WO2015059887A1 - 電子機器 - Google Patents

電子機器 Download PDF

Info

Publication number
WO2015059887A1
WO2015059887A1 PCT/JP2014/005151 JP2014005151W WO2015059887A1 WO 2015059887 A1 WO2015059887 A1 WO 2015059887A1 JP 2014005151 W JP2014005151 W JP 2014005151W WO 2015059887 A1 WO2015059887 A1 WO 2015059887A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
vibration
touch
touch position
electronic device
Prior art date
Application number
PCT/JP2014/005151
Other languages
English (en)
French (fr)
Inventor
祐介 足立
良文 廣瀬
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2015543700A priority Critical patent/JP6037252B2/ja
Publication of WO2015059887A1 publication Critical patent/WO2015059887A1/ja
Priority to US14/948,576 priority patent/US9983671B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1643Details related to the display arrangement, including those related to the mounting of the display in the housing the display being associated to a digitizer, e.g. laptops that can be used as penpads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures

Definitions

  • the present disclosure relates to an electronic device having a tactile sensation presentation function that presents a tactile sensation to a user operation.
  • the touch panel is an input device that detects a touch on the panel as an input.
  • the touch panel includes a liquid crystal display or an organic EL display.
  • the touch panel is also called a touch display or a touch screen.
  • the touch panel detects a user's touch on a GUI object (for example, a button) displayed in the display area.
  • a user interface using such a touch panel has an advantage of high flexibility in arrangement of GUI objects.
  • the feedback of feeling when the button is pressed is small compared to the user interface using the conventional mechanical button. Therefore, when the user touches the touch panel, there is a problem that it is difficult to recognize whether or not the touch is correctly detected.
  • a method of vibrating a touch panel and presenting touch haptics has been proposed (for example, Patent Document 1).
  • Patent Document 1 discloses a haptic multi-touch technique that maximizes vibration at a specific location of a plurality of fingers touched by a user and reduces or minimizes vibration at other locations.
  • the amplitude of the bending wave is maximized at a specific location by controlling the plurality of vibration sources, By reducing or minimizing the location, it is possible to generate a tactile sensation only on a specific finger among a plurality of fingers touched by the user.
  • This disclosure provides an electronic device that presents a tactile sensation with respect to multi-touch.
  • An electronic device includes a panel touched by a user, a plurality of vibration units that vibrate the panel, and a plurality of touch positions when the user is simultaneously touching a plurality of positions on the panel.
  • the vibration control part which controls a some vibration part is provided so that the vibration of the 1st touch position of them may become larger than the vibration of the 2nd touch position among several touch positions.
  • the plurality of vibration parts include first and second vibration parts. When the distance between the first touch position and the first vibration part and the distance between the second touch position and the first vibration part are equal to each other, between the first vibration part and the first touch position.
  • the transmission characteristics of the panel vibration and the transmission characteristics of the panel vibration between the first vibration portion and the second touch position are different from each other.
  • an electronic device includes a panel touched by a user, a plurality of vibration units that vibrate the panel, and a plurality of touches when the user touches a plurality of positions of the panel at the same time.
  • a vibration control unit configured to control the plurality of vibration units such that the vibration at the first touch position among the positions is greater than the vibration at the second touch position among the plurality of touch positions.
  • the plurality of vibration parts include first and second vibration parts.
  • the transfer function with the vibration source can be made different at any two points on the panel, and the vibration amplitude can be made different from each other.
  • (A) And (b) is a figure which shows the electronic device which concerns on embodiment. It is a figure which shows the electronic device which concerns on embodiment.
  • (A) And (b) is a figure which shows the tactile sense signal which concerns on embodiment. It is a figure which shows the electronic device which concerns on embodiment. It is a figure which shows the electronic device which concerns on embodiment. It is a flowchart which shows operation
  • (A) And (b) is a figure which shows the vibration of the panel in the touch position which concerns on embodiment. It is a figure which shows the relationship between a touch position and a transfer function. It is a figure which shows the relationship between a touch position and a transfer function. It is a figure which shows the electronic device which concerns on embodiment.
  • Multi-touch means a plurality of touches that are in contact with the panel at the same time.
  • multi-touch means a plurality of touches that are in contact with the panel at a certain time. That is, the multi-touch means a plurality of touches for a plurality of positions on the panel, and a plurality of touches that overlap in time. Therefore, the multi-touch includes not only a plurality of touches started at the same time but also a plurality of touches started at different times and detected at a certain time point at the same time.
  • the second touch is started in a state where the first touch is continued after the first touch is started, the first touch and the second touch are multiple at the start time of the second touch. Corresponds to touch.
  • Multi-touch panel allows multiple users to operate simultaneously.
  • the user can intuitively enlarge or rotate the target object by an operation using a plurality of fingers.
  • Patent Document 1 a technique for maximizing the deflection amplitude of one touch position and reducing or minimizing the deflection amplitude of the other touch position by devising their vibration waveform using a plurality of actuators. Disclosure.
  • the vibration transfer functions from the two vibration sources to the two touch positions are made different from each other, thereby generating a difference in the vibration amplitude at the two touch positions. It is a necessary condition that the transfer function of vibration from to each touch position is different.
  • Patent Document 1 discloses a configuration in which the vibration source is arranged asymmetrically with respect to the central axis of the touch panel. However, even in this configuration, there are many two points where the distance from the vibration source is the same. There are many combinations of points where functions are the same. At such two points, since the transfer functions are the same, the vibration amplitudes cannot be made different from each other, and different tactile sensations cannot be presented.
  • transfer functions can be made different at two points having the same distance from the vibration source, and vibration amplitudes can be made different at all points.
  • at least one of the shape, material, and fixing method of the panel is asymmetric.
  • FIG. 1 is a diagram illustrating an electronic device 100 according to the first embodiment.
  • FIG. 1A is a top view of the electronic device 100
  • FIG. 1B is a cross-sectional view along the actuator 102 of the electronic device 100.
  • FIG. 2 is a diagram illustrating a functional configuration of the electronic device 100.
  • Electronic device 100 presents a tactile sensation to the user by vibrating panel 101.
  • the electronic device 100 includes a panel 101, a plurality of actuators 102, a touch information acquisition unit 103, a tactile sensation presentation determination unit 104, a transfer characteristic storage unit 105, a transfer characteristic acquisition unit 106, a filter calculation unit 107, and a tactile sensation.
  • a signal storage unit 108 and a filter processing unit 109 are provided. Below, each component with which the electronic device 100 is provided is demonstrated.
  • the panel 101 is a member that transmits vibration for presenting a tactile sensation.
  • the panel 101 is a plate-like member having translucency made of glass or acrylic, for example.
  • the x direction is the longitudinal direction of the panel 101.
  • the shape, size, thickness, hardness, fixing method, and the like of the panel 101 need not be particularly limited.
  • the transmission characteristic of vibration from the actuator 102 to each position on the panel 101 (hereinafter also referred to as “point”) changes.
  • the plurality of actuators 102 are installed at different positions on the panel 101.
  • the plurality of actuators 102 are attached to the end of the panel 101. That is, the plurality of actuators 102 are installed outside the image display area 111 of the panel 101.
  • Each actuator 102 vibrates the panel 101 according to the drive signal. In this way, the vibration applied to the panel 101 by each actuator 102 propagates to the touch position of the user on the panel 101, so that a tactile sensation is presented to the user.
  • the number of actuators 102 is equal to or greater than the number of touches that can be detected simultaneously by the touch information acquisition unit 103, for example.
  • electronic device 100 can present different tactile sensations to a plurality of detectable touches.
  • the number of actuators 102 does not necessarily need to be greater than or equal to the number of touches that can be detected simultaneously.
  • the number of actuators 102 may be less than the number of touches that can be detected simultaneously.
  • the electronic device 100 can control the tactile sensation at touch positions equal to or less than the number of actuators 102 among the plurality of touch positions.
  • the actuator 102 may be a piezoelectric element (piezo element), for example.
  • the actuator 102 may be a voice coil.
  • the actuator 102 may include an amplifier for amplifying the drive signal.
  • the type of actuator 102 need not be particularly limited.
  • the arrangement interval of the actuators 102 is not particularly limited.
  • the plurality of actuators 102 may be arranged so that the panel 101 can be vibrated efficiently.
  • the touch information acquisition unit 103 acquires a plurality of touch positions on the panel 101 by detecting a plurality of touches that are in contact with the panel 101 at the same time. That is, the touch information acquisition unit 103 acquires a plurality of touch positions on the panel 101 by detecting a user's multi-touch on the panel 101. For example, the touch information acquisition unit 103 acquires touch information indicating the coordinates of a plurality of touch positions.
  • multi-touch includes a state in which the user is simultaneously touching a plurality of positions on the panel.
  • the touch information acquisition unit 103 is configured by, for example, a capacitive or pressure-sensitive multi-touch panel.
  • the touch information acquisition unit 103 acquires a plurality of touch positions based on a change in capacitance due to multi-touch.
  • the touch information acquisition unit 103 is configured by a pressure-sensitive multi-touch panel, the touch information acquisition unit 103 acquires a plurality of touch positions based on a change in pressure due to multi-touch.
  • the multi-touch panel need not be limited to a capacitive or pressure-sensitive multi-touch panel. That is, the multi-touch panel may be any type of multi-touch panel as long as multi-touch can be detected.
  • the touch information acquisition unit 103 may acquire information indicating a contact area, a load, or a pressure at each touch position as touch information in addition to a plurality of touch positions.
  • the pressure can be easily obtained by using a pressure-sensitive multi-touch panel.
  • the pressure may be acquired using a weight sensor.
  • the touch information acquisition part 103 when the touch information acquisition part 103 is comprised with a multi-touch panel, the panel 101 and the multi-touch panel which comprises the touch information acquisition part 103 may be integrally formed.
  • the touch information acquisition unit 103 and the panel 101 may be formed as one member by attaching a capacitive multi-touch panel to the panel 101.
  • a display device 110 such as a liquid crystal display or an organic EL display may be installed below the panel 101 or the touch information acquisition unit 103.
  • the electronic device 100 can function as a touch display.
  • the display device 110 is not necessarily installed, and the display device 110 may not be provided.
  • the plurality of touch positions on the panel 101 include a position where the user directly touches the panel 101 or a position where the user touches the panel 101 with a pen or the like operated by the user.
  • the tactile sensation presentation determining unit 104 determines a first touch position (hereinafter, also referred to as “presentation position”) that presents a tactile sensation.
  • the tactile sensation presentation determining unit 104 includes a first touch position that presents a tactile sensation by vibration indicated by a tactile sensation signal and at least one second touch position that does not present a tactile sensation (hereinafter, “non-presentation”). Also referred to as “position”).
  • the tactile sensation presentation determining unit 104 selects from among the plurality of touch positions based on, for example, the display position of the GUI object, the load at the touch position, or the temporal or spatial relationship between the plurality of touch positions. One presentation position is determined. In addition, the tactile sensation presentation determination unit 104 determines a touch position other than the presentation position among the plurality of touch positions as a non-presentation position. In addition, the determination method of a presentation position does not need to be specifically limited.
  • the transfer characteristic storage unit 105 is, for example, a hard disk or a semiconductor memory.
  • the transfer characteristic storage unit 105 stores, for each point on the panel 101, transfer characteristics from each actuator 102 to the point. That is, the transfer characteristic storage unit 105 stores transfer characteristics of a plurality of positions on the panel 101 and a plurality of actuators 102 in association with combinations of positions and actuators 102.
  • the transfer characteristic storage unit 105 includes M actuators 102 (A1, A2,..., AM) and N positions (P1 (x1, y1), P2 (x2, y2),..., PN). Transfer characteristics for all combinations with (xN, yN)) are stored. That is, M ⁇ N transfer characteristics are stored in the transfer characteristic storage unit 105.
  • Transfer characteristics indicate the relationship between input and output in the system.
  • the actuator drive signal corresponds to the input
  • the vibration at one point on the panel corresponds to the output.
  • the transfer characteristic G ( ⁇ ) matches the output Y ( ⁇ ) (impulse response).
  • the transfer characteristic storage unit 105 stores, for each point on the panel 101, an impulse response from each actuator 102 to the point as a transfer characteristic.
  • the impulse response may be expressed in the time domain or in the frequency domain. That is, the transfer characteristic storage unit 105 may store a time waveform of an impulse response or may store a spectrum of an impulse response.
  • each point on the panel 101 may be, for example, a representative point (for example, the center or the center of gravity) of each divided area on the panel 101.
  • the divided areas are obtained, for example, by dividing the area on the panel 101 into a grid pattern in units of 10 mm.
  • the shape of the divided regions is not necessarily rectangular, and may be other shapes.
  • the size of the divided areas does not have to be the same in all the divided areas. For example, the size of the divided area may be different depending on the position on the panel 101.
  • each divided area is smaller (that is, the number of divided areas is larger), the resolution of tactile sensation presentation can be improved, but the storage capacity necessary for storing the transfer characteristics increases. That is, since the resolution and the storage capacity are in a trade-off relationship, the size of each divided region may be determined based on the necessary resolution or the allowable storage capacity.
  • the transfer characteristic acquisition unit 106 acquires a transfer characteristic corresponding to each touch position acquired by the touch information acquisition unit 103 from the plurality of transfer characteristics stored in the transfer characteristic storage unit 105. That is, the transfer characteristic acquisition unit 106 reads the transfer characteristic from each actuator 102 to each touch position from the transfer characteristic storage unit 105.
  • the filter calculation unit 107 is an example of a filter acquisition unit.
  • the filter calculation unit 107 acquires a filter for generating a desired drive signal by performing filter processing on an arbitrary tactile signal.
  • the desired drive signal is such that the panel 101 vibrates according to an arbitrary tactile signal at the presenting position, and the panel 101 vibrates according to a signal whose vibration intensity is lower than the arbitrary tactile signal at the non-presenting position.
  • This is a signal for driving the actuator 102.
  • a signal having a vibration intensity smaller than an arbitrary tactile sensation signal is, for example, a signal having an amplitude of 1/10 or less of the amplitude of the arbitrary tactile sensation signal.
  • a signal having a vibration intensity smaller than an arbitrary tactile sensation signal is a signal indicating vibration that cannot be detected by the user.
  • a signal having a vibration intensity smaller than an arbitrary tactile sensation signal is a signal having an amplitude of “0”.
  • the filter calculation unit 107 presents a tactile sensation only at the presentation position among the plurality of touch positions acquired by the touch information acquisition unit 103 using the transfer characteristic acquired by the transfer characteristic acquisition unit 106, A filter for not providing tactile sensation at other touch positions (non-presentation positions) is calculated. A more specific filter calculation method in this case will be described later.
  • the tactile signal storage unit 108 is, for example, a hard disk or a semiconductor memory.
  • the tactile sensation signal storage unit 108 stores a tactile sensation signal.
  • the tactile sensation signal represents the tactile sensation presented to the user. That is, the tactile sensation signal indicates the vibration of the panel 101 at the presentation position.
  • the tactile sensation signal storage unit 108 stores tactile sensation signals as shown in FIGS. 3A and 3B, for example.
  • the tactile sensation signal may be any signal as long as the tactile sensation can be presented to the user, but may be determined based on the vibration characteristics of the panel 101, for example.
  • the tactile sensation signal may be, for example, a signal having a resonance frequency of the panel 101 or a frequency in the vicinity thereof. Thereby, energy efficiency can be improved.
  • a tactile sensation signal generation method When the tactile sensation signal is generated based on a signal corresponding to r periods of a sine wave having a frequency fc, as shown in Expression (1), a sine wave is used using a modulation frequency fm such that the r period is exactly a half period. Is generated, a tactile sensation signal s (n) as shown in FIG.
  • Ts represents a sampling period
  • n represents a discrete frequency unit.
  • the modulation frequency fm is 10 Hz.
  • the tactile sensation signal generated in this way can be used, for example, as a signal for presenting a tactile sensation when a button that is a GUI object is clicked.
  • the tactile sensation signal is not necessarily a signal generated as described above. For example, it is not necessary to perform modulation as shown in Equation (1).
  • a sine wave may be used as the tactile signal.
  • the frequency fc may be any frequency as long as it can be sensed by a human sense of touch.
  • the frequency fc may be determined based on the vibration characteristics of the panel 101.
  • the frequency fc may be determined so as to coincide with the resonance frequency of the panel 101.
  • the frequency fc may be determined so as to coincide with the resonance frequency of the panel 101.
  • the tactile sensation signal is generated in advance offline and stored in the tactile sensation signal storage unit 108, but may be generated online after multi-touch is detected. Thereby, the storage area for the tactile sensation signal can be reduced.
  • the filter processing unit 109 is an example of a drive signal acquisition unit.
  • the filter processing unit 109 uses the filter for each actuator 102 calculated by the filter calculation unit 107 to filter (filter) the tactile sensation signal stored in the tactile sensation signal storage unit 108, thereby A drive signal for driving is generated.
  • the filter processing unit 109 functions as a vibration control unit that controls the vibration of the actuator 102. Note that the components 104 to 109 can also be referred to as vibration control units.
  • Each actuator 102 vibrates the panel 101 in accordance with the drive signal generated by the filter processing unit 109 in this way.
  • vibration based on the tactile sensation signal is generated only at the presentation position among the plurality of touch positions, and vibration is suppressed at the non-presentation position.
  • the electronic device 100 can present a tactile sensation to the user at the presentation position and not present a tactile sensation at the non-presentation position.
  • the filter calculation unit 107 indicates that the sum of products in the frequency domain of the transfer characteristics from each actuator 102 to the presentation position and the filter indicates an impulse, and the transfer characteristics from each actuator 102 to the non-presentation position and the frequency domain of the filter.
  • the filter is calculated so that the sum of the products at 0 indicates zero.
  • the filter calculation unit 107 calculates a filter in the frequency domain as follows.
  • the response D expressed in the frequency domain is expressed as in Expression (2) using the transfer characteristic G and the filter H expressed in the frequency domain.
  • the transfer characteristic G ij ( ⁇ ) is a transfer characteristic from the actuator A j to the touch position P i and is represented in the frequency domain.
  • the filter H j ( ⁇ ) is a filter for generating a drive signal for the actuator A j and is represented in the frequency domain.
  • the response D i ( ⁇ ) is a response at the touch position P i and is represented in the frequency domain.
  • the frequency band to be controlled may be determined based on, for example, a frequency band that can be detected by a human sense of touch.
  • the frequency band to be controlled may be set to 10 Hz to 500 Hz, for example.
  • the filter calculation method as described above is not particularly limited, but by calculating the general inverse matrix G * of G, the filter can be calculated as shown in Equation (3). That is, H indicating a desired filter can be calculated from the general inverse matrix G * of G and D indicating impulse.
  • the filter calculation unit 107 can easily calculate a filter by calculating the general inverse matrix G * shown in Expression (3).
  • G expressed in the frequency domain is a matrix of N rows and M columns.
  • the electronic device 100 in the present embodiment by calculating the filter in the frequency domain, the inverse matrix of the matrix indicating the transfer characteristics can be easily calculated, and the processing load can be reduced. Thereby, even in a device having a low processing capability such as a smartphone or a tablet computer, it is possible to appropriately present a tactile sensation with respect to multi-touch. Moreover, since the processing load for tactile sensation presentation can be reduced, the process for tactile sensation presentation can be executed in parallel with other processes.
  • FIG. 4 is a plan view of the electronic device 100.
  • the peripheral edge of the panel 101 is supported by the housing 115 via a fixing member (spacer) 121.
  • the panel 101 is disposed so as to cover the image display area 111 of the display device 110.
  • the panel 101 is configured to cover the entire surface of the image display area 111 of the display device 110, but is not limited thereto, and may be configured to cover at least a part of the image display area 111. .
  • the fixing member 121 is a connection member for connecting the panel 101 to the housing 115.
  • the fixing member 121 is, for example, a buffer member such as silicon rubber or urethane rubber. By using a buffer member as the fixing member 121, the vibration of the panel 101 can be made difficult to be transmitted to the housing 115.
  • the peripheral edge of the panel 101 is fixed to the casing 115 symmetrically with respect to the center 131 of the panel 101.
  • the peripheral edge of the panel 101 is fixed to the casing 115 asymmetrically with respect to the center 131.
  • the center 131 may be the center of the image display area 111.
  • the shape of the fixing member 121 at a part of the peripheral portion of the panel 101 is different from the shape of the fixing member 121 at another portion of the peripheral portion, so that the panel 101 is fixed asymmetrically.
  • the shape of the fixing member 121 connected to the peripheral portion of the panel 101 is different at each of the four corners.
  • the panel 101 can be fixed asymmetrically because the fixing strength at a part of the peripheral portion of the panel 101 is different from the fixing strength at other portions of the peripheral portion.
  • the panel 101 can be fixed asymmetrically by firmly fixing one of the four corners of the panel 101 and weakly fixing the other part.
  • the panel 101 is fixed to the housing 115 asymmetrically with respect to an axis passing through the center 131 of the panel 101 and parallel to the plane direction (xy direction) of the panel 101.
  • the panel 101 is fixed asymmetrically with respect to a symmetry axis 133 that passes through the center 131 and extends in the x direction.
  • the panel 101 is fixed asymmetrically with respect to a symmetry axis 135 that passes through the center 131 and extends in the y direction.
  • the panel 101 may be fixed asymmetrically with respect to both the symmetry axes 133 and 135.
  • the symmetry axis 133 and the symmetry axis 135 intersect perpendicularly, but they may intersect at an angle other than perpendicular.
  • the shape of the fixing member 121 may be asymmetric with respect to the center 131 of the panel 101.
  • the shape of the fixing member 121 may be asymmetric with respect to an axis that passes through the center 131 of the panel 101 and is parallel to the planar direction (xy direction) of the panel 101.
  • the shape of the fixing member 121 may be asymmetric with respect to at least one of the symmetry axes 133 and 135.
  • the hardness of the fixing member 121 may be asymmetrically different from the center 131 of the panel 101. Further, for example, the hardness of the fixing member 121 may be asymmetrically different with respect to an axis that passes through the center 131 of the panel 101 and is parallel to the plane direction (xy direction) of the panel 101. For example, the hardness of the fixing member 121 may be asymmetrically different from at least one of the symmetry axes 133 and 135.
  • the two actuators 102 are arranged symmetrically with respect to the center 131 of the panel 101.
  • the two actuators 102 are arranged symmetrically with respect to the symmetry axis 133.
  • the two actuators 102 may be arranged symmetrically with respect to the symmetry axis 135.
  • the center 131 may be, for example, a point when the center of gravity of a member to be vibrated is viewed from the operation surface side. Further, the center 131 may be a point where diagonal lines of a member to be vibrated intersect, for example.
  • the member to be vibrated is the panel 101, for example. Further, the member that is the object of vibration may be, for example, the panel 101 and the display device 110, or the entire product.
  • FIG. 5 is a diagram for explaining the processing operation of the electronic device 100.
  • FIG. 6 is a flowchart showing the processing operation of the electronic device 100. In the following, as an example, a case where a tactile sensation is presented only at a presentation position among a plurality of touch positions will be described.
  • the touch information acquisition unit 103 acquires a plurality of touch positions on the panel 101 by detecting multi-touch (S101). For example, the touch information acquisition unit 103 acquires the two touch positions P 1 and P 2 shown in FIG.
  • the touch information acquisition unit 103 acquires, for example, the center position of the user's finger on the panel 101 as the touch position at predetermined time intervals. Note that the touch information acquisition unit 103 does not necessarily acquire the center position of the finger as the touch position. For example, the touch information acquisition unit 103 may acquire the gravity center position of the load by the finger as the touch position.
  • the tactile sensation presentation determining unit 104 determines a first touch position (presentation position) that presents a tactile sensation and a second touch position (non-presentation position) that does not present a tactile sensation from among the plurality of acquired touch positions. (S102). For example, the tactile sensation presentation determination unit 104 determines the touch position P 1 as the presentation position from the two touch positions P 1 and P 2 and determines the touch position P 2 as the non-presentation position.
  • the tactile sensation presentation determination unit 104 determines the presentation position based on the displayed information, for example. More specifically, the tactile sensation presentation determination unit 104 determines, for example, a touch position where a GUI object (for example, a button or a slider) is displayed as the presentation position. Further, for example, the tactile sensation presentation determining unit 104 may determine the touch position where the link information on the Web browser is displayed as the presentation position.
  • a GUI object for example, a button or a slider
  • the tactile sensation presentation determination unit 104 does not necessarily have to determine the presentation position based on the displayed information.
  • the tactile sensation presentation determination unit 104 may determine the presentation position based on the magnitude of the load, the duration of the touch, or the positional relationship between a plurality of touch positions.
  • the tactile sensation presentation determination unit 104 does not always need to determine the presentation position when a plurality of touch positions are acquired by the touch information acquisition unit 103. For example, the tactile sensation presentation determination unit 104 determines all touch positions as non-presentation positions without determining the presentation positions when there are no touch positions that satisfy a predetermined condition among the plurality of touch positions. Also good. Further, for example, when the temporal change of the touch position is large, all touch positions may be determined as non-presentation positions. In this case, since no tactile sensation is required, the process returns to step S101.
  • the transfer characteristic acquisition unit 106 acquires transfer characteristics corresponding to a plurality of touch positions acquired by the touch information acquisition unit 103 from the transfer characteristic storage unit 105 (S103). For example, the transfer characteristic acquisition unit 106 transmits the transfer characteristics g 11 and g 21 from the actuators A 1 and A 2 (corresponding to the actuator 102) to the touch position P 1 and the touch positions from the actuators A 1 and A 2. Transfer characteristics g 12 and g 22 up to P 2 are read from the transfer characteristic storage unit 105.
  • the filter calculation unit 107 calculates a filter for presenting a tactile sensation at the presentation position and not presenting a tactile sensation at the non-presentation position (S104). Specifically, the filter calculation unit 107 calculates a filter using the transfer characteristics from each actuator 102 to the presentation position and the transfer characteristics from each actuator 102 to the non-presentation position. For example, the filter calculation unit 107 calculates a filter for presenting a tactile sensation at the touch position P 1 and not presenting a tactile sensation at the touch position P 2 using the transfer characteristics g 11 , g 12 , g 21 , and g 22. .
  • Step S105 the filter processing unit 109 performs filter processing on the tactile sensation signal s (n) stored in the tactile sensation signal storage unit 108 using the filters h 1 and h 2 calculated in step S104. Then, a drive signal for driving each actuator 102 is generated.
  • the filter processing unit 109 selects one tactile sensation signal from the plurality of tactile sensation signals, and selects the selected tactile sensation signal. Perform filtering. For example, the filter processing unit 109 selects the tactile sensation signal shown in FIG. 3A from the tactile sensation signals shown in FIGS. 3A and 3B. Note that the tactile signal selection method is not particularly limited.
  • Step S106> the actuator A j is driven using the drive signal u j (n) generated in step S105. That is, the actuator A j vibrates the panel 101 in accordance with the drive signal u j (n).
  • the actuator 102 may include an amplifier for amplifying the drive signal.
  • FIG. 7 shows experimental results of vibration of the panel 101 at each touch position. Specifically, FIG. 7 shows the vibration of the panel 101 at the touch positions P 1 and P 2 when the actuator 102 is driven using the drive signal described above.
  • the difference between vibration peaks (hereinafter referred to as “amplitude intensity”) is about 30 ⁇ m, which indicates that the vibration is strong.
  • the amplitude intensity is about 1 ⁇ m, and it can be seen that it vibrates only to the extent that humans cannot detect it.
  • FIG. 7 there is shown vibration characteristics of the touch position P 1, P 2, vibration occurs in the touch position P 1, a position other than P 2.
  • positions other than the touch positions P 1 and P 2 are positions not touched by the user, no tactile sensation is presented to the user regardless of any vibration.
  • the vibration transfer functions from the two points of the actuator to the two points of touch position are made different to create a difference in the vibration amplitude of the two points of touch position. It is a necessary condition that the transfer function of vibration from the vibration source to each touch position is different.
  • the vibration is attenuated and / or delayed according to the distance, so that the transfer functions at two points equidistant from the actuator are the same.
  • the distance between the touch position P 1 and the actuator A 1 is equal to the distance between the touch position P 2 and the actuator A 1
  • the touch position P 1 and the actuator may be equal to each other.
  • the transfer characteristics g 11 and g 12 from the actuator A 1 to the touch positions P 1 and P 2 are equal to each other, and the transfer characteristics g 21 and g 22 from the actuator A 2 to the touch positions P 1 and P 2 are Become equal to each other.
  • the inverse matrix cannot be calculated (the difference in transfer function does not occur), and the vibration amplitudes cannot be made different from each other, thus presenting different tactile sensations. I can't do it.
  • the peripheral portion of the panel 101 is fixed to the housing 115 asymmetrically with respect to the center 131 (FIG. 4) of the panel.
  • the transmission characteristics of vibration are not uniform. For this reason, as shown in FIG. 10, even when the distance between the touch position P 1 and the actuator A 1 and the distance between the touch position P 2 and the actuator A 1 are equal to each other, the touch position P 1 And the vibration transmission characteristic of the panel 101 between the actuator A 1 and the vibration transmission characteristic of the panel 101 between the touch position P 2 and the actuator A 1 are different from each other.
  • the vibration transmission characteristic of the panel 101 with respect to the vibration transmitted from the actuator A 1 to the touch position P 1 is different from the vibration transmission characteristic of the panel 101 with respect to the vibration transmitted from the actuator A 1 to the touch position P 2 .
  • the transfer functions are not the same, and different tactile sensations can be presented.
  • the touch position P 1 and the actuator A 2 are equal to each other, the touch position P 1 and the actuator A 2
  • the vibration transmission characteristics of the panel 101 between the touch position P 2 and the vibration transmission characteristics of the panel 101 between the touch position P 2 and the actuator A 2 are different from each other.
  • the vibration transmission characteristic of the panel 101 with respect to the vibration transmitted from the actuator A 2 to the touch position P 1 is different from the transmission characteristic of the vibration of the panel 101 with respect to the vibration transmitted from the actuator A 2 to the touch position P 2 . . For this reason, even if the distances are equal, the transfer functions are not the same, and different tactile sensations can be presented.
  • the distance between the distance between the touch positions P 1 and the actuator A 1, are equal to each other and the distance between the touch positions P 1 and the actuator A 2, and a touch position P 2 and the actuator A 1 And the distance between the touch position P 2 and the actuator A 2 may be equal to each other.
  • the inverse matrix cannot be calculated (the difference in transfer function is not generated), and the vibration amplitude cannot be made different from each other, so that different tactile sensations cannot be presented.
  • the transmission characteristics of the panel vibration between the touch position P 1 and the actuator A 1 and the panel vibration between the touch position P 1 and the actuator A 2 The transmission characteristics of vibration are different from each other. That is, the vibration transmission characteristic of the panel 101 with respect to the vibration transmitted from the actuator A 1 to the touch position P 1 is different from the vibration transmission characteristic of the panel 101 with respect to the vibration transmitted from the actuator A 2 to the touch position P 1 . For this reason, even if the distances are equal, the transfer functions are not the same, and different tactile sensations can be presented.
  • the transmission characteristics of the panel vibration between the touch position P 2 and the actuator A 1 are different from the transmission characteristics of the panel vibration between the touch position P 2 and the actuator A 2 . That is, the vibration transmission characteristic of the panel 101 with respect to the vibration transmitted from the actuator A 1 to the touch position P 2 is different from the vibration transmission characteristic of the panel 101 with respect to the vibration transmitted from the actuator A 2 to the touch position P 2 . For this reason, even if the distances are equal, the transfer functions are not the same, and different tactile sensations can be presented.
  • the four corners of the panel 101 are fixed differently, but at least one of the four corners may be fixed differently. Further, the panel 101 may be fixed asymmetrically at portions other than the four corners. The panel 101 need only be asymmetric so that the transfer functions at any two points on the panel 101 are different.
  • a tactile sensation can be presented at the presentation position, and a tactile sensation smaller than the presentation position can be presented at the non-presentation position, or a tactile sensation can not be presented. . Therefore, a tactile sensation different from other touches can be presented to a touch that requires a tactile sensation in multi-touch, and appropriate tactile sensation feedback is possible. That is, unnecessary confusion due to tactile sensation presentation can be suppressed.
  • the transfer function of any two points on the panel 101 becomes different by making the support method of the panel 101 asymmetric, and in all the combinations of the two points.
  • the vibration amplitude can be made different from each other and different tactile sensations can be presented.
  • FIG. 11 is a plan view of the electronic device 100.
  • the symmetry axis in the arrangement of the actuator 102 and the symmetry axis in the manner of fixing the panel are different from each other.
  • the two actuators 102 are arranged symmetrically with respect to a symmetry axis 133 that extends through the center 131 of the panel 101 and extends in the x direction.
  • the two actuators 102 are disposed asymmetrically with respect to a symmetry axis 135 that extends in the y direction through the center 131 of the panel 101.
  • the panel 101 is fixed symmetrically with respect to the symmetry axis 135, but is fixed asymmetrically with respect to the symmetry axis 133.
  • the fixing member 121 is disposed at the two upper ends of the four corners of the panel 101, but is not disposed at the two lower ends.
  • FIG. 12 is a diagram illustrating the electronic device 100 according to the second embodiment.
  • the electronic device 100 according to the second embodiment is different from the electronic device 100 according to the first embodiment in that the shape of the panel 101 is asymmetric. Below, it demonstrates centering on a different point from the electronic device 100 of Embodiment 1.
  • FIG. 12 is a diagram illustrating the electronic device 100 according to the second embodiment.
  • the electronic device 100 according to the second embodiment is different from the electronic device 100 according to the first embodiment in that the shape of the panel 101 is asymmetric. Below, it demonstrates centering on a different point from the electronic device 100 of Embodiment 1.
  • the panel 101 has an asymmetric planar shape with respect to the center 131 of the panel 101.
  • the panel 101 has an asymmetric planar shape with respect to the symmetry axis 133.
  • the panel 101 has an asymmetric planar shape with respect to the symmetry axis 135.
  • the shapes of the four corners of the panel 101 are different. In this way, by making the panel 101 an asymmetrical planar shape, the transfer functions of any two points on the panel 101 become different, and the vibration amplitude can be made different in all combinations of the two points. Different tactile sensations can be presented.
  • the two actuators 102 are arranged symmetrically with respect to the center 131 of the panel 101.
  • the two actuators 102 are arranged symmetrically with respect to the symmetry axis 133.
  • the two actuators 102 may be arranged symmetrically with respect to the symmetry axis 135.
  • the transfer function at any two points on the panel 101 is different because the planar shape of the panel 101 is asymmetric.
  • the vibration amplitudes can be made different from each other, and different tactile sensations can be presented.
  • the peripheral edge of the panel 101 may be supported symmetrically by the casing 115.
  • the planar shape of the panel 101 is asymmetrical, so The transfer functions of the two points become different, and the vibration amplitudes can be made different from each other in the combination of all the two points, so that different tactile sensations can be presented.
  • the shape of the four corners of the panel 101 is different, but at least one of the shapes of the four corners may be different from the others.
  • the shape of the panel 101 may be asymmetric at portions other than the four corners. The panel shape only needs to be asymmetric so that the transfer functions at any two points on the panel 101 are different.
  • FIG. 13 is a diagram illustrating the electronic device 100 according to the third embodiment.
  • FIG. 13 shows a cross section along the actuator 102 of the electronic apparatus 100.
  • the electronic device 100 according to the third embodiment is different from the electronic device 100 according to the first embodiment in that the shape of the panel 101 in the thickness direction is asymmetric. Below, it demonstrates centering on a different point from the electronic device 100 of Embodiment 1.
  • FIG. 13 shows a diagram illustrating the electronic device 100 according to the third embodiment.
  • FIG. 13 shows a cross section along the actuator 102 of the electronic apparatus 100.
  • the electronic device 100 according to the third embodiment is different from the electronic device 100 according to the first embodiment in that the shape of the panel 101 in the thickness direction is asymmetric. Below, it demonstrates centering on a different point from the electronic device 100 of Embodiment 1.
  • the panel 101 has an asymmetric thickness with respect to the center 131 (FIG. 4) of the panel 101.
  • the panel 101 has an asymmetric thickness with respect to an axis 137 passing through the center 131 of the panel 101 and perpendicular to the plane direction of the panel 101.
  • the panel 101 has a tapered shape in which the thickness gradually increases from one end to the other end in the x direction. In this way, by making the panel 101 an asymmetrical cross-sectional shape, the transfer functions of any two points on the panel 101 become different, and the vibration amplitude can be made different from each other in the combination of all two points. Different tactile sensations can be presented.
  • the two actuators 102 are arranged symmetrically with respect to the center 131 of the panel 101.
  • the two actuators 102 are arranged symmetrically with respect to the symmetry axis 133.
  • the two actuators 102 may be arranged symmetrically with respect to the symmetry axis 135.
  • the transfer function at any two points on the panel 101 is different because the cross-sectional shape of the panel 101 is asymmetric.
  • the vibration amplitudes can be made different from each other, and different tactile sensations can be presented.
  • the peripheral edge of the panel 101 may be supported symmetrically by the housing 115.
  • the cross-sectional shape of the panel 101 is asymmetrical, so The transfer functions of the two points become different, and the vibration amplitudes can be made different from each other in the combination of all the two points, so that different tactile sensations can be presented.
  • planar shape of the panel 101 may be symmetric. Even in this case, in this embodiment, the transfer function of any two points on the panel 101 is obtained because the cross-sectional shape of the panel 101 is asymmetric.
  • the vibration amplitudes can be made different from each other in the combination of all two points, and different tactile sensations can be presented.
  • the cross-sectional shape of the panel 101 is not limited to the tapered shape shown in FIG. 13, and the cross-sectional shape of the panel 101 may be asymmetrical by other shapes. It is only necessary that the cross-sectional shape 101 of the panel is asymmetric so that the transfer functions at any two points on the panel 101 are different.
  • the combination of the materials of the panel 101 may be asymmetrical.
  • the material of the panel 101 only needs to be asymmetrical so that the transfer functions at any two points on the panel 101 are different.
  • the transmission characteristics of the panel vibration may be made non-uniform by biasing various circuits 117 and the like to the panel 101 and bonding them to the panel 101.
  • the transfer function of any two points on the panel 101 may be made different by making the transfer characteristic of the vibration of the panel non-uniform.
  • the fixing member 121 fixes the circuit 117 and the housing 115.
  • the fixing member 121 may fix other components such as the panel 101 and the display device 110 and the housing 115. Good.
  • FIG. 15 is a diagram illustrating the electronic device 100 according to the fourth embodiment.
  • the electronic device 100 according to the fourth embodiment is different from the electronic device 100 according to the first embodiment in that the number of actuators is three. Below, it demonstrates centering on a different point from the electronic device 100 of Embodiment 1.
  • FIG. 15 is a diagram illustrating the electronic device 100 according to the fourth embodiment.
  • the electronic device 100 according to the fourth embodiment is different from the electronic device 100 according to the first embodiment in that the number of actuators is three. Below, it demonstrates centering on a different point from the electronic device 100 of Embodiment 1.
  • three actuators A 1 , A 2 , A 3 are arranged symmetrically with respect to the center of the panel 101.
  • the actuators A 1 , A 2 , A 3 are supplied with drive signals generated by performing filter processing on the tactile sensation signal s (n) using the filters h 1 , h 2 , h 3. 1 , A 2 and A 3 vibrate the panel 101.
  • the number of actuators is three, different vibrations can be presented for the three touch positions P 1 , P 2 , and P 3 . For example, it is possible to present vibration for one touch position P 1 and not present vibration for the other two touch positions P 2 and P 3 .
  • the electronic device according to the fifth exemplary embodiment reduces the energy for driving the actuator at the second touch position by allowing vibration that is difficult for the user to detect, or reduces the vibration intensity at the first touch position.
  • the difference from the electronic device of the first embodiment is that it is increased.
  • the electronic apparatus according to the present embodiment will be described focusing on differences from the first embodiment.
  • FIG. 16 is a diagram illustrating a functional configuration of the electronic device 200 according to the fifth embodiment.
  • the same components as those in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the electronic device 200 includes a panel 101, a plurality of actuators 102, a touch information acquisition unit 103, a tactile sensation presentation determination unit 104, a transfer characteristic storage unit 105, a transfer characteristic acquisition unit 106, A filter calculation unit 201, a tactile signal storage unit 108, and a filter processing unit 109 are provided.
  • the filter calculation unit 201 that is different from the electronic apparatus according to the first embodiment will be described.
  • the filter calculation unit 201 indicates that the sum of the product of the transfer characteristics from each actuator 102 to the first touch position and the filter in the frequency domain indicates an impulse, and the transfer characteristics from each actuator 102 to the second touch position and the filter The filter is calculated so that the sum of the products in the frequency domain indicates a response signal equal to or less than a predetermined vibration intensity.
  • the filter calculation unit 201 calculates a filter by using an expression obtained by modifying the filter calculation expression in the frequency domain shown in the description of the first embodiment.
  • the filter calculation unit 107 calculates the filter H in the equation (2) using the response D shown in the equation (4).
  • the filter calculation unit 201 calculates the filter H using the response D shown in Equation (5). That is, the filter calculation unit 201 allows a vibration having an amplitude a j and a phase ⁇ j as the vibration at the second touch position.
  • the filter calculation unit 201 calculates the filter H in which the response at the first touch position is “1” and the response amplitude at the second touch position is a i .
  • the phase at the first touch position and the phase at the second touch position do not necessarily match. Therefore, an arbitrary value can be used with ⁇ j as the phase at the second touch position.
  • the filter calculation unit 201 applies the filter H to the frequency ⁇ according to the equation (6) as in the first embodiment. Is calculated.
  • the filter calculation unit 201 calculates a plurality of filter candidates by changing the phase of the response signal, and among the plurality of filter candidates, a filter candidate from which a drive signal having a vibration intensity equal to or lower than a predetermined vibration level is obtained. Is calculated as a filter used for the filtering process.
  • the filter calculation unit 201 changes the phase of the response signal.
  • the filter calculation unit 201 may change the amplitude of the response signal within a range that does not exceed a predetermined amplitude. Further, the filter calculation unit 201 may change both the amplitude and phase of the response signal.
  • the filter calculation unit 201 may determine a filter based on the vibration intensity at the first touch position instead of the vibration intensity of the drive signal. A method for determining a filter based on the vibration intensity at the first touch position will be described below.
  • the vibration intensity (amplitude) at the first touch position of the response signal obtained by the filter calculated by Expression (6) is calculated by Expression (7).
  • the magnitude of the input signal to the actuator (i) is
  • V 0 of a signal that can be input to the actuator is determined in advance. That is, consider a case where there is an upper limit of input voltage or input power.
  • the vibration intensity at the first touch position at this time is calculated by Expression (8).
  • V aj ⁇ j is expressed by Expression (9).
  • the filter calculation unit 201 searches for the phase ⁇ at which the vibration intensity A at the first touch position is maximized while changing the phase ⁇ j at the second touch position as shown in Expression (10).
  • an optimal solution can be obtained by using a numerical analysis method such as Newton's method.
  • the filter calculation unit 201 calculates the filter H ( ⁇ ) as shown in Expression (11) by substituting the phase calculated according to Expression (10) into Expression (6).
  • the filter H ( ⁇ ) calculated in this way is a filter that maximizes the vibration intensity at the first touch position among the plurality of filters respectively corresponding to the plurality of phases.
  • the frequency ⁇ may be a predetermined frequency or a frequency ⁇ 0 that minimizes the expression (12).
  • the same fixed value is set as the vibration intensity at the second touch position given by each actuator 102.
  • different values may be set individually. In this case, while the tolerance of the vibration intensity at the second touch position given by each actuator 102 can be set independently, the amount of calculation when searching for the optimum phase increases.
  • the phase of the second touch position given by each actuator 102 is set independently, but the same phase may be set as the phase of the second touch position given by each actuator 102. . In this case, there is an effect of reducing the calculation amount for calculating the optimum phase.
  • FIG. 17 is a flowchart showing the processing operation of the electronic device 200 in the present embodiment.
  • the same steps as those in FIG. 6 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the filter calculation unit 201 calculates a filter at the second touch position based on a condition that allows vibrations that are not detected by the user (S201). Specifically, the filter calculation unit 201 indicates that the sum of the transfer characteristic from each actuator 102 to the first touch position and the product in the frequency domain of the filter represents an impulse, and the filter 102 from the actuator 102 to the second touch position. The filter is calculated so that the sum of the product of the transfer characteristic and the filter in the frequency domain indicates a response signal equal to or less than a predetermined vibration intensity. More specifically, the filter calculation unit 201 calculates a filter as shown in FIG. 18, for example.
  • FIG. 18 is a flowchart showing the processing operation of the filter calculation unit 201 in the present embodiment.
  • the filter calculation unit 201 selects one response signal candidate that has not been selected from among a plurality of response signal candidates that are equal to or lower than a predetermined vibration intensity (S211).
  • the plurality of response signal candidates are different from each other in at least one of vibration intensity and phase.
  • the filter calculation unit 201 calculates a filter using the selected response signal candidates (S212). Specifically, the filter calculation unit 201 calculates a filter as shown in Expression (11).
  • the filter calculation unit 201 calculates the vibration intensity of the drive signal obtained by filtering the tactile sensation signal using the calculated filter (S213). Specifically, the filter calculation unit 201 calculates, for example, a statistical representative value (for example, an average value, a median value, or a maximum value) of the amplitudes of the plurality of drive signals for the plurality of actuators 102 as the vibration intensity. To do.
  • a statistical representative value for example, an average value, a median value, or a maximum value
  • the filter calculation unit 201 determines whether all response signals have been selected in step S211 (S214). If any response signal is not selected (No in S214), the process returns to step S211.
  • the filter calculation unit 201 selects the filter having the minimum vibration intensity from among the plurality of vibration intensity calculated in Step S214. It determines as a filter used by a filter process (S215).
  • the filter calculation unit 201 may determine, as a filter to be used in the filter processing in step S105, a filter that has obtained a vibration intensity equal to or lower than a predetermined vibration intensity among a plurality of vibration intensity.
  • the predetermined vibration intensity may be determined based on the maximum drive power of the actuator 102, for example. In this case, when the vibration intensity smaller than the predetermined vibration intensity is calculated, the filter calculation unit 201 may forcibly end the loop process from step S211 to step S214 and execute step S215. .
  • FIG. 19 is a graph showing an example of a change in vibration intensity at the first touch position with respect to the phase of the response signal at the second touch position.
  • the vibration intensity at the first touch position obtained at the time is shown.
  • the horizontal axis represents the vibration phase ⁇ at the second touch position.
  • the vertical axis represents relative vibration intensity with respect to the case where the vibration intensity at the first touch position is expressed as “1” when the amplitude of the second touch position is “0”.
  • the relative intensity of the first touch position at the optimal phase is about 1.25, and it can be seen that the vibration intensity at the presentation position (first touch position) is increased.
  • a tactile sensation can be presented at the presentation position, and a tactile sensation smaller than the presentation position can be presented at the non-presentation position. Therefore, a tactile sensation different from other touches can be presented to a touch that requires a tactile sensation in multi-touch, and appropriate tactile sensation feedback is possible. That is, unnecessary confusion due to tactile sensation presentation can be suppressed.
  • the vibration intensity of the drive signal can be reduced by allowing a slight vibration that cannot be detected by the user to the non-presentation position (second touch position). That is, energy efficiency can be improved and a tactile sensation can be efficiently presented. Further, when the vibration intensity of the drive signal is not reduced, the vibration intensity at the presentation position (first touch position) can be increased, and a stronger tactile sensation can be presented.
  • the vibration intensity at the second touch position is defined by Expression (5), but may be defined based on the ratio of the vibration intensity between the first touch position and the second touch position. For example, when it is desired to set the vibration intensity ratio between the first touch position and the second touch position to 10: 1, the vibration intensity at the second touch position may be set to “0.1” in Equation (5). .
  • the electronic device according to the first embodiment is capable of increasing the vibration of the panel at the touch position (presentation position) by controlling the vibration of the panel at the control position near the touch position according to the tactile signal. Different from the device 100.
  • the electronic apparatus according to the present embodiment will be described focusing on differences from the first embodiment.
  • FIG. 20 shows a functional configuration of the electronic device 700 according to the sixth embodiment.
  • the same components as those in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the electronic device 700 includes a panel 101, a plurality of actuators 102, a touch information acquisition unit 103, a tactile sensation presentation determination unit 104, a transfer characteristic storage unit 105, a transfer characteristic acquisition unit 701, A control position determination unit 702, a filter calculation unit 703, a tactile signal storage unit 108, and a filter processing unit 109 are provided.
  • the transfer characteristic acquisition unit 701 acquires the transfer characteristic from each actuator 102 to the first control position and the transfer characteristic from each actuator 102 to the second control position from the transfer characteristic storage unit 105.
  • the first control position is a first touch position or a position in the vicinity thereof. Specifically, the first control position is a position within an area of a predetermined range including the first touch position (hereinafter referred to as “first area”).
  • the second control position is the second touch position or a position near the second touch position. Specifically, the second control position is a position within an area of a predetermined range including the second touch position (hereinafter referred to as “second area”).
  • the transfer characteristic acquisition unit 701 acquires transfer characteristics from each actuator 102 to each of a plurality of first candidate positions that are candidates for the first control position in the first region. For example, the transfer characteristic acquisition unit 701 acquires transfer characteristics from each actuator 102 to each of a plurality of second candidate positions that are candidates for the second control position in the second region.
  • Control position determination unit 702 determines the first control position from the first area. Furthermore, the control position determination unit 702 determines a second control position from the second area.
  • control position determination unit 702 may determine the second touch position as the second control position. Furthermore, the control position determination unit 702, for example, for each of a plurality of first candidate positions in the first region, the transfer characteristics from each actuator 102 to the first candidate position, and from each actuator 102 to the second control position. The vibration intensity at the first touch position when each actuator 102 is driven by the drive signal generated using the transfer characteristic of the first control position is calculated, and the first candidate position where the calculated vibration intensity is maximum is determined as the first control position. May be determined.
  • the vibration intensity is a value indicating the magnitude of vibration.
  • the vibration intensity may be a value indicating the magnitude of the amplitude.
  • the vibration intensity may be a value indicating the magnitude of the amplitude relative to the magnitude of the reference amplitude.
  • the filter calculation unit 703 drives each actuator 102 so that the panel 101 vibrates according to an arbitrary tactile signal at the first control position, and the panel 101 vibrates smaller than the first control position at the second control position.
  • a filter for generating a drive signal by filtering a desired tactile signal is calculated.
  • the filter calculation unit 703 calculates a filter by replacing the first touch position and the second touch position with the first control position and the second control position, for example, in the filter calculation method according to the first embodiment. To do.
  • FIG. 21 is a flowchart illustrating the processing operation of the electronic apparatus 700 according to the sixth embodiment.
  • steps similar to those in FIG. 6 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the second control position is the second touch position.
  • the transfer characteristic acquisition unit 701 acquires transfer characteristics from each actuator 102 to each first candidate position and transfer characteristics from each actuator 102 to the second control position (second touch position) (S701).
  • FIG. 23 is a diagram illustrating an example of a plurality of first candidate positions.
  • the plurality of first candidate positions for example, positions in the vicinity of the first touch position are used as shown in FIG. That is, a plurality of positions in the first region in a predetermined range including the first touch position are used as the plurality of first candidate positions.
  • positions whose distance from the first touch position is within a predetermined threshold may be used.
  • positions in a rectangular area having a predetermined size centered on the first touch position may be used as a plurality of first candidate positions.
  • control position determination unit 702 determines a first control position from among a plurality of first candidate positions (S702). Specifically, the control position determination unit 702 determines the first control position as shown in FIG. 22, for example.
  • FIG. 22 is a flowchart illustrating processing operations of the control position determination unit 702 and the filter calculation unit 703 according to the sixth embodiment.
  • FIG. 23 shows an example of a plurality of first candidate positions in the sixth embodiment.
  • i represents an actuator
  • j represents a first touch position
  • k represents a first candidate position.
  • the control position determination unit 702 selects one first candidate position that has not been selected from the plurality of first candidate positions (S711). Specifically, the control position determination unit 702 selects one first candidate position in a predetermined order from among a plurality of first candidate positions in the first region shown in FIG. 23, for example.
  • the filter calculation unit 703 uses the transfer characteristics from each actuator 102 to the selected first candidate position and the transfer characteristics from each actuator 102 to the second control position (second touch position),
  • the filter H i k ( ⁇ ) is calculated by the method shown in the first embodiment (S712).
  • control position determination unit 702 calculates the vibration intensity at the first touch position when each actuator 102 is driven by the drive signal generated using the calculated filter (S713).
  • control position determination unit 702 for example, the frequency ⁇ 0 of the tactile signal, the calculated filter, and the transfer characteristic G ij of the panel 101 from each actuator 102 to the selected first candidate position, Is used to calculate the vibration intensity at the first touch position. More specifically, the control position determining unit 702, for example, as shown in equation (13), calculates the vibration intensity A k at the first touch position.
  • H i k ( ⁇ ) indicates a filter corresponding to the first candidate position (k) and the actuator (i).
  • G ij represents a transfer characteristic from the actuator (i) to the first touch position (j).
  • control position determination unit 702 may select a frequency that minimizes the filter gain from any frequency without limiting the frequency. Then, the control position determination unit 702 may calculate the vibration intensity at the first touch position using the selected frequency. In that case, the control position determination unit 702 calculates the vibration intensity according to the equations (14) and (15).
  • control position determination unit 702 first determines a frequency that minimizes the filter gain, using Expression (14). Then, the control position determining unit 702, as shown in equation (15), calculates the vibration intensity A k at the first touch position using a filter coefficient of the determined frequency.
  • control position determination unit 702 determines whether all the first candidate positions have been selected in step S711 (S714). That is, the control position determination unit 702 determines whether or not the vibration intensity Ak has been calculated for all the first candidate positions. Here, when any of the first candidate positions has not been selected (No in S714), the process returns to Step S711.
  • the control position determination unit 702 determines a filter corresponding to the determined first control position as a filter used in the filter processing in step S105.
  • the control position determination unit 702 may not determine the first candidate position where the maximum vibration intensity is obtained as the first control position. For example, the control position determination unit 702 may determine a first candidate position where a vibration intensity greater than a predetermined vibration intensity is obtained as the first control position. In this case, the control position determination unit 702 forcibly ends the loop process of steps S711 to S714 when the vibration intensity greater than the predetermined vibration intensity is calculated, and executes step S715. Good.
  • FIG. 24 shows the simulation result of the vibration intensity at the first touch position corresponding to each first candidate position in the sixth embodiment. Specifically, FIG. 24 shows the relative vibration intensity at the first touch position when each actuator 102 is driven according to the drive signal generated using each first candidate position in the vicinity of the first touch position. Yes.
  • the relative vibration intensity is the ratio of the amplitude of the first touch position corresponding to each first candidate position to the amplitude at the first touch position when the first touch position is selected as the first candidate position.
  • the relative position is a relative position with respect to the first touch position.
  • the vibration intensity at the first touch position becomes maximum (about 1.4). That is, in FIG. 24, the first candidate position [ ⁇ 2, 2] is determined as the first control position.
  • the tactile sensation signal s (n) is generated as shown in Expression (17) using the frequency ⁇ used in step S712.
  • the first candidate position that maximizes the vibration intensity at can be determined as the first control position. That is, since the electronic device 700 can increase the vibration intensity at the first touch position, the electronic device 700 can present a strong tactile sensation to the user.
  • the electronic device 700 can reduce the energy required to drive the actuator to achieve the vibration intensity required at the first touch position, so that energy efficiency can be increased.
  • the second touch position is determined as the second control position, but a position near the second touch position may be determined as the second control position.
  • the control position determination unit 702 determines the first touch position as the first control position, and transmits each of the plurality of second candidate positions in the second region from each actuator to the first control position.
  • the vibration intensity at the first touch position when each actuator is driven by the drive signal generated using the characteristics and the transfer characteristic from each actuator to the second candidate position is calculated.
  • a second candidate position where the vibration intensity is equal to or higher than a predetermined vibration intensity is determined as the second control position.
  • the second touch position may be shifted from the second control position. In this case, vibration is generated even at the second touch position, but the vibration intensity at the first touch position can be further increased.
  • control position determination unit 702 determines, for each combination of a plurality of first candidate positions in the first area and a plurality of second candidate positions in the second area, from each actuator 102 to the first candidate position.
  • the vibration intensity at the first touch position when each actuator 102 is driven by the drive signal generated using the transfer characteristics of the actuator 102 and the transfer characteristics from each actuator 102 to the second candidate position may be calculated.
  • the control position determination unit 702 may determine the first candidate position and the second candidate position where the calculated vibration intensity is maximum as the first control position and the second control position, respectively. In this case as well, vibration occurs at the second touch position, but the vibration intensity at the first touch position can be further increased.
  • Embodiments 1 to 6 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to these, and embodiments in which changes, replacements, additions, omissions, and the like are made as appropriate are also possible. Also, it is possible to combine the components described in the first to sixth embodiments to form a new embodiment.
  • a tablet-type information terminal device has been described as an example of an electronic device, but the electronic device is not limited to this.
  • an electronic device including a touch panel such as a mobile phone, a PDA, a game machine, a car navigation system, and an ATM, may be used.
  • the electronic device includes the display device.
  • the electronic device may not include the display device.
  • an electronic device such as a touch pad may be used.
  • the touch panel is exemplified as the operation unit, but the operation unit is not limited thereto.
  • a pointing device such as a mouse may be used.
  • the vibration unit 13 is provided in the mouse and vibrates the mouse.
  • the actuator is attached to the panel, but the actuator may be attached to a housing or a frame.
  • the actuator is a piezoelectric element, but vibration may be propagated by other methods such as an actuator using electrostatic force, a VCM, or a vibration motor.
  • a thin transparent piezoelectric member may be formed on the panel by a method such as sputtering and used as an actuator.
  • the filter is calculated by an inverse function in the frequency domain, but may be calculated by other methods.
  • the calculation described in International Publication No. 2013/161163 may be employed.
  • the contents of International Publication No. 2013/161163 are incorporated herein by reference.
  • the transfer function has been measured in advance, it may be detected by other methods.
  • flexural vibration is shown as the type of vibration.
  • vibration due to sparse and surface waves may be used.
  • the panel and the display device have been described as separate bodies, but may be connected by optical carving or the like.
  • the panel and the display device are separate components, but the panel and the display device may be formed integrally.
  • a method such as an in-cell type touch panel that integrates a touch panel function inside a liquid crystal panel or an on-cell type touch panel that integrates a touch panel function on the surface of the liquid crystal panel may be used.
  • the actuator may be provided on the back surface of the display device.
  • the panel, the filter processing unit, the transfer characteristic storage unit, and the like may be configured integrally, or have been described, but may be separate and may transmit signals through communication.
  • the vibration transmission material was explained with glass or PC which is a rigid body, it is a soft body such as film, skin, rubber, liquid such as water, jelly-like object, gas, etc., which propagates vibration, and touch What is necessary is just the transmission which can take a position.
  • a tactile sensation is presented by generating vibration, but the technology of the present disclosure is not limited to this.
  • the tactile sensation may be presented by other methods such as a change in friction due to static electricity, a skin irritation due to an electric current, and a change in the screen shape due to a liquid.
  • screen display, sound, light, heat, and the like may be combined as appropriate.
  • a program for executing such a control operation is stored, for example, in a built-in memory or ROM of a microcomputer.
  • a computer program may be installed in an electronic device from a recording medium (such as an optical disk or a semiconductor memory) on which the computer program is recorded, or may be downloaded via an electric communication line such as the Internet.
  • an electronic apparatus includes a panel 101 touched by a user, a plurality of vibration units 102 that vibrate the panel 101, and a user touches a plurality of positions on the panel 101 at the same time. Vibration that controls the plurality of vibration units 102 so that vibration at the first touch position among the plurality of touch positions is larger than vibration at the second touch position among the plurality of touch positions. And a control unit 109.
  • the plurality of vibration units 102 includes first and second vibration units 102.
  • the first vibration unit 102 and the first touch position are equal to each other, the first vibration unit 102 and the first touch position The vibration transmission characteristics of the panel 101 between the first vibration unit 102 and the vibration transmission characteristics of the panel 101 between the first vibration unit 102 and the second touch position are different from each other.
  • the second vibration unit 102 and the first touch are equal to each other, the second vibration unit 102 and the first touch
  • the vibration transmission characteristic of the panel 101 between the positions and the vibration transmission characteristic of the panel 101 between the second vibration unit 102 and the second touch position are different from each other.
  • the electronic apparatus further includes a housing 115 that supports the panel 101, and the panel 101 is fixed to the housing 115 asymmetrically with respect to the center of the panel 101.
  • the electronic apparatus further includes a housing 115 that supports the panel 101, and the panel 101 is fixed to the housing 115 asymmetrically with respect to an axis that passes through the center of the panel 101 and is parallel to the planar direction of the panel 101.
  • the electronic apparatus further includes a housing 115 that supports the panel 101, and the panel 101 is supported by the housing 115 via a fixing member 121, and the shape of the fixing member 121 is relative to the center of the panel 101. Asymmetric.
  • the electronic apparatus further includes a housing 115 that supports the panel 101, and the panel 101 is supported by the housing 115 via a fixing member 121, and the shape of the fixing member 121 passes through the center of the panel 101.
  • 101 is asymmetric with respect to an axis parallel to the plane direction.
  • the electronic apparatus further includes a housing 115 that supports the panel 101.
  • the panel 101 is supported by the housing 115 via a fixing member 121, and the hardness of the fixing member 121 is set relative to the center of the panel 101. And asymmetrically different.
  • the electronic apparatus further includes a housing 115 that supports the panel 101, and the panel 101 is supported by the housing 115 via a fixing member 121, and the hardness of the fixing member 121 passes through the center of the panel 101. It differs asymmetrically with respect to an axis parallel to the plane direction of the panel 101.
  • the panel 101 has an asymmetric planar shape with respect to the center of the panel 101.
  • the panel 101 has an asymmetric planar shape with respect to an axis passing through the center of the panel 101 and parallel to the planar direction of the panel 101.
  • the panel 101 has an asymmetric thickness with respect to the center of the panel 101.
  • the panel 101 has an asymmetric thickness with respect to an axis that passes through the center of the panel 101 and is perpendicular to the planar direction of the panel 101.
  • the first and second vibrating parts 102 are arranged symmetrically with respect to the center of the panel 101.
  • the first and second vibrating sections 102 are arranged symmetrically with respect to an axis that passes through the center of the panel 101 and is parallel to the plane direction of the panel 101.
  • An electronic apparatus includes a panel 101 touched by a user, a plurality of vibration units 102 that vibrate the panel 101, and a plurality of positions when the user touches a plurality of positions on the panel 101 at the same time. And a vibration control unit 109 that controls the plurality of vibration units 102 so that the vibration at the first touch position among the touch positions is larger than the vibration at the second touch position among the plurality of touch positions.
  • the plurality of vibration units 102 includes first and second vibration units 102.
  • the first vibration unit 102 and the first touch position are equal to each other, the first vibration unit 102 and the first touch position
  • the transmission characteristics of the vibration of the panel 101 between the two and the transmission characteristics of the vibration of the panel 101 between the second vibration unit 102 and the first touch position are different from each other.
  • the first vibration unit 102 and the second touch are equal to each other, the first vibration unit 102 and the second touch
  • the vibration transmission characteristic of the panel 101 between the positions and the vibration transmission characteristic of the panel 101 between the second vibration unit 102 and the second touch position are different from each other.
  • the technology according to the present disclosure can present different tactile sensations with respect to multi-touch, for example, it can be applied to a user interface such as a television, a digital still camera, a digital video camera, a personal computer, a portable information terminal, or a cellular phone. Applicable. Further, for example, the present invention can be applied to a device in which a plurality of people touch the screen at the same time, such as an electronic blackboard or a digital signage display.

Abstract

 電子機器(100)は、ユーザがタッチするパネル(101)と、パネル(101)を振動させる複数の振動部と、ユーザがパネル(101)の複数の位置を同時にタッチしているときに、複数のタッチ位置のうちの第1タッチ位置の振動が、複数のタッチ位置のうちの第2タッチ位置の振動よりも大きくなるように、複数の振動部を制御する振動制御部とを備える。第1タッチ位置(P1)と第1振動部(A1)との間の距離と、第2タッチ位置(P2)と第1振動部(A1)との間の距離とが互いに等しい場合において、第1振動部(A1)と第1タッチ位置(P1)との間におけるパネル(101)の振動の伝達特性g11と、第1振動部(A1)と第2タッチ位置(P2)との間におけるパネル(101)の振動の伝達特性g12とが互いに異なる。

Description

電子機器
 本開示は、ユーザの操作に対して触感を呈示する触感呈示機能を有した電子機器に関する。
 従来、タッチパネルを備える公共端末(例えば、ATMあるいは自動券売機など)がある。また、タッチパネルを備える個人用機器(例えば、タブレットPCあるいはスマートフォンなど)も増加している。
 タッチパネルとは、パネルへのタッチを入力として検出する入力機器である。一般に、タッチパネルは、液晶ディスプレイあるいは有機ELディスプレイなどを備える。この場合、タッチパネルは、タッチディスプレイやタッチスクリーンとも呼ばれる。例えば、タッチパネルは、表示領域に表示されたGUIオブジェクト(例えばボタンなど)に対するユーザのタッチを検出する。
 このようなタッチパネルを用いたユーザインタフェースは、GUIオブジェクトの配置に対する柔軟性が高いという利点がある。しかし、タッチパネルを用いたユーザインタフェースでは、従来の機械式ボタンを用いたユーザインタフェースと比較して、ボタンを押下したときの感覚のフィードバックが小さい。したがって、ユーザは、タッチパネルをタッチしたときに、そのタッチが正しく検出されたか否かを認識することが難しいという課題がある。この課題を解決するために、タッチパネルを振動させ、タッチに対する触感(haptics)を呈示する方法が提案されている(例えば、特許文献1)。
 特許文献1は、ユーザがタッチした複数の指の特定の場所では振動を最大化し、その他の場所では振動を低減あるいは最小化する触覚マルチタッチの技術を開示している。
 この技術では、複数の振動源から発生されるたわみ振動により、ユーザに触覚を与える触覚タッチパネルにおいて、複数の振動源を制御することにより、屈曲波の振幅を、特定の場所では最大化し、その他の場所では低減あるいは最小化することにより、ユーザのタッチした複数の指のうち、特定の指にのみ触覚を発生させることができる。
特表2011-527791号公報
 本開示は、マルチタッチに対して触感を呈示する電子機器を提供する。
 本開示のある実施形態に係る電子機器は、ユーザがタッチするパネルと、パネルを振動させる複数の振動部と、ユーザがパネルの複数の位置を同時にタッチしているときに、複数のタッチ位置のうちの第1タッチ位置の振動が、複数のタッチ位置のうちの第2タッチ位置の振動よりも大きくなるように、複数の振動部を制御する振動制御部とを備える。複数の振動部は、第1および第2振動部を含む。第1タッチ位置と第1振動部との間の距離と、第2タッチ位置と第1振動部との間の距離とが互いに等しい場合において、第1振動部と第1タッチ位置との間におけるパネルの振動の伝達特性と、第1振動部と第2タッチ位置との間におけるパネルの振動の伝達特性とが互いに異なる。
 また、本発明のある実施形態に係る電子機器は、ユーザがタッチするパネルと、パネルを振動させる複数の振動部と、ユーザがパネルの複数の位置を同時にタッチしているときに、複数のタッチ位置のうちの第1タッチ位置の振動が、複数のタッチ位置のうちの第2タッチ位置の振動よりも大きくなるように、複数の振動部を制御する振動制御部とを備える。複数の振動部は、第1および第2振動部を含む。第1タッチ位置と第1振動部との間の距離と、第1タッチ位置と第2振動部との間の距離とが互いに等しい場合において、第1振動部と第1タッチ位置との間におけるパネルの振動の伝達特性と、第2振動部と第1タッチ位置との間におけるパネルの振動の伝達特性とが互いに異なる。
 本開示のある実施形態に係る電子機器によれば、パネル上のどの2点においても、振動源との間の伝達関数を異ならすことができ、振動振幅を互いに異ならせることができる。
(a)および(b)は、実施形態に係る電子機器を示す図である。 実施形態に係る電子機器を示す図である。 (a)および(b)は、実施形態に係る触感信号を示す図である。 実施形態に係る電子機器を示す図である。 実施形態に係る電子機器を示す図である。 実施形態に係る電子機器の動作を示すフローチャートである。 (a)および(b)は、実施形態に係るタッチ位置におけるパネルの振動を示す図である。 タッチ位置と伝達関数との関係を示す図である。 タッチ位置と伝達関数との関係を示す図である。 実施形態に係る電子機器を示す図である。 実施形態に係る電子機器を示す図である。 実施形態に係る電子機器を示す図である。 実施形態に係る電子機器を示す図である。 実施形態に係る電子機器を示す図である。 実施形態に係る電子機器を示す図である。 実施形態に係る電子機器を示す図である。 実施形態に係る電子機器の動作を示すフローチャートである。 実施形態に係る電子機器の動作を示すフローチャートである。 実施形態に係る第2タッチ位置の応答信号の位相に対する第1タッチ位置の振動強度の変化を示す図である。 実施形態に係る電子機器を示す図である。 実施形態に係る電子機器の動作を示すフローチャートである。 実施形態に係る電子機器の動作を示すフローチャートである。 実施形態に係る複数の候補位置を示す図である。 実施形態に係る複数の候補位置に対応するタッチ位置の振動強度を示す図である。
 以下、適宜図面を参照しながら、実施形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、発明者らは、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
 まず、マルチタッチについて説明する。マルチタッチとは、パネルに同時に接触している状態を有する複数のタッチを意味する。換言すれば、マルチタッチとは、ある時点においてパネルに接触している複数のタッチを意味する。つまり、マルチタッチとは、パネル上の複数の位置に対する複数のタッチであって、時間的に重複する複数のタッチを意味する。したがって、マルチタッチは、同時に開始された複数のタッチだけではなく、異なる時刻に開始され、ある時点において同時に検出される複数のタッチも含む。具体的には、第1タッチが開始された後に、第1タッチが継続された状態で第2タッチが開始された場合、第2タッチの開始時点において、第1タッチと第2タッチとはマルチタッチに相当する。
 マルチタッチパネルでは、複数のユーザが同時に操作を行なうことができる。また、マルチタッチパネルでは、複数の指を用いた操作により、ユーザは、対象オブジェクトの拡大あるいは回転などを直感的に行なうことができる。このようなマルチタッチパネルにおいて、マルチタッチに対する触感のフィードバックを考えた場合、それぞれのタッチに対して区別可能な触感を呈示することが望ましい。
 1つのアクチュエータのみを用いて2つ以上のタッチ位置に同時に触感を呈示しようとした場合は、それぞれのタッチ位置に同種類の触感が同時に呈示される。また、1つのアクチュエータのみを用いて、2つ以上のタッチ位置のうちの任意のタッチ位置に他のタッチ位置とは異なる触感を呈示することは難しい。
 特許文献1では、複数のアクチュエータを用いて、それらの振動波形を工夫することにより、一方のタッチ位置のたわみの振幅を最大化し、他方のタッチ位置のたわみの振幅を低減または最小化する技術を開示している。
 2点のマルチタッチにおいては、2点の振動源から2点のタッチ位置までの振動の伝達関数をそれぞれ異ならせることにより、2点のタッチ位置の振動振幅に差異を生み出しており、各振動源から各タッチ位置までの振動の伝達関数が異なることが必要条件となる。
 通常、均質な物質の振動の伝達では、その距離に応じて振動は減衰および/または遅延するので、振動源から等距離の2点の伝達関数は同じになる。特許文献1は、振動源をタッチパネルの中心軸に対して非対称に配置する構成を開示しているが、この構成においても、振動源からの距離が同じになる2点は数多く存在するので、伝達関数が互いに同じになる点の組み合わせが多く存在する。そのような2点では、伝達関数が同じになってしまうため、振動振幅を互いに異ならせることができず、異なる触感を呈示することはできない。
 本開示のある実施形態によれば、振動源からの距離が同じ2点でも伝達関数を異ならすことができ、全ての点で振動振幅を互いに異ならせることができる。本開示のある実施形態では、例えば、パネルの形状、材質、固定方法の少なくとも1つを非対称にする。
 (実施形態1)
 以下、図1から図11を用いて、実施形態1に係る電子機器を説明する。
 <装置構成>
 図1は、実施形態1に係る電子機器100を示す図である。図1(a)は電子機器100の上面図であり、図1(b)は電子機器100のアクチュエータ102に沿った断面図である。図2は、電子機器100の機能構成を示す図である。電子機器100は、パネル101を振動させることによりユーザに触感を呈示する。
 電子機器100は、パネル101と、複数のアクチュエータ102と、タッチ情報取得部103と、触感呈示決定部104と、伝達特性記憶部105と、伝達特性取得部106と、フィルタ算出部107と、触感信号記憶部108と、フィルタ処理部109とを備える。以下に、電子機器100が備える各構成要素について説明する。
 <パネル101>
 パネル101は、触感を呈示するための振動を伝達する部材である。具体的には、パネル101は、例えば、ガラス製あるいはアクリル製の透光性を有する板状部材である。また、図の例では、x方向がパネル101の長手方向になる。
 なお、パネル101の形状、大きさ、厚さ、硬さおよび固定方法などは、特に限定される必要はない。パネル101の形状、大きさ、厚さ、硬さおよび固定方法などに依存して、アクチュエータ102からパネル101上の各位置(以後、「点」とも呼ぶ)までの振動の伝達特性は変化する。
 <アクチュエータ102>
 複数のアクチュエータ102は、パネル101の互いに異なる位置に設置される。例えば図1に示すように、複数のアクチュエータ102は、パネル101の端部に貼り付けられる。つまり、複数のアクチュエータ102は、パネル101の画像表示領域111外に設置される。
 各アクチュエータ102は、駆動信号に従ってパネル101を振動させる。このように各アクチュエータ102によってパネル101に与えられた振動がパネル101上のユーザのタッチ位置に伝播することにより、ユーザに触感が呈示される。
 本実施形態では、アクチュエータ102の数は、例えば、タッチ情報取得部103が同時に検出可能なタッチ数以上である。これにより、電子機器100は、検出可能な複数のタッチに対して互いに異なる触感を呈示することができる。なお、アクチュエータ102の数は、必ずしも同時に検出可能なタッチの数以上である必要はない。アクチュエータ102の数は、同時に検出可能なタッチ数未満であってもよい。この場合、電子機器100は、複数のタッチ位置のうち、アクチュエータ102の数以下のタッチ位置で触感を制御することができる。
 アクチュエータ102は、例えば圧電素子(ピエゾ素子)であってもよい。あるいは、アクチュエータ102は、ボイスコイルであってもよい。さらに、アクチュエータ102は、駆動信号を増幅するためのアンプを含んでもよい。アクチュエータ102の種類は、特に限定される必要はない。
 アクチュエータ102の配置間隔は、特に限定される必要はない。例えば、複数のアクチュエータ102は、パネル101を効率良く振動させることができるように配置されればよい。
 <タッチ情報取得部103>
 タッチ情報取得部103は、パネル101に同時に接触している状態を有する複数のタッチを検出することにより、パネル101上の複数のタッチ位置を取得する。つまり、タッチ情報取得部103は、パネル101に対するユーザのマルチタッチを検出することにより、パネル101上の複数のタッチ位置を取得する。例えば、タッチ情報取得部103は、複数のタッチ位置の座標を示すタッチ情報を取得する。例えば、マルチタッチは、ユーザがパネル上の複数の位置に同時に接触している状態を含む。
 タッチ情報取得部103は、例えば、静電容量方式あるいは感圧方式のマルチタッチパネルにより構成される。例えば、タッチ情報取得部103が静電容量方式のマルチタッチパネルで構成される場合、タッチ情報取得部103は、マルチタッチによる静電容量の変化に基づいて複数のタッチ位置を取得する。また例えば、タッチ情報取得部103が感圧方式のマルチタッチパネルで構成される場合、タッチ情報取得部103は、マルチタッチによる圧力の変化に基づいて、複数のタッチ位置を取得する。
 なお、マルチタッチパネルは、静電容量方式あるいは感圧方式のマルチタッチパネルに限定される必要はない。すなわち、マルチタッチパネルは、マルチタッチを検出できれば、どのような方式のマルチタッチパネルであっても構わない。
 なお、タッチ情報取得部103は、複数のタッチ位置に加えて、各タッチ位置における接触面積、荷重、あるいは押圧などを示す情報をタッチ情報として取得してもよい。この場合、押圧は、感圧方式のマルチタッチパネルを用いれば容易に取得することができる。また、押圧は、加重センサーを用いて取得されてもよい。
 なお、タッチ情報取得部103がマルチタッチパネルで構成される場合、パネル101とタッチ情報取得部103を構成するマルチタッチパネルとは、一体として形成されていてもよい。例えば、パネル101に静電容量方式のマルチタッチパネルを貼付することにより、タッチ情報取得部103とパネル101とは1つの部材として形成されてもよい。
 また、図1に示すように、パネル101あるいはタッチ情報取得部103の下部に液晶ディスプレイあるいは有機ELディスプレイなどの表示装置110が設置されてもよい。これにより、電子機器100は、タッチディスプレイとして機能することが可能となる。なお、必ずしも表示装置110が設置される必要はなく、表示装置110はなくてもよい。
 なお、パネル101上の複数のタッチ位置は、ユーザがパネル101に直接接触している位置またはユーザによって操作されるペン等でパネル101に接触している位置を含む。
 <触感呈示決定部104>
 触感呈示決定部104は、触感を呈示する第1タッチ位置(以後、「呈示位置」とも呼ぶ)を決定する。例えば、触感呈示決定部104は、複数のタッチ位置の中から、触感信号が示す振動により触感を呈示する第1タッチ位置と、触感を呈示しない少なくとも1つの第2タッチ位置(以後、「非呈示位置」とも呼ぶ)とを決定する。
 具体的には、触感呈示決定部104は、例えば、GUIオブジェクトの表示位置、タッチ位置における荷重、あるいは複数のタッチ位置間の時間的あるいは空間的な関係に基づいて、複数のタッチ位置の中から1つの呈示位置を決定する。また、触感呈示決定部104は、複数のタッチ位置のうち呈示位置以外のタッチ位置を非呈示位置と決定する。なお、呈示位置の決定方法は、特に限定される必要はない。
 <伝達特性記憶部105>
 伝達特性記憶部105は、例えば、ハードディスクあるいは半導体メモリである。伝達特性記憶部105は、パネル101上の各点について、各アクチュエータ102から当該点までの伝達特性を記憶している。つまり、伝達特性記憶部105は、パネル101上の複数の位置および複数のアクチュエータ102について、位置とアクチュエータ102との組合せに対応付けて伝達特性を記憶している。
 伝達特性記憶部105には、M個のアクチュエータ102(A1、A2、・・・、AM)と、N個の位置(P1(x1,y1)、P2(x2,y2)、・・・、PN(xN,yN))との全ての組合せそれぞれについての伝達特性が記憶されている。すなわち、M×N個の伝達特性が伝達特性記憶部105に記憶されている。
 伝達特性は、システムにおける入力と出力との関係を示す。ここでは、アクチュエータの駆動信号が入力に相当し、パネル上の1点における振動が出力に相当する。一般的に、伝達特性G(ω)は、系への入力X(ω)に対する系からの出力Y(ω)の比で表わされる(G(ω)=Y(ω)/X(ω))。例えば、入力X(ω)がインパルスである場合(X(ω)=1)、伝達特性G(ω)は、出力Y(ω)(インパルス応答)と一致する。
 伝達特性記憶部105は、パネル101上の各点について、各アクチュエータ102から当該点までのインパルス応答を伝達特性として記憶している。なお、インパルス応答は、時間領域で表されてもよいし、周波数領域で表わされてもよい。つまり、伝達特性記憶部105には、インパルス応答の時間波形が記憶されてもよいし、インパルス応答のスペクトルが記憶されてもよい。
 ここで、パネル101上の各点は、例えば、パネル101上の各分割領域の代表点(例えば、中心あるいは重心など)であればよい。分割領域は、例えば、パネル101上の領域を10mm単位で格子状に分割して得られる。なお、分割領域の形状は、必ずしも矩形状である必要はなく、その他の形状であっても構わない。また、分割領域の大きさはすべての分割領域で同一である必要はない。例えば、パネル101上の位置によって分割領域の大きさが異なっていてもよい。
 ここで、各分割領域が小さいほど(つまり、分割領域の数が多いほど)、触感呈示の分解能を向上させることができるが、伝達特性を記憶するために必要な記憶容量は増大する。つまり、分解能と記憶容量とはトレードオフの関係にあるため、必要な分解能あるいは許容される記憶容量などに基づいて、各分割領域の大きさが決定されればよい。
 <伝達特性取得部106>
 伝達特性取得部106は、伝達特性記憶部105に記憶されている複数の伝達特性の中から、タッチ情報取得部103により取得された各タッチ位置に対応する伝達特性を取得する。つまり、伝達特性取得部106は、各アクチュエータ102から各タッチ位置までの伝達特性を伝達特性記憶部105から読み出す。
 <フィルタ算出部107>
 フィルタ算出部107は、フィルタ取得部の一例である。フィルタ算出部107は、任意の触感信号に対するフィルタ処理によって所望の駆動信号を生成するためのフィルタを取得する。ここで、所望の駆動信号とは、呈示位置でパネル101が任意の触感信号に従って振動し、かつ非呈示位置でパネル101が当該任意の触感信号よりも振動強度が小さい信号に従って振動するように各アクチュエータ102を駆動するための信号である。任意の触感信号よりも振動強度が小さい信号は、例えば、任意の触感信号の振幅の1/10以下の振幅を有する信号である。
 例えば、任意の触感信号よりも振動強度が小さい信号は、ユーザが検知できない振動を示す信号である。例えば、任意の触感信号よりも振動強度が小さい信号は、振幅が「0」の信号である。このような場合、フィルタ算出部107は、伝達特性取得部106により取得された伝達特性を用いて、タッチ情報取得部103が取得した複数のタッチ位置のうち、呈示位置にのみ触感を呈示し、他のタッチ位置(非呈示位置)に触感を呈示しないためのフィルタを算出する。この場合のより具体的なフィルタの算出方法については後述する。
 <触感信号記憶部108>
 触感信号記憶部108は、例えば、ハードディスクあるいは半導体メモリである。触感信号記憶部108は、触感信号を記憶している。触感信号は、ユーザに呈示される触感を表す。つまり、触感信号は、呈示位置におけるパネル101の振動を示す。
 図3(a)および図3(b)の各々は、触感信号の一例を示している。触感信号記憶部108は、例えば、図3(a)および図3(b)に示すような触感信号を記憶している。
 触感信号は、ユーザに触感を呈示できればどのような信号であってもよいが、例えば、パネル101の振動特性に基づいて決定されてもよい。具体的には、触感信号は、例えば、パネル101の共振周波数あるいはその近傍の周波数の信号であってもよい。これにより、エネルギー効率を向上させることが可能となる。
 ここで、触感信号の生成方法の一例を説明する。触感信号が、周波数fcの正弦波のr周期分の信号に基づいて生成される場合、式(1)に示すように、r周期がちょうど半周期になるような変調周波数fmを用いて正弦波を変調することにより、図3(a)に示すような触感信号s(n)が生成される。
Figure JPOXMLDOC01-appb-M000001
 ここで、Tsは、サンプリング周期を表し、nは、離散化された周波数単位を表す。図3(a)の例では、fc=200Hz、r=10であるので、変調周波数fmは10Hzである。このように生成された触感信号は、例えば、GUIオブジェクトであるボタンをクリックしたときに触感を呈示するための信号として用いることができる。
 なお、触感信号は、必ずしも上記のように生成された信号である必要はない。例えば、式(1)に示すような変調が行われる必要はない。触感信号として、正弦波が用いられてもよい。
 なお、周波数fcは、人間が触覚により感知できる周波数であればどのような周波数であってもよい。例えば、周波数fcは、パネル101の振動特性に基づいて決定されればよい。
 例えば、周波数fcは、パネル101の共振周波数と一致するように決定されてもよい。周波数fcがこのように決定されることにより、アクチュエータ102によってパネル101に与えられた振動の減衰を少なくすることができ、効率良く触感を呈示することができる。
 なお、本実施形態では、触感信号は、オフラインで予め生成され、触感信号記憶部108に記憶されているが、マルチタッチが検出された後にオンラインで生成されてもよい。これにより、触感信号のための記憶領域を削減することができる。
 <フィルタ処理部109>
 フィルタ処理部109は、駆動信号取得部の一例である。フィルタ処理部109は、フィルタ算出部107により算出された各アクチュエータ102のためのフィルタを用いて、触感信号記憶部108に記憶されている触感信号をフィルタ処理(フィルタリング)することにより、各アクチュエータ102を駆動するための駆動信号を生成する。フィルタ処理部109は、アクチュエータ102の振動を制御する振動制御部として機能する。なお、構成要素104から109を振動制御部と称することもできる。
 各アクチュエータ102は、このようにフィルタ処理部109により生成された駆動信号に従って、パネル101を振動させる。その結果、複数のタッチ位置のうち呈示位置においてのみ触感信号に基づく振動が発生し、非呈示位置において振動が抑制される。これにより、電子機器100は、呈示位置においてユーザに触感を呈示し、非呈示位置において触感を呈示しないことが可能となる。
 <フィルタ算出部107>
 フィルタ算出部107の動作をより詳細に説明する。フィルタ算出部107は、各アクチュエータ102から呈示位置までの伝達特性とフィルタとの周波数領域における積の和がインパルスを示し、かつ、各アクチュエータ102から非呈示位置までの伝達特性とフィルタとの周波数領域における積の和が零を示すように、フィルタを算出する。
 具体的には、フィルタ算出部107は、以下のように周波数領域においてフィルタを算出する。
 周波数領域で表された応答Dは、周波数領域で表された伝達特性GおよびフィルタHを用いて式(2)のように表される。
Figure JPOXMLDOC01-appb-M000002
 式(2)において、伝達特性Gij(ω)は、アクチュエータAjからタッチ位置Piまでの伝達特性であり、周波数領域で表されている。また、フィルタHj(ω)は、アクチュエータAjの駆動信号を生成するためのフィルタであり、周波数領域で表されている。また、応答Di(ω)は、タッチ位置Piにおける応答であり、周波数領域で表されている。
 ここで、制御対象となる周波数帯域において、複数のタッチ位置P1~PNのうち、タッチ位置Pk(0<k≦N)における応答dkのみがインパルス(Dk(ω)=1)となり、他のタッチ位置Pl(0<l≦N、l≠k)における応答が零(Dl(ω)=0)となるようなフィルタHを算出できれば、所望のフィルタを得ることができる。
 なお、制御対象となる周波数帯域は、例えば、人が触覚で検知可能な周波数帯域に基づいて定められればよい。一般的に、数Hzから500Hzにおいて人の触覚の感度が強いので、制御対象となる周波数帯域は、例えば、10Hz~500Hzと定められてもよい。
 上述のようなフィルタの算出方法は特に限定するものではないが、Gの一般逆行列G*を算出することにより、式(3)のようにフィルタを算出することができる。つまり、Gの一般逆行列G*とインパルスを示すDとから、所望のフィルタを示すHを算出することができる。
Figure JPOXMLDOC01-appb-M000003
 このように、フィルタ算出部107は、式(3)に示す一般逆行列G*を算出することで、容易にフィルタを算出することができる。この例では、式(2)に示すように、周波数領域で表現されたGは、N行M列の行列である。
 つまり、本実施形態における電子機器100によれば、周波数領域においてフィルタを算出することにより、伝達特性を示す行列の逆行列を容易に算出することができ、処理負荷を低減することができる。これにより、スマートフォンあるいはタブレットコンピュータなどの処理能力が低い機器においても、マルチタッチに対して適切に触感を呈示することが可能となる。また、触感呈示のための処理負荷を低減できるので、他の処理と並列に触感呈示のための処理を実行することができる。
 次に、図1および図4を参照して、パネル101の固定の仕方について説明する。図4は、電子機器100の平面図である。
 パネル101の周縁部は、固定部材(スペーサ)121を介して、筐体115に支持されている。パネル101は、表示装置110の画像表示領域111を覆うように配置されている。この例では、パネル101は、表示装置110の画像表示領域111の全面を覆うよう構成されているが、これに限定されず、少なくとも画像表示領域111の一部を覆うよう構成されていればよい。
 固定部材121は、パネル101を筐体115に接続するための接続部材である。固定部材121は、例えば、シリコンゴムやウレタンゴム等の緩衝部材である。固定部材121として緩衝部材を用いることにより、パネル101の振動が筐体115に伝わりにくくすることができる。
 通常、パネル101の周縁部はパネル101の中心131に対して対称に筐体115に固定されるが、本実施形態では、パネル101の周縁部は中心131に対して非対称に筐体115に固定されている。なお、中心131は画像表示領域111の中心であってもよい。例えば、パネル101の周縁部の一部における固定部材121の形状が、周縁部の他の部分における固定部材121の形状と異なることにより、パネル101は非対称に固定される。図4に示す例では、パネル101の周縁部に接続される固定部材121の形状が、四隅でそれぞれ異なっている。
 また、例えば、パネル101の周縁部の一部における固定の強さが、周縁部の他の部分における固定の強さと異なることにより、パネル101を非対称に固定することができる。例えば、パネル101の四隅のうちの1つにおいては強く固定し、他の部分においては、弱く固定することにより、パネル101を非対称に固定することができる。
 このような固定の仕方により、例えば、パネル101は、パネル101の中心131を通りパネル101の平面方向(xy方向)に平行な軸に対して非対称に筐体115に固定される。例えば、パネル101は、中心131を通りx方向に延びる対称軸133に対して非対称に固定される。また、例えば、パネル101は、中心131を通りy方向に延びる対称軸135に対して非対称に固定される。また、パネル101は、対称軸133および135の両方に対して非対称に固定されていてもよい。なお、この例では、対称軸133と対称軸135とは垂直に交差しているが、垂直以外の角度で交差していてもよい。
 また、例えば、固定部材121の形状は、パネル101の中心131に対して非対称であってもよい。また、例えば、固定部材121の形状は、パネル101の中心131を通りパネル101の平面方向(xy方向)に平行な軸に対して非対称であってもよい。例えば、固定部材121の形状は、対称軸133および135の少なくとも一方に対して非対称であってもよい。
 また、例えば、固定部材121の硬さは、パネル101の中心131に対して非対称に異なっていてもよい。また、例えば、固定部材121の硬さは、パネル101の中心131を通りパネル101の平面方向(xy方向)に平行な軸に対して非対称に異なっていてもよい。例えば、固定部材121の硬さは、対称軸133および135の少なくとも一方に対して非対称に異なっていてもよい。
 また、2つのアクチュエータ102は、パネル101の中心131に対して対称に配置される。例えば、図4に示すように、2つのアクチュエータ102は、対称軸133に対して対称に配置される。また、2つのアクチュエータ102は、対称軸135に対して対称に配置されてもよい。
 また、中心131は、例えば振動する対象である部材の重心を操作面側から見たときの点であってもよい。また、中心131は、例えば振動する対象である部材の対角線の交わる点であってもよい。上記振動する対象である部材とは、例えばパネル101である。また、上記振動する対象である部材は、例えばパネル101と表示装置110とであってもよく、また、製品全体であってもよい。
 <動作>
 次に、電子機器100の各構成要素の動作についてより詳細に説明する。図5は電子機器100の処理動作を説明する図である。図6は、電子機器100の処理動作を示すフローチャートである。なお、以下では、一例として、複数のタッチ位置のうち呈示位置においてのみ触感を呈示する場合について説明する。
 <ステップS101>
 まず、タッチ情報取得部103は、マルチタッチを検出することにより、パネル101上の複数のタッチ位置を取得する(S101)。例えば、タッチ情報取得部103は、図5に示す2つのタッチ位置P1、P2を取得する。
 具体的には、タッチ情報取得部103は、例えば、所定の時間間隔で、パネル101上におけるユーザの指の中央位置をタッチ位置として取得する。なお、タッチ情報取得部103は、必ずしも指の中央位置をタッチ位置として取得する必要はない。例えば、タッチ情報取得部103は、指による荷重の重心位置をタッチ位置として取得してもよい。
 <ステップS102>
 次に、触感呈示決定部104は、取得された複数のタッチ位置の中から、触感を呈示する第1タッチ位置(呈示位置)および触感を呈示しない第2タッチ位置(非呈示位置)を決定する(S102)。例えば、触感呈示決定部104は、2つのタッチ位置P1、P2の中から、タッチ位置P1を呈示位置と決定し、タッチ位置P2を非呈示位置と決定する。
 具体的には、触感呈示決定部104は、例えば、表示されている情報に基づいて呈示位置を決定する。より具体的には、触感呈示決定部104は、例えば、GUIオブジェクト(例えば、ボタンあるいはスライダーなど)が表示されているタッチ位置を呈示位置と決定する。また例えば、触感呈示決定部104は、Webブラウザ上のリンク情報が表示されているタッチ位置を呈示位置と決定してもよい。
 なお、触感呈示決定部104は、必ずしも表示されている情報に基づいて呈示位置を決定する必要はない。例えば、触感呈示決定部104は、荷重の大きさ、タッチの継続時間、または複数のタッチ位置間の位置関係に基づいて、呈示位置を決定してもよい。
 また、触感呈示決定部104は、タッチ情報取得部103によって複数のタッチ位置が取得されたときに、いつも呈示位置を決定する必要はない。例えば、触感呈示決定部104は、複数のタッチ位置の中に所定の条件を満たすタッチ位置が存在しない場合には、呈示位置を決定せずに、すべてのタッチ位置を非呈示位置と決定してもよい。また例えば、タッチ位置の時間的な変化が大きい場合には、すべてのタッチ位置を非呈示位置と決定してもよい。この場合、触感の呈示が不要となるので、ステップS101の処理に戻る。
 <ステップS103>
 次に、伝達特性取得部106は、タッチ情報取得部103によって取得された複数のタッチ位置に対応する伝達特性を伝達特性記憶部105から取得する(S103)。例えば、伝達特性取得部106は、アクチュエータA1、A2(アクチュエータ102に対応)の各々からタッチ位置P1までの伝達特性g11、g21と、アクチュエータA1、A2の各々からタッチ位置P2までの伝達特性g12、g22とを伝達特性記憶部105から読み出す。
 <ステップS104>
 続いて、フィルタ算出部107は、呈示位置において触感を呈示し、かつ、非呈示位置において触感を呈示しないためのフィルタを算出する(S104)。具体的には、フィルタ算出部107は、各アクチュエータ102から呈示位置までの伝達特性と、各アクチュエータ102から非呈示位置までの伝達特性とを用いてフィルタを算出する。例えば、フィルタ算出部107は、タッチ位置P1において触感を呈示し、タッチ位置P2において触感を呈示しないためのフィルタを、伝達特性g11、g12、g21、g22を用いて算出する。
 <ステップS105>
 次に、フィルタ処理部109は、触感信号記憶部108に記憶されている触感信号s(n)に対して、ステップS104において算出されたフィルタh1、h2を用いてフィルタ処理を行なうことにより、各アクチュエータ102を駆動するための駆動信号を生成する。
 なお、触感信号記憶部108に複数の触感信号が記憶されている場合には、フィルタ処理部109は、複数の触感信号の中から1つの触感信号を選択し、選択された触感信号に対してフィルタ処理を行う。例えば、フィルタ処理部109は、図3(a)および図3(b)に示す触感信号の中から、図3(a)に示す触感信号を選択する。なお、触感信号の選択方法は特に限定される必要はない。
 <ステップS106>
 次に、アクチュエータAjは、ステップS105で生成された駆動信号uj(n)を用いて駆動される。つまり、アクチュエータAjは、駆動信号uj(n)に従ってパネル101を振動させる。
 なお、アクチュエータの種類によっては、高電圧の駆動信号を必要とする場合がある。そのような場合には、アクチュエータ102は、駆動信号を増幅するためのアンプを備えていてもよい。
 図7は、各タッチ位置におけるパネル101の振動の実験結果を示す。具体的には、図7は、上述の駆動信号を用いてアクチュエータ102が駆動された場合のタッチ位置P1およびP2におけるパネル101の振動を示す。
 図7(a)に示すように、タッチ位置P1では、振動のピーク間の差(以後、「振幅強度」と呼ぶ)が約30μmとなっており、強く振動していることが分かる。一方、図7(b)に示すように、タッチ位置P2では、振幅強度が約1μmとなっており、人が感知できない程度でしか振動していないことが分かる。
 なお、図7では、タッチ位置P1、P2における振動特性を示したが、タッチ位置P1、P2以外の位置でも振動が生じている。しかしながら、タッチ位置P1、P2以外の位置はユーザにタッチされていない位置であるので、どのような振動が生じていてもユーザに触感が呈示されることがない。
 ここで、タッチ位置と伝達関数との関係を説明する。2点のマルチタッチの触覚呈示においては、2点のアクチュエータから2点のタッチ位置までの振動の伝達関数をそれぞれ異ならせることにより、2点のタッチ位置の振動振幅に差異を生み出しており、各振動源から各タッチ位置までの振動の伝達関数が異なることが必要条件となる。
 通常、均質な物質の振動の伝達では、その距離に応じて振動は減衰および/または遅延するので、アクチュエータから等距離の2点の伝達関数は同じになる。例えば、図8に示すように、タッチ位置P1とアクチュエータA1との間の距離と、タッチ位置P2とアクチュエータA1との間の距離とが互いに等しく、且つ、タッチ位置P1とアクチュエータA2との間の距離と、タッチ位置P2とアクチュエータA2との間の距離とが互いに等しくなる場合がある。このとき、アクチュエータA1からタッチ位置P1、P2までの伝達特性g11、g12が互いに等しくなるとともに、アクチュエータA2からタッチ位置P1、P2までの伝達特性g21、g22が互いに等しくなる。このように、g11=g12且つg21=g22になる場合、逆行列が計算できなくなり(伝達関数の差が出なくなり)、振動振幅を互いに異ならせることができないので、異なる触感を呈示することはできない。
 この問題は、図9に示すように、アクチュエータA1、A2をパネルの中心131(図4)に対して非対称に配置した構成においても発生する。図9に示す構成においても、アクチュエータからの距離が同じになる2点は数多く存在し、そのような2点では、伝達関数が同じになってしまうため、振動振幅を互いに異ならせることができず、異なる触感を呈示することはできない。
 一方、本実施形態の電子機器100では、上述したように、パネル101の周縁部はパネルの中心131(図4)に対して非対称に筐体115に固定されており、これにより、パネル101における振動の伝達特性は不均一になる。このため、図10に示すように、タッチ位置P1とアクチュエータA1との間の距離と、タッチ位置P2とアクチュエータA1との間の距離とが互いに等しい場合においても、タッチ位置P1とアクチュエータA1との間におけるパネル101の振動の伝達特性と、タッチ位置P2とアクチュエータA1との間におけるパネル101の振動の伝達特性とが互いに異なることになる。すなわち、アクチュエータA1からタッチ位置P1へ伝達する振動に対するパネル101の振動伝達特性と、アクチュエータA1からタッチ位置P2へ伝達する振動に対するパネル101の振動伝達特性とが互いに異なることになる。このため、距離が等しくても、伝達関数が同じになることはなく、異なる触感を呈示することができる。また、同様に、タッチ位置P1とアクチュエータA2との間の距離と、タッチ位置P2とアクチュエータA2との間の距離とが互いに等しい場合においても、タッチ位置P1とアクチュエータA2との間におけるパネル101の振動の伝達特性と、タッチ位置P2とアクチュエータA2との間におけるパネル101の振動の伝達特性とが互いに異なることになる。すなわち、アクチュエータA2からタッチ位置P1へ伝達する振動に対するパネル101の振動伝達特性と、アクチュエータA2からタッチ位置P2へ伝達する振動に対するパネル101の振動の伝達特性とが互いに異なることになる。このため、距離が等しくても、伝達関数が同じになることはなく、異なる触感を呈示することができる。
 また、タッチ位置P1とアクチュエータA1との間の距離と、タッチ位置P1とアクチュエータA2との間の距離とが互いに等しく、且つ、タッチ位置P2とアクチュエータA1との間の距離と、タッチ位置P2とアクチュエータA2との間の距離とが互いに等しくなる場合がある。このとき、伝達関数は、g11=g21且つg12=g22になり、タッチ位置P、Pともにアクチュエータからの伝達関数が同じになる。この場合も逆行列が計算できなくなり(伝達関数の差が出なくなり)、振動振幅を互いに異ならせることができないので、異なる触感を呈示することはできない。一方、この場合においても、本実施形態の電子機器100では、タッチ位置P1とアクチュエータA1との間におけるパネルの振動の伝達特性と、タッチ位置P1とアクチュエータA2との間におけるパネルの振動の伝達特性とが互いに異なる。すなわち、アクチュエータA1からタッチ位置P1へ伝達する振動に対するパネル101の振動伝達特性と、アクチュエータA2からタッチ位置P1へ伝達する振動に対するパネル101の振動の伝達特性とが互いに異なる。このため、距離が等しくても、伝達関数が同じになることはなく、異なる触感を呈示することができる。また、同様に、タッチ位置P2とアクチュエータA1との間におけるパネルの振動の伝達特性と、タッチ位置P2とアクチュエータA2との間におけるパネルの振動の伝達特性とが互いに異なる。すなわち、アクチュエータA1からタッチ位置P2へ伝達する振動に対するパネル101の振動伝達特性と、アクチュエータA2からタッチ位置P2へ伝達する振動に対するパネル101の振動伝達特性とが互いに異なる。このため、距離が等しくても、伝達関数が同じになることはなく、異なる触感を呈示することができる。
 なお、図4、図5、図10に示す例では、パネル101の四隅の固定の仕方がそれぞれ異なっているが、四隅の固定の仕方のうちの少なくとも1つが他と異なっていてもよい。また、四隅以外の部分において、パネル101の固定の仕方が非対称になっていてもよい。パネル101上の任意の2点の伝達関数が異なるように、パネル101の固定の仕方が非対称になっていればよい。
 <効果>
 以上、説明したように、本実施形態の電子機器100によれば、呈示位置において触感を呈示し、非呈示位置において呈示位置よりも小さい触感を呈示するまたは触感を呈示しないようにすることができる。したがって、マルチタッチのうち、触感の呈示が必要なタッチに対して他のタッチと異なる触感を呈示することができ、適切な触感フィードバックが可能となる。つまり、触感呈示による不要な混乱を抑制することができる。
 また、本実施形態の電子機器100によれば、パネル101の支持の仕方を非対称にすることで、パネル101上の任意の2点の伝達関数が異なるようになり、全ての2点の組み合わせにおいて、振動振幅を互いに異ならせることができ、異なる触感を呈示することができる。
 (実施形態1の変形例)
 次に、実施形態1に係る電子機器100の変形例を説明する。図11は、電子機器100の平面図である。この例では、アクチュエータ102の配置における対称軸と、パネルの固定の仕方における対称軸とが互いに異なっている。例えば、図11に示すように、2つのアクチュエータ102は、パネル101の中心131を通りx方向に延びる対称軸133に対して対称に配置される。また、2つのアクチュエータ102は、パネル101の中心131を通りy方向に延びる対称軸135に対して非対称に配置される。
 一方、パネル101は、対称軸135に対して対称に固定されるが、対称軸133に対して非対称に固定されている。図11に示す例では、固定部材121は、パネル101の四隅のうちの上側2つの端部に配置されているが、下側2つの端部には配置されていない。
 このように、アクチュエータ102の配置における対称軸と、パネルの固定の仕方における対称軸とを互いに異ならせることによっても、パネル101上の任意の2点の伝達関数が異なるようになり、全ての2点の組み合わせにおいて、振動振幅を互いに異ならせることができ、異なる触感を呈示することができる。
 (実施形態2)
 図12は、実施形態2に係る電子機器100を示す図である。実施形態2に係る電子機器100は、パネル101の形状が非対称であることが実施形態1の電子機器100と異なる。以下に、実施形態1の電子機器100と異なる点を中心に説明する。
 本実施形態では、パネル101は、パネル101の中心131に対して非対称の平面形状を有している。また、例えば、パネル101は、対称軸133に対して非対称の平面形状を有している。また、例えば、パネル101は、対称軸135に対して非対称の平面形状を有している。図12に示す例では、パネル101の四隅の形状がそれぞれ異なっている。このように、パネル101を非対称の平面形状にすることで、パネル101上の任意の2点の伝達関数が異なるようになり、全ての2点の組み合わせにおいて、振動振幅を互いに異ならせることができ、異なる触感を呈示することができる。
 なお、この例では、2つのアクチュエータ102は、パネル101の中心131に対して対称に配置される。例えば、図12に示すように、2つのアクチュエータ102は、対称軸133に対して対称に配置されている。また、2つのアクチュエータ102は、対称軸135に対して対称に配置されてもよい。このように、アクチュエータ102が対称に配置されている場合であっても、本実施形態では、パネル101の平面形状が非対称であることにより、パネル101上の任意の2点の伝達関数が異なるようになり、全ての2点の組み合わせにおいて、振動振幅を互いに異ならせることができ、異なる触感を呈示することができる。
 また、パネル101の周縁部が筐体115に対称に支持されていてもよく、この場合であっても、本実施形態では、パネル101の平面形状が非対称であることにより、パネル101上の任意の2点の伝達関数が異なるようになり、全ての2点の組み合わせにおいて、振動振幅を互いに異ならせることができ、異なる触感を呈示することができる。
 なお、図12に示す例では、パネル101の四隅の形状がそれぞれ異なっているが、四隅の形状のうちの少なくとも1つが他と異なっていてもよい。また、四隅以外の部分において、パネル101の形状が非対称になっていてもよい。パネル101上の任意の2点の伝達関数が異なるように、パネル形状が非対称になっていればよい。
 (実施形態3)
 図13は、実施形態3に係る電子機器100を示す図である。図13は電子機器100のアクチュエータ102に沿った断面を示している。実施形態3に係る電子機器100は、パネル101の厚さ方向の形状が非対称であることが実施形態1の電子機器100と異なる。以下に、実施形態1の電子機器100と異なる点を中心に説明する。
 本実施形態では、パネル101は、パネル101の中心131(図4)に対して非対称の厚さを有している。また、例えば、パネル101は、パネル101の中心131を通りパネル101の平面方向に垂直な軸137に対して非対称の厚さを有している。図13に示す例では、パネル101はx方向における一端から他端に向かって厚さが徐々に厚くなるテーパー形状になっている。このように、パネル101を非対称の断面形状にすることで、パネル101上の任意の2点の伝達関数が異なるようになり、全ての2点の組み合わせにおいて、振動振幅を互いに異ならせることができ、異なる触感を呈示することができる。
 なお、この例では、2つのアクチュエータ102は、パネル101の中心131に対して対称に配置される。例えば、2つのアクチュエータ102は、対称軸133に対して対称に配置されている。また、2つのアクチュエータ102は、対称軸135に対して対称に配置されてもよい。このように、アクチュエータ102が対称に配置されている場合であっても、本実施形態では、パネル101の断面形状が非対称であることにより、パネル101上の任意の2点の伝達関数が異なるようになり、全ての2点の組み合わせにおいて、振動振幅を互いに異ならせることができ、異なる触感を呈示することができる。
 また、パネル101の周縁部が筐体115に対称に支持されていてもよく、この場合であっても、本実施形態では、パネル101の断面形状が非対称であることにより、パネル101上の任意の2点の伝達関数が異なるようになり、全ての2点の組み合わせにおいて、振動振幅を互いに異ならせることができ、異なる触感を呈示することができる。
 また、パネル101の平面形状は対称であってもよく、この場合であっても、本実施形態では、パネル101の断面形状が非対称であることにより、パネル101上の任意の2点の伝達関数が異なるようになり、全ての2点の組み合わせにおいて、振動振幅を互いに異ならせることができ、異なる触感を呈示することができる。
 なお、パネル101の断面形状は、図13に示すようなテーパー形状に限定されず、他の形状によって、パネル101の断面形状が非対称になっていてもよい。パネル101上の任意の2点の伝達関数が異なるように、パネルの断面形状101が非対称になっていればよい。
 また、パネル101の材料の組み合わせが非対称であってもよく、この場合も、パネル101上の任意の2点の伝達関数が異なるように、パネル101の材料が非対称になっていればよい。
 また、図14に示すように、各種回路117等をパネルの101中心に対して偏らせてパネル101に接着することにより、パネルの振動の伝達特性を不均一にしてもよい。このようにしてパネルの振動の伝達特性を不均一にすることにより、パネル101上の任意の2点の伝達関数を異ならせてもよい。
 なお、図14に示す例では、固定部材121は回路117と筐体115とを固定しているが、パネル101および表示装置110等の他の構成要素と筐体115とを固定していてもよい。
 (実施形態4)
 図15は、実施形態4に係る電子機器100を示す図である。実施形態4に係る電子機器100は、アクチュエータの数が3個であることが実施形態1の電子機器100と異なる。以下に、実施形態1の電子機器100と異なる点を中心に説明する。
 本実施形態では、3個のアクチュエータA1、A2、A3が、パネル101の中心に対して対称に配置されている。アクチュエータA1、A2、A3には、触感信号s(n)に対してフィルタh1、h2、h3を用いてフィルタ処理を行なうことにより生成された駆動信号が入力され、アクチュエータA1、A2、A3はパネル101を振動させる。本実施形態ではアクチュエータの数が3個であるので、3点のタッチ位置P1、P2、P3に対してそれぞれ異なる振動を呈示することができる。例えば、1点のタッチ位置P1に対して振動を呈示し、他の2点のタッチ位置P2、P3には振動を呈示しないようにすることができる。
 (実施形態5)
 実施形態5における電子機器は、第2のタッチ位置において、ユーザが検知しづらい強度の振動を許容することにより、アクチュエータを駆動するためのエネルギーを減少させる、または第1のタッチ位置における振動強度を大きくする点が、実施形態1の電子機器と異なる。以下に、本実施形態における電子機器について、実施形態1と異なる点を中心に説明する。
 <装置構成>
 図16は、実施形態5における電子機器200の機能構成を示す図である。なお、図16において、図2と同様の構成要素については同一の符号を付し、適宜説明を省略する。
 図16に示すように、電子機器200は、パネル101と、複数のアクチュエータ102と、タッチ情報取得部103と、触感呈示決定部104と、伝達特性記憶部105と、伝達特性取得部106と、フィルタ算出部201と、触感信号記憶部108と、フィルタ処理部109とを備える。以下、実施形態1の電子機器と異なる点であるフィルタ算出部201について説明する。
 <フィルタ算出部201>
 フィルタ算出部201は、各アクチュエータ102から第1タッチ位置までの伝達特性とフィルタとの周波数領域における積の和がインパルスを示し、かつ、各アクチュエータ102から第2タッチ位置までの伝達特性とフィルタとの周波数領域における積の和が予め定められた振動強度以下の応答信号を示すように、フィルタを算出する。
 つまり、フィルタ算出部201は、実施形態1の説明で示した周波数領域におけるフィルタ算出式を変形した式を用いることによりフィルタを算出する。
 実施形態1では、フィルタ算出部107は、式(2)において、式(4)に示す応答Dを用いてフィルタHを算出した。
Figure JPOXMLDOC01-appb-M000004
 一方、本実施形態では、フィルタ算出部201は、式(5)に示す応答Dを用いてフィルタHを算出する。つまり、フィルタ算出部201は、第2のタッチ位置における振動として、振幅がajであり、位相θjである振動を許容する。
 このように、フィルタ算出部201は、第1タッチ位置における応答が「1」であり、第2のタッチ位置における応答の振幅がaiとなるフィルタHを算出する。このとき、第1タッチ位置における位相と第2タッチ位置における位相とは必ずしも一致する必要はない。したがって、第2タッチ位置における位相をθjとして、任意の値を用いることができる。
Figure JPOXMLDOC01-appb-M000005
 このように、式(5)に示すように、目標となる応答Dが決定されると、フィルタ算出部201は、実施形態1と同様に、周波数ωに対して、式(6)によりフィルタHを算出する。
Figure JPOXMLDOC01-appb-M000006
 第2タッチ位置における振動強度を固定(例えばaj=0.1)した場合、式(6)において、フィルタHは、第2タッチ位置における応答信号のうち位相θjにのみ依存する。
 そこで、フィルタ算出部201は、応答信号の位相を変化させることにより複数のフィルタ候補を算出し、複数のフィルタ候補のうち、フィルタ処理によって予め定められた振動強度以下の駆動信号が得られるフィルタ候補を、フィルタ処理に用いるフィルタとして算出する。なお、ここでは、フィルタ算出部201は、応答信号の位相を変化させているが、予め定められた振幅を超えない範囲で応答信号の振幅を変化させてもよい。また、フィルタ算出部201は、応答信号の振幅および位相の両方を変化させてもよい。
 なお、フィルタ算出部201は、駆動信号の振動強度ではなく、第1タッチ位置における振動強度に基づいてフィルタを決定してもよい。以下に、第1タッチ位置における振動強度に基づいてフィルタを決定する方法を説明する。
 式(6)で算出されたフィルタによって得られる応答信号の第1タッチ位置における振動強度(振幅)は、式(7)により算出される。
Figure JPOXMLDOC01-appb-M000007

このとき、アクチュエータ(i)への入力信号の大きさは、|Hajθj|である。いま、アクチュエータに入力できる信号の強度V0が予め決められている場合を考える。つまり、入力電圧あるいは入力電力の上限がある場合を考える。このときの第1タッチ位置における振動強度は式(8)で算出される。
Figure JPOXMLDOC01-appb-M000008

ここで、Vajθjは、式(9)で表される。
Figure JPOXMLDOC01-appb-M000009

ここで、フィルタ算出部201は、式(10)に示すように、第2タッチ位置における位相θjを変化させながら、第1タッチ位置における振動強度Aが最大となる位相θを探索する。このときの式(10)の解法に関しては特に限定する必要はない。例えば、ニュートン法などの数値解析の手法を用いることで最適解を得ることができる。
Figure JPOXMLDOC01-appb-M000010
 フィルタ算出部201は、式(10)に従って算出された位相を式(6)に代入することにより、式(11)に示すようにフィルタH(ω)を算出する。このように算出されるフィルタH(ω)は、複数の位相にそれぞれ対応する複数のフィルタの中で、第1タッチ位置における振動強度が最大となるフィルタである。
Figure JPOXMLDOC01-appb-M000011
 周波数ωは、予め決められた周波数でも良いし、式(12)が最小になるような周波数ω0を決定しても良い。
Figure JPOXMLDOC01-appb-M000012
 なお、上記の方法では、各アクチュエータ102によって与えられる第2タッチ位置の振動強度として同一の固定値が設定されていたが、個別に異なる値が設定されてもよい。この場合、各アクチュエータ102によって与えられる第2タッチ位置の振動強度の許容度を独立に設定することができる一方で、最適な位相を探索する際の演算量は増大する。
 また、上記の方法では、各アクチュエータ102によって与えられる第2タッチ位置の位相は独立に設定されていたが、各アクチュエータ102によって与えられる第2タッチ位置の位相として同一の位相が設定されてもよい。この場合、最適な位相を算出する演算量を削減する効果がある。
 <動作>
 次に、以上のように構成された電子機器200の各構成要素の動作に関して説明する。図17は、本実施形態における電子機器200の処理動作を示すフローチャートである。なお、図17において、図6と同様のステップについては同一の符号を付し、説明を適宜省略する。
 フィルタ算出部201は、第2タッチ位置において、ユーザが検知しない程度の振動を許容する条件に基づいて、フィルタを算出する(S201)。具体的には、フィルタ算出部201は、各アクチュエータ102から第1タッチ位置までの伝達特性とフィルタとの周波数領域における積の和がインパルスを示し、かつ、各アクチュエータ102から第2タッチ位置までの伝達特性とフィルタとの周波数領域における積の和が予め定められた振動強度以下の応答信号を示すように、フィルタを算出する。より具体的には、フィルタ算出部201は、例えば図18に示すようにフィルタを算出する。
 図18は、本実施形態におけるフィルタ算出部201の処理動作を示すフローチャートである。
 まず、フィルタ算出部201は、予め定められた振動強度以下の複数の応答信号の候補の中から、まだ選択されていない1つの応答信号の候補を選択する(S211)。この複数の応答信号の候補は、振動強度および位相のうちの少なくとも一方が互いに異なる。
 次に、フィルタ算出部201は、選択された応答信号の候補を用いてフィルタを算出する(S212)。具体的には、フィルタ算出部201は、式(11)に示すようにフィルタを算出する。
 続いて、フィルタ算出部201は、算出されたフィルタを用いて触感信号をフィルタ処理することにより得られる駆動信号の振動強度を算出する(S213)。具体的には、フィルタ算出部201は、例えば、複数のアクチュエータ102のための複数の駆動信号の振幅の統計的な代表値(例えば、平均値、中央値あるいは最大値など)を振動強度として算出する。
 次に、フィルタ算出部201は、すべての応答信号がステップS211において選択されたか否かを判定する(S214)。ここで、いずれかの応答信号が選択されていない場合(S214のNo)、ステップS211の処理に戻る。
 一方、すべての応答信号が選択されている場合(S214のYes)、フィルタ算出部201は、ステップS214で算出された複数の振動強度のうち最小の振動強度が得られたフィルタを、ステップS105のフィルタ処理で用いるフィルタとして決定する(S215)。
 なお、フィルタ算出部201は、複数の振動強度のうち予め定められた振動強度以下の振動強度が得られたフィルタを、ステップS105のフィルタ処理で用いるフィルタとして決定してもよい。予め定められた振動強度は、例えば、アクチュエータ102の最大駆動電力などに基づいて決定されればよい。この場合、フィルタ算出部201は、予め定められた振動強度よりも小さい振動強度が算出されたときに、ステップS211からステップS214のループ処理を強制的に終了し、ステップS215を実行してもよい。
 図19は、第2タッチ位置の応答信号の位相に対する第1タッチ位置の振動強度の変化の一例を示すグラフである。具体的には、図19のグラフは、第2タッチ位置の振動強度をa=0.1と設定した場合に、アクチュエータへの入力信号の強度を一定とし、式(10)において位相を変化させたときに得られる第1タッチ位置の振動強度を示す。横軸は、第2タッチ位置の振動の位相θを表す。縦軸は、第2タッチ位置の振幅を「0」としたときの第1タッチ位置の振動強度を「1」と表した場合に対する相対的な振動強度を表す。
 図19からわかるように、最適位相のときの第1タッチ位置の相対強度は約1.25であり、呈示位置(第1タッチ位置)の振動強度が強まっていることが分かる。
 <効果>
 以上のように、本実施形態における電子機器200によれば、呈示位置において触感を呈示し、非呈示位置において呈示位置よりも小さい触感を呈示することができる。したがって、マルチタッチのうち、触感の呈示が必要なタッチに対して他のタッチと異なる触感を呈示することができ、適切な触感フィードバックが可能となる。つまり、触感呈示による不要な混乱を抑制することができる。このとき、非呈示位置(第2タッチ位置)にユーザが検知できない程度の僅かな振動が与えられることを許容することにより、駆動信号の振動強度を小さくすることができる。つまり、エネルギー効率を向上させることができ、効率良く触感を呈示することが可能となる。また、駆動信号の振動強度を小さくしない場合には、呈示位置(第1タッチ位置)における振動強度を大きくすることができ、より強い触感を呈示することが可能となる。
 なお、本実施形態では、第2タッチ位置の振動強度は、式(5)で定義されたが、第1タッチ位置と第2タッチ位置との振動強度の比に基づいて定義されてもよい。例えば、第1タッチ位置と第2タッチ位置との振動強度の比を10:1にしたい場合は、式(5)において、第2タッチ位置の振動強度を「0.1」に設定すればよい。
 (実施形態6)
 実施形態6における電子機器は、タッチ位置近傍の制御位置におけるパネルの振動を触感信号に従って制御することにより、タッチ位置(呈示位置)におけるパネルの振動を強くすることができる点が実施形態1の電子機器100と異なる。以下に、本実施形態に係る電子機器について、実施形態1と異なる点を中心に説明する。
 <装置構成>
 図20は、実施形態6における電子機器700の機能構成を示す。なお、図20において、図2と同様の構成要素については同一の符号を付し、適宜説明を省略する。
 図20に示すように、電子機器700は、パネル101と、複数のアクチュエータ102と、タッチ情報取得部103と、触感呈示決定部104と、伝達特性記憶部105と、伝達特性取得部701と、制御位置決定部702と、フィルタ算出部703と、触感信号記憶部108と、フィルタ処理部109とを備える。
 <伝達特性取得部701>
 伝達特性取得部701は、各アクチュエータ102から第1制御位置までの伝達特性と、各アクチュエータ102から第2制御位置までの伝達特性とを、伝達特性記憶部105から取得する。第1制御位置とは、第1タッチ位置またはその近傍の位置である。具体的には、第1制御位置とは、第1タッチ位置を含む予め定められた範囲の領域(以下、「第1領域」と呼ぶ)内の位置である。また、第2制御位置とは、第2タッチ位置またはその近傍の位置である。具体的には、第2制御位置とは、第2タッチ位置を含む予め定められた範囲の領域(以下、「第2領域」と呼ぶ)内の位置である。
 例えば、伝達特性取得部701は、各アクチュエータ102から、第1領域内の第1制御位置の候補である複数の第1候補位置の各々までの伝達特性を取得する。また例えば、伝達特性取得部701は、各アクチュエータ102から、第2領域内の第2制御位置の候補である複数の第2候補位置の各々までの伝達特性を取得する。
 <制御位置決定部702>
 制御位置決定部702は、第1領域の中から第1制御位置を決定する。さらに、制御位置決定部702は、第2領域の中から第2制御位置を決定する。
 具体的には、制御位置決定部702は、例えば、第2タッチ位置を第2制御位置と決定してもよい。さらに、制御位置決定部702は、例えば、第1領域内の複数の第1候補位置の各々について、各アクチュエータ102から当該第1候補位置までの伝達特性と、各アクチュエータ102から第2制御位置までの伝達特性とを用いて生成された駆動信号によって各アクチュエータ102が駆動されたときの第1タッチ位置における振動強度を算出し、算出した振動強度が最大となる第1候補位置を第1制御位置と決定してもよい。
 振動強度は、振動の大きさを示す値である。例えば、振動強度は、振幅の大きさを示す値であってもよい。また例えば、振動強度は、基準となる振幅の大きさに対する相対的な振幅の大きさを示す値であってもよい。
 <フィルタ算出部703>
 フィルタ算出部703は、第1制御位置でパネル101が任意の触感信号に従って振動し、かつ第2制御位置でパネル101が第1制御位置よりも小さく振動するように各アクチュエータ102を駆動するための駆動信号を任意の触感信号に対するフィルタ処理によって生成するためのフィルタを算出する。具体的には、フィルタ算出部703は、例えば、実施形態1におけるフィルタの算出方法において、第1タッチ位置および第2タッチ位置を第1制御位置および第2制御位置に置き換えることにより、フィルタを算出する。
 <動作>
 次に、以上のように構成された電子機器700の動作に関して具体的に説明する。図21は、実施形態6における電子機器700の処理動作を示すフローチャートである。なお、図21において、図6と同様のステップについては同一の符号を付し、説明を適宜省略する。以下では、第2制御位置が第2タッチ位置である場合について説明する。
 伝達特性取得部701は、各アクチュエータ102から各第1候補位置までの伝達特性と、各アクチュエータ102から第2制御位置(第2タッチ位置)までの伝達特性とを取得する(S701)。
 図23は、複数の第1候補位置の一例を示す図である。複数の第1候補位置として、例えば図23に示すように第1タッチ位置の近傍の位置が利用される。つまり、複数の第1候補位置として、第1タッチ位置を含む予め定められた範囲の第1領域内の複数の位置が利用される。なお、例えば、複数の第1候補位置として、第1タッチ位置からの距離が所定の閾値以内の位置が利用されてもよい。また例えば、複数の第1候補位置として、第1タッチ位置を中心とする予め定められた大きさの矩形状の領域内の位置が利用されてもよい。
 次に、制御位置決定部702は、複数の第1候補位置の中から第1制御位置を決定する(S702)。具体的には、制御位置決定部702は、例えば図22に示すように第1制御位置を決定する。
 図22は、実施形態6における制御位置決定部702およびフィルタ算出部703の処理動作を示すフローチャートである。また図23は、実施形態6における複数の第1候補位置の一例を示す。なお、この例において、iはアクチュエータを示し、jは第1タッチ位置を示し、kは第1候補位置を示す。
 制御位置決定部702は、複数の第1候補位置の中から、まだ選択されていない1つの第1候補位置を選択する(S711)。具体的には、制御位置決定部702は、例えば図23に示す第1領域内の複数の第1候補位置の中から、予め定められた順番で1つの第1候補位置を選択する。
 続いて、フィルタ算出部703は、各アクチュエータ102から、選択された第1候補位置までの伝達特性と、各アクチュエータ102から第2制御位置(第2タッチ位置)までの伝達特性とを用いて、実施形態1に示した方法により、フィルタHi k(ω)を算出する(S712)。
 そして、制御位置決定部702は、算出されたフィルタを用いて生成された駆動信号によって各アクチュエータ102が駆動された場合の第1のタッチ位置における振動強度を算出する(S713)。
 具体的には、制御位置決定部702は、例えば、触感信号の周波数ω0と、算出されたフィルタと、各アクチュエータ102から、選択された第1候補位置までのパネル101の伝達特性Gijとを用いて、第1タッチ位置の振動強度を算出する。より具体的には、制御位置決定部702は、例えば、式(13)に示すように、第1タッチ位置における振動強度Akを算出する。
Figure JPOXMLDOC01-appb-M000013

ここで、Hi k(ω)は、第1候補位置(k)およびアクチュエータ(i)に対応するフィルタを示す。また、Gijは、アクチュエータ(i)から第1タッチ位置(j)への伝達特性を示す。
 また例えば、制御位置決定部702は、周波数を限定せずに任意の周波数の中からフィルタゲインが最小になるような周波数を選択してもよい。そして、制御位置決定部702は、選択された周波数を用いて第1タッチ位置における振動強度を算出してもよい。その場合は、制御位置決定部702は、式(14)および式(15)に従って振動強度を算出する。
Figure JPOXMLDOC01-appb-M000014

Figure JPOXMLDOC01-appb-M000015
 つまり、制御位置決定部702は、まず式(14)を用いて、フィルタゲインが最小になる周波数を決定する。そして、制御位置決定部702は、式(15)に示すように、決定した周波数におけるフィルタ係数を用いて第1タッチ位置における振動強度Akを算出する。
 次に、制御位置決定部702は、すべての第1候補位置がステップS711において選択されたか否かを判定する(S714)。つまり、制御位置決定部702は、すべての第1候補位置について振動強度Akを算出したか否かを判定する。ここで、いずれかの第1候補位置が選択されていない場合(S714のNo)、ステップS711の処理に戻る。
 一方、すべての第1候補位置が選択されている場合(S714のYes)、制御位置決定部702は、式(16)に示すように、ステップS714で算出された複数の振動強度のうち最大の振動強度が得られた第1候補位置を第1制御位置と決定する(S715)。そして、制御位置決定部702は、決定した第1制御位置に対応するフィルタを、ステップS105のフィルタ処理で用いるフィルタとして決定する。
Figure JPOXMLDOC01-appb-M000016
 なお、制御位置決定部702は、最大の振動強度が得られた第1候補位置を第1制御位置と決定しなくてもよい。例えば、制御位置決定部702は、予め定められた振動強度よりも大きい振動強度が得られた第1候補位置を第1制御位置と決定してもよい。この場合、制御位置決定部702は、予め定められた振動強度よりも大きい振動強度が算出されたときに、ステップS711~ステップS714のループ処理を強制的に終了し、ステップS715を実行してもよい。
 図24は、実施形態6における各第1候補位置に対応する第1タッチ位置の振動強度のシミュレーション結果を示す。具体的には、図24は、第1タッチ位置の近傍の各第1候補位置を用いて生成された駆動信号に従って各アクチュエータ102が駆動された場合の第1タッチ位置における相対振動強度を示している。
 ここでは、相対振動強度は、第1タッチ位置が第1候補位置として選択されたときの第1タッチ位置における振幅に対する、各第1候補位置に対応する第1タッチ位置の振幅の比である。また相対位置は、第1タッチ位置に対する相対的な位置である。
 図24からわかるように、第1候補位置[-2,2]において、第1タッチ位置における振動強度が最大(約1.4)になる。つまり、図24では、第1候補位置[-2,2]が第1制御位置として決定される。
 なお、触感信号s(n)は、ステップS712において利用された周波数ωを用いて、式(17)に示すように生成される。
Figure JPOXMLDOC01-appb-M000017
 <効果>
 以上のように、本実施形態における電子機器700によれば、第1タッチ位置および第2タッチ位置に基づいて、第1タッチ位置の近傍の複数の第1候補位置の中で、第1タッチ位置における振動強度が最大になる第1候補位置を第1制御位置として決定することができる。つまり、電子機器700は、第1タッチ位置における振動強度を強くできるので、ユーザに強い触感を呈示することができる。あるいは、電子機器700は、第1タッチ位置において必要とされる振動強度を実現するためにアクチュエータを駆動するために必要なエネルギーを小さくすることができるため、エネルギー効率を高めることができる。
 なお、本実施形態では、第2タッチ位置を第2制御位置と決定したが、第2タッチ位置の近傍の位置を第2制御位置と決定してもよい。この場合、例えば、制御位置決定部702は、第1タッチ位置を第1制御位置と決定し、第2領域内の複数の第2候補位置の各々について、各アクチュエータから第1制御位置までの伝達特性と、上記各アクチュエータから当該第2候補位置までの伝達特性とを用いて生成された駆動信号によって前記各アクチュエータが駆動されたときの上記第1タッチ位置における振動強度を算出し、算出された振動強度が予め定められた振動強度以上となる第2候補位置を上記第2制御位置と決定する。
 このように、第2制御位置が決定された場合、第2タッチ位置と、第2制御位置とがずれる場合がある。その場合、第2タッチ位置でも振動が発生するが、第1タッチ位置における振動強度をより大きくすることができる。
 また例えば、制御位置決定部702は、第1領域内の複数の第1候補位置と第2領域内の複数の第2候補位置との組合せの各々について、各アクチュエータ102から当該第1候補位置までの伝達特性と、各アクチュエータ102から当該第2候補位置までの伝達特性とを用いて生成された駆動信号によって各アクチュエータ102が駆動されたときの第1タッチ位置における振動強度を算出してもよい。そして、制御位置決定部702は、例えば、算出された振動強度が最大となる第1候補位置および第2候補位置をそれぞれ第1制御位置および第2制御位置と決定してもよい。この場合も、第2タッチ位置において振動が発生するが、第1タッチ位置における振動強度をさらに大きくすることが可能となる。
 以上のように、本出願において開示する技術の例示として、実施の形態1~6を説明した。しかしながら、本開示における技術はこれらに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態も可能である。また、上記実施の形態1~6で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
 以下、他の実施の形態を例示する。
 上記実施形態では、電子機器の一例としてタブレット型の情報端末機器を用いて説明したが、電子機器はこれには限らない。例えば、携帯電話、PDA、ゲーム機、カーナビゲーション、ATMなど、タッチパネルを備える電子機器であってもよい。
 また、上記実施形態では、電子機器は表示装置を備えていたが、電子機器は表示装置を備えていなくてもよい。例えばタッチパッドのような電子機器であってもよい。
 上記実施形態では、操作部としてタッチパネルを例示して説明したが、操作部はこれに限られない。例えば、マウスのようなポインティングデバイスでもよい。この場合、振動部13は、マウスに設けられており、マウスを振動させる。
 上記実施形態では、アクチュエータをパネルに貼り付けた例を示したが、アクチュエータは、筐体や枠などに張り付けられていてもよい。
 上記実施形態では、アクチュエータは圧電素子であったが、静電力によるアクチュエータや、VCM、振動モータなど他の方法で振動を伝播させてもよい。また、スパッタリング等の方法によりパネルに薄膜の透明圧電部材を形成してアクチュエータとして用いてもよい。
 また、上記実施形態では、周波数領域による逆関数によりフィルタを算出したが、他の方法で算出してもよい。例えば、国際公開第2013/161163号に記載の演算を採用することもできる。参考のために国際公開第2013/161163号の記載内容を本明細書に援用する。
 伝達関数はあらかじめ測定しておいたが、他の方法で検出してもよい。
 また、上記実施形態では、振動の種類として、たわみ振動を示したが、疎密波、表面波による振動であってもよい。
 上記実施形態では、パネルと表示装置は別体として説明したが、オプティカルボンディングなどで接続されていてもよい。
 上記実施形態では、パネルと表示装置とが別々の構成要素になっているが、パネルと表示装置とは一体に形成されていてもよい。例えば、タッチパネル機能を液晶パネルの内部に一体化するインセル型タッチパネルや、タッチパネル機能を液晶パネルの表面に一体化するオンセル型タッチパネル等の方式であってもよい。また、その場合は、アクチュエータは表示装置の裏面に設けられてもよい。
 また、パネル、フィルタ処理部、伝達特性記憶部などは一体に構成されていてもよいし、説明したが、別体でもよく、通信により信号の伝達を行ってもよい。
 また、剛体であるガラスやPCで振動の伝達物を説明したが、フィルム、肌、ゴムなどの軟体、水などの液体、ジェリー状の物体、気体など、振動を伝播させるものであって、タッチ位置が取れる伝達物であればよい。
 また、上記実施形態では、振動を発生することで触覚を提示したが、本開示の技術はこれに限られない。振動に加えて、例えば、静電気による摩擦の変化や、電流による皮膚の刺激、液体による画面形状の変化など、他の方法でも触覚を呈示してもよい。触覚の呈示だけでなく、画面表示、音、光、熱などを適宜組み合わせてもよい。
 なお、上述した電子機器の動作は、ハードウエアによって実現されてもよいしソフトウエアによって実現されてもよい。そのような制御動作を実行させるプログラムは、例えばマイクロコンピュータの内蔵メモリやROMに記憶される。また、そのようなコンピュータプログラムは、それが記録された記録媒体(光ディスク、半導体メモリー等)から電子機器へインストールしてもよいし、インターネット等の電気通信回線を介してダウンロードしてもよい。
 以上、説明したように、本開示のある実施形態に係る電子機器は、ユーザがタッチするパネル101と、パネル101を振動させる複数の振動部102と、ユーザがパネル101の複数の位置を同時にタッチしているときに、複数のタッチ位置のうちの第1タッチ位置の振動が、複数のタッチ位置のうちの第2タッチ位置の振動よりも大きくなるように、複数の振動部102を制御する振動制御部109とを備える。複数の振動部102は、第1および第2振動部102を含む。第1タッチ位置と第1振動部102との間の距離と、第2タッチ位置と第1振動部102との間の距離とが互いに等しい場合において、第1振動部102と第1タッチ位置との間におけるパネル101の振動の伝達特性と、第1振動部102と第2タッチ位置との間におけるパネル101の振動の伝達特性とが互いに異なる。
 例えば、第1タッチ位置と第2振動部102との間の距離と、第2タッチ位置と第2振動部102との間の距離とが互いに等しい場合において、第2振動部102と第1タッチ位置との間におけるパネル101の振動の伝達特性と、第2振動部102と第2タッチ位置との間におけるパネル101の振動の伝達特性とが互いに異なる。
 例えば、電子機器はパネル101を支持する筐体115をさらに備え、パネル101は、パネル101の中心に対して非対称に筐体115に固定されている。
 例えば、電子機器はパネル101を支持する筐体115をさらに備え、パネル101は、パネル101の中心を通りパネル101の平面方向に平行な軸に対して非対称に筐体115に固定されている。
 例えば、電子機器はパネル101を支持する筐体115をさらに備え、パネル101は、固定部材121を介して筐体115に支持されており、固定部材121の形状は、パネル101の中心に対して非対称である。
 例えば、電子機器はパネル101を支持する筐体115をさらに備え、パネル101は、固定部材121を介して筐体115に支持されており、固定部材121の形状は、パネル101の中心を通りパネル101の平面方向に平行な軸に対して非対称である。
 例えば、電子機器はパネル101を支持する筐体115をさらに備え、パネル101は、固定部材121を介して筐体115に支持されており、固定部材121の硬さは、パネル101の中心に対して非対称に異なっている。
 例えば、電子機器はパネル101を支持する筐体115をさらに備え、パネル101は、固定部材121を介して筐体115に支持されており、固定部材121の硬さは、パネル101の中心を通りパネル101の平面方向に平行な軸に対して非対称に異なっている。
 例えば、パネル101は、パネル101の中心に対して非対称の平面形状を有している。
 例えば、パネル101は、パネル101の中心を通りパネル101の平面方向に平行な軸に対して非対称の平面形状を有している。
 例えば、パネル101は、パネル101の中心に対して非対称の厚さを有している。
 例えば、パネル101は、パネル101の中心を通りパネル101の平面方向に垂直な軸に対して非対称の厚さを有している。
 例えば、第1および第2振動部102は、パネル101の中心に対して対称に配置されている。
 例えば、第1および第2振動部102は、パネル101の中心を通りパネル101の平面方向に平行な軸に対して対称に配置されている。
 本開示のある実施形態に係る電子機器は、ユーザがタッチするパネル101と、パネル101を振動させる複数の振動部102と、ユーザがパネル101の複数の位置を同時にタッチしているときに、複数のタッチ位置のうちの第1タッチ位置の振動が、複数のタッチ位置のうちの第2タッチ位置の振動よりも大きくなるように、複数の振動部102を制御する振動制御部109とを備える。複数の振動部102は、第1および第2振動部102を含む。第1タッチ位置と第1振動部102との間の距離と、第1タッチ位置と第2振動部102との間の距離とが互いに等しい場合において、第1振動部102と第1タッチ位置との間におけるパネル101の振動の伝達特性と、第2振動部102と第1タッチ位置との間におけるパネル101の振動の伝達特性とが互いに異なる。
 例えば、第2タッチ位置と第1振動部102との間の距離と、第2タッチ位置と第2振動部102との間の距離とが互いに等しい場合において、第1振動部102と第2タッチ位置との間におけるパネル101の振動の伝達特性と、第2振動部102と第2タッチ位置との間におけるパネル101の振動の伝達特性とが互いに異なる。
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示に係る技術は、マルチタッチに対して互いに異なる触感を呈示することができるので、例えば、テレビ、デジタルスチルカメラ、デジタルビデオカメラ、パーソナルコンピュータ、携帯情報端末、あるいは携帯電話などのユーザインタフェースに適用できる。また、例えば、電子黒板あるいはデジタルサイネージ用ディスプレイなど、複数の人が同時に画面にタッチする機器にも適用できる。
 100、200 電子機器
 101 パネル
 102 アクチュエータ
 103 タッチ情報取得部
 104 触感呈示決定部
 105 伝達特性記憶部
 106 伝達特性取得部
 107、201 フィルタ算出部
 108 触感信号記憶部
 109 フィルタ処理部
 110 表示装置
 111 画像表示領域
 115 筐体
 117 処理回路
 121 固定部材
 131 パネル中心
 133、135、137 対称軸

Claims (16)

  1.  ユーザがタッチするパネルと、
     前記パネルを振動させる複数の振動部と、
     前記ユーザが前記パネルの複数の位置を同時にタッチしているときに、複数のタッチ位置のうちの第1タッチ位置の振動が、前記複数のタッチ位置のうちの第2タッチ位置の振動よりも大きくなるように、前記複数の振動部を制御する振動制御部と、
     を備え、
     前記複数の振動部は、第1および第2振動部を含み、
     前記第1タッチ位置と前記第1振動部との間の距離と、前記第2タッチ位置と前記第1振動部との間の距離とが互いに等しい場合において、
      前記第1振動部と前記第1タッチ位置との間における前記パネルの振動の伝達特性と、前記第1振動部と前記第2タッチ位置との間における前記パネルの振動の伝達特性とが互いに異なる、電子機器。
  2.  前記第1タッチ位置と前記第2振動部との間の距離と、前記第2タッチ位置と前記第2振動部との間の距離とが互いに等しい場合において、
      前記第2振動部と前記第1タッチ位置との間における前記パネルの振動の伝達特性と、前記第2振動部と前記第2タッチ位置との間における前記パネルの振動の伝達特性とが互いに異なる、請求項1に記載の電子機器。
  3.  前記パネルを支持する筐体をさらに備え、
     前記パネルは、前記パネルの中心に対して非対称に前記筐体に固定されている、請求項1または2に記載の電子機器。
  4.  前記パネルを支持する筐体をさらに備え、
     前記パネルは、前記パネルの中心を通り前記パネルの平面方向に平行な軸に対して非対称に前記筐体に固定されている、請求項1から3のいずれかに記載の電子機器。
  5.  前記パネルを支持する筐体をさらに備え、
     前記パネルは、固定部材を介して前記筐体に支持されており、
     前記固定部材の形状は、前記パネルの中心に対して非対称である、請求項1から4のいずれかに記載の電子機器。
  6.  前記パネルを支持する筐体をさらに備え、
     前記パネルは、固定部材を介して前記筐体に支持されており、
     前記固定部材の形状は、前記パネルの中心を通り前記パネルの平面方向に平行な軸に対して非対称である、請求項1から5のいずれかに記載の電子機器。
  7.  前記パネルを支持する筐体をさらに備え、
     前記パネルは、固定部材を介して前記筐体に支持されており、
     前記固定部材の硬さは、前記パネルの中心に対して非対称に異なっている、請求項1から6のいずれかに記載の電子機器。
  8.  前記パネルを支持する筐体をさらに備え、
     前記パネルは、固定部材を介して前記筐体に支持されており、
     前記固定部材の硬さは、前記パネルの中心を通り前記パネルの平面方向に平行な軸に対して非対称に異なっている、請求項1から7のいずれかに記載の電子機器。
  9.  前記パネルは、前記パネルの中心に対して非対称の平面形状を有している、請求項1から8のいずれかに記載の電子機器。
  10.  前記パネルは、前記パネルの中心を通り前記パネルの平面方向に平行な軸に対して非対称の平面形状を有している、請求項1から9のいずれかに記載の電子機器。
  11.  前記パネルは、前記パネルの中心に対して非対称の厚さを有している、請求項1から10のいずれかに記載の電子機器。
  12.  前記パネルは、前記パネルの中心を通り前記パネルの平面方向に垂直な軸に対して非対称の厚さを有している、請求項1から11のいずれかに記載の電子機器。
  13.  前記第1および第2振動部は、前記パネルの中心に対して対称に配置されている、請求項1から12のいずれかに記載の電子機器。
  14.  前記第1および第2振動部は、前記パネルの中心を通り前記パネルの平面方向に平行な軸に対して対称に配置されている、請求項1から13のいずれかに記載の電子機器。
  15.  ユーザがタッチするパネルと、
     前記パネルを振動させる複数の振動部と、
     前記ユーザが前記パネルの複数の位置を同時にタッチしているときに、複数のタッチ位置のうちの第1タッチ位置の振動が、前記複数のタッチ位置のうちの第2タッチ位置の振動よりも大きくなるように、前記複数の振動部を制御する振動制御部と、
     を備え、
     前記複数の振動部は、第1および第2振動部を含み、
     前記第1タッチ位置と前記第1振動部との間の距離と、前記第1タッチ位置と前記第2振動部との間の距離とが互いに等しい場合において、
      前記第1振動部と前記第1タッチ位置との間における前記パネルの振動の伝達特性と、前記第2振動部と前記第1タッチ位置との間における前記パネルの振動の伝達特性とが互いに異なる、電子機器。
  16.  前記第2タッチ位置と前記第1振動部との間の距離と、前記第2タッチ位置と前記第2振動部との間の距離とが互いに等しい場合において、
      前記第1振動部と前記第2タッチ位置との間における前記パネルの振動の伝達特性と、前記第2振動部と前記第2タッチ位置との間における前記パネルの振動の伝達特性とが互いに異なる、請求項15に記載の電子機器。
PCT/JP2014/005151 2013-10-25 2014-10-09 電子機器 WO2015059887A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015543700A JP6037252B2 (ja) 2013-10-25 2014-10-09 電子機器
US14/948,576 US9983671B2 (en) 2013-10-25 2015-11-23 Electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-222365 2013-10-25
JP2013222365 2013-10-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/948,576 Continuation US9983671B2 (en) 2013-10-25 2015-11-23 Electronic device

Publications (1)

Publication Number Publication Date
WO2015059887A1 true WO2015059887A1 (ja) 2015-04-30

Family

ID=52992508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005151 WO2015059887A1 (ja) 2013-10-25 2014-10-09 電子機器

Country Status (3)

Country Link
US (1) US9983671B2 (ja)
JP (1) JP6037252B2 (ja)
WO (1) WO2015059887A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110434A1 (ja) * 2016-12-15 2018-06-21 株式会社ソニー・インタラクティブエンタテインメント 振動デバイス、及び制御システム
JP2019075059A (ja) * 2017-10-19 2019-05-16 株式会社デンソーテン 操作入力装置
US10963054B2 (en) 2016-12-15 2021-03-30 Sony Interactive Entertainment Inc. Information processing system, vibration control method and program
US10969867B2 (en) 2016-12-15 2021-04-06 Sony Interactive Entertainment Inc. Information processing system, controller device, controller device control method and program
US10981053B2 (en) 2017-04-18 2021-04-20 Sony Interactive Entertainment Inc. Vibration control apparatus
US11013990B2 (en) 2017-04-19 2021-05-25 Sony Interactive Entertainment Inc. Vibration control apparatus
US11145172B2 (en) 2017-04-18 2021-10-12 Sony Interactive Entertainment Inc. Vibration control apparatus
US11195293B2 (en) 2017-07-20 2021-12-07 Sony Interactive Entertainment Inc. Information processing device and positional information obtaining method
US11198059B2 (en) 2017-08-29 2021-12-14 Sony Interactive Entertainment Inc. Vibration control apparatus, vibration control method, and program
US11458389B2 (en) 2017-04-26 2022-10-04 Sony Interactive Entertainment Inc. Vibration control apparatus
US11738261B2 (en) 2017-08-24 2023-08-29 Sony Interactive Entertainment Inc. Vibration control apparatus
US11779836B2 (en) 2017-08-24 2023-10-10 Sony Interactive Entertainment Inc. Vibration control apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6037252B2 (ja) * 2013-10-25 2016-12-07 パナソニックIpマネジメント株式会社 電子機器
JP2015121983A (ja) * 2013-12-24 2015-07-02 京セラ株式会社 触感呈示装置
JP6111315B1 (ja) * 2015-11-27 2017-04-05 京セラ株式会社 触感呈示装置
FR3091188B1 (fr) * 2018-12-31 2021-11-12 Hap2U Procédé de création d’un effet haptique au moyen d’ondes ultrasonores focalisées
WO2021000065A1 (zh) * 2019-06-29 2021-01-07 瑞声声学科技(深圳)有限公司 一种降低移动终端第二壳体振动的控制方法及控制系统
CN115395827A (zh) * 2021-05-20 2022-11-25 荣耀终端有限公司 驱动波形的调整方法、装置、设备及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010055282A (ja) * 2008-08-27 2010-03-11 Nec Saitama Ltd タッチパネル振動方法およびタッチパネル装置
JP2010541071A (ja) * 2007-09-28 2010-12-24 イマージョン コーポレーション 動的な触覚効果を有するマルチタッチデバイス
JP2013156684A (ja) * 2012-01-26 2013-08-15 Kddi Corp 触覚応答機構を個別に制御可能なユーザインタフェース装置、触覚応答発動方法及びプログラム

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09190272A (ja) 1996-01-10 1997-07-22 Canon Inc 座標入力装置
US5761087A (en) 1996-01-10 1998-06-02 Canon Kabushiki Kaisha Coordinate input device and a control method therefor
JP4229098B2 (ja) 2005-07-29 2009-02-25 ソニー株式会社 タッチパネルディスプレイ装置、タッチパネルディスプレイ装置を備えた電子機器、及びタッチパネルディスプレイ装置を備えたカメラ
KR100803607B1 (ko) * 2006-10-19 2008-02-15 삼성전자주식회사 터치 센서 유닛 및 터치 센서 유닛의 민감도 조절 방법
US20090102805A1 (en) 2007-10-18 2009-04-23 Microsoft Corporation Three-dimensional object simulation using audio, visual, and tactile feedback
US8169332B2 (en) * 2008-03-30 2012-05-01 Pressure Profile Systems Corporation Tactile device with force sensitive touch input surface
US10289199B2 (en) * 2008-09-29 2019-05-14 Apple Inc. Haptic feedback system
GB2464117B (en) * 2008-10-03 2015-01-28 Hiwave Technologies Uk Ltd Touch sensitive device
US8686952B2 (en) * 2008-12-23 2014-04-01 Apple Inc. Multi touch with multi haptics
US20100156814A1 (en) * 2008-12-23 2010-06-24 Research In Motion Limited Portable electronic device including tactile touch-sensitive input device and method of controlling same
JP2010286986A (ja) * 2009-06-10 2010-12-24 Funai Electric Co Ltd 携帯端末装置
EP2325731B1 (en) * 2009-11-02 2013-11-13 SMK Corporation Holding structure for a touch panel
CN103003215B (zh) * 2010-05-25 2017-02-15 3M创新有限公司 抗微生物涂层
US9477306B1 (en) * 2010-08-24 2016-10-25 Amazon Technologies, Inc. Mutamorphic haptic substrate
FR2966613B1 (fr) * 2010-10-20 2012-12-28 Dav Module d'interface tactile a retour haptique
US20120151760A1 (en) * 2010-12-15 2012-06-21 Sony Ericsson Mobile Communications Ab Non-planar display glass for mobile device
JP5962907B2 (ja) * 2011-07-06 2016-08-03 パナソニックIpマネジメント株式会社 電子機器
CN103189822B (zh) * 2011-10-17 2017-02-08 松下电器产业株式会社 电子设备
CN103282868B (zh) * 2011-10-19 2016-03-23 松下电器产业株式会社 电子设备
US20130113760A1 (en) * 2011-11-07 2013-05-09 Google Inc. Techniques for providing localized tactile feedback to a user via an electro-acoustic touch display of a user device
CN103946166A (zh) * 2011-11-30 2014-07-23 Hoya株式会社 电子设备用盖板玻璃毛坯及其制造方法、以及电子设备用盖板玻璃及其制造方法
WO2013099743A1 (ja) * 2011-12-27 2013-07-04 株式会社村田製作所 触覚提示装置
US9317119B2 (en) * 2012-04-27 2016-04-19 Panasonic Intellectual Property Management Co., Ltd. Haptic feedback device, haptic feedback method, driving signal generating device and driving signal generation method
KR20130137960A (ko) * 2012-06-08 2013-12-18 삼성전자주식회사 전기활성 폴리머를 이용한 액추에이터 및 이를 구비한 전자기기
JP2015028766A (ja) * 2013-06-24 2015-02-12 パナソニックIpマネジメント株式会社 触感呈示装置および触感呈示方法
JP6037252B2 (ja) * 2013-10-25 2016-12-07 パナソニックIpマネジメント株式会社 電子機器
KR101846256B1 (ko) * 2014-05-09 2018-05-18 삼성전자주식회사 필기감을 제공하는 촉각 피드백 장치 및 방법
US9411380B2 (en) * 2014-05-26 2016-08-09 Apple Inc. Portable computing system
JP5950139B1 (ja) * 2015-03-04 2016-07-13 Smk株式会社 電子機器の振動発生装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010541071A (ja) * 2007-09-28 2010-12-24 イマージョン コーポレーション 動的な触覚効果を有するマルチタッチデバイス
JP2010055282A (ja) * 2008-08-27 2010-03-11 Nec Saitama Ltd タッチパネル振動方法およびタッチパネル装置
JP2013156684A (ja) * 2012-01-26 2013-08-15 Kddi Corp 触覚応答機構を個別に制御可能なユーザインタフェース装置、触覚応答発動方法及びプログラム

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10969867B2 (en) 2016-12-15 2021-04-06 Sony Interactive Entertainment Inc. Information processing system, controller device, controller device control method and program
JPWO2018110434A1 (ja) * 2016-12-15 2019-04-11 株式会社ソニー・インタラクティブエンタテインメント 振動デバイス、及び制御システム
WO2018110434A1 (ja) * 2016-12-15 2018-06-21 株式会社ソニー・インタラクティブエンタテインメント 振動デバイス、及び制御システム
US10963055B2 (en) 2016-12-15 2021-03-30 Sony Interactive Entertainment Inc. Vibration device and control system for presenting corrected vibration data
US10963054B2 (en) 2016-12-15 2021-03-30 Sony Interactive Entertainment Inc. Information processing system, vibration control method and program
US10981053B2 (en) 2017-04-18 2021-04-20 Sony Interactive Entertainment Inc. Vibration control apparatus
US11145172B2 (en) 2017-04-18 2021-10-12 Sony Interactive Entertainment Inc. Vibration control apparatus
US11013990B2 (en) 2017-04-19 2021-05-25 Sony Interactive Entertainment Inc. Vibration control apparatus
US11458389B2 (en) 2017-04-26 2022-10-04 Sony Interactive Entertainment Inc. Vibration control apparatus
US11195293B2 (en) 2017-07-20 2021-12-07 Sony Interactive Entertainment Inc. Information processing device and positional information obtaining method
US11738261B2 (en) 2017-08-24 2023-08-29 Sony Interactive Entertainment Inc. Vibration control apparatus
US11779836B2 (en) 2017-08-24 2023-10-10 Sony Interactive Entertainment Inc. Vibration control apparatus
US11198059B2 (en) 2017-08-29 2021-12-14 Sony Interactive Entertainment Inc. Vibration control apparatus, vibration control method, and program
JP2019075059A (ja) * 2017-10-19 2019-05-16 株式会社デンソーテン 操作入力装置
JP7094088B2 (ja) 2017-10-19 2022-07-01 株式会社デンソーテン 操作入力装置

Also Published As

Publication number Publication date
JP6037252B2 (ja) 2016-12-07
JPWO2015059887A1 (ja) 2017-03-09
US9983671B2 (en) 2018-05-29
US20160132117A1 (en) 2016-05-12

Similar Documents

Publication Publication Date Title
JP6037252B2 (ja) 電子機器
JP5570640B2 (ja) 圧電素子および電子機器
JP6032657B2 (ja) 触感呈示装置、触感呈示方法、駆動信号生成装置および駆動信号生成方法
JP6183661B2 (ja) 触感呈示装置および触感呈示方法
JP5421500B2 (ja) 電子機器
JP4803105B2 (ja) 電子機器
US7663604B2 (en) Input device and electronic device using the input device
JP5373236B1 (ja) 電子機器
JP5615421B2 (ja) 電子機器
JP2013168134A (ja) 電子機器
JP2015028766A (ja) 触感呈示装置および触感呈示方法
JP2013003754A (ja) 入力装置
WO2015136923A1 (ja) 電子機器
JP2017091109A (ja) 振動体の支持構造
KR20120115159A (ko) 택타일 피드백 방법 및 장치
JP6528086B2 (ja) 電子機器
JP6784297B2 (ja) 電子機器
WO2016092644A1 (ja) 電子機器及び駆動制御方法
WO2023119483A1 (ja) 触覚提示装置、ディスプレイ装置、データ端末装置、および触覚提示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015543700

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14856624

Country of ref document: EP

Kind code of ref document: A1