WO2015058403A1 - 铜线接口电路 - Google Patents

铜线接口电路 Download PDF

Info

Publication number
WO2015058403A1
WO2015058403A1 PCT/CN2013/085953 CN2013085953W WO2015058403A1 WO 2015058403 A1 WO2015058403 A1 WO 2015058403A1 CN 2013085953 W CN2013085953 W CN 2013085953W WO 2015058403 A1 WO2015058403 A1 WO 2015058403A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance
value
sub
pass filter
much greater
Prior art date
Application number
PCT/CN2013/085953
Other languages
English (en)
French (fr)
Inventor
赵治磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2016525884A priority Critical patent/JP6360169B2/ja
Priority to PCT/CN2013/085953 priority patent/WO2015058403A1/zh
Priority to KR1020167012928A priority patent/KR101897526B1/ko
Priority to EP13896081.0A priority patent/EP3048741B1/en
Priority to CN201380002108.8A priority patent/CN104813592B/zh
Publication of WO2015058403A1 publication Critical patent/WO2015058403A1/zh
Priority to US15/136,476 priority patent/US9742463B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/20Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other
    • H04B3/23Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other using a replica of transmitted signal in the time domain, e.g. echo cancellers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/03Hybrid circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/20Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other
    • H04B3/21Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other using a set of bandfilters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/387A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/423Amplifier output adaptation especially for transmission line coupling purposes, e.g. impedance adaptation

Definitions

  • the present invention relates to communication technologies, and in particular, to a copper wire interface circuit. Background technique
  • G.Fast Gigabit copper
  • G.fast is an access technology for transmitting ultra-high-rate bandwidth over short-distance twisted-pair lines. .
  • G.fast's high-band initial stage will use 106MHz and can be extended to 212MHz.
  • the higher the frequency the higher the bandwidth G.fast can obtain.
  • the higher the signal frequency the shorter the transmission distance, and the greater the cost and power consumption.
  • G.fast does not use the FDD frequency division method similar to VDSL2 in the uplink and downlink rate division, but uses the TDD time division multiplexing method to allocate uplink and downlink traffic with different time windows.
  • G.Fast technology compared to existing DSL technology, uses a wide range of signal frequencies to high frequencies, while making crosstalk between different ports in a bundle of cables much more severe than existing DSL technologies. Whether the termination impedance of a user port connected to the cable is matched or not will not only affect the crosstalk between other pairs, but also affect the transmission characteristics of other pairs in the cable. According to the definition of impedance matching, impedance matching refers to the specific matching relationship between load impedance, cable characteristic impedance and internal impedance of the signal during signal transmission. Therefore, the port impedance needs to be kept constant regardless of whether the port is in the transmit, receive, activate, or deactivate state.
  • the user port is connected to the cable adopting the G.Fast technology through an interface circuit.
  • the interface circuit adopts the feature of TDD time division multiplexing according to the G.Fast technology, when receiving the signal transmitted by the cable.
  • the port When the port is in the deactivated state, the device related to the transmission of the interface circuit will stop working. Similarly, when the signal is sent to the cable, the device receiving the relevant circuit domain will stop working.
  • the impedance characteristics of the device may change, resulting in a user port.
  • the termination impedance cannot be matched, which causes the mutual crosstalk between the pairs to change, and the transmission characteristics at both ends of the pair change, resulting in a decrease in the transmission stability of the cable.
  • Summary of the invention The embodiment of the invention provides a copper wire interface circuit, which can avoid the change of the transmission characteristics of the two ends of the pair and improve the transmission stability of the cable.
  • a first aspect of the present invention provides a copper wire interface circuit comprising:
  • One end of the current output type amplifier is connected to the port impedance component, and the other end of the current output type amplifier is connected to the transmitting end, the current output type amplifier is for amplifying a signal to be transmitted, and the output of the current output type amplifier has High impedance characteristics;
  • the port impedance component is further connected to a high-pass filter, and the impedance of the port impedance component is impedance-converted by a high-pass filter for impedance matching with an equivalent impedance of the cable and the load; a port impedance component is connected, the other end of the high-pass filter is connected to the cable, and the high-pass filter is configured to filter a signal to be transmitted or a received signal, and perform impedance transformation on the port impedance component;
  • the echo cancellation module is connected to the port impedance component, and the other end of the echo cancellation module is connected to the receiving end.
  • the echo cancellation module is used for sampling processing of the received signal, and is also used for sending Signal cancellation processing.
  • the port impedance component includes: a first impedance, a second impedance, and a third impedance
  • One end of the first impedance is connected to one end of the second impedance, and the other end of the first impedance is connected to one end of the third impedance;
  • One end of the second impedance is further connected to the current output type amplifier, and the other end of the second impedance is further connected to an input pin of the high pass filter;
  • One end of the third impedance is further connected to the current output type amplifier, and the other end of the third impedance is further connected to another input pin of the high pass filter;
  • the value of the first impedance is much larger than the value of the second impedance, and the value of the first impedance is much larger than the value of the third impedance, and the value of the second impedance is The third impedance is equal in value;
  • the echo cancellation module includes: a fourth impedance, a fifth impedance, a sixth impedance, and a seventh impedance; one end of the fourth impedance is connected to one end of the fifth impedance, and the other end of the fourth impedance is One end of the second impedance is connected, and one end of the fourth impedance is further connected to the receiving end; one end of the fifth impedance is further connected to the receiving end, and the other end of the fifth impedance is opposite to the third end The other end of the impedance is connected; One end of the sixth impedance is connected to one end of the seventh impedance, the other end of the sixth impedance is connected to one end of the third impedance, and one end of the sixth impedance is further connected to the receiving end; One end of the seventh impedance is further connected to the receiving end, and the other end of the seventh impedance is connected to the other end of the second impedance;
  • the fourth impedance is the same as the value of the sixth impedance
  • the fifth impedance is the same as the seventh impedance
  • the value of the fourth impedance is much larger than the value of the first impedance.
  • the value of the fourth impedance is much larger than the value of the second impedance, and the value of the fourth impedance is much larger than the value of the third impedance, and the value of the fifth impedance is much larger than the value.
  • the value of the first impedance, the value of the fifth impedance is much larger than the value of the second impedance, and the value of the fifth impedance is much larger than the value of the third impedance.
  • the first impedance includes: a first sub-impedance, a second sub-impedance;
  • the first sub-impedance is connected in series with the second sub-impedance, and a reference power source is connected between the first sub-impedance and the second sub-impedance;
  • the value of the first sub-impedance is the same as the value of the second sub-impedance.
  • the port impedance component includes: an eighth impedance, a ninth impedance;
