WO2015060269A1 - 被験物質の濃度測定方法および検出装置 - Google Patents

被験物質の濃度測定方法および検出装置 Download PDF

Info

Publication number
WO2015060269A1
WO2015060269A1 PCT/JP2014/077874 JP2014077874W WO2015060269A1 WO 2015060269 A1 WO2015060269 A1 WO 2015060269A1 JP 2014077874 W JP2014077874 W JP 2014077874W WO 2015060269 A1 WO2015060269 A1 WO 2015060269A1
Authority
WO
WIPO (PCT)
Prior art keywords
substance
test substance
substrate
light
concentration
Prior art date
Application number
PCT/JP2014/077874
Other languages
English (en)
French (fr)
Inventor
吉川 裕之
民谷 栄一
修平 井村
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2015543849A priority Critical patent/JP6516679B2/ja
Priority to US15/030,183 priority patent/US10942127B2/en
Publication of WO2015060269A1 publication Critical patent/WO2015060269A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/82Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a precipitate or turbidity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/535Production of labelled immunochemicals with enzyme label or co-enzymes, co-factors, enzyme inhibitors or enzyme substrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/581Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with enzyme label (including co-enzymes, co-factors, enzyme inhibitors or substrates)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
    • G01N2021/1725Modulation of properties by light, e.g. photoreflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7773Reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/904Oxidoreductases (1.) acting on CHOH groups as donors, e.g. glucose oxidase, lactate dehydrogenase (1.1)

Definitions

  • the present invention relates to a method for detecting a test substance using a polymerized substance producing (oxidation-reduction) enzyme such as peroxidase, and a detection apparatus used in the above method.
  • a polymerized substance producing (oxidation-reduction) enzyme such as peroxidase
  • a detection apparatus used in the above method.
  • the ELISA method is a kind of immunological measurement method (immunoassay) that uses a combination of a specific binding reaction between an antigenic determinant of an antigen and an antibody and a color reaction by an enzyme labeled with the antibody or antigen.
  • immunological measurement method immunological measurement method
  • a highly specific antigen-antibody reaction is used, and the color development based on the enzyme reaction is converted into a signal for measurement, so that it can be detected with high sensitivity and has excellent quantitativeness.
  • radioimmunoassay radioimmunoassay, RIA
  • the ELISA method is used for diagnosis of biological substances such as antibodies, influenza viruses, plasma proteins, cytokines, DNA, peptides, ligands; chemical substances such as residual agricultural chemicals and environmental hormones contained in foods; diabetes, cancer, etc. It is widely used for detection and quantification of various test substances such as blood glucose and diagnostic substances such as tumor markers.
  • the ELISA method is roughly classified into a direct adsorption method, a competitive method, and a sandwich method depending on the difference in measurement principle.
  • the outline of each measurement method is as follows.
  • a test substance is immobilized on a microplate or the like, and then an antibody labeled with an enzyme (enzyme-labeled antibody) is added to react with an antigen in the test substance (antigen-antibody reaction).
  • an antibody labeled with an enzyme enzyme-labeled antibody
  • an antigen in the test substance antigen-antibody reaction
  • a chromogenic substrate for the labeled enzyme react, and measure the absorbance of the colored pigment using a colorimeter to determine the amount of antigen in the test substance.
  • the direct adsorption method has drawbacks such as a low quantitative amount of protein.
  • the competition method was developed to improve the above-mentioned drawbacks of the direct adsorption method, and is a method for detecting an antigen in a test substance with high sensitivity using one kind of antibody against the antigen.
  • a test substance and an enzyme-labeled antigen are added to a microplate or the like on which an antibody is immobilized, and reacted competitively (antigen-antibody reaction).
  • an enzyme chromogenic substrate is added and reacted, and the absorbance of the colored dye is measured using a colorimeter to determine the amount of antigen in the test substance.
  • the sandwich method is a method for detecting an antigen in a test substance using two types of antibodies, and has an advantage of very high specificity. Specifically, a test substance is added to an antibody (primary antibody, capture antibody) immobilized on a microplate or the like and allowed to react (antigen-antibody reaction). Next, after removing the contaminants by washing, an enzyme-labeled antibody (secondary antibody) is further added and reacted at a site different from the antigen-antibody reaction. Thereby, a sandwich structure of primary antibody-antigen-secondary antibody is formed. After removing the contaminants by washing, an enzyme chromogenic substrate is added and reacted, and the absorbance of the colored dye is measured using a colorimeter to measure the amount of antigen in the test substance.
  • an enzyme-labeled antibody secondary antibody
  • an enzyme chromogenic substrate is added and reacted, and the absorbance of the colored dye is measured using a colorimeter to measure the amount of antigen in the test substance.
  • HRP horseradish peroxidase
  • H 2 O 2 substrate hydrogen peroxide
  • peroxidases such as glutathione peroxidase and haloperoxidase are widely used for quantification of biological components such as glucose and cholesterol in addition to antibodies.
  • Peroxidase has low substrate specificity for a substance to be oxidized, and various quantitative methods can be applied.
  • HRP has a low molecular weight
  • it is used as a labeling enzyme by binding to an antibody in an ELISA method, and is used in fields such as medicine, epidemiology, and clinical testing by combining with a coloring reagent (also called a chromogenic substrate).
  • a coloring reagent also called a chromogenic substrate.
  • o-PD o-phenylenediamine
  • DAP obtained by the above reaction formula is an orange or red coloring substance, and an absorption peak near a wavelength of 420 nm increases with time.
  • biological substances such as glucose and cholesterol can also be detected by measuring the absorbance based on this color reaction.
  • the following is a color reaction using ⁇ -D-glucose and the enzyme glucose oxidase (GOD) that specifically acts only on ⁇ -D-glucose.
  • GOD glucose oxidase
  • ⁇ -D-glucose is oxidized by GOD
  • D-glucono- ⁇ -lactone gluconic acid
  • hydrogen peroxide H 2 O 2
  • HRP hydrogen peroxide
  • the ELISA method includes several methods.
  • the color developed by an enzyme-labeled antibody or the like is spectroscopically measured using a colorimeter.
  • spectroscopic measurement requires a plurality of devices such as a diffraction grating, an optical filter, and a high-sensitivity detector, and there is a problem that the device becomes large and expensive.
  • Patent Document 1 an optical detection system based on a waveguide using a scanning light source
  • Patent Document 2 a disk-type analysis chip
  • Patent Document 3 an optical waveguide type antibody chip
  • the ELISA method is extremely useful as a means capable of detecting and analyzing a very small amount of a test substance with high sensitivity by using an antigen-antibody reaction and a labeled enzyme.
  • the spectroscopic measurement apparatus used for measuring the absorbance of the color developing substance based on the enzyme reaction has a problem that it is large and the measurement time is long.
  • the above problem is not limited to immunoassays such as ELISA, but a method for detecting a test substance such as glucose by measuring the absorbance of a chromogenic substance produced by an enzyme reaction (in the sense that an enzyme is used, in a broad sense enzyme assay) In the same manner).
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to detect a test substance by utilizing color development by an enzyme reaction, or a specific interaction such as an antigen-antibody reaction and color development by an enzyme reaction. It is an object of the present invention to provide a method capable of quickly and sensitively detecting a test substance without using a spectroscopic measurement device.
  • Another object of the present invention is to provide a detection apparatus for a test substance that is suitably used in the above method, and is small and has a short measurement time.
  • the method for measuring the concentration of a test substance according to the present invention includes a step of generating a peroxide from a test substance, a oxidoreductase for generating a polymer substance, and the polymer substance generation in the peroxide.
  • the test substance is a substance that generates a peroxide by an enzymatic reaction.
  • a oxidoreductase for generating a polymer substance is added to a test substance, a substance having a specific interaction with the test substance After contacting the modified modifier, a step of contacting the peroxide and a substrate of the oxidoreductase for generating the polymer material to obtain the polymer material; irradiating the polymer material with light; And the step of recording the temporal change information of the intensity of the scattered light.
  • the specific interaction with the test substance is an antigen-antibody reaction.
  • the temporal change information constitutes a signal waveform, and from a predetermined time after the start of irradiation of the light to the test substance, until the signal waveform shows an extreme value.
  • the method further includes the step of specifying the time.
  • the step of obtaining the polymer substance is performed on a substrate.
  • a first substrate on which at least one of the test substance and a group X substance consisting of a substance having a specific interaction with the test substance is present; the test substance, and the And a second substrate in which at least one of the group X substances consisting of a substance having a specific interaction with the test substance does not exist, and is irradiated with light from the second substrate.
  • the substrate includes an X group substance existence region in which at least one of the test substance and an X group substance composed of a substance having a specific interaction with the test substance exists, And an X group substance non-existing region where no X group substance exists, and the light is irradiated to the X group substance non-existing region.
  • a porous carrier is provided on the substrate, and the X group substance is fixed by the porous carrier.
  • the detection apparatus of the present invention that has solved the above problems includes a light source capable of making light incident on a test substance, a photoelectric conversion element that detects scattered light from a polymerized substance derived from the test substance, and the photoelectric conversion element. And a recording medium for continuously recording an output signal for a predetermined time.
  • the polymer substance derived from the test substance is present on the first surface side of the light transmitting substrate, and further includes a lens facing the second surface side of the light transmitting substrate.
  • the time taken from a predetermined time after the start of irradiation of the light to the test substance-derived polymer substance until the signal waveform recorded on the recording medium shows an extreme value is calculated. It further has a calculation means for specifying.
  • a group X substance comprising a polymer substance derived from the test substance and a substance having a specific interaction with the polymer substance derived from the test substance on the first surface side of the light transmitting substrate.
  • the present invention it is possible to measure and detect the concentration of a test substance quickly and with high sensitivity, compared with a conventional method using a spectroscopic device.
  • the present invention it is possible to provide a detection device that is smaller and less expensive and has a shorter measurement time than a conventional detection device using a spectroscopic device.
  • FIG. 1 is a diagram comparing the method of the present invention with a conventional method for detecting ⁇ -D-glucose.
  • FIG. 2 is a diagram showing a reaction mechanism inferred in the present invention.
  • FIG. 3 is a diagram showing an embodiment of a detection device used in the present invention.
  • FIG. 4 is an explanatory diagram of the substrate used in the experiment.
  • FIG. 5A is a diagram showing the results of the absorption spectrum of the o-PD solution at each irradiation time when the o-PD solution is irradiated with a green LED.
  • FIG. 1 is a diagram comparing the method of the present invention with a conventional method for detecting ⁇ -D-glucose.
  • FIG. 2 is a diagram showing a reaction mechanism inferred in the present invention.
  • FIG. 3 is a diagram showing an embodiment of a detection device used in the present invention.
  • FIG. 4 is an explanatory diagram of the substrate used in the experiment.
  • FIG. 5A
  • FIG. 5B is a diagram showing the temporal change in the backscattered light intensity when the laser light is condensed on the o-PD solutions with different irradiation times and the backscattered light intensity is measured.
  • FIG. 6 is a graph plotting the peak time of the backscattered light intensity against the peak absorbance of the o-PD solution.
  • FIG. 7 (a) is a diagram showing the relationship between the laser irradiation time and the backscattered light intensity when green laser light is focused on an o-PD aqueous solution with various concentrations.
  • FIG. 7B is an SEM photograph after the green laser is irradiated for 80 seconds for each concentration of o-PD aqueous solution.
  • FIG. 8A to 8F are photographs in which a green laser is focused on a 1 mM o-PD aqueous solution and an image of reflected light is taken every 4 seconds.
  • FIG. 9A is a diagram showing the measurement procedure of this experiment.
  • FIG. 9B is an AFM observation image when the laser is irradiated for 4 to 16 seconds.
  • FIG. 9C is a diagram showing the relationship between the laser irradiation time, the backscattered light intensity, and the height of the polymer.
  • FIG. 10 is a diagram schematically showing light detected in the present invention.
  • FIG. 11A is an explanatory diagram of a model sample sandwiched between a glass substrate and water used in the experiment.
  • FIG. 11B is a diagram showing the relationship between the thickness of the polymer thin film and the reflectance in the model sample.
  • FIG. 12A is a diagram showing the measurement procedure of this experiment.
  • FIG. 12B is a diagram showing temporal changes in the backscattered light intensity when the laser light is focused on a solution in which DAP having various concentrations is mixed in a 1 mM o-PD solution.
  • FIG. 12C is a diagram showing the relationship between the concentration of DAP and the peak time of the backscattered light intensity.
  • FIG. 13 (a) is a diagram showing the relationship between the laser irradiation time and the backscattered light intensity in a mixture of HRP solution, hydrogen peroxide of various concentrations, and o-PD solution.
  • FIG. 12A is a diagram showing the measurement procedure of this experiment.
  • FIG. 12B is a diagram showing temporal changes in the backscattered light intensity when the laser light is focused on a solution in which DAP having various concentrations is mixed in a
  • FIG. 13B is a diagram showing the relationship between the hydrogen peroxide concentration and the peak time of the backscattered light intensity.
  • FIG. 14A is an SEM observation image when the laser beam is focused on the o-PD solution.
  • FIG. 14B is an SEM observation image of the nanostructure formed at the focal point when the laser beam is focused on the mixed solution of the o-PD solution, the HRP solution, and the hydrogen peroxide.
  • FIG. 15A is a diagram showing the measurement procedure of this experiment.
  • FIG. 15B is a diagram showing the relationship between the laser irradiation time and the backscattered light intensity when a laser is irradiated on a mixed solution of various concentrations of aqueous glucose solution, GOD, and HRP.
  • FIG. 14A is an SEM observation image when the laser beam is focused on the o-PD solution.
  • FIG. 14B is an SEM observation image of the nanostructure formed at the focal point when the laser beam is focused on the mixed solution of the o-PD solution
  • FIG. 15C is a graph plotting the time when the first peak of the backscattered light intensity appears for each glucose concentration.
  • FIG. 16A is a diagram showing the measurement procedure of this experiment.
  • FIG. 16B is a diagram showing the results of absorption spectra in a mixed solution of glucose aqueous solutions having various concentrations, GOD, and HRP.
  • FIG.16 (c) is the figure which plotted the peak absorbance with respect to each glucose concentration.
  • FIG. 17 is a diagram showing temporal changes in backscattered light intensity when various concentrations of glucose are irradiated with laser having a wavelength of 473 nm.
  • FIG. 18 is a diagram showing temporal changes in the backscattered light intensity when a laser having a wavelength of 532 nm is irradiated to glucose of various concentrations.
  • FIG. 19 is a diagram showing temporal changes in the backscattered light intensity when a laser having a wavelength of 633 nm is irradiated to glucose of various concentrations.
  • FIG. 20 is a diagram showing the peak time of the backscattered light intensity with respect to the glucose concentration at each wavelength.
  • FIG. 21 shows the absorption spectrum of the o-PD solution (3.8 mM) used in the experiment.
  • FIG. 22 shows the relationship between the absorption spectrum of the o-PD aqueous solution at each wavelength (left axis) and the backscattered light intensity spectrum (right axis) of the nanostructure formed by focusing the laser on the o-PD aqueous solution.
  • FIG. 23 is a schematic diagram showing the progress of the oxidative polymerization reaction of o-PD by focused laser light.
  • FIG. 24 is a diagram for explaining an energy diagram of a photosensitizing reaction.
  • FIG. 25 shows the photosensitization effect of methylene blue using a 633 nm He—Ne laser.
  • FIG. 26 shows mixed solutions obtained by adding 20 ⁇ L of an o-PD / blue solution to various concentrations of aqueous glucose solution, GOD, and HRP solution. It is a figure which shows the time change of backscattered light intensity.
  • FIG. 27 is a graph plotting the peak time of the backscattered light intensity with respect to each glucose concentration.
  • FIG. 28 is a diagram showing temporal changes in backscattered light intensity in a mixed solution obtained by adding an o-PD solution to various concentrations of ethanol, an HRP solution, and an AOD solution.
  • FIG. 29 is a graph plotting the peak time of the backscattered light intensity with respect to each ethanol concentration.
  • FIG. 30 (a) is a schematic diagram of a measurement method in the ELISA method (part 1).
  • FIG. 30B is a diagram showing the relationship between the laser irradiation time and the backscattered light intensity.
  • FIG. 30 (c) is a diagram showing the relationship between the time (predetermined time) until the backscattered light intensity reflected light intensity once decreases and increases to the original intensity, and the concentration of the HRP-labeled anti-IgG antibody. is there.
  • FIG. 31 (a) is a schematic view of a measurement method in the ELISA method (part 2).
  • FIG. 31B is a diagram showing the relationship between the laser irradiation time and the backscattered light intensity.
  • FIG. 31 (c) is a diagram showing the relationship between the time (predetermined time) until the backscattered light intensity reflected light intensity decreases once and increases to the original intensity again, and the concentration of the HRP-labeled anti-IgG antibody. is there.
  • FIG. 32 is a view showing a substrate having an antibody presence region A in which an antibody is present and an antibody non-existence region B in which no antibody is present.
  • FIG. 33 is a view showing a substrate on which an antibody is immobilized by a donut-shaped porous carrier provided on the substrate.
  • FIG. 34 is a view showing a substrate in which a spacer is interposed between the porous carrier and the substrate.
  • FIG. 35 is a diagram showing a substrate obtained by deforming a porous carrier into a convex shape.
  • FIG. 36 is a graph showing the results of a conventional absorbance measurement method in the experiment described in 7-1.
  • FIG. 37 is a diagram showing the results of the method of the present invention in the experiment described in 7-1.
  • FIG. 37A shows the relationship between the laser irradiation time and the backscattered light intensity.
  • FIG. 37 (b) is a diagram showing the relationship between the peak time of the backscattered light intensity and the concentration of the HRP-labeled anti-IgG antibody.
  • FIG. 38 is a graph showing the results of a conventional absorbance measurement method in the experiment described in 7-2.
  • FIG. 39 is a diagram showing the results of the method of the present invention in the experiment described in 7-2.
  • FIG. 39A is a diagram showing the relationship between the laser irradiation time and the backscattered light intensity.
  • FIG. 39B is a diagram showing the relationship between the time (predetermined time) until the backscattered light intensity once decreases and then increases again to the original intensity, and the CRP concentration.
  • FIG. 40 is a diagram for explaining the experimental procedure described in 7-3.
  • FIG. 41 is a diagram showing the relationship between the peak time of backscattered light intensity and the concentration of HRP-labeled anti-IgG antibody in the experiment described in 7-3.
  • the present inventors have intensively studied to solve the above problems.
  • the peroxide and the redox for producing the polymerized substance The present invention has found that the intended purpose is achieved by irradiating a polymer substance obtained by contacting an enzyme substrate with light and recording information on temporal change in intensity of scattered light from the irradiation point. Was completed.
  • oxidizing reductase for generating polymerized substance “substrate for generating reductase for generating polymerized substance”, “polymerized substance”, and “polymer” are defined as follows.
  • the above-mentioned “oxidizing reductase for producing a polymerized substance” is an enzyme for obtaining a polymerized substance by a polymerization reaction.
  • Peroxidase an enzyme for obtaining a polymerized substance by a polymerization reaction.
  • this invention is not limited to this, What is necessary is just an enzyme which superposes
  • the above-mentioned “substrate for oxidoreductase for producing a polymer substance” is for obtaining a polymer substance by the above polymerization reaction.
  • the substrate may be simply referred to as a polymerization substrate.
  • the “polymeric substance” is obtained by a reaction between the above-described oxidoreductase for producing a polymer substance and a substrate for the oxidoreductase for producing a polymer substance.
  • a dimer (dimer) such as diaminophenazine (DAP) is used. ).
  • the “polymer” is formed by absorbing light such as laser light from the polymerized substance as shown in FIGS. 1 and 2 to be described later.
  • the polymer having a higher degree of polymerization of the “polymer” and agglomerated in the light-collecting spot on the substrate (polymer that scatters light) is particularly called a “nanostructure”.
  • the measurement method of the present invention includes the following first method and second method.
  • First method Generating peroxide from the test substance; Contacting the peroxide with a oxidoreductase for producing a polymer substance and a substrate of the oxidoreductase for producing the polymer substance to obtain a polymer substance; Irradiating the polymerized material with light and recording temporal change information of intensity of scattered light from the irradiation point; A method for measuring the concentration of a test substance containing
  • test substance is brought into contact with a substance having a specific interaction with the test substance and a modified substance modified with a oxidoreductase for generating a polymer substance, and then a peroxide, and the redox for generating the polymer substance
  • contacting the enzyme substrate to obtain a polymerized material Irradiating the polymerized material with light and recording temporal change information of intensity of scattered light from the irradiation point;
  • a method for measuring the concentration of a test substance comprising:
  • the first method and the second method are different in the step of obtaining a polymer material. That is, the first method uses a test substance that generates a peroxide by a biochemical reaction such as an enzyme reaction, and obtains a polymerized substance using the peroxide derived from the test substance.
  • the second method uses a specific interaction (for example, antigen-antibody reaction) with a test substance, and the test substance used in the second method is the first method. It is not limited to the peroxide-producing test substance used in 1.
  • the second method is useful as an alternative to the conventional ELISA method.
  • test substance applicable to the above method can be detected and quantified with high sensitivity.
  • test substance include test substances that can be detected by ELISA (for example, biological substances such as antibodies, influenza viruses, C-reactive proteins, plasma proteins, cytokines, DNA, peptides, ligands; foods, etc.) Chemical substances such as residual agricultural chemicals and environmental hormones; blood sugar used for diagnosis of diabetes, cancer, etc., diagnostic substances such as tumor markers), biological substances such as glucose, cholesterol, histamine; ethanol, formic acid, etc. It is possible to detect and quantify various test substances with high sensitivity, such as substances that are oxidized by enzymatic reaction.
  • the step of obtaining the polymerized material does not characterize the present invention, and any known method can be applied as long as the following requirements are satisfied.
  • the step of generating a peroxide from a test substance and the peroxide is brought into contact with a oxidoreductase for producing a polymer substance and a substrate for the oxidoreductase for producing the polymer substance
  • Step of obtaining a polymer substance a polymer substance is obtained by reacting an enzyme with a peroxide derived from a test substance and dimerizing a polymer substrate along with the oxidation-reduction reaction of the enzyme.
  • the test substance used in the above method is not particularly limited as long as it generates peroxide.
  • the peroxide include inorganic peroxides such as hydrogen peroxide and sodium peroxide, and organic peroxides such as benzoyl peroxide and cumene hydroperoxide.
  • the peroxide can be obtained, for example, by an enzyme reaction in which an enzyme is added to a test substance.
  • the test substance include glucose, ethanol, cholesterol, formic acid and the like.
  • glucose oxidase in the case of glucose glucose oxidase in the case of glucose
  • glucose and glucose oxidase react to produce The hydrogen peroxide thus reacted reacts with the oxidoreductase for producing the polymer substance and the substrate for the oxidoreductase for producing the polymer substance.
  • the present invention is not limited to this.
  • the test substance is brought into contact with a substance having a specific interaction with the test substance and a modified substance in which a oxidoreductase for generating a polymer substance is modified, and then a peroxide. And a step of contacting the substrate of the oxidoreductase for producing the polymer substance to obtain the polymer substance
  • the second method is the above-mentioned in that the polymer substrate is converted into a polymer substance accompanying the redox reaction of the enzyme.
  • the premise is that, instead of using a peroxide derived from a test substance as in the first method, a specific interaction between the test substance and the test substance is performed.
  • the “specific interaction with the test substance” includes, for example, an antigen-antibody reaction.
  • the “substance having a specific interaction with the test substance” includes, for example, an antibody or antigen to the substance to be examined.
  • the above-mentioned “modified substance in which a oxidoreductase for generating a polymer substance is modified with a substance having a specific interaction with the test substance” means an antibody or an antigen against the test substance labeled with an oxidoreductase or the like. Is mentioned.
  • an antibody (primary antibody) against a test substance may be reacted sequentially with an antibody labeled with a oxidoreductase for generating a polymer substance and a substrate of the enzyme.
  • the “antibody labeled with a oxidoreductase for producing a polymer substance” means an antibody that results in an antibody labeled with the enzyme. Therefore, at the time of use, the enzyme may be directly labeled on the antibody, or may not be labeled. Since the former oxidoreductase-labeled antibody is expensive, an antibody labeled with the oxidoreductase can be used by reacting the antibody with the oxidoreductase during use, as in the latter. Further, the enzyme may be covalently bound to an antibody or an antigen against the test substance. Alternatively, an antibody (secondary antibody) or antigen that recognizes an antibody (primary antibody) against the test substance may be labeled with the above enzyme.
  • (III) A step of irradiating the polymerized material with light and recording temporal change information of the intensity of scattered light from the irradiation point (a step common to the first and second methods)
  • the polymer material is irradiated with light.
  • Oxidative polymerization proceeds by irradiation of light, and the polymer material absorbs light to form a polymer, thereby increasing the degree of polymerization.
  • the polymer is aggregated in a focused spot on the light transmitting substrate to form a nanostructure (polymer that scatters light).
  • the scattered light includes reflected light, back-reflected light, and back-scattered light.
  • laser light is preferably used as the light. In light irradiation, it is preferable to collect light at the interface between a substrate such as a glass substrate and a solution containing a test substance-derived polymer substance.
  • the time change information constitutes a signal waveform, and the time taken for the signal waveform to show an extreme value from a predetermined time after the start of irradiation of the light to the test substance is specified.
  • the method further includes the step of:
  • FIGS. 1 and 2 show examples in which HRP is used as a redox enzyme for generating a polymer substance, hydrogen peroxide is used as a substrate for HRP, o-PD is used as a coloring substrate for the redox enzyme, and laser light is used as light.
  • the present invention is not limited to this.
  • FIG. 1 schematically shows a state where o-PD polymer aggregates are formed by irradiating a polymer substance (DAP) generated by a series of reactions used for detecting ⁇ -D-glucose described above with laser light.
  • DAP polymer substance
  • FIG. 1 schematically shows a state where o-PD polymer aggregates are formed by irradiating a polymer substance (DAP) generated by a series of reactions used for detecting ⁇ -D-glucose described above with laser light.
  • DAP polymer substance
  • the absorbance of the DAP (dimer) of the polymerized substance produced by the oxidation reaction of o-PD was measured using a spectroscopic device to quantify the concentration of the test substance.
  • the DAP is irradiated with laser light to advance the oxidative polymerization reaction, and the temporal change information of the intensity of scattered light from the irradiation point of the generated polymer aggregate (nanostructure) is recorded. To do.
  • Examples of the temporal change information include a peak time until the peak intensity of the scattered light is obtained, and a time required for the signal waveform to show an extreme value from a predetermined time after the start of laser light irradiation. .
  • the concentration of a test substance can be measured rapidly and with high sensitivity, compared with the conventional method.
  • the laser light used in the above process is preferably a laser in the visible light range from the viewpoint of measurement sensitivity.
  • a green laser having a wavelength of 500 to 550 nm is preferably used.
  • a photosensitizer such as methylene blue or a porphyrin-based dye
  • a laser having a longer wavelength region for example, a red laser having a wavelength of 600 to 700 nm
  • practicality is improved, for example, the range of usable measurement wavelengths is widened.
  • FIG. 2 shows an example in which a sample solution containing a test substance (specifically, a solution containing HRP, a color developing substrate o-PD and hydrogen peroxide) is used for the light transmitting substrate.
  • a test substance specifically, a solution containing HRP, a color developing substrate o-PD and hydrogen peroxide
  • a predetermined amount of the sample solution is dropped onto the substrate (see (i) of FIG. 2).
  • the oxidative polymerization reaction of HRP changes o-PD to dimer 2,3-diaminophenazine (DAP) having light absorption.
  • DAP dimer 2,3-diaminophenazine
  • Oxidative polymerization reaction by HRP is further accelerated by the high oxidizing power of the active oxygen species generated in this way, and a polymer aggregate of o-PD is formed at the condensing point of the laser beam ((iii in FIG. 2).
  • FIG. 2 (iii) shows the structure of the polymer aggregate of o-PD, but this is merely an example of an expected structure and is not intended to be limited thereto.
  • the thus obtained o-PD polymer aggregate changes the intensity of scattered light from the irradiation point (condensing point) of laser reflected light.
  • the intensity of the scattered light is measured, and the temporal change information of the intensity of the scattered light from the irradiation point is recorded.
  • the temporal change information of the intensity of the scattered light for example, the peak time until the peak intensity is obtained can be mentioned.
  • the peak time has a good correlation with the concentration of the o-PD solution, hydrogen peroxide, and the like. It is assumed that it can be detected quantitatively well.
  • peak intensity includes both extreme maximum and minimum extreme values. This is because both extreme values can be obtained depending on the composition of the sample solution containing the test substance, the concentration of the test substance, and the like, as shown in the experimental examples described later.
  • the peak intensity may be the first peak intensity or any peak intensity such as the second time and the third time.
  • the extreme value within ⁇ 10% (more preferably within ⁇ 7%, more preferably within ⁇ 5%) of the scattering intensity at the start of laser light irradiation is It may be excluded from the extreme values in the present invention.
  • the differential value is a negative value in a predetermined section (for example, 5 bits). It is also possible to specify a portion where a positive value has changed in a predetermined section (for example, 5 bits).
  • the detection apparatus of the present invention includes a light source capable of entering light into a test substance, a photoelectric conversion element that detects scattered light from a polymerized substance derived from the test substance, and a signal output from the photoelectric conversion element for a predetermined time. It has a feature in that it has a recording medium for continuous recording.
  • the detection device of the present invention is preferably a device for detecting a test substance existing on the first surface side of the light transmission substrate, and a lens facing the second surface side of the light transmission substrate;
  • a laser light source capable of making light incident on the light transmissive substrate through the lens, and light scattered from a polymerized substance derived from a test substance existing on the first surface side of the light transmissive substrate are transmitted through the lens.
  • a photoelectric conversion element to be detected and a medium for continuously recording a signal output from the photoelectric conversion element for a predetermined time are provided.
  • the test substance in the detection apparatus of the present invention is not limited to the test substance used in the first and second methods described above, and a substance from which a polymer substance derived from the test substance can be obtained by absorbing light. means.
  • the light-transmitting substrate refers to an object that can transmit light, but preferably transmits light having a wavelength of 532 nm by 85% or more, more preferably 90% or more, and even more preferably 95% or more. .
  • a glass substrate, a plastic, etc. are mentioned, for example.
  • the shape of the light transmitting substrate is preferably a flat plate shape.
  • the test substance is detected based on the intensity of the scattered light from the test substance existing on the first surface side of the light transmitting substrate, the amount of light detected by scattering or refraction by the light transmitting substrate itself is detected. This is to avoid a decrease as much as possible.
  • the light transmitting substrate is preferably thin, for example, 0.5 mm or less, and more preferably 0.2 mm or less. Although there is no particularly preferred lower limit to the thickness of the light transmitting substrate, in order to fulfill the function of holding the test substance, for example, it is 0.05 mm or more, preferably 0.1 mm or more. There is no particular limitation on the wavelength and intensity of the laser light, and any laser can be used as long as it promotes the polymerization of the polymer substance. As the photoelectric conversion element, a photomultiplier tube, a photodiode, a phototransistor, a solid-state imaging element, or the like can be used.
  • any recording medium regardless of volatile / nonvolatile such as various flash memories, a hard disk built in a personal computer, a DRAM, or an SRAM. Can be used.
  • the detection apparatus of the present invention further includes a calculation means for specifying a time taken from a predetermined time after the start of irradiation of the laser beam to the test substance until the signal waveform recorded on the recording medium shows an extreme value. You may have.
  • a single signal waveform can be obtained by using a photoelectric conversion element having one pixel unit, and the extreme value can be specified from the signal waveform.
  • a photoelectric conversion element which is an image sensor having a plurality of pixel units, such as a solid-state imaging device
  • a signal waveform is once obtained for each pixel, and an average value of these signal waveforms is taken to obtain a single It is also possible to obtain a signal waveform and specify an extreme value from the signal waveform.
  • time from the predetermined time after the start of irradiation is specified in order to be able to discard a part of the unstable time data immediately after the start of irradiation.
  • “after irradiation start” includes “at the start of irradiation”.
  • the time calculation means for calculating the time required from the start of irradiation of the laser beam to the light transmitting substrate until the output signal of the photoelectric conversion element shows an extreme value may be realized by hardware, but on software It is preferable to carry out by treatment. It is preferable to use backscattered light as light scattered from the test substance. This is because at least a part of the optical system for making the laser light incident on the test substance and the optical system for detecting the light scattered from the test substance can be shared, which is useful for downsizing the entire apparatus.
  • o-Phenylenediamine (oxidoreductase substrate): o-PD 2,3-diaminophenazine (polymerized material): DAP Polyphenylenediamine: Polymeric glucose oxidase: GOD Horseradish peroxidase (oxidoreductase): HRP Alcohol oxidase: AOD
  • the o-PD solution used in the experiment contains a small amount of DAP due to natural oxidation.
  • Reagents and measuring apparatus used in the experiment 1-1.
  • Reagent o-Phenylenediamine (Wako) Glucose oxidase (162 units / mg, Toyobo Co., Ltd.) Horseradish peroxidase (100 units / mg, Wako) Methylene blue (Wako)
  • citrate buffer (pH 4.6) was used and dissolved to a predetermined concentration.
  • Alcohol oxidase Pichia pastoris, 38 units / mL, SIGMA-ALDRICH
  • Ethanol 99.5%, Wako
  • Micro cover glass 17 (size 24 mm ⁇ 36 mm, thickness 0.12 to 0.17 mm, MATSANAMI) was washed with a detergent (decon 90, Decon Laboratories Limited), dried, and punched thereon with a diameter of 3.5 mm
  • a silicon sheet 15 (thickness 0.2 mm, Asone) having 9 to 12 holes was placed thereon, and the multi-well substrate (hereinafter sometimes abbreviated as substrate) in FIG. 4 was produced.
  • 16 is a solution to be measured.
  • FIG. 3 shows a schematic diagram of the laser condensing device used in this experiment.
  • the laser light source 1 includes a DPSS laser with a wavelength of 473 nm (SDL-473-050TL, Shanghai Dream Lasers Technology), and a YAG laser with a wavelength of 532 nm (SDL-532-020TL, Shanghai Dream Lasers Technology 33 laser). -2066-000, COHERENT).
  • the laser beam was expanded by the beam expander 2 and then passed through the ND filter 3 and introduced into the inverted microscope 5 (IX70-S1F2, OLYMPUS).
  • the laser beam is reflected by the half mirror 6 (70% reflection), and the upper surface (substrate-solution interface) of the substrate 9 set on the stage 8 of the inverted microscope using the objective lens 7 (UPlanFL N, 60x, OLYMPUS). It was condensed to. Polymer nanostructures 10 are formed in the focused spot.
  • Table 1 shows the laser intensity at the condensing point of each laser light source.
  • the backscattered light passes through the optical fiber 12 by the coupler 11, is detected by a photomultiplier tube (Hamamatsu Photonics, R1166) 13, converted into an electric signal, and then transmitted to the computer (PC) via the data recording expansion board 14. Is output.
  • a mechanical shutter 4 that can be controlled to open and close by an external input is placed on the optical path of the laser so that it can be automatically controlled by a program from a computer.
  • a green LED (M530L2, wavelength 530 nm, intensity 220 mW, Thorlabs) was used for coloring o-PD by light irradiation.
  • the objective lens 7 is designed so that the diameter of the laser condensing spot reflected on the upper surface of the substrate is reduced. The height of was adjusted. After the shutter 4 was closed and the laser beam was cut off, 10 to 20 ⁇ L of a sample solution containing o-PD was dropped into the well of the substrate 9. The measurement time was adjusted to 1 to 5 minutes by setting the measurement rate of the voltage from the photomultiplier tube 13 to 50 Hz and the number of measurement points to 3000 to 15000 according to the program.
  • the shutter 4 When the shutter 4 was opened by computer operation, the laser was focused on the sample, and measurement of the backscattered light intensity associated with the formation of the polyphenylenediamine nanostructure was started.
  • the mechanical shutter 4 was automatically closed when the set time had elapsed and the measurement was completed.
  • SEM scanning electron microscope
  • a neo-osmium coater (Meiwaforsys Inc., NeoC-ST) was used to deposit an osmium metal conductive film on the surface of the substrate with a thickness of about 2.5 nm to impart conductivity to the surface, and then by SEM. Measurements were made.
  • O-PD Oxidation Polymerization Reaction by Laser Irradiation instead of using the HRP enzyme reaction, o-PD is irradiated with a green LED to form DAP, and by light absorption of DAP contained in the o-PD solution, It shows that the nanostructure which is a polymer aggregate is obtained.
  • the polymerized material in the o-PD solution is important for the formation of the nanostructure.
  • FIG. 6 is a graph plotting the peak time of the backscattered light intensity against the peak absorbance. From the above figure, it can be seen that the peak time of the backscattered light intensity becomes earlier as the o-PD solution is oxidized and the absorbance increases.
  • FIG. 7 (b) is an SEM photograph of the o-PD aqueous solution with each concentration after being irradiated with a green laser for 80 seconds.
  • FIG. 7B shows that a polymer structure is formed at the focused spot position.
  • the size of the polymer increases as the concentration of the o-PD aqueous solution increases. This is because the higher the concentration of the o-PD aqueous solution, the faster the formation speed of the nanostructure.
  • the concentration of the o-PD aqueous solution was 4 mM, an irregularly shaped structure was formed. This is considered to be the reason why the temporal change in the backscattered light intensity becomes discontinuous in the vicinity of 50 seconds, as shown in FIG.
  • FIGS. 8A to 8F are CCD cameras in which a green laser is focused on a 1 mM o-PD aqueous solution and an image of reflected light is attached to the optical microscope every 4 seconds. The pictures were taken sequentially. The green spot at the center is the reflected light from the laser focusing point. It can be seen that the backscattered light intensity increases from FIG. 8A to FIG. 8D and then decreases from FIG. 8D to FIG. 8F.
  • FIG. 9A shows the measurement procedure of this experiment.
  • a 1 mM o-PD aqueous solution was irradiated with a 200 mW / cm 2 green laser (wavelength 532 nm) for about 10 minutes to prepare an o-PD solution containing DAP.
  • 20 ⁇ L of the o-PD solution thus obtained was dropped on the substrate, the laser beam was condensed, and the temporal change in reflected light intensity was measured for 20 seconds.
  • the same experiment was performed by changing the irradiation time of the laser beam, and the shape of the nanostructure formed at the laser condensing position on the glass substrate by each laser irradiation time was changed to an atomic force microscope (hereinafter referred to as AFM). (It may be abbreviated.) (SII, SPI-4000).
  • AFM measurement was performed in a tapping mode using a Si cantilever.
  • FIG. 9B is an AFM observation image when the laser is irradiated for 4 to 16 seconds. From these figures, it can be seen that as the laser irradiation time increases, the size of the nanostructure increases and grows.
  • FIG. 9C is a graph plotting the laser irradiation time on the horizontal axis, the backscattered light intensity on the left vertical axis, and the height of the nanostructure on the right vertical axis.
  • the time (first peak time) at which the backscattered light intensity is first maximized represents the time until the polymer becomes large to a certain height. From the above figure, it can be seen that the height of the nanostructure is 80 nm when the backscattered light intensity takes a maximum value, and the height of the nanostructure grows to 180 nm when it takes a minimum value.
  • the light detected in the present invention is, as shown in FIG. 10, superposition of the reflected light at the substrate-nanostructure interface of the focused laser and the reflected light at the structure-solution interface. Accordingly, the phase of light changes with the growth of the nanostructure, and the intensity of the backscattered light becomes a maximum when the phases of the two waves coincide with each other, and becomes a minimum when the phase is shifted by a half wavelength. And it is thought that it will increase again by the further phase change.
  • FIG. 11A A model sample (a polymer thin film sandwiched between a glass substrate (refractive index 1.52) and water (refractive index 1.33)) shown in FIG. 11A is prepared, and the complex refractive index and film thickness of the polymer thin film are parameters. As a result, the reflectance when light having a wavelength of 532 nm was incident from the glass substrate side was calculated.
  • FIG. 11B shows the relationship between the film thickness and the reflectance when the complex refractive index of the polymer thin film is 1.7-0.2i, 1.6-0.2i, and 1.5-0.2i. .
  • the reflectance repeatedly increases and decreases as the thickness of the polymer thin film increases. This is due to the interference of light reflected at the two interfaces of the polymer film.
  • the reflectance takes a maximum value near the film thickness of 70 to 100 nm and 240 to 290 nm, and becomes a minimum near 160 to 200 nm. This indicates the relationship between the height of the polymer and the laser irradiation time. Similar to the experimental results investigated. That is, it is understood that the temporal change in the backscattered light intensity in this experiment is caused by the growth of the nanostructure formed in the focused laser spot. The smaller the real part of the refractive index, the greater the decrease in reflectivity when the film thickness of the polymer thin film increases from zero.
  • FIG. 12A shows the measurement procedure of this experiment.
  • 0-750 ⁇ M DAP (specifically 0 M, 75 pM, 750 pM, 75 nM, 7.5 mM, 750 mM) was mixed with 1 mM o-PD solution to prepare a total of 6 types of solutions.
  • 20 mL was dropped on the substrate, 2 mW laser light was condensed with an objective lens, and the temporal change in the backscattered light intensity was measured.
  • the result is shown in FIG. From the above figure, it can be seen that the higher the DAP concentration, the earlier the time (peak time) at which the backscattered light intensity first reaches its maximum.
  • FIG. 12 (c) shows the relationship between the concentration of DAP and the peak time of the backscattered light intensity. From the above figure, it was found that both have a good correlation, and that the DAP concentration can be measured with good quantitativeness by detecting the peak time at which the backscattered light intensity is first maximized.
  • O-PD Oxidation Polymerization Reaction by Enzymatic Reaction
  • an enzyme promotes the oxidation polymerization reaction of o-PD.
  • active oxygen species are generated by light absorption of DAP obtained by an oxidative polymerization reaction by an enzyme.
  • Oxidative polymerization proceeds due to the high oxidizing power of active oxygen, and a nanostructure that is a polymer aggregate is formed at the focal point. This nanostructure changes the intensity of laser reflected light.
  • FIG. 13 (a) shows the temporal change of the backscattered light intensity obtained in this way. From the figure, it can be seen that the peak (maximum value) of the backscattered light intensity increases and the peak time becomes faster as the concentration of hydrogen peroxide increases.
  • FIG. 13B shows a graph plotting the peak time of the backscattered light intensity with respect to the hydrogen peroxide concentration. From the figure, it can be seen that hydrogen peroxide can be quantified in the concentration range of 3.1 to 200 ⁇ M by the above method. This is because o-PD is oxidized by HRP and hydrogen peroxide to generate DAP.
  • FIG. 14 (a) is an SEM observation image when only the o-PD solution is used
  • FIG. 14 (b) is an SEM observation image when the HRP solution and hydrogen peroxide are added to the o-PD solution.
  • the left side is a view of the nanostructure measured from above
  • the right side is a view inclined by 45 °.
  • the formation rate of the polymer is increased by the enzyme reaction, and a polymer having a large size is formed.
  • the promotion of the oxidative polymerization reaction by the enzyme occurs in the height direction rather than the diameter direction. This is presumed to be because the oxidative polymerization reaction proceeds in the laser focused spot.
  • FIG. 15 (a) shows the measurement procedure of this experiment. Specifically, 20 ⁇ L of an aqueous glucose solution (0 to 1 mM) and 20 ⁇ L of a mixture of GOD and HRP at 1: 1 (hereinafter abbreviated as GOD / HRP) were mixed and allowed to stand for 1 minute. 20 ⁇ L was taken from the mixed solution to which 20 ⁇ L of o-PD solution (1 mM) was added, dropped onto the substrate, and the backscattered light intensity was measured. The backscattered light intensity was similarly measured using ribose and lactose aqueous solution (5 mM) having no activity on GOD as a control.
  • GOD / HRP a mixture of GOD and HRP at 1: 1
  • FIG. 15B shows a temporal change in the obtained backscattered light intensity. As the glucose concentration increased, the maximum value of the backscattered light intensity (initial peak intensity) appeared earlier.
  • FIG. 15 (c) shows a graph plotting the time at which the first peak of the backscattered light intensity appears for each glucose concentration. From the above figure, it was found that there was a clear correlation between the two, and glucose could be quantified in the concentration range of 100 nM to 1 mM. This is considered to be because the formation rate of o-PD to the polymer depends on the glucose concentration, so that the glucose concentration could be quantified from the temporal change of the backscattered light intensity. On the other hand, when the same reflected light intensity was measured using ribose and lactose (5 mM) as controls instead of glucose, the peak of the backscattered light intensity appeared at almost the same time as the glucose concentration of 100 nM. This is considered because GOD has a slight activity with respect to ribose and lactose.
  • the glucose concentration can be measured specifically with high sensitivity (detection sensitivity: 100 nM to 1 mM) using the specificity of GOD.
  • FIG. 16A shows the measurement procedure of this experiment. Specifically, 300 ⁇ L of an aqueous glucose solution (0 to 1 mM) and 300 ⁇ L of a GOD / HRP solution were mixed in a measuring cell of a spectrophotometer and left to stand for 1 minute. To this, 300 ⁇ L of o-PD solution (1 mM) was added and mixed, and the absorption spectrum was measured with a spectrophotometer.
  • FIG. 16B shows the obtained absorption spectrum.
  • FIG. 16C shows a graph in which the peak absorbance with respect to each glucose concentration is plotted.
  • glucose can be detected 1000 times more sensitive than the conventional method.
  • Table 2 shows a comparison between the method of the present invention and the conventional method. Compared with the conventional method, the glucose detection method according to the present invention is extremely excellent in that it requires a small amount of sample and has high detection sensitivity.
  • a comparison with a glucose detection method using a commercially available glucose detection kit using a colorimetric method was performed.
  • Table 3 shows the results of comparison with the method of the present invention in terms of temperature, measurement time, required sample amount, and glucose detection sensitivity.
  • the commercially available glucose detection kit needs to be heated to 37 ° C., and the measurement takes 5 minutes or more.
  • a glucose concentration of 200 ⁇ M to 39 mM can be detected with a 200 ⁇ L sample.
  • the method of the present invention it is possible to measure at normal temperature without the need for heating, and it only takes about 1 to 2 minutes from the start of measurement. Furthermore, according to the method of the present invention, a glucose concentration of 100 nM to 1 mM can be quantified with a sample of 20 ⁇ L or less. Therefore, according to this invention, it turned out that glucose can be quantified rapidly and with high sensitivity compared with the case where a commercially available kit is used.
  • FIG. 17 shows the temporal changes in the obtained backscattered light intensity.
  • FIG. 20 shows the peak time of the backscattered light intensity with respect to the glucose concentration at each wavelength.
  • the concentration range of glucose was 1 ⁇ M to 1 mM at a wavelength of 473 nm, 100 nM to 1 mM at a wavelength of 532 nm, and 0.5 to 2.5 mM at a wavelength of 633 nm. Therefore, it was found that green laser light having a wavelength of 532 nm is most suitable for the detection of glucose under the conditions of this experiment.
  • FIG. 21 shows the absorption spectrum of the o-PD solution (3.8 mM) used in this experiment.
  • the absorption spectrum of the o-PD solution has a peak in the vicinity of a wavelength of 450 nm, and the absorbance at each laser wavelength is 0.056 (wavelength 473 nm), 0.017 (wavelength 532 nm), 0.007 (wavelength 633 nm). Since the o-PD aqueous solution contains DAP formed by natural oxidation by oxygen in the air, it is considered that an absorption spectrum of DAP having a peak near 450 nm was obtained.
  • FIG. 22 shows the absorption spectrum (left axis) of the o-PD aqueous solution and the backscattered light of the nanostructure formed by dropping the o-PD aqueous solution onto the substrate and condensing a laser having a wavelength of 532 nm.
  • the intensity spectrum (right axis) is shown. Since the nanostructure formed by the above method has a nano-level size of 1 ⁇ m or less and an absorption spectrum cannot be measured, the scattering spectrum was measured by irradiating a halogen lamp with a dark field condenser lens.
  • the scattering peak of the nanostructure formed at the condensing point is about 620 nm, which is longer than the peak of the absorption spectrum of dimer (DAP) in the o-PD solution. Since the scattering spectrum of the fine particles gives the same information as the absorption spectrum, it can be seen from the result of the scattering spectrum that the formed nanostructure absorbs light in a longer wavelength region more strongly than DAP. This is presumably because the o-PD is polymerized to increase the ⁇ -electron conjugate length and shift the absorption peak to the longer wavelength side.
  • the laser with a wavelength of 532 nm could be measured with the highest sensitivity.
  • a wavelength of 473 nm DAP shows strong light absorption, but a polymer having a long ⁇ electron conjugate length hardly absorbs light.
  • the wavelength is 633 nm, DAP hardly absorbs light.
  • Table 4 summarizes the results of the absorbance of the o-PD solution and the scattering intensity of the nanostructure at each wavelength.
  • FIG. 23 is a schematic diagram showing the progress of the oxidative polymerization reaction of o-PD by focused laser light.
  • the oxidation polymerization proceeds due to the light absorption of the dimer (DAP).
  • DAP dimer
  • the ratio of light absorption by the nanostructure Becomes larger. For this reason, it is considered that light absorption by both the dimer and the nanostructure in the o-PD solution is important for the method of the present invention. Therefore, as shown in Table 4 described above, it is considered that a green laser beam having a wavelength of 532 nm that absorbs both of them is most suitable for the detection of glucose.
  • Oxygen molecules have a triplet state in the ground state, and singlet oxygen corresponding to an excited state is a useful oxidizing agent.
  • the triplet state of a dye molecule such as methylene blue has an excitation energy approximately equal to the energy difference between singlet oxygen and triplet oxygen.
  • the dye molecule is photoexcited, it transitions to the triplet state by intersystem crossing.
  • the triplet state dye collides with triplet oxygen, exchange of electrons and energy occurs, and the dye returns to the ground state, and at the same time, triplet oxygen transitions to singlet oxygen.
  • Oxidation by singlet oxygen generated by photoexcitation in this way is a typical mechanism of the photooxidation reaction, and a dye used for generating singlet oxygen is called a photosensitizer.
  • a He—Ne laser having a wavelength of 633 nm that hardly absorbs o-PD dimer (DAP) was used to examine the photosensitization effect by methylene blue. Specifically, it was dissolved in a citrate buffer so that the concentration of methylene blue was 200 ⁇ M, and the concentration of the methylene blue solution was adjusted to 0.2 mM. Next, o-PD (4 mM) and the above methylene blue solution (0.2 mM) are mixed, and a mixed solution of o-PD (1 mM) + methylene blue (18.75 ⁇ M) (hereinafter abbreviated as o-PD / blue solution). .)
  • FIG. 25 shows the absorption spectrum of the o-PD / blue solution thus obtained.
  • methylene blue was added to the o-PD solution, an absorption peak appeared on the long wavelength side in addition to the original absorption of o-PD.
  • FIG. 26 shows the temporal change of the obtained backscattered light intensity.
  • FIG. 27 shows a graph plotting the peak time of the backscattered light intensity with respect to each glucose concentration.
  • the detection sensitivity of glucose was improved by adding methylene blue, and the glucose concentration of 0.25 to 1 mM could be quantified. This indicates that the oxidation reaction by singlet oxygen generated by light absorption is involved in polymer formation by a focused laser.
  • the above results also show that the present invention can be applied to a measurement system using an inexpensive semiconductor laser (LD) having a wavelength of 650 nm by using a photosensitizer such as methylene blue.
  • LD inexpensive semiconductor laser
  • methylene blue was used as a photosensitizer, but in addition, o-PD dimer (DAP) and polymers also act as photosensitizers and promote the oxidative polymerization of o-PD itself. It is done.
  • DAP o-PD dimer
  • ethanol was detected by the method of the present invention.
  • the reaction formula of ethanol and AOD, o-PD and HRP is shown below.
  • Ethanol was diluted with pure water to prepare 5 types of ethanol having a concentration of 0 to 100 mM.
  • AOD solution was prepared by dissolving AOD in citrate buffer to a concentration of 100 units / mL.
  • FIG. 28 shows the temporal change of the obtained backscattered light intensity.
  • FIG. 29 the graph which plotted the peak time of the backscattered light intensity with respect to each ethanol concentration is shown.
  • sample solution used for production of an IgG antibody-immobilized substrate was prepared as follows. First, an IgG antibody (ChromPure Human IgG, whole molecule, Jackson ImmunoResearch Laboratories, Inc., 11.8 mg / mL) used as a receptor is dissolved in HEPES buffer (10 mM, pH 7.25) so that the concentration becomes 100 ⁇ g / mL. did.
  • IgG antibody ChromPure Human IgG, whole molecule, Jackson ImmunoResearch Laboratories, Inc., 11.8 mg / mL
  • HEPES buffer 10 mM, pH 7.25
  • HRP-labeled anti-IgG antibody (Rabbit polyclonal Secondary to Human IgG-H & L (HRP), pre-adsorbed, 0.5 mg / mL) was dissolved in pure water as a detection antigen to prepare an aqueous solution with a concentration of 10 ng / mL.
  • the aqueous solution was repeatedly diluted 10 times with pure water to prepare 11 types of HRP-labeled anti-IgG antibody aqueous solutions having a concentration of 10 fg / mL to 10 ng / mL.
  • N-Hydroxysuccinimide hereinafter referred to as NHS
  • Dojindo 1-ethyl-3- (3-dimethylaminopropyl) carbohydride hydrochloride
  • WSC 1-ethyl-3- (3-dimethylaminopropyl) carbohydride hydrochloride
  • WSC 1-ethyl-3- (3-dimethylaminopropyl) carbohydride hydrochloride
  • WSC 1-ethyl-3- (3-dimethylaminopropyl) carbohydride hydrochloride
  • the mixed solution was prepared as follows. First, it melt
  • a microscope cover glass (size 24 mm ⁇ 36 mm, thickness 0.12 to 0.17 mm, MATUNAMI) washed with a detergent was further washed using a plasma dry cleaner (PDC2102Z, Yamato Scientific Co., Ltd.).
  • the cover glass was soaked in triethoxysilane (98% or more, SIGMA-ALDRICH) diluted 100 times with ethanol (3-Aminopropyl) for 30 minutes, washed with ethanol, and dried. Then, the cover glass was treated with aminosilane by heating at 120 ° C. for 2 hours in a dry oven (DX31, Yamato).
  • a silicon sheet having 9 to 12 holes with a diameter of 3.5 mm was punched on the cover glass to form a multiwell substrate.
  • 10 microliters of NHS / WSC solutions and 990 microliters of IgG antibody solutions were mixed, 20 microliters was dripped at each well, and it was left to incubate for 30 minutes.
  • the substrate was washed and dried, and then 20 ⁇ L of a blocking reagent (ELISA ULTRABLOCK, AbD serotec) was added dropwise, and left undisturbed for 30 minutes to block unreacted amino groups.
  • the thus prepared IgG antibody-immobilized substrate was stored in a cool and dark place until use.
  • FIG. 30 (a) shows a schematic diagram according to this measurement method.
  • An IgG antibody was immobilized on a glass substrate, and an HRP-labeled anti-IgG antibody that specifically binds to the IgG antibody was detected. Specifically, 20 ⁇ L each of HRP-labeled anti-IgG antibody solutions (10 fg / ml to 10 ng / ml) having different concentrations are dropped onto the IgG antibody-immobilized substrate prepared as described above, and left for 30 minutes at constant temperature, and then phosphoric acid is added. Washed with buffer solution and dried.
  • reaction solution a mixed solution of o-PD (1 mM) and hydrogen peroxide (0.1 mM) is used as a reaction solution, 20 ⁇ L of the reaction solution is dropped on each substrate and left to stand for 1 minute, and then a 20 mW laser beam is emitted. The light was collected and the change in backscattered light intensity was measured. The result is shown in FIG. As shown in the above figure, the higher the concentration of the HRP-labeled anti-IgG antibody solution dropped on the substrate, the earlier the change in the backscattered light intensity appeared.
  • FIG. 30 (c) shows the time when the backscattered light intensity once decreases and increases again to the original intensity (denoted as “predetermined time” on the vertical axis in the figure), and the HRP-labeled anti-IgG. It is a graph which shows the relationship with the density
  • FIG. 31 (a) shows a schematic view of this measurement method.
  • FIG. 31 (c) shows the time when the backscattered light intensity decreases once and increases again to the original intensity (described as “predetermined time” on the vertical axis in the figure), and the HRP-labeled anti-IgG. It is a graph which shows the relationship with the density
  • FIG. 32 shows an example in which the antibody 23 is immobilized on the substrate 21, but the present invention is not limited to this.
  • the substrate includes an X group substance existing region in which at least one of the X group substances consisting of a test substance and a substance having a specific interaction with the test substance (for example, antigen, antibody) exists, and the X group substance And a group X substance non-existing region that does not exist.
  • the test substance for example, antigen, antibody
  • a donut-shaped porous carrier 22 may be provided on the substrate 21, and the antibody 23 may be immobilized (adsorbed) by the porous carrier 22.
  • FIG. 33 shows a state where receptors such as antibodies and antigens are adsorbed to the porous carrier 22.
  • the portion where the porous carrier 22 is provided (outside) is the antibody existing region A, and the portion where the porous carrier is not provided (center portion) is the antibody non-existing region B.
  • the material of the porous carrier 22 is not particularly limited as long as the antibody 23 can be easily immobilized, and the polymer formed in the antibody existing region can easily enter the antibody non-existing region. And fluorinated polyvinylidyne.
  • the porous carrier 22 may be prevented from touching the condensing spot portion.
  • the spacer 24 may be interposed between the porous carrier 22 and the substrate 21 so that the antibody does not exist at the focal point.
  • the spacer 24 include polymer fine particles.
  • the shape of the porous carrier 22 may be deformed into a convex shape as shown in FIG. 35 (by providing a cavity at the focused spot position) so that no antibody is present at the focused point.
  • the substrate on which the antibody exists and the substrate on which the antibody does not exist are overlapped as shown in FIG. 40, and light is irradiated from the substrate on which the antibody does not exist. You may make it do.
  • This method also proved that the test substance can be quantitatively measured with high sensitivity because no antibody is present at the focal point. Details of the experimental method and experimental results will be described later in 7-3. This is explained in the column. 40 shows an example in which the antibody 25 is immobilized on the cover glass 17 used as a substrate, but the present invention is not limited to this.
  • a substrate on which at least one group X substance consisting of a test substance and a substance having a specific interaction with the test substance for example, an antigen
  • the ELISA method uses a microplate on which an antibody to be detected is immobilized, an enzyme-labeled antibody (secondary antibody), a solution necessary for dilution or blocking, and reacts with an enzyme to develop color or fluorescent material.
  • an enzyme-labeled antibody secondary antibody
  • a reagent kit containing a chromogenic substrate to be produced is often used. Therefore, in the following, a comparative experiment between the conventional absorbance measurement method and the backscattered light intensity measurement method of the present invention was performed using a commercially available ELISA kit.
  • FIG. 36 is a graph showing the relationship between the absorbance and the concentration of the HRP-labeled anti-IgG antibody.
  • FIG. 37 is a graph showing the relationship between the time when the first peak of the backscattered light intensity appears (described as “peak time” on the vertical axis in the figure) and the concentration of the HRP-labeled anti-IgG antibody. Comparing these figures, a clear difference was observed between the two at a trace level where the HRP-labeled anti-IgG antibody concentration was 100 pg / mL or less. Therefore, it has been found that if the method of the present invention is used, it is possible to perform quantitative measurement at a very small concentration of, for example, 10 pg / mL or more, which is difficult with the conventional absorbance method.
  • CRP C-reactive protein
  • reaction solution a reaction solution [3,3 ′, 5,5′-tetramethylbenzidine (TMB) and hydrogen peroxide mixed solution attached to the kit used in this experiment was used. ] was dropped into each well and allowed to stand at room temperature for 1 hour, and then 100 ⁇ L of the reaction stop solution attached to the Kit was dropped into each well. Absorbance at a wavelength of 405 nm in each well was measured using a microplate reader (Corona Electric, SH-1000).
  • FIG. 38 is a graph showing the relationship between absorbance and CRP concentration.
  • FIG. 39 shows the relationship between the time when the backscattered light intensity decreases once and increases again to the original intensity (denoted as “predetermined time” on the vertical axis) and the CRP concentration. It is a graph.
  • the exact measurement sensitivity depends on the ELISA kit used, but if the method of the present invention is used, quantitative measurement of CRP at a trace concentration of, for example, 500 pg / mL or more, which was difficult with the conventional absorbance method, is possible. I understood that.
  • the stationary substrate 27 is turned over, and a 1 mm thick silicon rubber sheet is adhered to both ends as spacers 24 (see (5) in FIG. 40).
  • the same cover glass 28 (clean substrate without a polystyrene thin film) used for the production of the substrate was placed on top of each other.
  • a laser (wavelength 532 nm, intensity 2.6 mW) is collected on the solid-liquid interface between the cover glass 28 and the polymer substance-containing solution 26 using a 60 ⁇ objective lens.
  • the backscattered light intensity change was measured. That is, according to this experimental method, as shown in FIG. 40 (5), the laser is focused on the solid-liquid interface between the clean cover glass 28 on which the antibody is not solid-phased and the polymer-containing solution 26. , Nanostructures can be formed.
  • FIG. 41 is a graph showing the relationship between the time when the first peak of the backscattered light intensity appears (described as “peak time” on the vertical axis in the figure) and the concentration of HRP-labeled anti-IgG antibody (secondary antibody). .
  • peak time the time when the first peak of the backscattered light intensity appears
  • concentration of HRP-labeled anti-IgG antibody secondary antibody
  • the detection method of the present invention uses the DAP (dimer) in the o-PD solution and the condensed light. It was strongly suggested that light absorption by both of the polymers formed at the spots is important. Furthermore, ethanol could be detected with good quantitativeness by the method of the present invention.
  • the method of the present invention can also be applied to an immunoassay.
  • 10 pg / mL to 10 ⁇ g / mL of HRP-labeled anti-IgG antibody could be detected. .
  • the detection sensitivity of the HRP-labeled anti-IgG antibody can be further improved by appropriately controlling the concentration of the sample solution containing the test substance, the antibody immobilization method on the substrate, and the like.
  • a rapid, high-sensitivity, and portable ELISA measurement system can be realized by downsizing the measurement apparatus.
  • the method of the present invention can also be applied to, for example, a multi-sensor chip in which a plurality of enzymes are immobilized on a single substrate. Therefore, the technology of the present invention is extremely useful for developing a small, inexpensive, and simple biosensing system capable of detecting a very small amount of a test substance.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 酵素反応による発色を利用して被験物質を検出する方法に当たり、分光測定装置を用いずに、被験物質を迅速且つ感度良く定量的に検出可能な方法を提供する。本発明に係る被験物質の濃度測定方法は、被験物質から過酸化物を発生させる工程と、前記過酸化物に、重合物質生成用酸化還元酵素、および前記重合物質生成用酸化還元酵素の基質を接触させて重合物質を得る工程と、前記重合物質に光を照射して、照射点からの散乱光の強度の時間的変化情報を記録する工程と、を含む。

Description

被験物質の濃度測定方法および検出装置
 本発明は、ペルオキシダーゼなどの重合物質生成用(酸化還元)酵素を用いて被験物質を検出する方法、および上記方法に用いられる検出装置に関する。以下では、ELISA法(Enzyme-Linked ImmunoSorbent Assay;酵素結合免疫吸着法)を用いて本発明を詳細に説明するが、本発明はこれに限定する趣旨ではない。
 ELISA法は、抗原の抗原決定基と抗体との特異的結合反応、および抗体または抗原に標識した酵素による呈色反応を組み合わせて用いる免疫学的測定法(イムノアッセイ)の一種である。ELISA法では、特異性の高い抗原抗体反応を利用し、酵素反応に基づく発色をシグナルに変換して測定するため、高感度で検出でき、定量性にも優れている。また、標識物質として放射性物質を用いる放射免疫測定(ラジオイムノアッセイ、RIA)に比べて安全性が高く、安価で簡便である。そのため、ELISA法は、抗体、インフルエンザウイルス、血漿タンパク質、サイトカイン、DNA、ペプチド、リガンドなどの生体関連物質;食品などに含まれる残留農薬や環境ホルモンなどの化学物質;糖尿病、癌などの診断に用いられる血糖、腫瘍マーカーなどの診断用物質など、様々な被験物質の検出や定量に汎用されている。
 ELISA法は、測定原理の違いにより、直接吸着法、競合法、サンドイッチ法に大別される。各測定方法の概要は以下のとおりである。
 直接吸着法では、まず、マイクロプレートなどに被験物質を固定化した後、酵素で標識した抗体(酵素標識抗体)を添加し、被験物質中の抗原と反応させる(抗原抗体反応)。次に、共雑物を洗浄により除去した後、標識した酵素に対する発色基質を添加して反応させ、発色した色素の吸光度を、比色計を用いて測定し、被験物質中の抗原量を測定する。直接吸着法は、微量タンパク質の定量性が低いなどの欠点を有する。
 競合法は、直接吸着法の上記欠点を改善するために開発されたものであり、抗原に対して一種類の抗体を用い、被験物質中の抗原を高感度に検出する方法である。競合法では、まず、抗体を固定化したマイクロプレートなどに、被験物質と酵素標識抗原を添加し、競合的に反応させる(抗原抗体反応)。次に、共雑物を洗浄により除去した後、酵素の発色基質を添加して反応させ、発色した色素の吸光度を、比色計を用いて測定し、被験物質中の抗原量を測定する。
 サンドイッチ法は、被験物質中の抗原を、二種類の抗体を用いて検出する方法であり、特異性が非常に高いという利点がある。詳細には、マイクロプレートなどに固定化した抗体(一次抗体、捕獲抗体)に被験物質を添加し、反応させる(抗原抗体反応)。次に、共雑物を洗浄により除去した後、更に酵素で標識した抗体(二次抗体)を添加し、上記抗原抗体反応と異なる部位で反応させる。これにより、一次抗体-抗原-二次抗体のサンドイッチ構造が形成される。共雑物を洗浄により除去した後、酵素の発色基質を添加して反応させ、発色した色素の吸光度を、比色計を用いて測定し、被験物質中の抗原量を測定する。
 例えばELISA法を用いて、IgG抗体などの抗体を検出する場合、標識酵素として、西洋ワサビペルオキシダーゼ(Horseradish peroxidase、HRP)と、その基質である過酸化水素(H22)を用いた呈色反応が汎用されている。HRPのほか、グルタチオンペルオキシダーゼやハロペルオキシダーゼなどのペルオキシダーゼは、抗体のほか、グルコースやコレステロールなどの生体成分の定量に広く用いられている。ペルオキシダーゼは酸化される物質に対して基質特異性が低く、種々の定量法を適用することができる。特に上記HRPは分子量が小さいため、ELISA法では抗体に結合させて標識酵素として用いられ、発色試薬(発色基質とも呼ばれる)と組み合わせることにより、医学、疫学、臨床検査などの分野で利用されている。HRPを用いた呈色反応には、発色基質として、アニリンの誘導体であるo-フェニレンジアミン(o-PD)を用いることが多い。
 以下に、o-PDにHRPと過酸化水素(H22)を添加し、酸化重合反応によって2,3-ジアミノフェナジン(DAP)の重合物質が生成する反応式を示す。
Figure JPOXMLDOC01-appb-C000001
 上記反応式によって得られるDAPは橙色や赤色の発色物質であり、波長420nm付近の吸収ピークが時間と共に増加する。この呈色反応に基づく吸光度を測定することにより、抗体のほか、グルコースやコレステロールなどの生体物質を検出することもできる。
 以下に、β-D-グルコースと、β-D-グルコースのみに特異的に作用する酵素グルコースオキシダーゼ(GOD)を用いた呈色反応を示す。GODによってβ-D-グルコースが酸化されると、D-グルコノ-σ-ラクトン(グルコン酸)と過酸化水素(H22)が生成する。生成した過酸化水素(H22)は次の反応2に供給され、HRPにより、o-PDが酸化重合されて橙色のダイマー(重合物質)のDAPが生成する。
Figure JPOXMLDOC01-appb-C000002
 前述したようにELISA法には幾つかの方法が含まれるが、上記いずれの方法を用いる場合でも、酵素標識抗体などによって発色した色素を、比色計を用いて分光測定する。しかし、分光測定には回折格子、光学フィルター、高感度検出器など複数の装置が必要であり、装置が大型化し、高価であるという問題がある。
 そこで、ELISA法に適用可能であり、従来の分光測定法に代替し得る新規な検出技術として、例えば、走査光源による導波管に基づく光学的検出システム(特許文献1)、円盤型分析チップ(特許文献2)、光導波路型抗体チップ(特許文献3)などが提案されている。
特表2012-525595号公報 特開2012-215515号公報 特開2008-224524号公報
 上述したようにELISA法は、抗原抗体反応と標識酵素を利用し、微量の被験物質を高感度且つ定量的に検出、分析可能な手段として極めて有用である。しかし、酵素反応に基づく発色物質の吸光度の測定に用いられる分光測定装置は大型であり、また測定時間が長いという問題を抱えている。
 上記の問題は、ELISA法などのイムノアッセイに限定されず、酵素反応によって生成する発色物質の吸光度を測定してグルコースなどの被験物質を検出する方法(酵素を用いるという意味で、広義の酵素アッセイに含まれる。)においても同様に見られる。
 本発明は上記事情に鑑みてなされたものであり、その目的は、酵素反応による発色、または抗原抗体反応などのような特異的な相互反応と酵素反応による発色を利用して被験物質を検出する方法に当たり、分光測定装置を用いずに、被験物質を迅速且つ感度良く定量的に検出可能な方法を提供することにある。
 本発明の他の目的は、上記方法に好適に用いられる被験物質の検出装置であって、小型且つ計測時間の短い検出装置を提供することにある。
 上記課題を解決し得た本発明に係る被験物質の濃度測定方法は、被験物質から過酸化物を発生させる工程と、前記過酸化物に、重合物質生成用酸化還元酵素、および前記重合物質生成用酸化還元酵素の基質を接触させて重合物質を得る工程と、前記重合物質に光を照射して、照射点からの散乱光の強度の時間的変化情報を記録する工程と、を含むところに要旨を有するものである。
 本発明の好ましい実施形態において、前記被験物質は、酵素反応によって過酸化物を生成する物質である。
 また、上記課題を解決し得た本発明に係る被験物質の他の濃度測定方法は、被験物質に、前記被験物質に対して特異的な相互作用を有する物質に重合物質生成用酸化還元酵素が修飾された修飾物質を接触させた後、過酸化物、および前記重合物質生成用酸化還元酵素の基質を接触させて重合物質を得る工程と、前記重合物質に光を照射して、照射点からの散乱光の強度の時間的変化情報を記録する工程と、を含むところに要旨を有するものである。
 本発明の好ましい実施形態において、前記被験物質に対して特異的な相互作用は抗原抗体反応である。
 本発明の好ましい実施形態において、前記時間的変化情報が信号波形を構成しており、前記被験物質への前記光の照射開始時以降の所定の時から、前記信号波形が極値を示すまでにかかる時間を特定する工程をさらに含む。
 本発明の好ましい実施形態において、前記重合物質を得る工程は基体の上で行なうものである。
 本発明の好ましい実施形態において、前記被験物質、および前記被験物質に対して特異的な相互作用を有する物質よりなるX群物質の少なくとも一種が存在する第1の基体と;前記被験物質、および前記被験物質に対して特異的な相互作用を有する物質よりなるX群物質の少なくとも一種が存在しない第2の基体と;を重ね合わせ、前記第2の基体から光を照射するものである。
 本発明の好ましい実施形態において、前記基体は、前記被験物質、および前記被験物質に対して特異的な相互作用を有する物質よりなるX群物質の少なくとも一種が存在するX群物質存在領域と、前記X群物質が存在しないX群物質非存在領域とを有しており、前記X群物質非存在領域に前記光を照射するものである。
 本発明の好ましい実施形態において、前記基体の上に多孔質担体を設け、前記多孔質担体によって前記X群物質を固定しているものである。
 また、上記課題を解決し得た本発明の検出装置は、被験物質に光を入射できる光源と、前記被験物質由来の重合物質からの散乱光を検知する光電変換素子と、前記光電変換素子から出力される信号を所定時間のあいだ続けて記録する記録媒体と、を有するところに要旨を有するものである。
 本発明の好ましい実施形態において、前記被験物質由来の重合物質は光透過基体の第1面側に存在しており、前記光透過基体の第2面側に対向しているレンズを更に有している。
 本発明の好ましい実施形態において、前記被験物質由来の重合物質への前記光の照射開始時以降の所定の時から、前記記録媒体に記録されている信号波形が極値を示すまでにかかる時間を特定する計算手段をさらに有する。
 本発明の好ましい実施形態において、前記光透過基体の第1面側に、前記被検物質由来の重合物質、および前記被験物質由来の重合物質に対する特異的な相互作用を有する物質よりなるX群物質の少なくとも一種が存在するX群物質存在領域と、前記X群物質が存在しないX群物質非存在領域とを有する。
 本発明によれば、分光装置を利用する従来法に比べ、迅速且つ感度良く定量的に被験物質の濃度を測定し、検出することができる。
 また、本発明によれば、分光装置を用いる従来の検出装置に比べ、小型化且つ安価で、計測時間の短い検出装置を提供することができる。
図1は、β-D-グルコースを検出するための方法について、本発明法と従来法を対比した図である。 図2は、本発明において推察される反応メカニズムを示す図である。 図3は、本発明に用いられる検出装置の一実施形態を示す図である。 図4は、実験に用いた基板の説明図である。 図5(a)は、o-PD溶液に緑色LEDを照射したとき、各照射時間におけるo-PD溶液の吸収スペクトルの結果を示す図である。図5(b)は、照射時間の異なるo-PD溶液にレーザー光を集光して後方散乱光強度を測定したときの、後方散乱光強度の時間的変化を示す図である。 図6は、o-PD溶液のピーク吸光度に対する後方散乱光強度のピーク時間をプロットした図である。 図7(a)は、種々の濃度のo-PD水溶液に緑色レーザー光を集光したとき、レーザー照射時間と後方散乱光強度との関係を示す図である。図7(b)は、各濃度のo-PD水溶液について、緑色レーザーを80秒間照射した後のSEM写真である。 図8(a)~(f)は、1mMのo-PD水溶液に緑色レーザーを集光し、4秒ごとに反射光の画像を撮影した写真である。 図9(a)は、本実験の測定手順を示す図である。図9(b)は、レーザーを4秒から16秒間照射したときのAFM観察像である。図9(c)は、レーザー照射時間と、後方散乱光強度および重合体の高さとの関係を示す図である。 図10は、本発明において検出している光を模式的に示す図である。 図11(a)は、実験に用いた、ガラス基板と水に挟まれたモデル試料の説明図である。図11(b)は、上記モデル試料における、ポリマー薄膜の厚さと反射率との関係を示す図である。 図12(a)は、本実験の測定手順を示す図である。図12(b)は、1mMのo-PD溶液に種々の濃度のDAPを混合した溶液にレーザー光を集光したときの、後方散乱光強度の時間的変化を示す図である。図12(c)は、DAPの濃度と、後方散乱光強度のピーク時間との関係を示す図である。 図13(a)は、HRP溶液、種々の濃度の過酸化水素、及びo-PD溶液の混合液における、レーザー照射時間と後方散乱光強度との関係を示す図である。図13(b)は、過酸化水素濃度と後方散乱光強度のピーク時間との関係を示す図である。 図14(a)は、o-PD溶液にレーザー光を集光したときのSEM観察像である。図14(b)はo-PD溶液、HRP溶液、および過酸化水素の混合液にレーザー光を集光したとき、集光点に形成されたナノ構造体のSEM観察像である。 図15(a)は、本実験の測定手順を示す図である。図15(b)は、種々の濃度のグルコース水溶液、GOD、およびHRPの混合液にレーザーを照射したときの、レーザー照射時間と後方散乱光強度との関係を示す図である。図15(c)は、各グルコース濃度に対する後方散乱光強度の最初のピークが現れた時間をプロットした図である。 図16(a)は、本実験の測定手順を示す図である。図16(b)は、種々の濃度のグルコース水溶液、GOD、HRPの混合液における吸収スペクトルの結果を示す図である。図16(c)は、各グルコース濃度に対するピーク吸光度をプロットした図である。 図17は、種々の濃度のグルコースに波長473nmのレーザーを照射したときの、後方散乱光強度の時間的変化を示す図である。 図18は、種々の濃度のグルコースに波長532nmのレーザーを照射したときの、後方散乱光強度の時間的変化を示す図である。 図19は、種々の濃度のグルコースに波長633nmのレーザーを照射したときの、後方散乱光強度の時間的変化を示す図である。 図20は、各波長における、グルコース濃度に対する後方散乱光強度のピーク時間を示す図である。 図21は、実験に用いたo-PD溶液(3.8mM)の吸収スペクトルを示す図である。 図22は、各波長における、o-PD水溶液の吸収スペクトル(左軸)と、o-PD水溶液にレーザーを集光して形成されたナノ構造体の後方散乱光強度スペクトル(右軸)の関係を示す図である。 図23は、集光レーザー光によるo-PDの酸化重合反応の進行状態を示す模式図である。 図24は、光増感反応のエネルギーダイヤグラムを説明する図である。 図25は、633nmのHe-Neレーザーを用い、メチレンブルーによる光増感効果を調べた図である。 図26は、種々の濃度のグルコース水溶液、GOD、HRP溶液にo-PD/blue溶液20μLを加えた混合溶液における。後方散乱光強度の時間的変化を示す図である。 図27は、各グルコース濃度に対する後方散乱光強度のピーク時間をプロットした図である。 図28は、種々の濃度のエタノール、HRP溶液、およびAOD溶液にo-PD溶液を加えた混合溶液における、後方散乱光強度の時間的変化を示す図である。 図29は、各エタノール濃度に対する後方散乱光強度のピーク時間をプロットした図である。 図30(a)は、ELISA法(その1)における、測定法の概略図である。図30(b)は、レーザー照射時間と後方散乱光強度の関係を示す図である。図30(c)は、後方散乱光強度反射光強度が一度減少して、再び元の強度まで増加するまでの時間(所定時間)と、HRP標識抗IgG抗体の濃度との関係を示す図である。 図31(a)は、ELISA法(その2)における、測定法の概略図である。図31(b)は、レーザー照射時間と後方散乱光強度の関係を示す図である。図31(c)は、後方散乱光強度反射光強度が一度減少して、再び元の強度まで増加するまでの時間(所定時間)と、HRP標識抗IgG抗体の濃度との関係を示す図である。 図32は、抗体が存在する抗体存在領域Aと、抗体が存在しない抗体非存在領域Bとを有する基板を示す図である。 図33は、基板の上に設けたドーナツ状の多孔質担体によって抗体を固定化した基板を示す図である。 図34は、多孔質担体と基板との間にスペーサーを介在させた基板を示す図である。 図35は、多孔質担体を凸状に変形させた基板を示す図である。 図36は、7-1に記載の実験において、従来の吸光度測定法による結果を示すグラフである。 図37は、7-1に記載の実験において、本発明法による結果を示す図である。図37(a)は、レーザー照射時間と後方散乱光強度の関係を示す図である。図37(b)は、後方散乱光強度のピーク時間と、HRP標識抗IgG抗体の濃度との関係を示す図である。 図38は、7-2に記載の実験において、従来の吸光度測定法による結果を示すグラフである。 図39は、7-2に記載の実験において、本発明法による結果を示す図である。図39(a)は、レーザー照射時間と後方散乱光強度の関係を示す図である。図39(b)は、後方散乱光強度が一度減少して、再び元の強度まで増加するまでの時間(所定時間)と、CRPの濃度との関係を示す図である。 図40は、7-3に記載の実験手順を説明する図である。 図41は、7-3に記載の実験において、後方散乱光強度のピーク時間と、HRP標識抗IgG抗体の濃度との関係を示す図である。
 本発明者らは上記課題を解決するため、鋭意検討してきた。その結果、
(i)被験物質から過酸化物を発生させ、当該過酸化物に、重合物質生成用酸化還元酵素、および前記重合物質生成用酸化還元酵素の基質を接触させて得られる重合物質、または(ii)被験物質に、当該被験物質に対して特異的な相互作用を有する物質に重合物質生成用酸化還元酵素が修飾された修飾物質を接触させた後、過酸化物、および重合物質生成用酸化還元酵素の基質を接触させて得られる重合物質に光を照射して、照射点からの散乱光の強度の時間的変化情報を記録することによって所期の目的が達成されることを見出し、本発明を完成した。
 本明細書において「重合物質生成用酸化還元酵素」、「重合物質生成用酸化還元酵素の基質」、「重合物質」、および「重合体」を以下のように定義する。
 まず、上記「重合物質生成用酸化還元酵素」は、重合反応によって重合物質を得るための酵素であり、例えば、前述した反応式に記載の西洋ワサビペルオキシダーゼ(HRP)のほか、グルタチオンペルオキシダーゼ、ハロペルオキシダーゼなどのペルオキシダーゼが挙げられる。但し、本発明はこれに限定されず、当該酵素の重合基質を酸化的に重合する酵素であれば良い。以下では、単に酵素と呼ぶ場合がある。
 上記「重合物質生成用酸化還元酵素の基質」は、前記重合反応により重合物質を得るためのものであり、例えば、アニリンおよびその誘導体であるo-フェニレンジアミン(o-PD)、p-フェニレンジアミン(p-PD)などのフェニレンジアミン;フェノール系化合物などが挙げられる。以下では、上記基質を単に重合基質と呼ぶ場合がある。
 上記「重合物質」は、前述した重合物質生成用酸化還元酵素と重合物質生成用酸化還元酵素の基質との反応によって得られるものであり、例えば、ジアミノフェナジン(DAP)などのダイマー(二量体)が挙げられる。
 上記「重合体」は、後記する図1および図2に示すように、上記重合物質がレーザー光などの光を吸収して形成されるものである。上記「重合体」の重合度が高まり、基体上の集光スポット内で凝集した重合体(光を散乱する重合体)を特に「ナノ構造体」と呼ぶ。
 前述したとおり、本発明の測定方法は、下記第1の方法と第2の方法からなる。
 (1)第1の方法:
 被験物質から過酸化物を発生させる工程と、
 前記過酸化物に、重合物質生成用酸化還元酵素、および前記重合物質生成用酸化還元酵素の基質を接触させて重合物質を得る工程と、
 前記重合物質に光を照射して、照射点からの散乱光の強度の時間的変化情報を記録する工程と、
 を含む被験物質の濃度測定方法。
 (2)第2の方法:
 被験物質に、前記被験物質に対して特異的な相互作用を有する物質に重合物質生成用酸化還元酵素が修飾された修飾物質を接触させた後、過酸化物、および前記重合物質生成用酸化還元酵素の基質を接触させて重合物質を得る工程と、
 前記重合物質に光を照射して、照射点からの散乱光の強度の時間的変化情報を記録する工程と、
 を含むことを特徴とする被験物質の濃度測定方法。
 上記第1の方法と第2の方法は、重合物質を得る工程が相違している。すなわち、上記第1の方法は、酵素反応などの生化学反応によって過酸化物を生成する被験物質を用い、当該被験物質由来の過酸化物を利用して重合物質を得るものである。これに対し、上記第2の方法は、被験物質に対する特異的な相互作用(例えば抗原抗体反応など)を利用するものであり、上記第2の方法に用いられる被験物質は、上記第1の方法で用いられる過酸化物生成被験物質に限定されない。第2の方法は、従来のELISA法の代替技術として有用である。
 本発明によれば、上記方法に適用可能な被験物質を感度良く検出、定量することができる。上記被験物質としては、例えば、ELISA法により検出可能な被験物質(例えば、抗体、インフルエンザウイルス、C反応性タンパク質、血漿タンパク質、サイトカイン、DNA、ペプチド、リガンドなどの生体関連物質;食品などに含まれる残留農薬や環境ホルモンなどの化学物質;糖尿病、癌などの診断に用いられる血糖、腫瘍マーカーなどの診断用物質など)のほか、グルコース、コレステロール、ヒスタミンなどの生体物質;エタノール、ギ酸など(上記グルコースも含む。)の酵素反応によって酸化する物質など、様々な被験物質を感度良く検出、定量することができる。
 以下、各工程について説明する。
 はじめに、上記第1および第2の各方法において、重合物質を得る工程を説明する。重合物質を得る工程は本発明を特徴付けるものではなく、下記要件を満足する限り、公知の方法を適用することができる。
 (I)第1の方法において、被験物質から過酸化物を発生させる工程と、前記過酸化物に、重合物質生成用酸化還元酵素、および前記重合物質生成用酸化還元酵素の基質を接触させて重合物質を得る工程
 この工程は、被験物質由来の過酸化物に酵素を反応させ、酵素の酸化還元反応に伴って重合基質を二量化するなどして重合物質を得るものである。
 上記方法に用いられる被験物質は、過酸化物を発生させるものであれば特に限定されない。上記過酸化物として、例えば、過酸化水素、過酸化ナトリウムなどの無機過酸化物の他、過酸化ベンゾイル、クメンヒドロペルオキシドなどの有機過酸化物などが挙げられる。上記過酸化物は、例えば、被験物質に酵素を添加する酵素反応によって得ることができる。上記被験物質として、例えば、グルコース、エタノール、コレステロール、ギ酸などが挙げられる。例えば、被験物質としてグルコースなどのように酸化酵素(グルコースの場合、グルコースオキシダーゼ)によって酸化する過酸化物発生物質を用いる場合、前述した反応式に示すように、グルコースとグルコースオキシダーゼが反応し、生成した過酸化水素が、重合物質生成用酸化還元酵素と重合物質生成用酸化還元酵素の基質と反応する。勿論、本発明はこれに限定されない。
 (II)第2の方法において、被験物質に、前記被験物質に対して特異的な相互作用を有する物質に重合物質生成用酸化還元酵素が修飾された修飾物質を接触させた後、過酸化物、および前記重合物質生成用酸化還元酵素の基質を接触させて重合物質を得る工程
 前述したように上記第2の方法は、酵素の酸化還元反応に伴う重合基質の重合物質化を行なう点では上記第1の方法と共通するが、その前提として、上記第1の方法のように、被験物質由来の過酸化物を用いるのではなく、被験物質と、被験物質に対して特異的な相互作用を有する物質に重合物質生成用酸化還元酵素が修飾された修飾物質を混合し、得られた物質に過酸化物および重合基質を混合したものを用いる点で、上記第1の方法と相違する。
 ここで上記「被験物質に対して特異的な相互作用」とは、例えば、抗原抗体反応などが挙げられる。また、上記「被験物質に対して特異的な相互作用を有する物質」とは、例えば被顕物質に対する抗体または抗原が挙げられる。また、上記「被験物質に対して特異的な相互作用を有する物質に重合物質生成用酸化還元酵素が修飾された修飾物質」とは、酸化還元酵素などによって標識された、被験物質に対する抗体または抗原が挙げられる。
 上記「被験物質に対して特異的な相互作用」が抗原抗体反応である場合、例えば、ELISA法に用いられる種々の方法(前述した直接吸収法、競合法、サンドイッチ法など)を全て適用することができる。ELISA法の詳細は、例えば、Medical&Biological Laboratories,測定原理ELISA法(2011)などの文献を参照することができる。
 具体的には、例えば、被験物質に対する抗体(一次抗体)に、重合物質生成用酸化還元酵素で標識された抗体および上記酵素の基質を順次反応させても良い。ここで、上記「重合物質生成用酸化還元酵素で標識された抗体」は、結果的に、上記酵素で標識された抗体となるものを意味する。従って、使用時には、抗体に直接、上記酵素が標識されていても良いし、標識されていなくても良い。前者の酸化還元酵素標識抗体は高価なため、後者のように、使用時に抗体と上記酸化還元酵素を反応させ、上記酸化還元酵素で標識された抗体を用いることもできる。また、上記酵素は、被験物質に対する抗体または抗原に共有結合していても良い。或いは、更に被験物質に対する抗体(一次抗体)を認識する抗体(二次抗体)または抗原が、上記酵素で標識されていても良い。
 (III)前記重合物質に光を照射して、照射点からの散乱光の強度の時間的変化情報を記録する工程(第1および第2の方法に共通する工程)
 上記工程を詳しく述べると、まず、上記重合物質に光を照射する。光の照射により酸化重合が進み、上記重合物質が光を吸収して重合体が形成され、重合度が高められる。その重合体が、光透過基体上の集光スポット内で凝集してナノ構造体(光を散乱する重合体)が形成される。上記散乱光には、反射光、後方反射光、後方散乱光も含まれる。また、散乱光強度の変化を精度良く測定するには、上記光として、レーザー光が好ましく用いられる。また、光の照射に当たっては、ガラス基板などの基体と被験物質由来の重合物質を含む溶液との界面に集光させることが好ましい。
 本発明では、上記時間的変化情報が信号波形を構成しており、前記被験物質への前記光の照射開始時以降の所定の時から、前記信号波形が極値を示すまでにかかる時間を特定する工程をさらに含むことが好ましい。
 以下、本発明を特徴付ける上記工程について、図1および図2を用いて説明する。図1および図2では、重合物質生成用酸化還元酵素としてHRPを、HRPの基質として過酸化水素を、上記酸化還元酵素の発色基質としてo-PDを、光としてレーザー光を用いた例を示しているが、本発明はこれに限定する趣旨ではない。
 図1に、前述したβ-D-グルコースの検出に用いられる一連の反応によって生成する重合物質(DAP)にレーザー光を照射して、o-PDのポリマー凝集体が生成する様子を模式的に示す。図1に示すように、従来では、o-PDの酸化反応によって生成する重合物質のDAP(ダイマー)の吸光度を、分光装置を用いて測定し、被験物質の濃度を定量していた。これに対し、本発明では、上記DAPにレーザー光を照射して酸化重合反応を進行させ、生成したポリマー凝集体(ナノ構造体)の照射点からの散乱光の強度の時間的変化情報を記録する。上記時間的変化情報として、例えば、散乱光のピーク強度が得られるまでのピーク時間や、レーザー光の照射開始時以降の所定の時から信号波形が極値を示すまでにかかる時間などが挙げられる。本発明によれば、従来法に比べ、迅速且つ感度良く定量的に被験物質の濃度を測定することができる。
 上記工程に用いられるレーザー光は、測定感度などの観点から、可視光域のレーザーが好ましく用いられる。例えば、波長500~550nmの緑色レーザーが好ましく用いられる。但し、メチレンブルー、ポルフィリン系色素などの光増感剤を用いることにより、これにより、より長波長域のレーザー(例えば、波長600~700nmの赤色レーザーなど)を用いることもできる。その結果、使用可能な測定波長の幅が広がるなど、実用性が向上する。
 本発明において推察される反応メカニズムを、図2を参照しながら、更に詳しく説明する。図2では、光透過基体に、被験物質を含む試料溶液(詳細には、HRPと、HRPの発色基質であるo-PDと、過酸化水素を含む溶液)を用いた例を示している。
 まず、上記基体に、上記の試料溶液を所定量滴下する(図2の(i)を参照)。その結果、HRPの酸化重合反応により、o-PDは、光吸収性を有する、二量体の2,3-ジアミノフェナジン(DAP)に変化する。次に、DAPにレーザー光を照射して基板上に集光すると、DAPの光吸収により、酸化力の高い活性酸素種が生成する(図2の(ii)を参照)。このようにして生成した活性酸素種の高い酸化力によって、HRPによる酸化重合反応は一層促進され、レーザー光の集光点に、o-PDのポリマー凝集体が形成される(図2の(iii)を参照)。なお、図2の(iii)には、o-PDのポリマー凝集体の構造を示しているが、これは予想される構造の一例を示したに過ぎず、これに限定する趣旨ではない。このようにして得られるo-PDのポリマー凝集体は、レーザー反射光の照射点(集光点)からの散乱光の強度を変化させる。散乱光の強度を測定し、照射点からの散乱光の強度の時間的変化情報を記録する。上記散乱光の強度の時間的変化情報の一例として、例えば、ピーク強度が得られるまでのピーク時間が挙げられる。後記する実施例で実証したように、上記ピーク時間は、o-PD溶液や過酸化水素などの濃度と良好な相関関係を有するため、上記ピーク時間の測定により、試料溶液中の被験物質を感度良く定量的に検出できると推察される。
 ここで、「ピーク強度」とは、極大および極小の両方の極値を含む。後記する実験例に示すように被験物質を含む試料溶液の組成、被験物質の濃度などによっては、両方の極値をとり得るからである。ピーク強度は、最初のピーク強度であっても良いし、2回目、3回目など、いずれのピーク強度であっても良い。また、信号には常にノイズが含まれる関係上、レーザー光の照射開始時における散乱強度の例えば±10%以内(より好ましくは±7%以内、さらに好ましくは±5%以内)の極値は、本発明における極値から除外してもよいものとする。また、極値の位置の判定方法としては、例えば、散乱光の強度の時間的変化情報であるグラフを微分したときに、その微分値が、所定区間(例えば5ビット)において負の値であったものが、所定区間(例えば5ビット)において正の値の転じた部分として特定することも可能である。
 次に、本発明の検出装置について説明する。本発明の検出装置は、被験物質に光を入射できる光源と、前記被験物質由来の重合物質からの散乱光を検知する光電変換素子と、前記光電変換素子から出力される信号を所定時間のあいだ続けて記録する記録媒体とを有するところに特徴がある。本発明の検出装置は、好ましくは、光透過基体の第1面側に存在している被験物質を検出する装置であって、前記光透過基体の第2面側に対向しているレンズと、前記レンズを通して前記光透過基体に光を入射させることができるレーザー光源と、前記光透過基体の第1面側に存在している被験物質に由来する重合物質から散乱される光を、前記レンズを通して検知する光電変換素子と、光電変換素子から出力される信号を所定時間のあいだ続けて記録する媒体とを有しているものである。なお、本発明の検出装置における被験物質とは、上記第1および第2の方法で用いられる被験物質には限定されず、光を吸収することで被験物質に由来する重合物質が得られる物質を意味する。
 光透過基体は、光を透過させることができる物体を指すものであるが、好ましくは、波長532nmの光を85%以上、より好ましくは90%以上、さらに好ましくは95%以上透過させるものである。具体的には、例えば、ガラス基板、プラスチックなどが挙げられる。光透過基体の形状としては、平板状であることが好ましい。本発明では、光透過基体の第1面側に存在している被験物質からの散乱光の強度に基づいて被験物質を検出するものであるため、光透過基体そのものによる散乱や屈折による検出光量の低下をできるだけ避けるためである。光透過基体の厚さは薄いことが好ましく、例えば、0.5mm以下、さらに好ましくは0.2mm以下である。光透過基体の厚さに特に好ましい下限値はないが、被験物質を保持する機能を果たすため、例えば、0.05mm以上、好ましくは0.1mm以上とする。レーザー光の波長及び強度に特に制限はなく、重合物質のポリマー化を促進するものであればよい。光電変換素子としては、光電子増倍管、フォトダイオード、フォトトランジスタ、固体撮像素子等を用いることができる。光電変換素子から出力される信号を所定時間のあいだ続けて記録する媒体としては、各種フラッシュメモリー、パソコンに内蔵されるハードディスクやDRAM、或いはSRAM等、揮発性/不揮発性を問わずあらゆる記録媒体を用いることができる。
 本発明の検出装置は、さらに、被験物質へのレーザー光の照射開始時以降の所定の時から、記録媒体に記録されている信号波形が極値を示すまでにかかる時間を特定する計算手段を備えていても良い。信号波形の極値を得るためには、例えば、画素ユニットが1つである光電変換素子を使用することにより単一の信号波形を得て、当該信号波形から極値を特定することもできるし、固体撮像素子など、複数の画素ユニットを備えたイメージセンサーである光電変換素子を使用することにより一旦画素毎に信号波形を得て、これらの信号波形の平均値を取るなどして単一の信号波形を得て、当該信号波形から極値を特定することもできる。
 なお、照射開始時以降の所定の時からの時間を特定するのは、照射開始直後の不安定な時間のデータを一部捨てることも可能とするためである。もちろん「照射開始時以降」は、「照射開始時」を含むものである。光透過基体へのレーザー光の照射開始時から、光電変換素子の出力信号が極値を示すまでに要する時間を算出する時間算出手段は、ハードウエアにより実現してもよいが、ソフトウエア上の処理により実施することが好ましい。被験物質から散乱される光としては、後方散乱光を用いることが好ましい。レーザー光を被験物質に入射させるための光学系と被験物質から散乱される光を検出するための光学系を少なくとも一部共有でき、装置全体の小型化に有用だからである。
 以下、本発明の一実施形態である図3の検出装置を用い、種々の基礎実験や実施形態を通じて、本発明の測定方法を更に詳細に説明する。
 以下の説明では、下記の略称を用いる場合がある。
o-フェニレンジアミン(酸化還元酵素の基質):o-PD
2,3-ジアミノフェナジン(重合物質):DAP
ポリフェニレンジアミン:重合体
グルコースオキシダーゼ:GOD
西洋ワサビペルオキシダーゼ(酸化還元酵素):HRP
アルコールオキシダーゼ:AOD
 なお、o-PDは酸化力が非常に強く、自然に酸化され易いため、実験に用いたo-PD溶液には、自然酸化によるDAPを少量含んでいる。
 1.実験に用いた試薬および測定装置
 1-1.試薬
o-フェニレンジアミン(Wako)
グルコースオキシダーゼ(162unit/mg、東洋紡績株式会社)
西洋ワサビペルオキシダーゼ(100unit/mg、Wako)
メチレンブルー(Wako)
 これらの溶媒にはクエン酸バッファー(pH4.6)を用い、所定濃度となるように溶解した。
アルコールオキシダーゼ(Pichia pastoris、38unit/mL、SIGMA-ALDRICH)
エタノール(99.5%、Wako)
 1-2.基板の作製
 マイクロカバーガラス17(サイズ24mm×36mm、厚さ0.12~0.17mm、MATSUNAMI)を洗剤(decon90、Decon Laboratories Limited)で洗浄して乾燥し、その上にパンチで直径3.5mmの穴を9~12個開けたシリコンシート15(厚さ0.2mm、Asone)を載せ、図4のマルチウェル基板(以下、基板と略記する場合がある。)を作製した。図中、16は測定対象の溶液である。
 1-3.レーザー集光装置を用いた後方散乱光強度の測定
 1-3-1.測定装置
 本実験に用いたレーザー集光装置の概略図を図3に示す。レーザー光源1には波長473nmのDPSSレーザー(SDL-473-050TL、Shanghai Dream Lasers Technology)、波長532nmのYAGレーザー(SDL-532-020TL、Shanghai Dream Lasers Technology)、波長633nmのHe-Neレーザー(31-2066-000、COHERENT)を用いた。レーザー光をビームエキスパンダー2で拡げた後、NDフィルター3を通し、倒立型顕微鏡5(IX70-S1F2、OLYMPUS)へ導入した。レーザー光はハーフミラー6(70%反射)で反射され、対物レンズ7(UPlanFL N、60x、OLYMPUS)を用いて倒立型顕微鏡のステージ8上にセットした基板9の上面(基板-溶液の界面)へ集光させた。集光スポットには重合体のナノ構造体10が形成される。表1に各レーザー光源の集光点でのレーザー強度を示す。後方散乱光は、カップラー11により光ファイバー12を通り、光電子増倍管(Hamamatu Photonics、R1166)13で検出され、電気信号に変換された後、データ収録用拡張ボード14を介してコンピュータ(PC)に出力される。レーザーの光路上には外部入力で開閉を制御できるメカニカルシャッター4を置き、コンピュータからプログラムで自動制御できるようにした。
Figure JPOXMLDOC01-appb-T000003
 光照射によるo-PDの着色には緑色LED(M530L2、波長530nm、強度220mW、Thorlabs)を用いた。
 1-3-2.後方散乱光強度の測定手順
 基板9を倒立型顕微鏡5のステージ上に固定し、レーザー光を基板上面に集光するため、基板上面で反射したレーザー集光スポット径が小さくなるように対物レンズ7の高さを調整した。シャッター4を閉じ、レーザー光を遮断してからo-PDを含む試料溶液を基板9のウェルに10~20μL滴下した。プログラムにより光電子増倍管13からの電圧の測定レートを50Hz、測定ポイント数を3000~15000に設定することで測定時間を1~5分に調整した。コンピュータの操作によりシャッター4を開くと、レーザーが試料に集光され、ポリフェニレンジアミンナノ構造形成に伴う後方散乱光強度の測定を開始した。メカニカルシャッター4は設定した時間が経過すると自動的に閉じて測定を終了した。
 1-4.吸収スペクトルの測定手順(比較用)
 比較のため、o-PDの酸化によって生成したDAP(ダイマー)の吸収スペクトルを分光光度計で測定した。吸収スペクトルの測定には分光光度計(UV-2550、SHIMADZU)を用いた。試料と対照用の純水をそれぞれ測定用セル(10×10×45mm、ディスポセルUV、ニッコー・ハンセン株式会社)に入れ、分光光度計にセットする。そして波長300~900nmの範囲でサンプリングピッチを0.5nm、スキャンスピードを高速に設定して試料の吸収スペクトルを測定した。
 1-5.SEMによる重合体の観察
 基板上に形成した重合体を、走査型電子顕微鏡(Scanning Electron Microscope、以下、SEMと略記する。)(FEI、DB-235)を用いて観察した。SEMは、電子線を絞った電子ビームを測定する試料に照射させ、その試料から放出される2次電子を検出することで試料を観察することが出来る電子顕微鏡の一つである。SEMは電子ビームを試料に照射するため、試料表面に導電性が必要である。そのため、本実験ではネオオスミウムコーター(メイワフォーシス株式会社、NeoC-ST)を用い、基板表面にオスミウム金属導電被膜を約2.5nm堆積形成させて、表面に導電性を付与させてから、SEMによる測定を行った。
 2.レーザー照射によるo-PDの酸化重合反応
 ここでは、HRP酵素反応を用いる代わりに、o-PDに緑色LEDを照射してDAPを形成させ、o-PD溶液中に含まれるDAPの光吸収によって、ポリマー凝集体であるナノ構造体が得られることを示す。
 2-1.o-PDへの緑色LED照射による吸収スペクトルの変化と、後方散乱光強度の変化
 o-PD溶液(0.33mM)を分光装置の測定用セルに入れ、200mW/cm2の緑色LED(波長530nm)を一定時間照射した後、各照射時間におけるo-PD溶液の吸収スペクトルを分光光度計で測定した。得られた吸光スペクトルを図5(a)に示す。上記図より、緑色LEDの照射時間が長くなる程、波長450nm付近をピークとする光吸光度スペクトルの吸光度が増加した。この吸収スペクトルの形状は、o-PDのダイマーであるDAPの吸収スペクトルの形状と一致する。すなわち、o-PD溶液の酸化によりDAPが生成し、橙色に呈色したことが分かった。
 次いで、上記分光装置の測定用セルから、LED照射時間の異なるo-PD溶液を20μLずつ取り、レーザー集光装置の基板に滴下し、レーザー光を集光して後方散乱光強度を60秒間測定した。得られた後方散乱光強度の時間的変化を図5(b)に示す。上記図から、LED照射時間が長くなると、後方散乱光強度が極大になる時間(ピーク時間)が短くなることが分かった。これは、o-PD溶液中のDAP濃度が増加すると、ナノ構造体がある高さまで成長する時間が早くなることを示している。LEDを照射していないo-PD溶液にレーザーを集光しても、後方散乱光強度は変化しなかった。このことから、ナノ構造体の形成には、o-PD溶液中の重合物質が重要であると考えられる。
 図6は、ピーク吸光度に対する後方散乱光強度のピーク時間をプロットしたグラフである。上記図より、o-PD溶液が酸化されて吸光度が増加するのに伴い、後方散乱光強度のピーク時間が早くなることが分かる。
 2-2.後方散乱光の時間的変化とSEM写真
 0.2mM、1mM、4mMの三種類のo-PD水溶液を上記基板上に滴下し、波長532nm、強度2mWの緑色レーザー光を集光して80秒間照射し、後方散乱光強度を測定して、その時間的変化を調べた。この結果を図7(a)に示す。図7(a)に示すように、o-PD水溶液の濃度が高いほど、後方散乱光強度が最初に極大となる時間(最初のピーク強度が得られるまでのピーク時間)が早い。
 更に、レーザー照射後、基板上の集光位置に形成された重合体のSEM像を測定した。図7(b)は、各濃度のo-PD水溶液について、緑色レーザーを80秒間照射した後におけるSEM写真である。図7(b)より、集光スポット位置に重合体の構造物が形成されていることが分かる。重合体の大きさは、o-PD水溶液の濃度が高いほど大きい。これは、o-PD水溶液の濃度が高いほど、ナノ構造体の形成速度が速いためである。なお、o-PD水溶液の濃度が4mMのとき、いびつな形状の構造物が形成された。これは、前述した図7(a)に示すように、後方散乱光強度の時間的変化が50秒付近で不連続になった原因であると考えられる。
 2-3.後方散乱光強度変化の光学顕微鏡写真
 図8(a)~(f)は、1mMのo-PD水溶液に緑色レーザーを集光し、4秒ごとに反射光の画像を光学顕微鏡に取り付けたCCDカメラで順次撮影したものである。中心部の緑色のスポットがレーザー集光点からの反射光である。後方散乱光強度は図8(a)~(d)にかけて増加し、その後、図8(d)~(f)にかけて減少していることが分かる。
 2-4.後方散乱光強度の時間的変化と重合体の高さとの関係
 ここでは、後方散乱光強度の時間的変化と、形成されるナノ構造体の高さとの関係を調べた。図9(a)に本実験の測定手順を示す。
 具体的には、1mMのo-PD水溶液に200mW/cm2の緑色レーザー(波長532nm)を10分間程度照射し、DAPを含むo-PD溶液を作製した。このようにして得られたo-PD溶液を基板上に20μL滴下し、レーザー光を集光して、反射光強度の時間的変化を20秒間測定した。レーザー光の照射時間を変えて同様の実験を行い、各レーザー照射時間によってガラス基板上のレーザー集光位置に形成したナノ構造体の形状を、原子間力顕微鏡(Atomic Force Microscope、以下、AFMと略記する場合がある。)(SII、SPI-4000)で観察した。AFMの測定はSiカンチレバーを用いてタッピングモードで行った。
 図9(b)は、レーザーを4秒から16秒間照射したときのAFM観察像である。これらの図から、レーザー照射時間が増加すると、ナノ構造体のサイズが大きくなり、成長していることが分かる。
 図9(c)は、横軸にレーザー照射時間、左縦軸に後方散乱光強度、右縦軸にナノ構造体の高さをプロットしたグラフである。後方散乱光強度が最初に極大になる時間(最初のピーク時間)は、ある高さまで重合体が大きくなるまでの時間を表している。上記図より、後方散乱光強度が極大値をとるときにナノ構造体の高さは80nmになり、極小値をとるときにナノ構造体の高さは180nmに成長していることが分かる。
 本発明において検出している光は、図10に示すように、集光レーザーの基板-ナノ構造体の界面での反射光と、構造体-溶液の界面での反射光の重ね合わせである。従って、ナノ構造体の成長と共に光の位相が変化し、2つの波の位相が一致した時に後方散乱光強度は極大値となり、位相が半波長ずれたときに極小となる。そして、更なる位相変化により再び増加に転じると考えられる。
 2-5.反射率のシミュレーション
 ここでは、後方散乱光強度の時間的変化のメカニズムを示すため、モデル系に対するフレネルの式を計算した。
 図11(a)に示すモデル試料(ガラス基板(屈折率1.52)と水(屈折率1.33)に挟まれたポリマー薄膜)を準備し、ポリマー薄膜の複素屈折率と膜厚をパラメーターとして、ガラス基板側から波長532nmの光を入射させた時の反射率を計算した。ポリマー薄膜の複素屈折率を1.7-0.2i、1.6-0.2i、1.5-0.2iとしたときの、膜厚と反射率の関係を図11(b)に示す。
 上記図より、ポリマー薄膜の膜厚の増加によって、反射率が増加と減少を繰り返すことが分かる。これは、ポリマー薄膜の2つの界面で反射した光の干渉に起因する。上記の計算条件では、膜厚が70~100nm付近および240~290nm付近で反射率が極大値をとり、160~200nm付近で極小となるが、これは重合体の高さとレーザー照射時間の関係を調べた実験結果と類似している。すなわち、本実験における後方散乱光強度の時間的変化は、集光レーザースポットに形成されたナノ構造体の成長に起因することが分かる。屈折率の実部が小さいほど、ポリマー薄膜の膜厚が0から増加するとき、反射率の大きな減少がみられる。
 2-6.DAP濃度と後方散乱光強度のピーク時間との関係
 ここでは、DAP濃度と後方散乱光強度のピーク時間の関係について調べた。図12(a)に本実験の測定手順を示す。
 具体的には、1mMのo-PD溶液に0~750μMのDAP(詳細は0M、75pM、750pM、75nM、7.5mM、750mM)を混合し、合計6種類の溶液を作製した。それぞれ、20mLを基板上に滴下し、2mWのレーザー光を対物レンズで集光し、後方散乱光強度の時間的変化を測定した。この結果を図12(b)に示す。上記図より、DAPの濃度が高いほど、後方散乱光強度が最初に極大となる時間(ピーク時間)が早く現れることが分かる。
 図12(c)に、DAPの濃度と、後方散乱光強度のピーク時間との関係を示す。上記図より、両者は良好な相関関係を有しており、後方散乱光強度が最初に極大となるピーク時間を検出することによって、DAP濃度を定量良く測定できることが分かった。
 前述したように、HRPと過酸化水素を用いた酵素反応によってo-PDが酸化されると重合物質のDAP(ダイマー)が生成する。HRP濃度が異なる溶液中に過酸化水素とo-PDを一定の濃度で混合すると、HRP濃度に比例したDAPが生成するため、同様にして、レーザー光を集光して後方散乱光強度の時間的変化を測定することにより、HRP濃度を測定することができる。これは、本発明の方法がELISA法に適用可能であることを示している。
 3.酵素反応によるo-PDの酸化重合反応の促進
 ここでは、酵素によってo-PDの酸化重合反応が促進されることを説明する。レーザーを基板上に集光すると、酵素による酸化重合反応によって得られるDAPの光吸収により活性酸素種が発生する。活性酸素の高い酸化力により酸化重合が進行し、集光点にポリマー凝集体であるナノ構造体が形成される。このナノ構造体がレーザー反射光強度を変化させる。
 3-1.酵素反応による酸化重合反応の促進
 HRP溶液、過酸化水素(0~200μM)、及びo-PD溶液(1mM)をそれぞれ20μL採取してマイクロチューブ内で混合し、その混合液を基板上に20μL滴下して後方散乱光強度を測定した。以下に、HRP酵素反応によるo-PDの酸化重合反応[o-PD→DAP→Poly(OPD)(=重合体)]を示す。
Figure JPOXMLDOC01-appb-C000004
 図13(a)に、このようにして得られた後方散乱光強度の時間的変化を示す。上記図より、過酸化水素の濃度が高くなるにつれて、後方散乱光強度のピーク(極大値)が増加し、ピーク時間が早くなることが分かる。
 図13(b)に、過酸化水素濃度に対する後方散乱光強度のピーク時間をプロットしたグラフを示す。上記図より、上記方法によって過酸化水素を3.1~200μMの濃度範囲で定量できていることが分かる。これは、HRPと過酸化水素によってo-PDが酸化され、DAPを生成するためである。
 この結果は、上記のようにして得られたナノ構造体の形成速度が酵素による酸化反応によって促進され、ナノ構造体の形成速度を後方散乱光の時間的変化として検出できることを示している。
 3-2.酵素反応による重合体のSEM観察
 o-PD溶液(0.33mM)20μL、o-PD溶液(1mM)、HRP溶液、および過酸化水素(0.2mM)の各20μLを加えた混合液20μLを基板上に滴下し、2分間レーザー光を集光し、集光点に形成されたナノ構造体のSEM観察を行なった。比較のため、o-PD溶液のみにレーザー光を集光し、同様にSEM観察を行なった。
 図14(a)はo-PD溶液のみを用いたときのSEM観察像であり、図14(b)はo-PD溶液にHRP溶液と過酸化水素を加えたときのSEM観察像である。それぞれの図において、左側がナノ構造体を上から測定した図であり、右側が45°傾けた図である。図14(b)のSEM観察像より、酵素反応によって重合体の形成速度が速くなり、サイズの大きい重合体が形成されていることが分かる。上記の結果より、酵素による酸化重合反応の促進は、直径方向よりも高さ方向に起こっていることが分かる。これは、上記の酸化重合反応がレーザー集光スポット内で進行するためであると推察される。
 本願は、2013年10月21日に出願された日本国特許出願第2013-218750号、および2013年10月22日に出願された日本国特許出願第2013-219688号に基づく優先権の利益を主張するものである。2013年10月21日に出願された日本国特許出願第2013-218750号、および2013年10月22日に出願された日本国特許出願第2013-219688号の各明細書の全内容が、本願に参考のため援用される。
 4.グルコースの検出
 4-1.グルコース濃度の定量
 図15(a)に本実験の測定手順を示す。具体的には、グルコース水溶液(0~1mM)20μLと、GODとHRPを1:1で混合した溶液(以下、GOD/HRPと略記する。)20μLを混合し、1分間恒温放置した。o-PD溶液(1mM)20μLを加えた混合溶液から20μL採取し、基板に滴下し、後方散乱光強度を測定した。コントロールとしてGODに活性がないリボース、ラクトース水溶液(5mM)を用いて同様に後方散乱光強度の測定を行った。
 図15(b)に、得られた後方散乱光強度の時間的変化を示す。グルコース濃度が高いほど、後方散乱光強度の極大値(最初のピーク強度)が早い時間に現れた。
 図15(c)に、各グルコース濃度に対する後方散乱光強度の最初のピークが現れた時間をプロットしたグラフを示す。上記図より、両者には明瞭な相関関係が見られ、100nM~1mMの濃度範囲でグルコースを定量できることが分かった。これは、o-PDの重合体への形成速度がグルコース濃度に依存するため、後方散乱光強度の時間的変化からグルコース濃度を定量できたと考えられる。一方、グルコースの代わりに、コントロールであるリボースとラクトース(5mM)を用いて同様の反射光強度を測定したところ、後方散乱光強度のピークはグルコース濃度100nMとほぼ同じ時間に現れた。これは、GODがリボースとラクトースに対して僅かな活性を有するためと考えられる。
 上記結果より、本発明によれば、GODの特異性を利用してグルコース濃度を高感度(検出感度100nM~1mM)、且つ特異的に測定できることが分かった。
 4-2.従来型グルコース検出法(分光光度法)との比較
 図16(a)に本実験の測定手順を示す。具体的には、分光光度計の測定用セルにグルコース水溶液(0~1mM)300μLと、GOD/HRP溶液300μLを混合し、1分間恒温放置した。ここにo-PD溶液(1mM)300μLを加えて混合し、分光光度計で吸収スペクトルを測定した。図16(b)に得られた吸収スペクトルを示す。また、図16(c)に、各グルコース濃度に対するピーク吸光度をプロットしたグラフを示す。
 その結果、グルコース濃度が1mM、100μM、および10μMの濃度の間で、吸光度の差が見られた。すなわち、従来型グルコース検出法である吸収スペクトル測定では、100μM~1mMの濃度範囲でグルコースを検出することができた。グルコースの代わりに、リボースおよびラクトース(5mM)を用いて同様の反射光強度の測定を行なった結果、10μM以下のグルコースと同様の結果が得られた。
 この結果より、本発明によれば、従来法に比べてグルコースを1000倍高感度で検出できることが分かった。
 表2に本発明法と従来法の比較を示す。従来法に比べて、本発明によるグルコースの検出方法は、必要なサンプル量が少なく、検出感度が高い点で極めて優れている。
Figure JPOXMLDOC01-appb-T000005
 更に、比色法を用いる市販のグルコース検出キット(グルコースキット グルコースCII-テストワコー、和光純薬株式会社)によるグルコース検出法との比較を行った。表3に、温度、測定時間、必要な試料の量、グルコース検出感度について本発明法と比較した結果を示す。この表に示すように、市販のグルコース検出キットでは、37℃に加温する必要があり、測定に5分以上要する。また、200μLの試料で200μM~39mMのグルコース濃度を検出することができる。これに対し、本発明法によれば、加温の必要はなく常温で測定可能であり、且つ、測定開始から1~2分程度の時間しか要さない。更に本発明法によれば、20μL以下の試料で100nM~1mMのグルコース濃度を定量することができる。従って、本発明によれば、市販のキットを用いる場合に比べても、迅速かつ高感度にグルコースを定量できることが分かった。
Figure JPOXMLDOC01-appb-T000006
 4-3.グルコース検出感度のレーザー波長依存性
 波長473nm、532nm、633nmのレーザー光源を用いてグルコースの検出における後方散乱光強度を測定し、レーザー波長依存性を調べた。得られた後方散乱光強度の時間的変化を図17(波長473nm)、図18(波長532nm)、図19(波長633nm)に示す。更に図20に、上記の各波長における、グルコース濃度に対する後方散乱光強度のピーク時間を示す。これらの図より、波長473nmではグルコースが1μM~1mM、波長532nmでは100nM~1mM、波長633nmでは0.5~2.5mMの濃度範囲を定量できることが分かった。よって、本実験の条件下では、波長532nmの緑色レーザー光がグルコースの検出に最も適していることが分かった。
 4-4.o-PD溶液の吸収スペクトルと、重合体の後方散乱光強度スペクトルとの関係について
 ここでは、o-PD溶液の吸収スペクトルと重合体の後方散乱光強度スペクトルとの関係を調べた。
 図21に、本実験に用いたo-PD溶液(3.8mM)の吸収スペクトルを示す。上記図に示すように、o-PD溶液の吸収スペクトルは波長450nm付近にピークがあり、各レーザー波長における吸光度は0.056(波長473nm)、0.017(波長532nm)、0.007(波長633nm)であった。o-PD水溶液には、空気中の酸素による自然酸化によって形成されたDAPが含まれるため、450nm付近にピークを有するDAPの吸収スペクトルが得られたと考えられる。
 図22に、上記o-PD水溶液の吸収スペクトル(左軸)と、上記o-PD水溶液を基板上に滴下し、波長532nmのレーザーを集光することによって形成されたナノ構造体の後方散乱光強度スペクトル(右軸)を示す。上記方法によって形成されたナノ構造体は1μm以下のナノレベルの大きさであり、吸収スペクトルを測定できないため、ハロゲンランプを暗視野コンデンサーレンズで照射して、その散乱スペクトルを測定した。
 集光点に形成されるナノ構造体の散乱ピークは約620nmであり、o-PD溶液中のダイマー(DAP)の吸収スペクトルのピークよりも長波長側にある。微小粒子の散乱スペクトルは、吸収スペクトルと同様の情報を与えるため、上記散乱スペクトルの結果から、形成されたナノ構造体は、DAPよりも長波長領域の光を強く吸収することが分かる。これは、o-PDが重合することでπ電子共役長が伸び、吸収ピークが長波長側にシフトためであると考えられる。波長473nm、532nm、633nmの3種類の波長のレーザーでグルコース濃度測定を行った場合、波長532nmのレーザーが最も感度よく測定できた。波長473nmの場合、DAPは強い光吸収を示すが、π電子共役長の長い重合体はほとんど光吸収しない。波長633nmの場合、DAPはほとんど光吸収しない。
 表4に各波長におけるo-PD溶液の吸光度とナノ構造体の散乱強度の結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000007
 図23は、集光レーザー光によるo-PDの酸化重合反応の進行状態を示す模式図である。上記図に示すように、レーザー集光直後は、ダイマー(DAP)の光吸収により酸化重合が進行し、更に酸化重合が進んでナノ構造体の成長が進むと、ナノ構造体による光吸収の割合が大きくなる。このため、o-PD溶液中のダイマーとナノ構造体の両方による光吸収が本発明の方法に重要であると考えられる。よって、前述した表4に示したように、これらの両方に吸収のある波長532nmの緑色レーザー光がグルコースの検出に最も適していると考えられる。
 4-5.光増感剤の添加効果
 本実験では、光増感剤の一つであるメチレンブルーによる酸化重合反応促進効果を調べた。
 はじめに、図24に示す、光増感反応のエネルギーダイヤグラムを参照しながら、集光レーザー光により酸化重合が進行し、ナノレベルの合体が形成されるメカニズムについて考察する。酸素分子は基底状態が三重項状態であり、励起状態にあたる一重項酸素は有用な酸化剤である。メチレンブルーなどの色素分子の三重項状態は、一重項酸素と三重項酸素とのエネルギー差とほぼ等しい励起エネルギーを有している。色素分子を光励起すると、項間交差により三重項状態に遷移する。この三重項状態の色素が三重項酸素と衝突すると、電子とエネルギーの交換が起こり、色素が基底状態に戻ると同時に、三重項酸素が一重項酸素に遷移する。このように光励起により生じた一重項酸素による酸化が、光酸化反応の典型的なメカニズムであり、一重項酸素発生のために用いられる色素は光増感剤と呼ばれている。
 本実験では、o-PDのダイマー(DAP)の吸収が殆どない波長633nmのHe-Neレーザーを用い、メチレンブルーによる光増感効果について調べた。具体的には、メチレンブルーの濃度が200μMとなるようにクエン酸バッファーに溶解し、メチレンブルー溶液の濃度を0.2mMに調整した。次に、o-PD(4mM)と上記メチレンブルー溶液(0.2mM)を混合し、o-PD(1mM)+メチレンブルー(18.75μM)の混合溶液(以下、o-PD/blue溶液と略記する。)を得た。
 図25に、このようにして得られたo-PD/blue溶液の吸光スペクトルを示す。o-PD溶液にメチレンブルーを加えることにより、o-PD本来の吸収に加えて、長波長側に吸収ピークが現れた。
 次に、グルコース水溶液(0~1mM)20μLとGOD/HRP溶液20μLを混合し、1分間恒温放置した。ここに上記o-PD/blue溶液20μLを加えた混合溶液20μLを基板上に滴下し、後方散乱光強度を測定した。図26に、得られた後方散乱光強度の時間的変化を示す。また、図27に各グルコース濃度に対する後方散乱光強度のピーク時間をプロットしたグラフを示す。
 上記図より、メチレンブルーの添加によってグルコースの検出感度が向上し、0.25~1mMのグルコース濃度を定量することができた。これは、光吸収により発生した一重項酸素による酸化反応が集光レーザーによる重合体形成に関与していることを示している。また、上記の結果は、メチレンブルーのような光増感剤の使用により、波長650nmの安価な半導体レーザー(LD)を用いた測定システムにも適用可能であることを示している。
 なお、上記実験では、光増感剤としてメチレンブルーを用いたが、そのほか、o-PDのダイマー(DAP)や重合体も光増感剤として作用し、o-PD自身の酸化重合を促進すると考えられる。
 5.エタノールの検出
 ここでは、本発明法によりエタノールを検出した。以下に、エタノールとAOD、o-PDとHRPの反応式を示す。
Figure JPOXMLDOC01-appb-C000008
 エタノールを純水で希釈し、濃度が0~100mMの5種類のエタノールを調製した。また、AODをクエン酸バッファーに溶かして濃度が100unit/mLとなるようにAOD溶液を調製した。
 次に、上記のようにして調製したエタノール(0~100mM)20μL、HRP溶液、AOD溶液各10μLを混合し、1分間恒温放置した。ここにo-PD溶液(1mM)20μLを加えた混合溶液20μLを基板に滴下して、後方散乱光強度を測定した。図28に、得られた後方散乱光強度の時間的変化を示す。図29には、各エタノール濃度に対する後方散乱光強度のピーク時間をプロットしたグラフを示す。
 これらの図より、本発明によれば、10~100mMの濃度範囲でエタノールを検出できることが分かった。
 6.イムノセンシングへの応用
 ここでは、IgG抗体を固定化したIgG抗体固定化基板を用い、これにHRP標識抗IgG抗体を結合させ、集光レーザービームによるo-PDの酸化重合反応を利用してHRP標識抗IgG抗体の検出を行った。
 6-1.試料溶液の調製
 IgG抗体固定化基板の作製に用いられる試料溶液を以下のようにして調製した。まず、レセプターとして用いるIgG抗体(ChromPure Human IgG,whole molecule、Jackson ImmunoReserch LABORATORIES,INC.,11.8mg/mL)の濃度が100μg/mLとなるようにHEPESバッファー(10 mM、pH7.25)に溶解した。検出用抗原としてHRP標識抗IgG抗体(Rabbit polyclonal Secondary Antibody to Human IgG-H&L(HRP),pre-adsorbed、0.5mg/mL)を純水に溶解し、濃度10ng/mLの水溶液を作製した。その水溶液を純水で10倍希釈を繰り返し、濃度10fg/mL~10ng/mLの11種のHRP標識抗IgG抗体水溶液を作製した。
 更に、IgG抗体のカルボキシ基を活性化するため、N-Hydroxysuccinimide(以下、NHSと呼ぶ。)と、1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride(Dojindo)(以下、WSCと呼ぶ。)の混合溶液を以下のようにして作製した。まず、NHS(Wako)の濃度が11mg/mLとなるようにMESバッファー(0.1M、pH5.02)に溶解した。更に、WSC(Dojindo)の濃度が4mg/mLとなるように上記MESバッファーに溶解し、NHSとWSCの混合溶液(以下、NHS/WSC溶液と略記する。)を調製した。
 6-2.IgG抗体固定化基板の作製
 ここでは、基板として、一般的に用いられる市販のマイクロプレートよりもサイズの小さい顕微鏡用カバーガラスを用いた。マイクロプレートを用いたELISA法では、サンプル溶液や試薬などがそれぞれ、1ウェル当たり100μL程度必要であるが、サイズの小さい上記カバーガラスを用いれば、サンプル溶液などの容量を減らすことができる。よって、微量の被験物質を簡便且つ感度良く検出することができる。
 まず、洗剤で洗浄した顕微鏡用カバーガラス(サイズ24mm×36mm、厚さ0.12~0.17mm、MATSUNAMI)を、更にプラズマドライクリーナー(PDC2102Z、ヤマト科学株式会社)を用いて洗浄した。カバーガラスをエタノールで100倍希釈した(3-Aminopropyl)triethoxysilane(98%以上、SIGMA-ALDRICH)に30分間浸した後、エタノールで洗浄し、乾燥させた。そして、ドライオーブン(DX31、yamato)にて120℃で2時間加熱することでカバーガラスをアミノシラン処理した。
 上記のカバーガラスにパンチで直径3.5mmの穴を9~12個あけたシリコンシートを載せ、マルチウェル基板とした。そして、IgG抗体のカルボキシ基を活性化するため、NHS/WSC溶液10μLとIgG抗体溶液990μLを混合し、それをウェルに20μLずつ滴下し、30分間恒温放置した。次いで基板を洗浄し、乾燥した後、ブロッキング試薬(ELISA ULTRABLOCK、AbD serotec)20μLを滴下し、30分間恒温放置することで未反応のアミノ基をブロックした。このようにして作製したIgG抗体固定化基板を、使用時まで冷暗所に保管した。
 6-3.ELISA法(その1)
 図30(a)に、本測定法による概略図を示す。
 ガラス基板にIgG抗体を固定し、IgG抗体と特異的に結合するHRP標識抗IgG抗体の検出を行った。詳細には、上記のようにして作製したIgG抗体固定化基板に濃度の異なるHRP標識抗IgG抗体溶液(10fg/ml~10ng/ml)をそれぞれ20μL滴下し、30分間恒温放置した後、リン酸バッファー溶液で洗浄し、乾燥した。
 次に、o-PD(1mM)、過酸化水素(0.1mM)の混合溶液を反応溶液とし、反応溶液20μLをそれぞれの基板に滴下して、1分間恒温放置した後、20mWのレーザー光を集光して後方散乱光強度変化を測定した。その結果を図30(b)に示す。上記図に示すように、基板上に滴下したHRP標識抗IgG抗体溶液の濃度が高いほど、後方散乱光強度の変化が早い時間に現れた。
 図30(c)は、後方散乱光強度が一度減少して、再び元の強度まで増加する時間を計測したときの時間(図の縦軸では「所定時間」と記載)と、HRP標識抗IgG抗体の濃度との関係を示すグラフである。この図より、上記時間は、HRP標識抗IgG抗体の濃度が10pg/ml(50fM)~1μg/ml(5nM)の範囲において良好な相関関係を有することが分かった。これは、本発明の方法により、基板上の被験物質と特異的に結合したHRP標識抗体の濃度を定量出来ることを示している。すなわち、本発明の方法は、直接吸着法、サンドイッチ法などのELISA測定に利用できることを示している。
 6-4.ELISA法(その2)
 抗IgG抗体の検出を、HRP標識抗IgG抗体との競合法によって検出した。図31(a)に、本測定法による概略図を示す。
 各濃度の抗IgG抗体溶液(0g/mL、10ng/mL、100ng/mL、500ng/mL、1μg/mL)20μLを、上記のようにして作製したIgG抗体固定化基板上に滴下し、30分間恒温放置した。基板を洗浄した後、乾燥し、HRP標識抗IgG抗体溶液(1μg/mL)を20μL、基板上に滴下し、30分間恒温放置した。その後、基板を洗浄して乾燥し、レーザー光を集光して後方散乱光強度を測定した。その結果を図31(b)に示す。上記図より、抗IgG抗体の濃度が低い程、後方散乱光強度の変化が早い時間に現れた。
 図31(c)は、後方散乱光強度が一度減少して、再び元の強度まで増加する時間を計測したときの時間(図の縦軸では「所定時間」と記載)と、HRP標識抗IgG抗体の濃度との関係を示すグラフである。上記図より、10ng/mL~100ng/mLの範囲で、抗IgG抗体を検出できることが分かる。これは、本発明の方法により、基板上の被験物質と特異的に結合した抗原の濃度を、HRP標識抗体と競合させることにより定量出来ることを示している。すなわち、本発明の方法は、競合法によるELISAの測定に利用できることを示している。
 6-5.ELISA法による検出感度の向上方法
 上述したとおり、ELISA法では、被験物質に対する抗体、抗原のレセプターのほか、被験物質も固定化した基板を用いることができる。しかし、抗体などが固定化された基板表面は分子レベルでは平坦でないため、ナノ構造体が形成されにくい。
 そこで、基板上に固定化された抗体などの影響を排除し、本発明法による測定の検出感度を高めるため、例えば図32に示すように、抗体23が存在する抗体存在領域Aと、抗体23が存在しない抗体非存在領域Bとを有する基板21を用い、抗体非存在領域Bにレーザー光を照射する方法が挙げられる。この方法によれば、抗体存在領域Aに形成された重合体は、抗体非存在領域Bにも侵入するようになるため、抗体を介さずに重合体に直接、レーザー光を照射させることができる。なお、図32には、抗体23が基板21の上に固定化された例を示したが、本発明はこれに限定されない。例えば、基板は、被験物質、および被験物質に対して特異的な相互作用を有する物質(例えば抗原、抗体)よりなるX群物質の少なくとも一種が存在するX群物質存在領域と、上記X群物質が存在しないX群物質非存在領域とを有していても良い。
 具体的には、例えば、図33に示すように、基板21の上にドーナツ状の多孔質担体22を設け、多孔質担体22によって抗体23を固定化(吸着)しても良い。図33には、多孔質担体22に、抗体や抗原などのレセプターが吸着される様子を示している。多孔質担体22が設けられている部分(外側)が抗体存在領域Aであり、多孔質担体が設けられていない部分(中心部分)が抗体非存在領域Bである。多孔質担体22の素材は、抗体23が固定化しやすく、また、抗体存在領域に形成された重合体が抗体非存在領域に侵入し易いようなものであれば特に限定されず、例えば、ニトロセルロース、フッ化ポリビニリジンなどが挙げられる。
 また、集光スポット部分に多孔質担体22が触れないようにしても良い。例えば、図34に示すように、多孔質担体22と基板21との間にスペーサー24を介在させることにより、集光点では抗体が存在しないようにしても良い。スペーサー24としては、例えば、ポリマー微粒子などが挙げられる。或いは、多孔質担体22の形状を、例えば図35のように凸状に変形させることによって(集光スポット位置に空洞を設けることによって)集光点では抗体が存在しないようにしても良い。
 或は、後記する7-3に記載の実験に示すように、抗体が存在する基板と、抗体が存在しない基板とを、図40に示すように重ね合わせ、抗体が存在しない基板から光を照射するようにしても良い。この方法によっても、集光点では抗体が存在しないため、高感度で被験物質を定量測定できることが実証された。実験方法および実験結果の詳細は、後記する7-3.の欄で説明する。なお、図40には、基板として用いたカバーガラス17の上に抗体25が固定化された例を示したが、本発明はこれに限定されない。例えば抗体のほか、被験物質、および被験物質に対して特異的な相互作用を有する物質(例えば、抗原など)よりなるX群物質の少なくとも一種が存在する基板を用いても良い。
 7.イムノセンシングへの応用(その2)
 一般的にELISA法では、検出対象物質の抗体が固相化されたマイクロプレート、酵素標識抗体(二次抗体)、希釈やブロッキングなどに必要な溶液、酵素と反応して発色や蛍光性物質を産生する発色基質などが含まれた試薬キットを用いることが多い。そこで、以下では、市販のELISAキットを用いて、従来の吸光度測定法と本発明の後方散乱光強度測定法の比較実験を行った。
 7-1.IgGとHRP標識抗IgG抗体の特異結合のELISA法による測定
 本実験では、被験物質としてIgG抗体を用いた。また、実験に使用するHRP標識抗IgG抗体(二次抗体)、ブロッキング溶液、洗浄液、および各工程のプロトコルは、KPL社のProtein Detector ELISA Kit,Anti-Humanを使用した。
 (1)実験方法
 IgG抗体(14.7mg/L)をマイクロプレート(Nunc、マキシプレート)の各ウェルに100μL滴下し、室温で3時間静置した後、洗浄して固相化した。具体的には、各ウェルにブロッキング溶液を300μL滴下し、室温で5分間静置した後、洗浄してブロッキングを行った。次いで、各濃度に希釈したHRP標識抗IgG抗体を各ウェルに100μL滴下し、室温で1時間静置した後、洗浄してIgG抗体固相基板を作製した。
 次に、反応溶液として、2mMのo-PDと10mMの過酸化水素のクエン酸バッファー溶液との混合溶液100μLを各ウェルに滴下し、室温で1時間静置した。
 (2)本発明法による測定
 上記のようにして得られた静置後の溶液を各ウェルから10μL採取し、別に用意したガラス基板に滴下した後、レーザー(波長532nm、強度8mW)を、60倍の対物レンズを用いて上記ガラス基板と上記溶液との固液界面に集光して後方散乱光強度変化を測定した。
 (3)従来の吸光度測定法による測定
 各ウェルにおける波長405nmの吸光度を、マイクロプレートリーダー(コロナ電気、SH-1000)を用いて測定した。
 (4)測定結果と考察
 これらの結果を図36(従来法)および図37(本発明法)に示す。詳細には図36は、吸光度とHRP標識抗IgG抗体の濃度との関係を示すグラフである。図37は、後方散乱光強度の最初のピークが現れた時間(図の縦軸では「ピーク時間」と記載)と、HRP標識抗IgG抗体の濃度との関係を示すグラフである。これらの図を対比すると、両者は、HRP標識抗IgG抗体濃度が100pg/mL以下の極微量レベルで明瞭な差が見られた。よって、本発明の方法を用いれば、従来の吸光度法では困難であった、例えば10pg/mL以上の極微量濃度における定量測定が可能であることが分かった。
 7-2.C反応性タンパクのサンドイッチELISA法による測定
 本実験では、被験物質としてC反応性タンパク(C-reactive protein:CRP)を用いた。CRPは、体内で炎症反応や組織の破壊が起きているときに血中に現れるタンパク質であり、感染症、悪性腫瘍、心筋梗塞などの疾病の指標となる。本実験では、一般的なサンドイッチ法を利用してCRPの測定を行った。具体的には、抗体固相化マイクロプレート、HRP標識二次抗体、希釈溶液、および各工程のプロトコルは、Biocheck社のHigh Sensitivity C-reactive Protein Enzyme Immunoassay Test Kitを用いて実施した。
 (1)実験方法
 まず、抗CRP抗体が固相化されたマイクロプレートの各ウェルに、濃度を調整したCRP溶液を10μL滴下した。続いて、各ウェルにHRP標識二次抗体を100μL滴下し、室温で45分間静置した。
 (2)本発明法による測定
 反応溶液として、2mMのo-PDと10mMの過酸化水素のクエン酸バッファー溶液との混合溶液100μLを各ウェルに滴下し、室温で1時間静置した。
 上記のようにして得られた静置後の溶液を各ウェルから10μL採取し、別に用意したガラス基板に滴下した後、レーザー(波長532nm、強度9.7mW)を、60倍の対物レンズを用いて上記ガラス基板と上記溶液との固液界面に集光して後方散乱光強度変化を測定した。
 (3)従来の吸光度測定法による測定
 反応溶液として、本実験に用いた上記Kitに付属の反応溶液[3,3’,5,5’-テトラメチルベンジジン(TMB)と過酸化水素の混合溶液]を各ウェルに100μL滴下し、室温で1時間静置した後、上記Kitに付属の反応停止液を各ウェルに100μL滴下した。各ウェルにおける波長405nmの吸光度を、マイクロプレートリーダー(コロナ電気、SH-1000)を用いて測定した。
 (4)測定結果と考察
 これらの結果を図38(従来法)および図39(本発明法)に示す。詳細には図38は、吸光度とCRP濃度との関係を示すグラフである。図39は、後方散乱光強度が一度減少して、再び元の強度まで増加する時間を計測したときの時間(図の縦軸では「所定時間」と記載)と、CRP濃度との関係を示すグラフである。厳密な測定感度は使用するELISAキットに依存するが、本発明の方法を用いれば、従来の吸光度法では困難であった、例えば500pg/mL以上の極微量濃度におけるCRPの定量測定が可能であることが分かった。
 7-3.IgG抗体固相化カバーガラスを用いたELISA法による測定
 本実験では、被験物質としてIgG抗体を用いると共に、微量測定のため、基板として、マイクロプレートよりサイズの小さいカバーガラスを用いた。本実験に用いたHRP標識抗IgG抗体(二次抗体)、ブロッキング溶液、洗浄液、および各工程のプロトコルは、KPL社のProtein Detector ELISA Kit,Anti-Humanを使用した。
 (1)実験方法
 図40を参照しながら、本実験の測定手順を説明する。まず、顕微鏡用カバーガラス17(サイズ24mm×36mm、厚さ0.12~0.17mm、MATSUNAMI)にポリスチレン溶液(溶媒キシレン、濃度10wt%)を滴下し、スピンコート法によりポリスチレン薄膜を作製した。次に、直径3mmの穴の開いたシリコンシート15(厚さ0.2mm、Asone)を密着させ、ウェルを作製した。次いで、IgG抗体25(14.7mg/L)を各ウェルに10μL滴下し、室温で3時間静置した後、洗浄した。次に、各ウェルにブロッキング溶液を10μL滴下し、室温で5分間静置した後、洗浄してブロッキングを行ってIgG抗体固相化基板を得た(以上、図40の(1)を参照)。
 このようにして得られたIgG抗体固相化基板のウェルに、各濃度に希釈したHRP標識二次抗体を10μL滴下し、室温で1時間静置した後、洗浄した。次いで、反応溶液として、2mMのo-PDと10mMの過酸化水素のクエン酸バッファー溶液の混合溶液10μLを各ウェルに滴下し、室温で1時間静置した(図40の(2)を参照)。このウェルには、重合物質含有溶液26が含まれている。
 次いで、図40の(3)に示すように静置後の基板27を裏返して、その両端に、厚さ1mmのシリコンゴムシートをスペーサー24として密着させ(図40の(5)を参照)、上記基板の作製に用いたのと同じカバーガラス28(ポリスチレン薄膜のない清浄な基板)を重ねて置いた。次に、図40の(4)に示すように、カバーガラス28と重合物質含有溶液26との固液界面にレーザー(波長532nm、強度2.6mW)を、60倍の対物レンズを用いて集光して、後方散乱光強度変化を測定した。すなわち、本実験方法によれば、図40の(5)に示すように、抗体が固相化されていない清浄なカバーガラス28と重合物質含有溶液26との固液界面にレーザーを集光し、ナノ構造体を形成させることが出来る。
 (2)測定結果と考察
 得られた結果を図41に示す。図41は、後方散乱光強度の最初のピークが現れた時間(図の縦軸では「ピーク時間」と記載)と、HRP標識抗IgG抗体(二次抗体)濃度との関係を示すグラフである。本実験のように抗体固相化基板と清浄な基板を重ねて、上記清浄な基板からレーザーを集光する方法を用いれば、1ng/mL以上の抗IgG抗体を再現性良く測定できることが分かった。
 8.まとめ
 上述したようにo-PD溶液に緑色レーザー光を集光すると、基板上の集光点で酸化重合反応が進行し、反応により形成されるナノサイズの重合体の成長に伴って後方散乱光強度が時間的に変化する。この酸化重合反応は、HRPなどのペルオキシダーゼ酵素反応によって促進され、重合体の形成速度が増加することがSEM観察像により確認された。本発明の方法は、これらの現象を利用したものであり、100nM~1mMのグルコース濃度を感度良く定量することができた。また、グルコースの検出におけるレーザー波長依存性を調べたところ、グルコースの検出には、波長532nmの緑色レーザー光が適していることが分かった。更に、レーザー光の波長依存性とo-PD溶液の吸収スペクトル、重合体の後方散乱光強度スペクトルの関係から、本発明の検出方法では、o-PD溶液中のDAP(ダイマー)と、集光点に形成される重合体の両方による光吸収が重要であることが強く示唆された。更に本発明の方法により、エタノールを定量良く検出することができた。
 更に本発明の方法はイムノアッセイにも適用可能であり、IgG抗体固定化基板を作製してELISA法を行った結果、10pg/mL~10μg/mLのHRP標識抗IgG抗体を検出することが出来た。
 イムノアッセイの適用に当たっては、例えば、被験物質を含む試料溶液の濃度や、基板への抗体固定化方法などを適切に制御することにより、HRP標識抗IgG抗体の検出感度を更に向上させることができる。また、測定装置の小型化により迅速、高感度、且つポータブルなELISA測定システムを実現できる。本発明の方法は、例えば一枚の基板上に複数の酵素を固定したマルチセンサーチップにも適用可能である。従って、本発明の技術は、極微量の被験物質を検出可能な小型、安価、且つ簡便なバイオセンシングシステムの開発に極めて有用である。
 1 レーザー光源
 2 ビームエキスパンダー
 3 NDフィルター
 4 メカニカルシャッター
 5 倒立型顕微鏡
 6 ハーフミラー
 7 対物レンズ
 8 ステージ
 9 基板
 10 ナノ構造体
 11 カップラー
 12 光ファイバー
 13 光電子増倍管
 14 データ収録用拡張ボード
 15 シリコンシート
 16 溶液
 17 カバーガラス
 21 基板
 22 多孔質担体
 23 抗体
 24 スペーサー
 25 抗体(IgG)
 26 重合物質含有溶液
 27 抗体固相基板
 28 清浄な基板
 A 抗体存在領域
 B 抗体非存在領域

Claims (13)

  1.  被験物質から過酸化物を発生させる工程と、
     前記過酸化物に、重合物質生成用酸化還元酵素、および前記重合物質生成用酸化還元酵素の基質を接触させて重合物質を得る工程と、
     前記重合物質に光を照射して、照射点からの散乱光の強度の時間的変化情報を記録する工程と、
     を含む被験物質の濃度測定方法。
  2.  前記被験物質は、酵素反応によって過酸化物を生成する物質である請求項1に記載の被験物質の濃度測定方法。
  3.  被験物質に、前記被験物質に対して特異的な相互作用を有する物質に重合物質生成用酸化還元酵素が修飾された修飾物質を接触させた後、過酸化物、および前記重合物質生成用酸化還元酵素の基質を接触させて重合物質を得る工程と、
     前記重合物質に光を照射して、照射点からの散乱光の強度の時間的変化情報を記録する工程と、
     を含むことを特徴とする被験物質の濃度測定方法。
  4.  前記被験物質に対して特異的な相互作用が抗原抗体反応である請求項3に記載の被験物質の濃度測定方法。
  5.  前記時間的変化情報が信号波形を構成しており、前記被験物質への前記光の照射開始時以降の所定の時から、前記信号波形が極値を示すまでにかかる時間を特定する工程をさらに含む請求項1~4のいずれかに記載の被験物質の濃度測定方法。
  6.  前記重合物質を得る工程は基体の上で行なうものである請求項1~5のいずれかに記載の被験物質の濃度測定方法。
  7.  前記被験物質、および前記被験物質に対して特異的な相互作用を有する物質よりなるX群物質の少なくとも一種が存在する第1の基体と、
     前記被験物質、および前記被験物質に対して特異的な相互作用を有する物質よりなるX群物質の少なくとも一種が存在しない第2の基体と、
    を重ね合わせ、前記第2の基体から光を照射するものである請求項6に記載の被験物質の濃度測定方法。
  8.  前記基体は、前記被験物質、および前記被験物質に対して特異的な相互作用を有する物質よりなるX群物質の少なくとも一種が存在するX群物質存在領域と、前記X群物質が存在しないX群物質非存在領域とを有しており、前記X群物質非存在領域に前記光を照射するものである請求項6に記載の被験物質の濃度測定方法。
  9.  前記基体の上に多孔質担体を設け、前記多孔質担体によって前記X群物質を固定している請求項8に記載の被験物質の濃度測定方法。
  10.  被験物質に光を入射できる光源と、
     前記被験物質由来の重合物質からの散乱光を検知する光電変換素子と、
     前記光電変換素子から出力される信号を所定時間のあいだ続けて記録する記録媒体と、を有することを特徴とする被験物質の検出装置。
  11.  前記被験物質由来の重合物質が光透過基体の第1面側に存在しており、
     前記光透過基体の第2面側に対向しているレンズを更に有する請求項10に記載の検出装置。
  12.  前記被験物質由来の重合物質への前記光の照射開始時以降の所定の時から、前記記録媒体に記録されている信号波形が極値を示すまでにかかる時間を特定する計算手段をさらに有することを特徴とする請求項10または11に記載の検出装置。
  13.  前記光透過基体の第1面側に、前記被検物質由来の重合物質、および前記被験物質由来の重合物質に対する特異的な相互作用を有する物質よりなるX群物質の少なくとも一種が存在するX群物質存在領域と、前記X群物質が存在しないX群物質非存在領域とを有する請求項10~12のいずれかに記載の検出装置。
PCT/JP2014/077874 2013-10-21 2014-10-20 被験物質の濃度測定方法および検出装置 WO2015060269A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015543849A JP6516679B2 (ja) 2013-10-21 2014-10-20 被験物質の濃度測定方法および検出装置
US15/030,183 US10942127B2 (en) 2013-10-21 2014-10-20 Method for measuring concentration of test substance, and detection apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013218750 2013-10-21
JP2013-218750 2013-10-21
JP2013219688 2013-10-22
JP2013-219688 2013-10-22

Publications (1)

Publication Number Publication Date
WO2015060269A1 true WO2015060269A1 (ja) 2015-04-30

Family

ID=52992863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077874 WO2015060269A1 (ja) 2013-10-21 2014-10-20 被験物質の濃度測定方法および検出装置

Country Status (3)

Country Link
US (1) US10942127B2 (ja)
JP (1) JP6516679B2 (ja)
WO (1) WO2015060269A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019082446A (ja) * 2017-10-31 2019-05-30 田中貴金属工業株式会社 バイオアッセイのための検出剤及びそれを用いたシグナルの増幅方法
JP2020018204A (ja) * 2018-07-31 2020-02-06 株式会社エンザイム・センサ γ−アミノ酪酸の測定方法、及びそのためのキット
WO2020054300A1 (ja) * 2018-09-11 2020-03-19 国立大学法人九州大学 内分泌攪乱物質等の定量方法及び定量装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108072621B (zh) 2016-11-18 2021-02-26 财团法人工业技术研究院 残留毒物检测系统及其方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576361A (en) * 1980-06-12 1982-01-13 Joko:Kk Method for deciding peak in dynamic measurement of immune nephelometric device
JPH02259568A (ja) * 1989-02-17 1990-10-22 Gerald Oster 光重合による免疫検定および核酸検定用の組成物およびその方法
JPH02259567A (ja) * 1989-02-17 1990-10-22 Gerald Oster 酸化還元重合による免疫検定および核酸検定用の組成物およびその方法
EP1343012A1 (de) * 2002-03-08 2003-09-10 Infineon Technologies AG Nachweis von Analyten mit Signalverstärkung durch Polymerisation
JP2007531863A (ja) * 2003-07-12 2007-11-08 アクセラー8 テクノロジー コーポレイション 高感度かつ迅速なバイオ検出法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7341841B2 (en) 2003-07-12 2008-03-11 Accelr8 Technology Corporation Rapid microbial detection and antimicrobial susceptibility testing
US20120077206A1 (en) 2003-07-12 2012-03-29 Accelr8 Technology Corporation Rapid Microbial Detection and Antimicrobial Susceptibility Testing
US8288157B2 (en) 2007-09-12 2012-10-16 Plc Diagnostics, Inc. Waveguide-based optical scanning systems
US9423397B2 (en) 2006-03-10 2016-08-23 Indx Lifecare, Inc. Waveguide-based detection system with scanning light source
US7951583B2 (en) 2006-03-10 2011-05-31 Plc Diagnostics, Inc. Optical scanning system
US9528939B2 (en) 2006-03-10 2016-12-27 Indx Lifecare, Inc. Waveguide-based optical scanning systems
JP5238171B2 (ja) 2007-03-14 2013-07-17 株式会社東芝 光導波路型抗体チップ
WO2010127001A1 (en) 2009-04-29 2010-11-04 Plc Diagnostics Inc. Waveguide-based detection system with scanning light source
JP5728273B2 (ja) 2011-04-01 2015-06-03 ローム株式会社 円盤型分析チップ
CN102688787B (zh) 2011-03-23 2016-01-27 罗姆股份有限公司 圆盘式分析芯片
US10018566B2 (en) 2014-02-28 2018-07-10 Ldip, Llc Partially encapsulated waveguide based sensing chips, systems and methods of use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576361A (en) * 1980-06-12 1982-01-13 Joko:Kk Method for deciding peak in dynamic measurement of immune nephelometric device
JPH02259568A (ja) * 1989-02-17 1990-10-22 Gerald Oster 光重合による免疫検定および核酸検定用の組成物およびその方法
JPH02259567A (ja) * 1989-02-17 1990-10-22 Gerald Oster 酸化還元重合による免疫検定および核酸検定用の組成物およびその方法
EP1343012A1 (de) * 2002-03-08 2003-09-10 Infineon Technologies AG Nachweis von Analyten mit Signalverstärkung durch Polymerisation
JP2007531863A (ja) * 2003-07-12 2007-11-08 アクセラー8 テクノロジー コーポレイション 高感度かつ迅速なバイオ検出法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019082446A (ja) * 2017-10-31 2019-05-30 田中貴金属工業株式会社 バイオアッセイのための検出剤及びそれを用いたシグナルの増幅方法
JP7041491B2 (ja) 2017-10-31 2022-03-24 田中貴金属工業株式会社 バイオアッセイのための検出剤及びそれを用いたシグナルの増幅方法
JP2020018204A (ja) * 2018-07-31 2020-02-06 株式会社エンザイム・センサ γ−アミノ酪酸の測定方法、及びそのためのキット
WO2020054300A1 (ja) * 2018-09-11 2020-03-19 国立大学法人九州大学 内分泌攪乱物質等の定量方法及び定量装置

Also Published As

Publication number Publication date
US10942127B2 (en) 2021-03-09
JPWO2015060269A1 (ja) 2017-03-09
JP6516679B2 (ja) 2019-05-22
US20160305889A1 (en) 2016-10-20

Similar Documents

Publication Publication Date Title
Li et al. Label-free sandwich imaging ellipsometry immunosensor for serological detection of procalcitonin
Ran et al. Peptide-mediated controllable cross-linking of gold nanoparticles for immunoassays with tunable detection range
Ali et al. A fluorescent lateral flow biosensor for the quantitative detection of Vaspin using upconverting nanoparticles
Su et al. Detection of prostate-specific antigen with a paired surface plasma wave biosensor
US7612349B2 (en) Surface plasmon enhanced fluorescence sensor
WO2015060269A1 (ja) 被験物質の濃度測定方法および検出装置
US20230375547A1 (en) Methods, devices, and related aspects for detecting ebola virus
Endo et al. Label‐free optical detection of C‐reactive protein by nanoimprint lithography‐based 2D‐photonic crystal film
JP2009258034A (ja) 表面プラズモン放射光検出方法および装置、表面プラズモン放射光検出用試料セルおよびキット
US11493448B2 (en) Method for detecting an analyte using surface enhanced Raman spectroscopy
Song et al. Multiplex immunoassays using surface modification-mediated porous layer open tubular capillary
Daneshvar et al. Detection of biomolecules in the near-infrared spectral region via a fiber-optic immunosensor
US20220365092A1 (en) A method for detecting an analyte
Lu et al. Dual‐Modal Fluorescence‐SERS Detection of Blood Glucose Engineered by Hierarchical Laser‐Induced Micro/Nano Structures for Diabetes Screening
Lee et al. Three-dimensional hot-volume plasmonic gold nanoreactor array for ultrasensitive immunoassays
US20240060891A1 (en) A method for detecting an analyte
CN116930485B (zh) 一种基于免疫生物反应的痕量污染物红外信号增强及原位快速检测方法及检测系统
JP2019052984A (ja) 分析方法
Nzuza et al. Improved sensitivity of tuberculosis antigen MPT64 detection using SPR phase difference
JP2013181889A (ja) Spfs(表面プラズモン励起増強蛍光分光法)を用いたck−mb(クレアチンキナーゼアイソザイムmb)の免疫学的測定法
Zhao Novel biomarker assays based on photothermal effects and nanophotonics
Shen et al. Microgel-based etalon immunoassay for IgG detection
Qi et al. FRET-based fiber-optic fluorescent biosensor for the detection of alpha-fetoprotein
WO2023180747A1 (en) A method for detecting an analyte
Campu et al. Portable microfluidic plasmonic chip for fast real-time cardiac troponin I biomarker thermoplasmonic detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854977

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015543849

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15030183

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14854977

Country of ref document: EP

Kind code of ref document: A1