収剤の性能低下を抑制できないことが明らかになった。

Claims (4)

  1.  (A)鉄、コバルト、ニッケル、および銅からなる群より選択される少なくとも1種の遷移金属と、
     (B)アルミニウムと、
    を含む合金を、塩基性水溶液処理に供して、前記アルミニウム(B)の少なくとも一部を溶出除去して得られる金属からなる酸素吸収剤であって、BET法により測定される比表面積が10m/g以上である酸素吸収剤を準備し、
     前記酸素吸収剤を、キレート剤を含有する水溶液に浸潰して保存する、
    ことを含んでなる、酸素吸収剤の保存方法。
  2.  前記キレート剤が、ヒドロキシカルボン酸の塩である、請求項1に記載の酸素吸収剤の保存方法。
  3.  前記水溶液中のキレート剤の含有量が、前記酸素吸収剤100質量部に対して0.1~20質量部である、請求項1または2に記載の酸素吸収剤の保存方法。
  4.  前記水溶液のpHが、7~12である、請求項1~3のいずれか一項に記載の酸素吸収剤の保存方法。
PCT/JP2014/078132 2013-10-22 2014-10-22 酸素吸収剤の保存方法 WO2015060356A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167004957A KR20160074452A (ko) 2013-10-22 2014-10-22 산소 흡수제의 보존 방법
JP2015543888A JP6578947B2 (ja) 2013-10-22 2014-10-22 酸素吸収剤の保存方法
EP14856142.6A EP3061523A4 (en) 2013-10-22 2014-10-22 Method for storing oxygen absorber
US15/028,827 US20160250617A1 (en) 2013-10-22 2014-10-22 Method for storing oxygen absorbing agent
CN201480057761.9A CN105658320A (zh) 2013-10-22 2014-10-22 吸氧剂的保存方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-219096 2013-10-22
JP2013219096 2013-10-22

Publications (1)

Publication Number Publication Date
WO2015060356A1 true WO2015060356A1 (ja) 2015-04-30

Family

ID=52992945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078132 WO2015060356A1 (ja) 2013-10-22 2014-10-22 酸素吸収剤の保存方法

Country Status (7)

Country Link
US (1) US20160250617A1 (ja)
EP (1) EP3061523A4 (ja)
JP (1) JP6578947B2 (ja)
KR (1) KR20160074452A (ja)
CN (1) CN105658320A (ja)
TW (1) TWI666051B (ja)
WO (1) WO2015060356A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499092A (en) * 1978-01-23 1979-08-04 Fujishima Daishiro Oxygen scavenger primarily made of reformed iron powder
JPS562845A (en) * 1980-01-21 1981-01-13 Mitsubishi Gas Chem Co Inc Oxygen absorbent
JPS62244443A (ja) * 1986-04-16 1987-10-24 Shimadaya Honten:Kk 脱酸素剤
JPH0523597A (ja) 1991-07-23 1993-02-02 Nikko Rika Kk 触媒用球状ラネ−合金の製造方法
JPH09253481A (ja) * 1996-03-22 1997-09-30 Sony Corp 脱酸素剤及びその製造方法
WO2012105457A1 (ja) 2011-01-31 2012-08-09 三菱瓦斯化学株式会社 酸素吸収剤およびその保存方法
WO2014021430A1 (ja) * 2012-08-02 2014-02-06 三菱瓦斯化学株式会社 酸素吸収剤の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1156769B (de) * 1961-02-07 1963-11-07 Varta Ag Verfahren zur Herstellung aktivierter Katalysatoren aus Raney-Legierungen
AU471081B2 (en) * 1973-10-12 1976-04-08 Method of producing olefinic amides with a raney copper catalyst
US7375053B2 (en) * 2003-04-07 2008-05-20 W. R. Grace & Co.- Conn. Nickel and cobalt plated sponge catalysts
EP2749604B1 (en) * 2011-11-15 2016-10-05 Mitsubishi Gas Chemical Company, Inc. Oxygen-absorbing resin composition, oxygen-absorbing multilayer laminate, and oxygen-absorbing hollow container

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499092A (en) * 1978-01-23 1979-08-04 Fujishima Daishiro Oxygen scavenger primarily made of reformed iron powder
JPS562845A (en) * 1980-01-21 1981-01-13 Mitsubishi Gas Chem Co Inc Oxygen absorbent
JPS62244443A (ja) * 1986-04-16 1987-10-24 Shimadaya Honten:Kk 脱酸素剤
JPH0523597A (ja) 1991-07-23 1993-02-02 Nikko Rika Kk 触媒用球状ラネ−合金の製造方法
JPH09253481A (ja) * 1996-03-22 1997-09-30 Sony Corp 脱酸素剤及びその製造方法
WO2012105457A1 (ja) 2011-01-31 2012-08-09 三菱瓦斯化学株式会社 酸素吸収剤およびその保存方法
WO2014021430A1 (ja) * 2012-08-02 2014-02-06 三菱瓦斯化学株式会社 酸素吸収剤の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3061523A4

Also Published As

Publication number Publication date
US20160250617A1 (en) 2016-09-01
EP3061523A4 (en) 2017-06-21
JPWO2015060356A1 (ja) 2017-03-09
CN105658320A (zh) 2016-06-08
TW201529151A (zh) 2015-08-01
KR20160074452A (ko) 2016-06-28
TWI666051B (zh) 2019-07-21
EP3061523A1 (en) 2016-08-31
JP6578947B2 (ja) 2019-09-25

Similar Documents

Publication Publication Date Title
TWI449567B (zh) Oxygen absorber and its preservation method
JP5626488B2 (ja) 酸素吸収剤の製造方法
KR20180121785A (ko) 산소 흡수제 조성물, 산소 흡수성 다층체, 산소 흡수성 포장 용기, 및 물품의 보존 방법
JP5692671B2 (ja) 酸素吸収剤
JP2018171565A (ja) 有機系脱酸素剤及び有機系脱酸素剤の製造方法
JP6578947B2 (ja) 酸素吸収剤の保存方法
JP2008229407A (ja) 酸素吸収剤
JP2014030784A (ja) 酸素吸収剤の製造方法
KR101312542B1 (ko) 초 고속성의 산소흡수제와 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856142

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167004957

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15028827

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014856142

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014856142

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015543888

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE