WO2015060286A1 - 正浸透用中空糸膜エレメント及び膜モジュール - Google Patents

正浸透用中空糸膜エレメント及び膜モジュール Download PDF

Info

Publication number
WO2015060286A1
WO2015060286A1 PCT/JP2014/077910 JP2014077910W WO2015060286A1 WO 2015060286 A1 WO2015060286 A1 WO 2015060286A1 JP 2014077910 W JP2014077910 W JP 2014077910W WO 2015060286 A1 WO2015060286 A1 WO 2015060286A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
membrane
hollow
forward osmosis
Prior art date
Application number
PCT/JP2014/077910
Other languages
English (en)
French (fr)
Inventor
一成 丸井
功次 徳永
泰樹 寺島
肇 末永
熊野 淳夫
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to ES14855020T priority Critical patent/ES2871870T3/es
Priority to US14/914,566 priority patent/US10029212B2/en
Priority to DK14855020.5T priority patent/DK3061519T3/da
Priority to JP2015543861A priority patent/JP6222237B2/ja
Priority to EP14855020.5A priority patent/EP3061519B1/en
Publication of WO2015060286A1 publication Critical patent/WO2015060286A1/ja
Priority to SA516370621A priority patent/SA516370621B1/ar

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/025Bobbin units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis

Definitions

  • the present invention relates to a forward osmosis hollow fiber membrane element and a membrane module that are excellent in contamination resistance, have a small flow pressure loss in the hollow portion of the hollow fiber membrane, and have a large amount of membrane permeated water. More specifically, the present invention relates to fresh water with a driving force that is a concentration reduction of organic matter, volume reduction by recovery or drainage concentration, seawater desalination, or a concentration difference between a low concentration aqueous solution and a high concentration pressurized aqueous solution.
  • the energy can be generated by rotating the turbine with the flow rate and pressure of the high-concentration aqueous solution in the pressurized state increased by the permeated fresh water.
  • it can be used for fresh water treatment for generating energy such as electric power by utilizing osmotic pressure due to a concentration difference between seawater or concentrated seawater and fresh water.
  • Separation and concentration of liquid mixtures by membrane separation is an energy-saving method because it does not involve phase changes compared to conventional separation techniques such as distillation, and it does not involve changes in the state of substances. It is widely used in many fields such as food separation such as separation of organic matter and recovery of organic matter from industrial wastewater. Membrane water treatment has become established as an indispensable process that supports state-of-the-art technology.
  • Such a water treatment using a membrane is used as a membrane module in which membranes are assembled into a pressure vessel by assembling membranes into one constituent element.
  • a hollow fiber membrane element is a spiral membrane element.
  • the water permeability per unit membrane area is not large, but since the membrane area per membrane module volume can be increased, the overall water permeability can be increased and the volume efficiency is very high. Excellent compactness. Further, when both the high-concentration aqueous solution and the fresh water are supplied into the module and brought into contact via the semipermeable membrane, the concentration polarization on the membrane surface can be kept small.
  • a double-ended opening type is used from the viewpoint of efficiency (see Patent Documents 1 and 2).
  • the flow of membrane permeated water flows from the outside to the inside (inside the hollow portion) of the hollow fiber membrane and flows out from the openings at both ends, as shown in the explanatory diagram of FIG.
  • the flow length of the membrane permeate flowing through the hollow portion is about half of the total length of the hollow fiber membrane.
  • the seawater flows outside the hollow fiber membrane and the outside of the hollow fiber membrane is pressurized, a flow occurs in a direction in which the contaminants are pressure-bonded to the membrane surface, and dirt components in the seawater are adjacent to each other. There is a tendency to trap and deposit between hollow fiber membranes, contaminating membrane elements and adversely affecting performance.
  • the fresh water that is the source of the membrane permeated water flows through the hollow portion of the hollow fiber membrane, and flows from one end of the hollow fiber membrane to the other end,
  • the flow length is the total length of the hollow fiber membrane. Therefore, the flow pressure loss in the hollow portion in the case of the forward osmosis membrane (FO membrane) is extremely larger than that in the case of the reverse osmosis membrane (RO membrane).
  • the contamination resistance is improved by cross-disposing the hollow fiber membranes constituting the membrane element. Specifically, by forming the intersection of the hollow fiber membranes, the gap between the hollow fiber membranes is secured, the occurrence of drift and concentration polarization is suppressed, and the turbidity component of seawater is added to the outer surface of the hollow fiber membrane. It is hard to collect. In this case, it is preferable that the number of winds per element length of the hollow fiber membranes arranged in a crossing direction is large, and as a result, the number of crossing portions of the hollow fiber membranes increases, and the contamination resistance is improved.
  • the RO membrane of Patent Document 1 discloses a wind number of 2. Also, the RO membrane of Patent Document 2 is specifically disclosed having a wind number of 2.
  • the present invention was devised in view of the current state of the prior art described above, and the object thereof is a forward osmosis hollow fiber membrane element having excellent contamination resistance and low flow pressure loss (having a sufficient amount of permeated water), And providing a membrane module using the same.
  • the present inventor in particular, when performing the cross-arrangement with the hollow fiber membrane for forward osmosis, particularly the length of the hollow fiber membrane Even if the number of winds in the outer layer of the hollow fiber membrane roll is long, the flow direction of the membrane permeate is in the opposite direction to that of the reverse osmosis membrane.
  • the present invention has been completed by finding that it is extremely small, and by doing so, the influence of a decrease in the amount of permeated water due to high flow pressure loss can be neglected.
  • the present invention has the following configurations (1) to (5).
  • a hollow fiber membrane element of both ends opening type in which both ends of a hollow fiber membrane winding body in which the hollow fiber membranes are arranged in a cross shape by opening the hollow fiber membrane spirally around the porous pipe are opened. Because a) In the range from the outermost layer of the hollow fiber membrane wound body to at least 1/8 of the thickness of the wound body, the number of winds per element length is 0.33 to 1.75, b) A hollow fiber membrane for forward osmosis, wherein the number of winds per element length is more than 1.75 in the range from the innermost layer of the hollow fiber membrane roll to at least 1/4 of the thickness of the roll. element.
  • the number of winds per element length is 0.33 to 1.75 in the range from the outermost layer of the hollow fiber membrane wound body to the maximum 3/4 of the thickness of the wound body (1 ) Hollow fiber membrane element for forward osmosis.
  • the hollow fiber membrane is composed of one or more kinds of resins selected from the group consisting of cellulose acetate-based resins, polyamide-based resins, and sulfonated polysulfone-based resins.
  • the hollow fiber membrane element and the hollow fiber membrane module of the present invention have a number of winds per element length, compared to the conventional reverse osmosis type, in particular, the hollow fiber membrane has a considerably smaller outer layer part, so that the normal osmosis The influence of the flow pressure loss of the fluid in the hollow portion during operation can be reduced, and as a result, a high amount of membrane permeate can be obtained. Further, even if the number of winds is reduced within the range defined by the present invention, high contamination resistance is maintained during forward osmosis operation, unlike reverse osmosis.
  • the forward osmosis in which the membrane element of the present invention is used is obtained by bringing an aqueous solution having a high concentration and a high osmotic pressure into contact with an aqueous solution having a low concentration and a low osmotic pressure through a semipermeable membrane.
  • This is a water treatment method that utilizes the phenomenon that fresh water moves to the higher aqueous solution side.
  • the hollow fiber membrane element of the present invention can take a larger membrane area per element than a spiral flat membrane, and depending on the size of the hollow fiber membrane, About 10 times as large as the membrane area can be obtained. Therefore, the hollow fiber membrane may have a very small amount of treatment per unit membrane area when obtaining the same water permeation amount, and can reduce the contamination of the membrane surface that occurs when the supply water permeates the membrane as compared to the spiral type. The operation time until the membrane is washed can be increased. Furthermore, since the drift in the element is unlikely to occur, it is preferable when water treatment is performed using the concentration difference as a driving force.
  • the material of the hollow fiber membrane of the present invention is not particularly limited as long as a high separation performance equivalent to a reverse osmosis membrane can be expressed.
  • sulfonated polysulfone resins such as cellulose acetate resin, sulfonated polysulfone, and sulfonated polyethersulfone are resistant to chlorine as a fungicide, and can easily suppress the growth of microorganisms. preferable.
  • cellulose acetates cellulose triacetate is preferable from the viewpoint of durability.
  • the outer diameter of the hollow fiber membrane of the present invention is preferably 160 to 270 ⁇ m. If the outer diameter is smaller than the above range, the inner diameter inevitably becomes smaller, so the same problem as the above-mentioned inner diameter may occur. On the other hand, if the outer diameter is larger than the above range, the membrane area per unit volume in the module cannot be increased, and the compactness that is one of the merits of the hollow fiber membrane module is impaired.
  • the hollow ratio of the hollow fiber membrane of the present invention is preferably 20 to 42%.
  • the inner diameter of the hollow fiber membrane of the present invention may be in a range satisfying the hollow ratio with respect to the preferable outer diameter, and is preferably 70 to 175 ⁇ m.
  • the inner diameter is smaller than the above range, the pressure loss of the fluid flowing through the hollow portion is generally increased, and therefore an excessively high pressure is required to flow a desired fresh water flow rate when the length of the hollow fiber membrane is relatively long. This can cause energy loss.
  • the inner diameter is larger than the above range, there is a trade-off relationship between the hollow ratio and the module membrane area, and it may be necessary to sacrifice either the durability at the working pressure or the membrane area per unit volume.
  • the hollow fiber membrane element of the present invention is obtained by sealing both ends of a hollow fiber membrane winding body with a resin, then cutting a part of the resin and opening both ends of the hollow fiber membrane.
  • the body is formed by laminating the hollow fiber membranes in the radial direction by winding a hollow fiber membrane or a bundle of hollow fiber membranes spirally around the porous pipe. In that case, the hollow fiber membranes are arranged in a cross shape.
  • FIG. 3 shows a schematic diagram of an example of the hollow fiber membrane element of the present invention in which the hollow fiber membranes are arranged in a cross shape. By adopting the intersection arrangement, voids are regularly formed at the intersection of the hollow fiber membranes.
  • the porous distribution pipe is a tubular member having a function of distributing the fluid supplied from the supply fluid inlet to the hollow fiber membrane aggregate when supplying the supply liquid to the outside of the hollow fiber membrane.
  • the porous pipe is preferably located at the center of the hollow fiber membrane assembly. If the diameter of the porous pipe is too large, the area occupied by the hollow fiber membrane in the membrane module is reduced, and as a result, the membrane area of the membrane element or membrane module is reduced, so that the water permeability per volume may be reduced. Further, if the diameter of the porous pipe is too small, the pressure loss increases when the supply fluid flows through the porous pipe, and as a result, the effective differential pressure applied to the hollow fiber membrane may be reduced and the processing efficiency may be reduced. .
  • the strength may be reduced, and the porous pipe may be damaged by the tension of the hollow fiber membrane that is received when the supply fluid flows through the hollow fiber membrane layer. It is important to set an optimum diameter in consideration of these influences comprehensively.
  • the area ratio of the cross-sectional area of the porous pipe to the cross-sectional area of the hollow fiber membrane element is preferably 4 to 20%.
  • the outer diameter of the hollow fiber membrane wound body is preferably 130 to 420 mm. If the outer diameter is too large, operability in maintenance management such as membrane exchange work may be deteriorated. If the outer diameter is too small, the membrane area per unit membrane element is reduced, the processing amount is reduced, and this is not preferable from the viewpoint of economy.
  • the length of the hollow fiber membrane wound body is preferably 0.2 to 1.6 m. When this length is too long, the flow pressure loss inside the hollow of the hollow fiber membrane increases, and the forward osmosis performance can be lowered. If it is too short, the membrane area per unit membrane element is reduced and the amount of treatment is reduced, which is not preferable from the viewpoint of economy.
  • the filling rate of the hollow fiber membrane in the rolled-up hollow fiber membrane is preferably 40 to 65%. If the filling rate is too large, the gap between the hollow fiber membranes becomes too small, and the effect of the cross arrangement is hardly exhibited. On the other hand, when the filling rate is too small, the number of hollow fiber membranes is small and the membrane area is small.
  • the number of winds per element length of the hollow fiber membranes arranged in an intersecting manner ranges from the outermost layer of the hollow fiber membrane wound body to at least 1/8 of the thickness of the wound body (outer layer Part)), the maximum feature is that the number of winds per element length is 0.33 to 1.75.
  • the wind number is more preferably 0.5 to 1.5.
  • the number of winds refers to the number of windings while moving from one end to the other end of the hollow fiber membrane winding body in the case of forming the above-described crossing arrangement.
  • the larger the number of winds the greater the number of intersections of the hollow fiber membranes. For example, when the number of winds is 1.0, the axial position of the intersecting portion is the central portion of the wound body.
  • the angle formed by the hollow fiber membrane and the central axis of the wound body is smaller in the inner layer of the wound body of the hollow fiber membrane and larger in the outer layer portion. The angle is determined by the length and outer diameter of the wound body.
  • the range of the outer layer portion of the wound body that reduces the number of winds is more effective as the hollow fiber membrane length is longer outside, but is the portion from the outermost layer to at least 1/8 of the thickness of the wound body.
  • the number of winds may be reduced for a portion of about 1/8 of the thickness of the wound body from the outermost layer.
  • the number of winds is reduced in a portion that is 1/4 or 1/3 of the thickness of the wound body from the outermost layer or a maximum of 3/4. It is preferable to do this.
  • the portion from the outermost layer to 1/4 of the thickness of the wound body has a wind number of 0.33 to 0.75, and the portion from the outermost layer to 1/4 of the thickness of the wound body to 1/2
  • the wind number is set to 0.75 to 1.25, and the wind number is set to 1.25 to 1.75 in the portion from the outermost layer to 1/2 of the thickness of the wound body to 3/4. It is also within the scope of the present invention to reduce the number of winds stepwise as it goes outside the wound body.
  • the element diameter is small, there is no big problem even if the present invention is applied, but it is preferable when the element diameter is 130 mm or more because the effects of the present invention are remarkably exhibited.
  • the number of winds in the inner layer is preferably more than 1.75.
  • Hollow fiber membrane elements in which hollow fiber membranes are arranged in an intersecting manner have been conventionally proposed for reverse osmosis, but in all cases, the number of winds is larger than the range defined in the present invention, specifically, the number of winds is 2. is there.
  • the hollow fiber membrane element for forward osmosis of the present invention when the cross arrangement of the conventional hollow fiber membrane having a wind number of 2 is adopted as it is, high contamination resistance can be obtained, but the flow pressure loss of the fluid flowing through the hollow portion Is too large to secure a sufficient amount of permeate. As apparent from the comparison between FIG. 1 and FIG.
  • the hollow fiber membrane of the present invention for example, as described in Japanese Patent No. 3591618, is obtained by dividing a membrane-forming solution comprising cellulose triacetate, ethylene glycol (EG), and N-methyl-2-pyrrolidone (NMP) into three parts.
  • a cellulose acetate-based hollow fiber membrane is ejected from a nozzle, immersed in a coagulating liquid consisting of water / EG / NMP through an aerial traveling section to obtain a hollow fiber membrane, and then the hollow fiber membrane is washed with water and then heat treated. Can be manufactured.
  • the copolymer polyamide obtained by low-temperature solution polymerization method from terephthalic acid dichloride, 4,4'-diaminodiphenylsulfone, and piperazine, it is dissolved in a dimethylacetamide solution containing CaCl 2 and diglycerin to form a film-forming solution.
  • the polyamide-based hollow fiber membrane can be produced by discharging this solution from the three-divided nozzle through the aerial running section into the coagulating liquid, washing the resulting hollow fiber membrane with water, and then heat-treating it.
  • the hollow fiber membrane of the present invention obtained as described above is incorporated into a hollow fiber membrane element by a conventionally known method.
  • Incorporation of hollow fiber membranes for example, as described in Japanese Patent No. 441486, Japanese Patent No. 4277147, Japanese Patent No. 3591618, Japanese Patent No. 3008886, etc.
  • a plurality of hollow fiber membrane assemblies are arranged side by side as a flat hollow fiber membrane bundle and wound around a porous pipe having a large number of holes while traversing. By adjusting the length and rotation speed of the porous pipe at this time, and the traverse speed of the hollow fiber membrane bundle, the pipe is wound up so that an intersection is formed on the circumferential surface at a specific position of the wound body. Next, after bonding both ends of the wound body, both sides are cut to form a hollow fiber membrane opening to produce a hollow fiber membrane element.
  • the hollow fiber membrane element for forward osmosis of the present invention produced as described above is loaded into a container, particularly a pressure vessel having pressure resistance that can withstand the operating pressure, so that the hollow fiber membrane module for forward osmosis. It can be.
  • This forward osmosis hollow fiber membrane module has four nozzles as shown in FIG. Two of them are an inlet nozzle and an outlet nozzle for a high concentration solution having a high osmotic pressure, and the high concentration solution communicates with a space in contact with the outside of the hollow fiber membrane.
  • the outlet nozzle communicates with a space in contact with the outermost layer portion of the hollow fiber membrane element.
  • the other two places are an inlet nozzle and an outlet nozzle for low-concentration and low-concentration fresh water, and communicate with the space in contact with the open end of the hollow portion of the hollow fiber membrane.
  • FIG. 7 is a graph showing the relationship between the amount of permeated water per membrane element volume and the contamination resistance (differential pressure increase rate) based on the results of Examples described later.
  • the rate increases exponentially. For example, if the wind number is 2 to 1.5, the permeate amount per membrane element volume is about 1.2 times, and if the wind number is 0.5, the permeate amount is about 1.7 times.
  • the rate of increase in the differential pressure tends to increase rapidly when the number of winds is less than one.
  • the number of winds of the membrane element that can suppress the rate of increase in the differential pressure as much as possible while securing a larger amount of permeated water is 0.33 to 1.75, preferably 0.5 to 1. .5.
  • the numerical value itself of the permeated water amount per membrane element and the differential pressure increase rate depends on the performance of the hollow fiber membrane, the numerical value itself is not particularly significant.
  • FIG. 8 shows the effect of changes in the membrane element diameter.
  • the membrane element diameter is preferably 130 mm or more.
  • the larger the membrane element diameter the better the effect of the present invention, which is preferable.
  • the upper limit is considered to be about 420 mm from the viewpoint of ease of manufacturing the membrane element.
  • FIG. 9 shows the effect of the membrane element length.
  • the membrane element length that exhibits performance exceeding that of the conventional RO module is preferably about 0.2 to 1.6 m.
  • FIG. 10 shows the influence of the outer diameter of the hollow fiber membrane.
  • the outer diameter of the hollow fiber membrane increases, the amount of permeated water increases.
  • the specific outer diameter of the hollow fiber membrane is exceeded, the amount of permeated water gradually decreases. This is due to the fact that when the volume of the membrane element is kept constant, the membrane area decreases conversely as the hollow fiber membrane outer diameter is increased. From FIG. 10, it can be seen that when the hollow fiber membrane outer diameter at which the effect of the present invention is exhibited is read, performance exceeding the conventional RO module (Comparative Example 1) is exhibited in the range of about 160 ⁇ m to 270 ⁇ m.
  • the hollow fiber membrane module for forward osmosis produced in this way can obtain the amount of permeated water as an osmotic flow from the difference in osmotic pressure caused by the difference in the salinity concentration of water flowing between the outside and inside (hollow part) of the hollow fiber membrane. .
  • the low-concentration supply liquid can be concentrated or energy can be recovered from the osmotic flow.
  • a high pressure osmotic aqueous solution (seawater) and a low pressure, low osmotic pressure fresh water are brought into contact with each other through a forward osmosis membrane, so that the low pressure fresh water has a high pressure and high osmosis through the membrane.
  • the energy can be recovered by flowing into the pressurized aqueous solution and rotating the turbine or the like with the pressurized aqueous solution.
  • the inner diameter and outer diameter of the hollow fiber membrane are passed through an appropriate number so that the hollow fiber membrane does not fall out into a hole of ⁇ 3 mm formed in the center of the slide glass. Cut the hollow fiber membrane with a razor along the upper and lower surfaces of the slide glass to obtain a sample of the hollow fiber membrane cross section, and then measure the short diameter and long diameter of the cross section of the hollow fiber membrane using a projector Nikon PROFILE PROJECTOR V-12. Can be obtained. The short diameter and the long diameter in two directions were measured for each cross section of the hollow fiber membrane, and the respective arithmetic average values were defined as the inner diameter and the outer diameter of the single cross section of the hollow fiber membrane. The same measurement was performed for the five cross sections, and the average values were taken as the inner and outer diameters. The hollow ratio was calculated by (inner diameter / outer diameter) 2 ⁇ 100.
  • membrane area was determined from the outer diameter of the hollow fiber membrane, the number of hollow fiber membranes present in the hollow fiber membrane element, and the average effective length of the hollow fiber membranes.
  • Membrane area (m 2 ) ⁇ ⁇ Outer diameter of hollow fiber membrane (m) ⁇ Number of hollow fiber membranes ⁇ Average effective length of hollow fiber membrane (m)
  • the average effective length of the hollow fiber membrane was calculated as follows. The distance between the insides of the resin at the end of the element, that is, the effective length (LE) of the apparent hollow fiber membrane, the outer diameter (DO) of the element body, and the outer diameter (DI) of the porous pipe are measured.
  • the average effective length can be calculated by substituting the measured value together with the wind number (WD) into the following equation.
  • LO2 (LE) 2 + ( ⁇ ⁇ DO ⁇ WD) 2
  • LI2 (LE) 2 + ( ⁇ ⁇ DI ⁇ WD) 2
  • Average effective length ((LO2) 0.5 + (LI2) 0.5 ) / 2
  • the wind number was determined from the number of windings (number of rotations) around the central axis from one end of the hollow fiber membrane of the wound body to the other end.
  • the pressure is discharged from a nozzle arranged on the side of the communicating pressure vessel, and the pressure and flow rate are adjusted with a flow rate adjusting valve.
  • the supply pressure of the high concentration aqueous solution is PDS1 (MPa)
  • the supply flow rate is QDS1 (L / min)
  • the amount of discharged water of the high concentration aqueous solution is QDS2 (L / min)
  • the supply flow rate of fresh water is QFS1 (L / min)
  • the outflow flow rate was QFS2 (L / min) and the freshwater outflow pressure was PFS2 (kPa)
  • the flow rate increment (QDS2-QDS1) of the high-concentration aqueous solution under the conditions was measured as the amount of permeated water of the module.
  • a high concentration aqueous solution is obtained by performing continuous operation under the same operating conditions as the above-mentioned measurement of water permeability, except that highly contaminated simulated seawater for measuring contamination resistance is used instead of the high concentration aqueous solution.
  • the rate of contamination of the hollow fiber membrane element was measured as a rate.
  • composition of this highly polluted simulated seawater is that reverse osmosis membrane treated water has a sodium chloride concentration of 70 g / L, sodium alginate 0.8 g / L, colloidal silica (PL-7) 90 mg-SiO 2 / L, ferric chloride. Consists of 10 mg / L of hexahydrate.
  • Example 1 Cellulose triacetate (CTA, Daicel Chemical Industries, LT35) 41% by weight, N-methyl-2-pyrrolidone (NMP, Mitsubishi Chemical) 50% by weight, ethylene glycol (EG, Mitsubishi Chemical) 8.7% by weight, Benzoic acid (Nacalai Tesque) 0.3% by weight was uniformly dissolved at 180 ° C. to obtain a film forming stock solution.
  • the obtained film-forming stock solution was degassed under reduced pressure, and then discharged from an arc-type (three-division) nozzle into a space cut off from the outside air at 163 ° C. After passing through a space time of 0.03 seconds, NMP / EG / It was immersed in a 12 ° C.
  • the hollow fiber membrane was washed by a multistage inclined submerged washing method and shaken off in a wet state.
  • the obtained hollow fiber membrane was immersed in water at 90 ° C. and subjected to hot water treatment for 20 minutes.
  • the obtained hollow fiber membrane had an inner diameter of 85 ⁇ m and an outer diameter of 175 ⁇ m.
  • the obtained hollow fiber membranes were arranged in an intersecting manner around the porous pipes to form an aggregate of hollow fiber membranes.
  • the bundle of hollow fiber membranes was traversed while rotating the porous pipe around its axis, and the hollow fiber membranes were arranged in an intersecting manner by winding around the porous pipe.
  • both ends of the hollow fiber membrane assembly were fixed by potting with an epoxy resin, the both ends of the resin portion were cut to open the hollow portion of the hollow fiber membrane, thereby producing a hollow fiber membrane element.
  • the number of winds per element length is 0.5 in the portion (outer layer portion) from the outermost layer of the hollow fiber membrane wound body to 3/4 of the thickness of the wound body.
  • the number of winds per element length of the portion (inner layer portion) was 2.0, the length was about 70 cm, the outer diameter was 130 mm, the filling rate of the hollow fiber membrane was 51%, and the membrane area was 67 m 2 .
  • the hollow fiber membrane element was loaded into a pressure vessel and various tests were conducted as a module. The results are shown in Table 1 together with details of the hollow fiber membrane and elements.
  • Example 2 Using the same hollow fiber membrane as in Example 1, a hollow fiber membrane element was prepared in the same manner as in Example 1 except that the number of winds in the outer layer portion was changed to 1.0. The hollow fiber membrane element was loaded into a pressure vessel and various tests were conducted as a module. The results are shown in Table 1 together with details of the hollow fiber membrane and elements.
  • Example 3 A hollow fiber membrane element was produced in the same manner as in Example 1 except that the number of winds in the outer layer portion was changed to 1.5 using the same hollow fiber membrane as in Example 1.
  • the hollow fiber membrane element was loaded into a pressure vessel and various tests were conducted as a module. The results are shown in Table 1 together with details of the hollow fiber membrane and elements.
  • Example 4 Using the same hollow fiber membrane as in Example 1, in the outer layer portion (the portion from the outermost layer of the hollow fiber membrane roll-up body to 1/8 of the thickness of the roll-up body), the number of winds per element length is 1.0, A hollow fiber membrane element was prepared in the same manner as in Example 1 except that the number of winds in the other part (inner layer part) was changed to 2.0. The hollow fiber membrane element was loaded into a pressure vessel and various tests were conducted as a module. The results are shown in Table 1 together with details of the hollow fiber membrane and elements.
  • Example 5 Using the same hollow fiber membrane as in Example 1, the outer diameter of the element is 420 mm, and the outer layer portion (the portion from the outermost layer of the hollow fiber membrane roll-up body to 3/4 of the thickness of the roll-up body) per element length A hollow fiber membrane element was produced in the same manner as in Example 1 except that the number of winds was changed to 1.0 and the number of winds in other parts (inner layer part) was changed to 2.0. The hollow fiber membrane element was loaded into a pressure vessel and various tests were conducted as a module. The results are shown in Table 1 together with details of the hollow fiber membrane and elements.
  • Example 1 Comparative Example 1 Using the same hollow fiber membrane as in Example 1, a hollow fiber membrane element was prepared in the same manner as in Example 1 except that the number of winds in both the inner layer part and the outer layer part was changed to 2.0. The hollow fiber membrane element was loaded into a pressure vessel and various tests were conducted as a module. The results are shown in Table 1 together with details of the hollow fiber membrane and elements.
  • Example 2 A hollow fiber membrane element was prepared in the same manner as in Example 1 except that the same hollow fiber membrane as in Example 1 was used and the number of winds in the outer layer portion was changed to 0.25.
  • the hollow fiber membrane element was loaded into a pressure vessel and various tests were conducted as a module. The results are shown in Table 1 together with details of the hollow fiber membrane and elements.
  • Example 3 Using the same hollow fiber membrane as in Example 1, the outer layer (the portion from the outermost layer of the hollow fiber membrane roll-up body to 1/10 of the thickness of the roll-up body) has a wind number of 1.0, and the other parts ( A hollow fiber membrane element was produced in the same manner as in Example 1 except that the number of winds in the inner layer portion was changed to 2.0. The hollow fiber membrane element was loaded into a pressure vessel and various tests were conducted as a module. The results are shown in Table 1 together with details of the hollow fiber membrane and elements.
  • Example 6 After purifying the copolymerized polyamide obtained by low temperature solution polymerization method from terephthalic acid dichloride, 70 mol% 4,4'-diaminodiphenylsulfone and 30 mol% piperazine, 36 parts by weight of this was added 4 parts by weight of CaCl 2 (into the polymer). And a dimethylacetamide solution containing 3.6 parts by weight of diglycerin (relative to the polymer) at 80 ° C. to obtain a film-forming solution. After defoaming this solution, the solution was discharged from a three-part nozzle and immersed in a coagulating liquid cooled to 4 to 6 ° C. through an aerial traveling part to obtain a hollow fiber membrane. Next, the resulting hollow fiber membrane was washed with water and then heat-treated at 75 to 85 ° C. for 30 minutes. The obtained hollow fiber membrane had an inner diameter of 100 ⁇ m and an outer diameter of 200 ⁇ m.
  • the obtained hollow fiber membranes were arranged in an intersecting manner around the porous pipes to form an aggregate of hollow fiber membranes.
  • the bundle of hollow fiber membranes was traversed while rotating the porous pipe around its axis, and the hollow fiber membranes were arranged in an intersecting manner by winding around the porous pipe. After both ends of the hollow fiber membrane aggregate were potted and fixed with an epoxy resin, both ends of the resin portion were cut to open the hollow portions of the hollow fiber membranes to produce hollow fiber membrane elements.
  • the number of winds of the outer layer portion of the obtained hollow fiber membrane element (the portion from the outermost layer of the hollow fiber membrane roll to 3/4 of the thickness of the roll) is 1.0, and the wind of the other portion (inner layer) The number was 2.0, the length was about 70 cm, the outer diameter was 130 mm, the filling rate of the hollow fiber membrane was 51%, and the membrane area was 58 m 2 .
  • the hollow fiber membrane element was loaded into a pressure vessel and various tests were conducted as a module. The results are shown in Table 1 together with details of the hollow fiber membrane and elements.
  • Example 7 3,3′-Disulfo-4,4′-dichlorodiphenylsulfone disodium salt (S-DCDPS) 11.5 mol%, 2,6-dichlorobenzonitrile (DCBN) 38.5 mol%, 4,4′-biphenol 50 mol % Of the sulfonated polyarylethersulfone (SPN-23) obtained by polymerizing 1% by weight was previously dried at 110 ° C. for 12 hours, and then weighed 80 parts by weight. Thus, a film forming solution was obtained. This film-forming solution was maintained at 150 ° C., and EG was discharged as an internal liquid from a tube-in-orifice nozzle.
  • S-DCDPS 3,3′-Disulfo-4,4′-dichlorodiphenylsulfone disodium salt
  • DCBN 2,6-dichlorobenzonitrile
  • SPN-273 sulfonated polyarylethersulfone
  • the air gap length was 20 mm, and it was immersed in a coagulation bath composed of 3.5% by weight salt water. Subsequently, the hollow fiber membrane was washed by a multistage inclined submerged washing method and shaken off in a wet state. The obtained hollow fiber membrane was immersed in salt water having a concentration of 14.5% by weight, and annealed at a temperature of 98 ° C. for 20 minutes.
  • the obtained hollow fiber membranes were arranged in an intersecting manner around the porous pipes to form an aggregate of hollow fiber membranes.
  • the bundle of hollow fiber membranes was traversed while rotating the porous pipe around its axis, and the hollow fiber membranes were arranged in an intersecting manner by winding around the porous pipe. After both ends of the hollow fiber membrane aggregate were potted and fixed with an epoxy resin, both ends of the resin portion were cut to open the hollow portions of the hollow fiber membranes to produce hollow fiber membrane elements.
  • the number of winds of the outer layer portion of the obtained hollow fiber membrane element (the portion from the outermost layer of the hollow fiber membrane roll to 3/4 of the thickness of the roll) is 1.0, and the wind of the other portion (inner layer) The number was 2.0, the length was about 70 cm, the outer diameter was 130 mm, the filling rate of the hollow fiber membrane was 51%, and the membrane area was 71 m 2 .
  • the hollow fiber membrane element was loaded into a pressure vessel and various tests were conducted as a module. The results are shown in Table 1 together with details of the hollow fiber membrane and elements.
  • the hollow fiber membrane element for forward osmosis of the present invention is designed to have a structure with high water permeability of the membrane and excellent anti-contamination property, it generates energy using forward osmosis water treatment and concentration difference as driving force. Very useful in the field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

【課題】耐汚染性に優れ、しかも流動圧損が少ない(即ち、透過水量が多い)正浸透用中空糸膜エレメントを提供する。 【解決手段】多孔分配管の周りに中空糸膜を螺旋状に巻回することにより中空糸膜を交差状に配置した中空糸膜巻上げ体の両端部を開口させた両端開口型の中空糸膜エレメントであって、 a)前記中空糸膜巻上げ体の最外層から巻き上げ体の厚みの少なくとも1/8までの範囲において、エレメント長あたりのワインド数を0.33~1.75とし、 b)前記中空糸膜巻き上げ体の最内層から巻き上げ体の厚みの少なくとも1/4までの範囲において、エレメント長あたりのワインド数を1.75超としたことを特徴とする正浸透用中空糸膜エレメント。

Description

正浸透用中空糸膜エレメント及び膜モジュール
 本発明は、耐汚染性に優れ、しかも中空糸膜の中空部の流動圧損が小さく、膜透過水量が大きい正浸透用中空糸膜エレメント及び膜モジュールに関するものである。より詳しくは、本発明は、有機物の濃縮、回収や排水の濃縮による減容化、海水淡水化、または、低濃度の水溶液と高濃度の加圧状態の水溶液との濃度差を駆動力として淡水を透過させ、透過した淡水により増加した加圧状態の高濃度側の水溶液の流量と圧力でタービンを回すなどしてエネルギーを生成させることができるものである。特に、海水または濃縮海水と淡水との濃度差による浸透圧を利用して電力などのエネルギーを生成するための造水処理などに使用されることができるものである。
 膜分離法による液状混合物の分離・濃縮は、蒸留などの従来の分離技術に比べて相変化を伴わないため省エネルギー法であり、かつ物質の状態変化を伴わないことから、果汁の濃縮、ビール酵母の分離などの食品分野、あるいは工業排水からの有機物の回収といった多分野において幅広く利用されており、膜による水処理は、最先端技術を支える不可欠のプロセスとして定着している。
 このような膜を用いた水処理は、膜を集合させて一つの構成要素とした膜エレメントを圧力容器に装填した膜モジュールとして用いられており、特に、中空糸膜エレメントは、スパイラル型膜エレメントに比べ単位膜面積当たりの透水量は大きくないが、膜モジュール容積当たりの膜面積を大きくとることができるため、全体として透水量を大きくとることができ、容積効率が非常に高いという利点があり、コンパクト性に優れる。また、高濃度水溶液と淡水の両方をモジュール内に供給して半透膜を介して接触させる場合に、膜表面の濃度分極を小さく抑えられる。
 中空糸型逆浸透膜の場合、効率面から両端開口型が用いられている(特許文献1,2参照)。その場合の膜透過水の流れは、例えば図1の説明図に示すように、中空糸膜の外側から内側(中空部内)に流れ、両端の開口部から流出する。膜透過水が中空部を流れる流動長は、図1から明らかなように、中空糸膜全長の約半分である。この場合、中空糸膜の外側に海水が流れ、しかも中空糸膜の外側が加圧されるため、汚染物質が膜表面に圧着される方向の流れが発生し、海水中の汚れ成分が隣接する中空糸膜間に捕捉、堆積し、膜エレメントが汚染して性能に悪影響を及ぼす傾向がある。
 一方、中空糸型正浸透膜の場合もまた、両端開口型が用いられている(特許文献3参照)。その場合の膜透過水の流れは、例えば図2の説明図に示されるように、中空糸膜の内側(中空部内)から外側に流れる。例えば、高浸透圧のドローソリューション(DS)(海水)が中空糸膜の外側を流れ、低浸透圧のフィードソリューション(FS)(淡水)が中空糸膜の中空部を流れる場合は、膜透過水は中空糸膜の内側から外側に向かって流れる。この場合、膜透過水のもととなる淡水は、図2から明らかなように、中空糸膜の中空部を流れ、中空糸膜の一方の端部から他方の端部まで流れることになり、その流動長は中空糸膜の全長である。したがって、正浸透膜(FO膜)の場合の中空部内の流動圧損は、逆浸透膜(RO膜)の場合に比べて極めて大きい。
 RO膜の場合、中空糸膜の膜透過水による膜汚染を防止するため、例えば特許文献1では、膜エレメントを構成する中空糸膜を交差配置することによって、耐汚染性を向上させている。具体的には、中空糸膜の交差部を形成させることで、中空糸膜間の間隙を確保し、偏流、濃度分極の発生を抑制し、中空糸膜の外側表面に海水の濁質成分を溜まりにくく
している。この場合、交差配置された中空糸膜のエレメント長あたりのワインド数が大きい方が好ましく、それにより中空糸膜の交差部も多くなり、耐汚染性が向上する。特許文献1のRO膜では、図面から明らかなように、ワインド数2のものが開示されている。また、特許文献2のRO膜でも、ワインド数が2のものが具体的に開示されている。
 FO膜の場合にも、ワインド数2の交差配置の構造を適用すると、中空部を流れるFSの圧損が大きく、中空糸膜の有している透水性能を十分に発揮できない。これは、中空糸膜の中空部を流れるFSの流動圧損が大きいためであり、特に、正浸透の場合は、ワインド数が大きいことによる流動圧損への影響がRO膜の場合の約2倍あるためである。したがって、RO膜で採用されている中空糸膜の交差配置をFO膜にそのまま採用することはできない。
 以上のように、FO用の中空糸膜の耐汚染性を向上させるための有力な手段はなく、RO用の中空糸膜の交差配置を考慮したとしても、十分な透水性能を確保しながら耐汚染性も両立したものが従来から実現できていないのが現状である。
特公平3-14492号公報 特開2003-290632号公報 WO2012/002263号公報
 本発明は、上記の従来技術の現状に鑑み創案されたものであり、その目的は、耐汚染性に優れ、しかも流動圧損が少ない(十分な透過水量がある)正浸透用中空糸膜エレメント、及びそれを使用した膜モジュールを提供することにある。
 本発明者は、上記目的を達成するためにRO膜で採用されている交差配置についてさらに鋭意検討した結果、正浸透用の中空糸膜で交差配置を行なった場合に、特に中空糸膜の長さが長い中空糸膜巻上げ体の外層部のワインド数をある程度減らしても、膜透過水の流れ方向が逆浸透膜とは逆方向であるため、耐汚れ性の低下が逆浸透の場合に比べて極めて少ないこと、そしてそうすることにより高い流動圧損による透過水量の低下の影響を無視できるほど軽減できることを見い出し、本発明の完成に至った。
 即ち、本発明は、以下の(1)~(5)の構成を有するものである。
(1)多孔分配管の周りに中空糸膜を螺旋状に巻回することにより中空糸膜を交差状に配置した中空糸膜巻上げ体の両端部を開口させた両端開口型の中空糸膜エレメントであって、
a)前記中空糸膜巻上げ体の最外層から巻き上げ体の厚みの少なくとも1/8までの範囲において、エレメント長あたりのワインド数を0.33~1.75とし、
b)前記中空糸膜巻き上げ体の最内層から巻き上げ体の厚みの少なくとも1/4までの範囲において、エレメント長あたりのワインド数を1.75超としたことを特徴とする正浸透用中空糸膜エレメント。
(2)前記中空糸膜巻上げ体の最外層から巻き上げ体の厚みの最大3/4までの範囲において、エレメント長あたりのワインド数を0.33~1.75としたことを特徴とする(1)に記載の正浸透用中空糸膜エレメント。
(3)前記エレメントの外径が130mm以上であることを特徴とする(1)または(2)に記載の正浸透用中空糸膜エレメント。
(4)中空糸膜が、酢酸セルロース系樹脂、ポリアミド系樹脂、及びスルホン化ポリスルホン系樹脂からなる群から選ばれる1種以上の樹脂からなることを特徴とする(1)~(3)のいずれかに記載の正浸透用中空糸膜エレメント。
(5)中空糸膜の外径が160~270μmであることを特徴とする(1)~(4)のいずれかに記載の正浸透用中空糸膜エレメント。
(6)中空糸膜巻上げ体の外径が130~420mm、長さが0.2~1.6mであることを特徴とする(1)~(5)のいずれかに記載の正浸透用中空糸膜エレメント。
(7)(1)~(6)のいずれかに記載の正浸透用中空糸膜エレメント1本以上を容器に装填したことを特徴とする正浸透用中空糸膜モジュール。
 本発明の中空糸膜エレメント及び中空糸膜モジュールは、エレメント長あたりのワインド数を従来の逆浸透用のものに比べて、特に中空糸膜が長い外層部をかなり小さくしているので、正浸透運転における中空部内の流体の流動圧損の影響を低減することができ、結果として高い膜透過水量を得ることが可能である。また、ワインド数を本発明で規定される範囲で低減しても、正浸透運転時では、逆浸透の場合とは異なり、高い耐汚染性が維持される。
中空糸型逆浸透膜の場合の膜透過水の流れの説明図である。 中空糸型正浸透膜の場合の膜透過水の流れの説明図である。 本発明の中空糸膜エレメントの一例を示す説明図である。 本発明の中空糸膜モジュールの一例を示す説明図である。 中空糸膜束単位で構成した交差配置の一例を示す写真である。 ワインド数が2.0,1.5,1.0のときの中空糸膜の状態を示す概略図である。 本発明の中空糸膜エレメントの容積あたりの透過水量と耐汚染性の関係について、ワインド数の影響を表すグラフである。 本発明の中空糸膜エレメントの容積あたりの透過水量と耐汚染性の関係について、エレメント径の影響を表すグラフである。 本発明の中空糸膜エレメントの容積あたりの透過水量と耐汚染性の関係について、エレメント長の影響を表すグラフである。 本発明の中空糸膜エレメントの容積あたりの透過水量と耐汚染性の関係について、中空糸膜外径の影響を表すグラフである。
 本発明の正浸透用中空糸膜エレメント及び膜モジュールについて以下詳述する。
 本発明の膜エレメントが使用される正浸透は、高濃度で浸透圧が高い水溶液と低濃度で浸透圧が低い水溶液とを半透膜を介して接触させると、浸透圧の低い水溶液から浸透圧の高い水溶液側に淡水が移動する現象を利用した水処理方法である。例えば、中空糸膜の外側に高濃度で浸透圧が高い水溶液を流し、中空糸膜の中空部に低濃度で浸透圧が低い水溶液を流す場合には、中空部内の流動圧損が大きいと中空部内を流れる水量が低下し膜透過水量が低下する。また、中空糸膜の外側に高濃度で浸透圧が高い水溶液として海水を流す場合には、中空糸膜間や膜面に汚染物質が付着、堆積し、経時的な透過水量の低下が生じる。
 本発明の中空糸膜エレメントは、スパイラル型の平膜と比べてエレメントあたりの膜面積を多くとることができ、中空糸膜の大きさにもよるが、ほぼ同サイズのエレメントの場合、スパイラル型のおよそ10倍の膜面積を得ることができる。従って、中空糸膜は、同じ透水量を得る際に単位膜面積あたりの処理量が極めて少なくて良く、スパイラル型に比べて供給水が膜を透水する際に生じる膜面の汚れを減少でき、膜の洗浄までの運転時間を長くとることができる。さらに、エレメント内の偏流が生じにくいため、濃度差を駆動力として水処理を行う場合は好適である。
 本発明の中空糸膜の素材は、逆浸透膜相当レベルの高い分離性能を発現できる限り、特に限定されず、例えば、酢酸セルロース系、ポリアミド系、ポリビニルアルコール系、スルホン化ポリスルホン系等の樹脂が使用可能である。この中では、酢酸セルロース系樹脂、スルホン化ポリスルホンやスルホン化ポリエーテルスルホンなどのスルホン化ポリスルホン系樹脂が、殺菌剤である塩素に対する耐性があり、微生物の増殖を容易に抑制することができる点で好ましい。特に、膜面での微生物汚染を効果的に抑制できる特徴がある。酢酸セルロースの中では、耐久性の点で三酢酸セルロースが好ましい。
 本発明の中空糸膜の外径は、好ましくは160~270μmである。外径が前記範囲より小さいと、必然的に内径も小さくなるため、上述の内径と同じ問題が生じうる。一方、外径が前記範囲より大きいと、モジュールにおける単位容積あたりの膜面積を大きくすることができなくなり、中空糸膜モジュールのメリットの一つであるコンパクト性が損なわれる。
 本発明の中空糸膜の中空率は、好ましくは20~42%である。中空率が前記範囲より小さいと、中空部の流動圧損が大きくなり、所望の透過水量が得られない可能性がある。また、中空率が前記範囲より大きいと、正浸透処理での使用であっても十分な耐圧性を確保できない可能性がある。
 なお、中空率(%)は下記式により求めることができる。
中空率(%)=(内径/外径)×100
 本発明の中空糸膜の内径は、前記好ましい外径に対して前記中空率を充足する範囲であればよく、好ましくは70~175μmである。内径が前記範囲より小さいと、中空部を流れる流体の圧力損失が一般に大きくなり、そのため中空糸膜の長さを比較的長くした場合に所望の淡水流量を流す場合に過大に高い圧力が必要となり、エネルギーロスの原因となりうる。一方、内径が前記範囲より大きいと、中空率とモジュール膜面積のトレードオフの関係となり、使用圧力における耐久性または単位容積あたりの膜面積のいずれかを犠牲にする必要が生じうる。
 本発明の中空糸膜エレメントは、中空糸膜巻上げ体の両端部を樹脂で封止した後、樹脂の一部を切断し中空糸膜の両端部を開口させたものであり、中空糸膜巻上げ体は、多孔分配管の周りに中空糸膜または中空糸膜の束を螺旋状に巻上げることによって、中空糸膜が半径方向に積層されることにより形成される。その場合に、中空糸膜は交差状に配置される。図3に、中空糸膜が交差状に配置された本発明の中空糸膜エレメントの一例の概略図を示す。交差配置を採ることにより、中空糸膜の交差部に空隙が規則的に形成される。この規則的な空隙が存在するため、中空糸膜の外側を流れる流体中の非溶解成分や粒子成分等が、中空糸膜間に捕捉されることが少なく、圧力損失の増大が生じにくい。一方、中空糸膜が平行に配置されている場合は、最密充填でない場合は中空糸膜間隙にばらつきが生じやすく、流体中の非溶解成分や粒子成分等が中空糸膜間に捕捉され、圧力損失が増大したり、偏流を生じる原因となる。従って、中空糸膜を交差状に配置することで、中空糸膜の外側を流れる流体の非溶解成分からなる汚染物質の許容量が平行配置の場合に比べ大きくなり、結果的に中空糸膜エレメントの耐汚染性が向上することになる。なお、この交差配置の形成は中空糸膜が細く強度が十分ない場合は、中空糸膜束単位で形成しても、同様の効果が得られる。
 多孔分配管は、供給液を中空糸膜の外側に供給する場合、供給流体入口から供給される流体を中空糸膜集合体に分配させる機能を有する管状部材である。多孔分配管は、中空糸膜集合体の好ましくは中心部に位置させる。多孔分配管の径は大きすぎると、膜モジュール内の中空糸膜が占める領域が減少し、結果として膜エレメントまたは膜モジュールの膜面積が減少するため容積あたりの透水量が低下することがある。また、多孔分配管の径が小さすぎると、供給流体が多孔分配管内を流動する際に圧力損失が大きくなり、結果として中空糸膜にかかる有効差圧が小さくなり処理効率が低下することがある。また、強度が低下して、供給流体が中空糸膜層を流れる際に受ける中空糸膜の張力により多孔分配管が破損する場合がある。これらの影響を総合的に考慮し、最適な径を設定することが重要である。中空糸膜エレメントの断面積に対して多孔分配管の断面積の占める面積割合は、4~20%が好ましい。
 中空糸膜巻上げ体の外径は、好ましくは130~420mmである。外径が大きすぎると、膜交換作業等の維持管理での操作性が悪くなりうる。外径が小さすぎると、単位膜エレメント当りの膜面積が減少し、処理量が小さくなり、経済性の点で好ましくない。
 中空糸膜巻上げ体の長さは、好ましくは0.2~1.6mである。この長さが長すぎると、中空糸膜の中空内部の流動圧損が大きくなり正浸透性能が低下しうる。短すぎると、単位膜エレメント当りの膜面積が減少し処理量が少なくなり、経済性の点で好ましくない。
 中空糸膜巻上げ体における中空糸膜の充填率は、好ましくは40~65%である。充填率が大きすぎると、中空糸膜間の隙間が小さくなりすぎて交差配置の効果が発現しにくい。また、充填率が小さすぎると、中空糸膜本数が少なく膜面積が少ないため処理量が少なく経済性の面で好ましくない。この充填率は、中空糸膜巻上げ体の中心軸と垂直の断面において、巻上げ体の断面積に対する中空糸膜の外径が占める総面積の割合であり、次式で計算されることができる。
 充填率(%)=中空糸膜の外径(m)×π/4×中空糸膜本数/巻上げ体の断面積(m)×100
 本発明の中空糸膜エレメントは、交差状に配置された中空糸膜のエレメント長あたりのワインド数が前記中空糸膜巻上げ体の最外層から巻き上げ体の厚みの少なくとも1/8までの範囲(外層部)において、エレメント長あたりのワインド数を0.33~1.75とすることを最大の特徴とする。前記ワインド数はより好ましくは0.5~1.5である。ここで、ワインド数とは、前述の交差配置を形成する場合の中空糸膜巻上げ体の一端から他端まで移動する間に巻き上げられる回数を言う。ワインド数が大きいほど中空糸膜の交差部の数が増加する。例えば、ワインド数が1.0の場合は、交差部の軸方向位置が巻き上げ体の中央部となる。また、ワインド数が1.5の場合は、交差部が軸方向に2ケ所となり、ワインド数が2.0の場合は、交差部が軸方向に3ケ所となる。中空糸膜が巻き上げ体の中心軸となす角度は、中空糸膜巻き上げ体の内層で小さく、外層部ほど大きくなる。その角度は、巻き上げ体の長さと外径で決まる。
 また、ワインド数を小さくする巻き上げ体の外層部の範囲は、中空糸膜長が長い外側であるほど効果があるが、最外層から巻き上げ体の厚みの少なくとも1/8までの部分とする。例えば、エレメント径が130mm程度の場合には、最外層から巻き上げ体の厚みの1/8程度の部分についてワインド数を小さくすればよい。しかし、外径が420mmのような比較的大口径のエレメントの場合には、最外層から巻き上げ体の厚みの1/4とか、1/3とか、最大3/4程度の部分のワインド数を小さくするのが好ましい。また、最外層から巻き上げ体の厚みの1/4までの部分は、ワインド数を0.33~0.75とし、最外層から巻き上げ体の厚みの1/4を超えて1/2までの部分は、ワインド数を0.75~1.25とし、さらに最外層から巻き上げ体の厚みの1/2を超えて3/4までの部分は、ワインド数を1.25~1.75とするような、巻き上げ体の外側にいくに従い段階的にワインド数を小さくする態様も本発明の範囲内である。なお、エレメント径が小さい場合に、本発明を適用しても大きな問題は無いが、エレメント径が130mm以上の場合に本発明の効果が顕著に現れるため好ましい。
 一方、低ワインド数領域を中空糸膜長が短い内層部まで広げると、圧損の低減効果が小さく、耐汚染性が低下する可能性がある。したがって、内層部のワインド数は1.75超とすることが好ましい。
 中空糸膜が交差状に配置された中空糸膜エレメントは、逆浸透用において従来提案されているが、いずれもワインド数が本発明で規定する範囲より大きく、具体的にはワインド数が2である。本発明の正浸透用中空糸膜エレメントにおいて、ワインド数が2である従来の中空糸膜の交差配置をそのまま採用すると、高い耐汚染性を得ることはできるが、中空部を流れる流体の流動圧損が大きすぎるため、十分な透過水量を確保できない。これは、図1と図2の比較から明らかなように、逆浸透と正浸透では、中空糸膜の中空部を流れる流体の流動長に約2倍の差があり、正浸透の方がワインド数の増加による流動圧損の影響を大きく受けるためである。特に、中空糸膜エレメントの外層部ほど中空糸膜長が長いためその影響が大きい。従って、外層部のワインド数は、流動圧損の影響を大きく受けないように上で規定される本発明の範囲の上限以下に低くすることが必要である。一方、ワインド数を小さくすると、逆浸透用では、耐汚染性が著しく低下してしまうが、正浸透用ではワインド数の減少による耐汚染性の低下が逆浸透用に比べて極めて小さい。これは、逆浸透と正浸透の膜透過水の流れ方向の違いに起因するものである。具体的には、図1及び図2から明らかなように、逆浸透の場合には、中空糸膜の外側を流れる海水を加圧することにより、海水中の淡水が膜を透過するため、汚染物質が中空糸膜間に捕捉、堆積しやすいのに対して、正浸透の場合には、同様に中空糸膜の外側を海水が流れるが、中空糸膜の中空部を流れる流体中の淡水が中空糸膜を透過するため、汚染物質が膜表面に堆積し難い特徴を有するからである。但し、ワインド数をあまり小さくしすぎると、正浸透であっても耐汚染性が低下するので、上で規定される本発明の範囲の下限以上のワインド数にすることが必要である。
 本発明の中空糸膜は、例えば、特許3591618号公報に記載されているように、三酢酸セルロース、エチレングリコール(EG)、N-メチル-2-ピロリドン(NMP)よりなる製膜溶液を3分割ノズルより吐出し、空中走行部を経て、水/EG/NMPよりなる凝固液中に浸漬させて中空糸膜を得、次いで中空糸膜を水洗した後、熱処理することにより酢酸セルロース系中空糸膜を製造することができる。また、テレフタル酸ジクロリド及び4,4’-ジアミノジフェニルスルホン、ピペラジンより低温溶液重合法で得た共重合ポリアミドを精製した後、CaCl及びジグリセリンを含むジメチルアセトアミド溶液に溶解して製膜溶液とし、この溶液を3分割ノズルより空中走行部を経て凝固液中に吐出させ、得られた中空糸膜を水洗した後、熱処理することによりポリアミド系中空糸膜を製造することができる。
 上記のようにして得られた本発明の中空糸膜は、従来公知の方法により中空糸膜エレメントに組み込まれる。中空糸膜の組み込みは、例えば、特許4412486号公報、特許4277147号公報、特許3591618号公報、特許3008886号公報などに記載されているように、中空糸膜を45~90本集めて1つの中空糸膜集合体とし、さらにこの中空糸膜集合体を複数横に並べて偏平な中空糸膜束として、多数の孔を有する多孔分配管にトラバースさせながら巻き付ける。この時の多孔分配管の長さ及び回転速度、中空糸膜束のトラバース速度を調節することによって、巻き上げ体の特定位置の周面上に交差部が形成するように巻き上げる。次に、この巻き上げ体の両端部を接着した後、両側を切削して中空糸膜開口部を形成させ中空糸膜エレメントを作製する。
 上述のようにして作製された本発明の正浸透用中空糸膜エレメントは、1本以上を容器、特に運転圧力に耐える耐圧性を有する圧力容器に装填することにより、正浸透用中空糸膜モジュールとすることができる。この正浸透用中空糸膜モジュールは、図4に示されるように4ケ所のノズルを有している。そのうちの2ケ所は、高浸透圧を有する高濃度溶液の入口ノズルと出口ノズルであり、高濃度溶液は中空糸膜の外側に接液する空間と連通しているものであって、入口ノズルはエレメントの多孔分配管の入口と連通し、出口ノズルは中空糸膜エレメントの最外層部と接液する空間と連通している。一方、他の2ケ所は、低浸透圧の低濃度の淡水の入口ノズルと出口ノズルであり、中空糸膜の中空部の開口端部とそれぞれ接液する空間と連通している。
 後述する実施例の結果に基づいて、膜エレメント容積あたりの透過水量と耐汚染性(差圧上昇率)との関係を表すグラフを図7に示す。このグラフから明らかなように、従来型のRO用の膜エレメント(ワインド数(WD)が2)に対して、外層部のワインド数を少なくするに従い、膜エレメント容積あたりの透過水量と差圧上昇率が指数関数的に上昇することが読み取れる。例えば、ワインド数を2から1.5にすると、膜エレメント容積あたりの透過水量はおよそ1.2倍、ワインド数を0.5にすると、同透過水量はおよそ1.7倍にもなる。一方、差圧上昇率は、ワインド数が1を下回るあたりから急激に大きくなる傾向がある。また、このような曲線の傾きから考えるとワインド数を小さくしすぎると膜エレメント間での性能のばらつきが大きくなることが容易に予想できる。このような関係から、本発明においては、より大きな透過水量を確保しながら差圧上昇率を極力抑えることができる膜エレメントのワインド数を0.33~1.75、好ましくは0.5~1.5としている。なお、膜エレメントあたりの透過水量および差圧上昇率の数値自体は、中空糸膜の性能に依存するため、特に数値自体には大きな意味を持つものではない。
 膜エレメント容積あたりの透過水量および差圧上昇率に影響を与えるパラメーターとして、膜エレメント径、膜エレメント長、中空糸膜外径についても同様に関係性を調べた。その関係をそれぞれ表すグラフが図8~10である。これらのパラメーターの変化は、差圧上昇率には影響を与えないが、膜エレメントあたりの透過水量には影響を与える。例えば、図8は膜エレメント径の変化による影響を見たものであるが、膜エレメント径を大きくするに従い、膜エレメント容積あたりの透過水量は漸次低下していき最終的にほぼ横ばいになる。すなわち、膜エレメント径は小さいほど膜エレメントあたりの透過水量が大きくなり好ましいが、膜エレメント径が小さい場合には、中空糸膜中空部の流動圧損を低減するという本発明の目的効果が発揮されないため、膜エレメント径は130mm以上が好ましい。また、膜エレメント径は大きいほど本発明の効果が優位になるため好ましいが、膜エレメント製造のし易さなどの面から420mm程度が上限と思われる。
 図9は、膜エレメント長による影響を見たものである。膜エレメント長を長くしていくと、膜エレメント容積あたりの透過水量は、特定の長さでピークを迎え、それよりも長くなると次第に同透過水量が低下していく傾向が見られる。ここで、従来ROモジュール(比較例1)を超える性能を発現する膜エレメント長としては、およそ0.2m~1.6m程度が好ましいことがわかる。
 図10は、中空糸膜外径による影響を見たものである。中空糸膜外径が大きくなるに従い、透過水量は大きくなるが、特定の中空糸膜外径を超えると、透過水量は次第に低下する。これは、膜エレメントの容積を一定とした際に、中空糸膜外径を大きくしていくと膜面積は逆に減少していくことによるものである。図10から、本発明の効果が発揮される中空糸膜外径を読み取ると、およそ160μm~270μmの範囲で従来ROモジュール(比較例1)を超える性能を発現することが読み取れる。
 このようにして作製された正浸透用中空糸膜モジュールは、中空糸膜の外側と内側(中空部)を流れる水の塩分濃度の差によって生じる浸透圧差から浸透流として透過水量を得ることができる。これにより、低濃度供給液から淡水を取出したり、淡水を取出すことにより、低濃度供給液を濃縮したり、浸透流からエネルギーを回収することができる。具体的には、加圧状態の高浸透圧水溶液(海水)と低圧の低浸透圧の淡水を正浸透膜を介して接触させることで、低圧の淡水が、膜を介して高い圧力の高浸透圧水溶液へ流入し、その加圧状態の水溶液でタービン等を回転させてエネルギーを回収することができる。
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例で測定された特性値の測定は、以下の方法に従った。
(1)内径、外径、中空率の測定
 中空糸膜の内径、外径は、中空糸膜をスライドグラスの中央に開けられたφ3mmの穴に中空糸膜が抜け落ちない程度に適当本数通し、スライドグラスの上下面に沿ってカミソリにより中空糸膜をカットし、中空糸膜断面サンプルを得た後、投影機Nikon PROFILE PROJECTOR V-12を用いて中空糸膜断面の短径、長径を測定することにより得られる。中空糸膜断面1個につき2方向の短径、長径を測定し、それぞれの算術平均値を中空糸膜断面1個の内径および外径とした。5つの断面について同様に測定を行い、平均値を内径、外径とした。
 中空率は(内径/外径)×100で算出した。
(2)エレメント長の測定
 中空糸膜巻上げ体の両端部を樹脂で封止した後、樹脂の一部を切断し中空糸膜の両端部を開口させた中空糸膜エレメントの一方の開口端部から他方の開口端部までの中心軸と平行な直線距離を測定して求めた。
(3)エレメント径の測定
 中空糸膜エレメントの樹脂で封止して形成された開口端部の直径を測定した。
(4)エレメントあたりの膜面積の測定
 膜面積は、中空糸膜の外径、中空糸膜エレメントに存在する中空糸膜の本数、中空糸膜の平均有効長から求めた。
 膜面積(m)=π×中空糸膜外径(m)×中空糸膜本数×中空糸膜の平均有効長(m)
 なお、中空糸膜の平均有効長は、以下のように算出した。
 エレメントの端部の樹脂の内側同士の距離、すなわち見かけの中空糸膜の有効長(LE)、エレメント胴部の外径(DO)、多孔分配管の外径(DI)を測定し、これらの測定値をワインド数(WD)とともに下記の式に代入することにより、平均有効長を算出することができる。
 LO2=(LE)+(π×DO×WD)
 LI2=(LE)+(π×DI×WD)
 平均有効長=((LO2)0.5+(LI2)0.5)/2
(5)エレメント容積の測定
 前述の膜エレメント径と膜エレメント長より下記式により求めた。
エレメント容積(m)=π×エレメント端部外径(m)/4×エレメント長(m)
(6)ワインド数の測定
 ワインド数は、巻き上げ体の中空糸膜の一方の端部から他方の端部に渡るまでの中心軸に対する巻き付いている回数(回転回数)から求めた。
(7)充填率の測定
 中空糸膜巻き上げ体に存在する中空糸膜総容積(中空糸膜外径基準)を中空糸膜巻き上げ体の容積で割って求めた。
  充填率(%)=π×(中空糸膜の外径)/4(m)×中空糸膜の総全長(m)/中空糸膜巻上げ体容積(m)×100%
 なお、中空糸膜巻き上げ体容積=π×(DO)×(LE)
    中空糸膜の総全長=平均有効長×中空糸膜本数
(8)透過水量の測定
 中空糸膜エレメント1本を圧力容器に装填して中空糸膜モジュールを作成し、中空糸膜のそれぞれの開口部に連通するノズルのうち、一方のノズルより塩化ナトリウム濃度0.2g/Lの淡水を供給ポンプで供給し、他方のノズルから淡水を流出させた。一方、塩化ナトリウム濃度70g/Lの高濃度水溶液を中空糸膜の外側に連通する多孔分配管に供給ポンプで供給し、中空糸膜の外側を通過させた後、中空糸膜集合体の外側に連通する圧力容器の側面に配置するノズルから流出させ、流量調整バルブで、圧力と流量を調整する。高濃度水溶液の供給圧力をPDS1(MPa)、供給流量をQDS1(L/min)、高濃度水溶液の排出水量をQDS2(L/min)、淡水の供給流量をQFS1(L/min)、淡水の流出流量をQFS2(L/min)、淡水の流出圧力をPFS2(kPa)とした場合、その条件での高濃度水溶液の流量増分(QDS2-QDS1)をモジュールの透過水量として測定した。温度は25℃に調整した。
 PDS1=2.2MPa
 PFS2=10kPa以下
 QDS1/(QDS2-QDS1)=2
 QFS2/(QDS2-QDS1)=0.1
 ただし、淡水の入口圧力は0.1MPaとし、0.1MPaを越える場合は、0.1MPaとなるようにQFS1を設定した。
 なお、比較例1(従来タイプROモジュール)の透過水量を基準として、各実施例の透過水量増加率を下記式にしたがって算出した。
 例)透過水量増加率(%)=(実施例1の透過水量―比較例1の透過水量)/比較例1の透過水量×100
(9)耐汚染性の測定
 高濃度水溶液の代わりに耐汚染性測定用の高汚染模擬海水を用いた以外は上記の透水量の測定と同様の運転条件で連続運転を実施し、高濃度水溶液の供給圧力(PDS1)と出口圧力(PDS2)との差圧(PDS1-PDS2)の推移等を測定し、100時間後の差圧と高濃度水溶液の場合の差圧との比を差圧上昇率として、中空糸膜エレメントの汚染状況を測定した。なお、この高汚染模擬海水の組成は、逆浸透膜処理水に塩化ナトリウム濃度70g/L、アルギン酸ナトリウム0.8g/L、コロイダルシリカ(PL-7)90mg-SiO/L、塩化第二鉄六水和物10mg/Lからなる。
(実施例1)
 三酢酸セルロース(CTA、ダイセル化学工業社、LT35)41重量%、N-メチル-2-ピロリドン(NMP、三菱化学社)50重量%、エチレングリコール(EG、三菱化学社)8.7重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸膜を90℃の水に浸漬し、20分間熱水処理を行った。
 得られた中空糸膜は、内径が85μm、外径が175μmであった。
 得られた中空糸膜を多孔分配管の周りに交差状に配置させ、中空糸膜の集合体を形成させた。多孔分配管をその軸を中心に回転させながら中空糸膜の束をトラバースさせ、多孔分配管の周りに巻きつけることにより中空糸膜を交差状に配置させた。この中空糸膜の集合体の両端部をエポキシ樹脂でポッティングさせて固定させた後、樹脂部の両端部を切断して中空糸膜の中空部を開口させて中空糸膜エレメントを作製した。
 得られた中空糸膜エレメントは、中空糸膜巻き上げ体の最外層から巻き上げ体の厚みの3/4までの部分(外層部)において、エレメント長あたりのワインド数が0.5であり、それ以外の部分(内層部)のエレメント長あたりのワインド数が2.0であり、長さ約70cm、外径130mm、中空糸膜の充填率51%、膜面積は67mであった。この中空糸膜エレメントを圧力容器に装填してモジュールとして各種試験を行なった。その結果を中空糸膜とエレメントの詳細とともに表1に示す。
(実施例2)
 実施例1と同様の中空糸膜を用いて、外層部のワインド数を1.0に変更した以外は、実施例1と同様にして中空糸膜エレメントを作成した。この中空糸膜エレメントを圧力容器に装填してモジュールとして各種試験を行なった。その結果を中空糸膜とエレメントの詳細とともに表1に示す。
(実施例3)
 実施例1と同様の中空糸膜を用いて、外層部のワインド数を1.5に変更した以外は、実施例1と同様にして中空糸膜エレメントを作成した。この中空糸膜エレメントを圧力容器に装填してモジュールとして各種試験を行なった。その結果を中空糸膜とエレメントの詳細とともに表1に示す。
(実施例4)
 実施例1と同様の中空糸膜を用いて、外層部(中空糸膜巻上げ体の最外層から巻き上げ体の厚みの1/8までの部分)において、エレメント長あたりのワインド数を1.0、それ以外の部分(内層部)のワインド数を2.0に変更した以外は、実施例1と同様にして中空糸膜エレメントを作成した。この中空糸膜エレメントを圧力容器に装填してモジュールとして各種試験を行なった。その結果を中空糸膜とエレメントの詳細とともに表1に示す。
(実施例5)
 実施例1と同様の中空糸膜を用いて、エレメントの外径を420mm、外層部(中空糸膜巻上げ体の最外層から巻き上げ体の厚みの3/4までの部分)において、エレメント長あたりのワインド数を1.0、それ以外の部分(内層部)のワインド数を2.0に変更した以外は、実施例1と同様にして中空糸膜エレメントを作成した。この中空糸膜エレメントを圧力容器に装填してモジュールとして各種試験を行なった。その結果を中空糸膜とエレメントの詳細とともに表1に示す。
(比較例1)
 実施例1と同様の中空糸膜を用いて、内層部も外層部もワインド数を2.0に変更した以外は、実施例1と同様にして中空糸膜エレメントを作成した。この中空糸膜エレメントを圧力容器に装填してモジュールとして各種試験を行なった。その結果を中空糸膜とエレメントの詳細とともに表1に示す。
(比較例2)
 実施例1と同様の中空糸膜を用いて、外層部のワインド数を0.25に変更した以外は、実施例1と同様にして中空糸膜エレメントを作成した。この中空糸膜エレメントを圧力容器に装填してモジュールとして各種試験を行なった。その結果を中空糸膜とエレメントの詳細とともに表1に示す。
(比較例3)
 実施例1と同様の中空糸膜を用いて、外層部(中空糸膜巻上げ体の最外層から巻き上げ体の厚みの1/10までの部分)のワインド数を1.0、それ以外の部分(内層部)のワインド数を2.0に変更した以外は、実施例1と同様にして中空糸膜エレメントを作成した。この中空糸膜エレメントを圧力容器に装填してモジュールとして各種試験を行なった。その結果を中空糸膜とエレメントの詳細とともに表1に示す。
(実施例6)
 テレフタル酸ジクロリド及び70mol%の4,4’-ジアミノジフェニルスルホン、30mol%のピペラジンより低温溶液重合法で得た共重合ポリアミドを精製した後、このもの36重量部をCaCl 4重量部(ポリマーに対して)及びジグリセリン3.6重量部(ポリマーに対して)を含むジメチルアセトアミド溶液に80℃で溶解し、製膜溶液とした。この溶液を脱泡した後、3分割ノズルより吐出し、空中走行部を経て4~6℃に冷却した凝固液中に浸漬し中空糸膜を得た。次いで得られた中空糸膜を水洗した後、75~85℃で30分間熱処理した。得られた中空糸膜は、内径100μm、外径200μmであった。
 得られた中空糸膜を多孔分配管の周りに交差状に配置させ、中空糸膜の集合体を形成させた。多孔分配管をその軸を中心に回転させながら中空糸膜の束をトラバースさせ、多孔分配管の周りに巻きつけることにより中空糸膜を交差状に配置させた。この中空糸膜の集合体の両端部をエポキシ樹脂でポッティングして固定させた後、樹脂部の両端部を切断して中空糸膜の中空部を開口させて中空糸膜エレメントを作製した。
 得られた中空糸膜エレメントの外層部(中空糸膜巻上げ体の最外層から巻き上げ体の厚みの3/4までの部分)のワインド数は1.0、それ以外の部分(内層部)のワインド数は2.0、長さ約70cm、外径130mm、中空糸膜の充填率51%、膜面積は58mであった。この中空糸膜エレメントを圧力容器に装填してモジュールとして各種試験を行なった。その結果を中空糸膜とエレメントの詳細とともに表1に示す。
(実施例7)
 3,3’-ジスルホ-4,4’-ジクロロジフェニルスルホン2ナトリウム塩(S-DCDPS)11.5mol%、2,6-ジクロロベンゾニトリル(DCBN)38.5mol%、4,4’-ビフェノール50mol%を重合して得たスルホン化ポリアリールエーテルスルホン(SPN-23)を、予め110℃12時間乾燥した後、80重量部量りとり、続いてNMP108重量部、EG12重量部を170℃で攪拌溶解して製膜溶液を得た。
 この製膜溶液を150℃に保ちチューブインオリフィス型ノズルから、EGを内液として吐出した。エアギャップ長を20mmとし、濃度3.5重量%の塩水からなる凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸膜を濃度14.5重量%の塩水に浸漬させ、温度98℃、時間20分の条件でアニール処理を行った。
 得られた中空糸膜を多孔分配管の周りに交差状に配置させ、中空糸膜の集合体を形成させた。多孔分配管をその軸を中心に回転させながら中空糸膜の束をトラバースさせ、多孔分配管の周りに巻きつけることにより中空糸膜が交差状に配置された。この中空糸膜の集合体の両端部をエポキシ樹脂でポッティングして固定させた後、樹脂部の両端部を切断して中空糸膜の中空部を開口させて中空糸膜エレメントを作製した。
 得られた中空糸膜エレメントの外層部(中空糸膜巻上げ体の最外層から巻き上げ体の厚みの3/4までの部分)のワインド数は1.0、それ以外の部分(内層部)のワインド数は2.0、長さ約70cm、外径130mm、中空糸膜の充填率51%、膜面積は71mであった。この中空糸膜エレメントを圧力容器に装填してモジュールとして各種試験を行なった。その結果を中空糸膜とエレメントの詳細とともに表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~7の中空糸膜エレメントはいずれも、高い透水量(容積あたりの高い膜透過水量)と耐汚染性(低いモジュール差圧上昇率)を両立している。一方、比較例1は、耐汚染性は良好であったが、外層部の中空糸膜長が長いために圧損の影響を受け透水量が低い。また、比較例2は、透水量は高いが、耐汚染性が低いため、実用的に問題がある。比較例3は、巻き上げ体の最外層から巻き上げ体の厚みの高々1/10の部分のワインド数を低下させただけであるので透水量、耐汚染性いずれも顕著な効果が得られなかった。
 本発明の正浸透用中空糸膜エレメントは、膜の透水性能が高く、しかも耐汚染性に優れる構造に設計されているので、正浸透用の水処理や濃度差を駆動力としてエネルギーを生成する分野において極めて有用である。

Claims (7)

  1.  多孔分配管の周りに中空糸膜を螺旋状に巻回することにより中空糸膜を交差状に配置した中空糸膜巻上げ体の両端部を開口させた両端開口型の中空糸膜エレメントであって、
    a)前記中空糸膜巻上げ体の最外層から巻き上げ体の厚みの少なくとも1/8までの範囲において、エレメント長あたりのワインド数を0.33~1.75とし、
    b)前記中空糸膜巻き上げ体の最内層から巻き上げ体の厚みの少なくとも1/4までの範囲において、エレメント長あたりのワインド数を1.75超としたことを特徴とする正浸透用中空糸膜エレメント。
  2.  前記中空糸膜巻上げ体の最外層から巻き上げ体の厚みの最大3/4までの範囲において、エレメント長あたりのワインド数を0.33~1.75としたことを特徴とする請求項1に記載の正浸透用中空糸膜エレメント。
  3.  前記エレメントの外径が130mm以上であることを特徴とする請求項1または2に記載の正浸透用中空糸膜エレメント。
  4.  中空糸膜が、酢酸セルロース系樹脂、ポリアミド系樹脂、及びスルホン化ポリスルホン系樹脂からなる群から選ばれる1種以上の樹脂からなることを特徴とする請求項1~3のいずれかに記載の正浸透用中空糸膜エレメント。
  5.  中空糸膜の外径が160~270μmであることを特徴とする請求項1~4のいずれかに記載の正浸透用中空糸膜エレメント。
  6.  中空糸膜巻上げ体の外径が130~420mm、長さが0.2~1.6mであることを特徴とする請求項1~5のいずれかに記載の正浸透用中空糸膜エレメント。
  7.  請求項1~6のいずれかに記載の正浸透用中空糸膜エレメント1本以上を容器に装填したことを特徴とする正浸透用中空糸膜モジュール。
PCT/JP2014/077910 2013-10-21 2014-10-21 正浸透用中空糸膜エレメント及び膜モジュール WO2015060286A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES14855020T ES2871870T3 (es) 2013-10-21 2014-10-21 Elemento de membrana de fibra hueca y módulo de membrana para ósmosis directa
US14/914,566 US10029212B2 (en) 2013-10-21 2014-10-21 Hollow-fiber membrane element and membrane module for forward osmosis
DK14855020.5T DK3061519T3 (da) 2013-10-21 2014-10-21 Hulfiber-membranelement og membranmodul til fremadrettet osmose
JP2015543861A JP6222237B2 (ja) 2013-10-21 2014-10-21 正浸透用中空糸膜エレメント及び膜モジュール
EP14855020.5A EP3061519B1 (en) 2013-10-21 2014-10-21 Hollow-fiber membrane element and membrane module for forward osmosis
SA516370621A SA516370621B1 (ar) 2013-10-21 2016-02-25 عنصر غشاء من ألياف جوفاء ووحدة غشاء لتناضح أمامي

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013218311 2013-10-21
JP2013-218311 2013-10-21

Publications (1)

Publication Number Publication Date
WO2015060286A1 true WO2015060286A1 (ja) 2015-04-30

Family

ID=52992880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077910 WO2015060286A1 (ja) 2013-10-21 2014-10-21 正浸透用中空糸膜エレメント及び膜モジュール

Country Status (7)

Country Link
US (1) US10029212B2 (ja)
EP (1) EP3061519B1 (ja)
JP (1) JP6222237B2 (ja)
DK (1) DK3061519T3 (ja)
ES (1) ES2871870T3 (ja)
SA (1) SA516370621B1 (ja)
WO (1) WO2015060286A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11020705B2 (en) * 2013-12-27 2021-06-01 Toray Advanced Materials Korea Inc. Porous outflow pipe for forward osmosis or pressure-retarded osmosis, and forward osmosis or pressure-retarded osmosis module comprising same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108136333A (zh) * 2015-08-31 2018-06-08 波里费拉公司 具有经加压出料流的水净化系统及方法
JP6972737B2 (ja) * 2017-07-28 2021-11-24 東洋紡株式会社 中空糸膜モジュール
CN112156658B (zh) * 2020-10-13 2022-04-01 上海工程技术大学 一种中空纤维膜的制备装置
CN112472361B (zh) * 2020-12-02 2021-08-27 武汉杨森生物技术有限公司 一种抗弯折人工血管及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4994580A (ja) * 1973-01-17 1974-09-07
JPS5337183A (en) * 1976-09-17 1978-04-06 Toyobo Co Ltd Preparation of assembled body of hollow filament
JPH022833A (ja) * 1988-06-15 1990-01-08 Toray Ind Inc 流体分離装置
JPH0314492B2 (ja) 1979-12-14 1991-02-26 Toyo Boseki
JP3008886B2 (ja) 1997-04-24 2000-02-14 東洋紡績株式会社 中空糸型選択透過膜モジュール
JP2003290632A (ja) 2002-04-03 2003-10-14 Toyobo Co Ltd 中空糸膜モジュール
JP3591618B2 (ja) 1997-06-05 2004-11-24 東洋紡績株式会社 中空糸型分離膜素子
JP4277147B2 (ja) 1999-10-15 2009-06-10 東洋紡績株式会社 中空糸膜モジュールおよびその製造方法
JP4412486B2 (ja) 2003-02-03 2010-02-10 東洋紡績株式会社 中空糸膜モジュールおよびそのモジュール配列群
WO2012002263A1 (ja) 2010-06-28 2012-01-05 協和機電工業株式会社 中空糸型正浸透膜

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1002397C2 (nl) * 1996-02-20 1997-08-25 Stork Friesland Bv Membraanfiltratie-element.
US6709598B1 (en) 1997-11-04 2004-03-23 Millipore Corporation Membrane filtration device
US6824679B1 (en) * 1998-12-17 2004-11-30 Millipore Corporation Hollow fiber separation module and methods for manufacturing same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4994580A (ja) * 1973-01-17 1974-09-07
JPS5337183A (en) * 1976-09-17 1978-04-06 Toyobo Co Ltd Preparation of assembled body of hollow filament
JPH0314492B2 (ja) 1979-12-14 1991-02-26 Toyo Boseki
JPH022833A (ja) * 1988-06-15 1990-01-08 Toray Ind Inc 流体分離装置
JP3008886B2 (ja) 1997-04-24 2000-02-14 東洋紡績株式会社 中空糸型選択透過膜モジュール
JP3591618B2 (ja) 1997-06-05 2004-11-24 東洋紡績株式会社 中空糸型分離膜素子
JP4277147B2 (ja) 1999-10-15 2009-06-10 東洋紡績株式会社 中空糸膜モジュールおよびその製造方法
JP2003290632A (ja) 2002-04-03 2003-10-14 Toyobo Co Ltd 中空糸膜モジュール
JP4412486B2 (ja) 2003-02-03 2010-02-10 東洋紡績株式会社 中空糸膜モジュールおよびそのモジュール配列群
WO2012002263A1 (ja) 2010-06-28 2012-01-05 協和機電工業株式会社 中空糸型正浸透膜

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11020705B2 (en) * 2013-12-27 2021-06-01 Toray Advanced Materials Korea Inc. Porous outflow pipe for forward osmosis or pressure-retarded osmosis, and forward osmosis or pressure-retarded osmosis module comprising same

Also Published As

Publication number Publication date
US10029212B2 (en) 2018-07-24
ES2871870T3 (es) 2021-11-02
EP3061519A4 (en) 2017-06-14
SA516370621B1 (ar) 2017-05-23
US20160207000A1 (en) 2016-07-21
EP3061519A1 (en) 2016-08-31
EP3061519B1 (en) 2021-04-21
JP6222237B2 (ja) 2017-11-01
DK3061519T3 (da) 2021-07-05
JPWO2015060286A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
JP5370871B2 (ja) 中空糸型逆浸透膜
JP6222237B2 (ja) 正浸透用中空糸膜エレメント及び膜モジュール
JP6365542B2 (ja) 正浸透用中空糸膜エレメント及び膜モジュール
US10369530B2 (en) Hollow fiber semipermeable membrane, method for manufacturing same, module, and water treatment method
KR102567234B1 (ko) 중공사막 엘리먼트, 중공사막 모듈 및 정침투수 처리 방법
JP6070260B2 (ja) 中空糸型半透膜及びその製造方法及びモジュール
JP6558199B2 (ja) 逆浸透水処理方法
JP6922744B2 (ja) 逆浸透用または正浸透用の中空糸型半透膜
US10252222B2 (en) Hollow fiber type semipermeable membrane, method for manufacturing the same, module, and water treatment method
JP6565898B2 (ja) 中空糸膜エレメントおよび中空糸膜モジュール
JP6583416B2 (ja) 中空糸膜エレメント、中空糸膜モジュールおよび正浸透水処理方法
JP6565688B2 (ja) 中空糸型逆浸透膜エレメント及びモジュール
JP2015226864A (ja) 正浸透用中空糸膜モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015543861

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014855020

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14914566

Country of ref document: US

Ref document number: 2014855020

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: P223/2016

Country of ref document: AE

NENP Non-entry into the national phase

Ref country code: DE