  • One end of the eighth impedance is connected to the current output type amplifier, and one end of the eighth impedance is further connected to one input pin of the high pass filter, and the other end of the eighth impedance is connected to the current output.
  • An amplifier is connected, and one end of the eighth impedance is further connected to another input pin of the high pass filter;
  • the ninth impedance is coupled between the two center taps of the transformer of the high pass filter
  • the value of the eighth impedance is much larger than the value of the ninth impedance
  • the echo cancellation module includes: a tenth impedance, an eleventh impedance, a twelfth impedance, and a thirteenth impedance;
  • One end of the tenth impedance is connected to one end of the eleventh impedance, and the other end of the tenth impedance is connected to one input pin of the high-pass filter, and one end of the tenth impedance is further connected to the receiving end Connection
  • One end of the eleventh impedance is further connected to the receiving end, and the other one of the eleventh impedance The end is connected to one end of the ninth impedance;
  • One end of the twelfth impedance is connected to one end of the thirteenth impedance, and the other end of the twelfth impedance is connected to another input pin of the high pass filter, one end of the twelfth impedance Also connected to the receiving end;
  • One end of the thirteenth impedance is further connected to the receiving end, and the other end of the seventh impedance is connected to the other end of the ninth impedance;
  • the tenth impedance is the same as the value of the twelfth impedance, the eleventh impedance is the same as the thirteenth impedance, and the value of the tenth impedance is much larger than the eighth impedance.
  • the value of the tenth impedance is much larger than the value of the ninth impedance, and the value of the eleventh impedance is much larger than the value of the eighth impedance, and the eleventh impedance is taken.
  • the value is much larger than the value of the ninth impedance.
  • the eighth impedance includes: a third sub-impedance, a fourth sub-impedance;
  • the third sub-impedance is connected in series with the fourth sub-impedance, and a reference power source is connected between the third sub-impedance and the fourth sub-impedance;
  • the value of the third sub-impedance is the same as the value of the fourth sub-impedance.
  • the ninth impedance includes: a fifth sub-impedance, a sixth sub-impedance;
  • the fifth sub-impedance is connected in series with the sixth sub-impedance, and a reference power source is connected between the fifth sub-impedance and the sixth sub-impedance;
  • the value of the fifth sub-impedance is the same as the value of the sixth sub-impedance.
  • the port impedance component includes: a fourteenth impedance, a fifteenth impedance, and a sixteenth impedance;
  • One end of the fourteenth impedance is connected to one input pin of the high-pass filter, and one end of the fourteenth impedance is further connected to one end of the fifteenth impedance, and the other end of the fourteenth impedance Connected to another input pin of the high-pass filter, the other end of the fourteenth impedance is further connected to one end of the sixteenth impedance;
  • the other end of the fifteenth impedance is connected to the current output type amplifier
  • the other end of the sixteenth impedance is connected to the current output type amplifier;
  • the value of the fourteenth impedance is much larger than the value of the fifteenth impedance, and the value of the fourteenth impedance is much larger than the value of the sixteenth impedance, the fifteenth impedance The value is equal to the value of the sixteenth impedance;
  • the echo cancellation module includes: a seventeenth impedance, an eighteenth impedance, a nineteenth impedance, and a twentieth impedance;
  • One end of the seventeenth impedance is connected to one end of the eighteenth impedance, and the other end of the seventeenth impedance is connected to the other end of the fifteenth impedance, and one end of the seventeenth impedance is further Receiver connection;
  • the other end of the eighteenth impedance is connected to one end of the sixteenth impedance, and one end of the eighteenth impedance is further connected to the receiving end;
  • One end of the nineteenth impedance is connected to one end of the twentieth impedance, and the other end of the nineteenth impedance is connected to the other end of the sixteenth impedance, and one end of the nineteenth impedance is further The receiving end is connected;
  • the other end of the twentieth impedance is connected to one end of the fifteenth impedance, and a section of the twentieth impedance is further connected to the receiving end;
  • the seventeenth impedance is the same as the nineteenth impedance, the eighteenth impedance is the same as the twentieth impedance, and the seventeenth impedance is much larger than the tenth
  • the value of the four impedances the value of the seventeenth impedance is much larger than the value of the fifteenth impedance, and the value of the seventeenth impedance is much larger than the value of the sixteenth impedance.
  • the value of the eighteenth impedance is much larger than the value of the fourteenth impedance, the value of the eighteenth impedance is much larger than the value of the fifteenth impedance, and the value of the eighteenth impedance is large.
  • the value of the sixteenth impedance is much larger than the sixteenth impedance.
  • the fourteenth impedance includes: a seventh sub-impedance, an eighth sub-impedance;
  • the seventh sub-impedance is connected in series with the eighth sub-impedance, and a reference power source is connected between the seventh sub-impedance and the eighth sub-impedance;
  • the value of the seventh sub-impedance is the same as the value of the eighth sub-impedance.
  • the high-pass filter includes: a transformer, a DC blocking capacitor;
  • the transformer has two input pins and two output pins, wherein one output pin is connected to one end of the cable and the equivalent impedance of the load, and the other output pin is connected to the line. The other end of the cable and the equivalent impedance of the load are connected;
  • the blocking capacitor is connected between the first two taps of the transformer; or one end of the DC blocking capacitor is connected to one output pin of the transformer, and the other end of the DC blocking capacitor is connected to the line One end of the equivalent impedance of the cable and the load; or
  • the DC blocking capacitor comprises: a first sub-capacitor that is separated by a straight, and a second sub-capacitor that is separated;
  • One end of the blocking first sub-capacitor is connected to one output pin of the transformer, and the other end of the blocking first sub-capacitor is connected to one end of the cable and the equivalent impedance of the load;
  • One end of the blocking second sub-capacitor is connected to another output pin of the transformer, and the other end of the blocking second sub-capacitor is connected to the other end of the cable and the equivalent impedance of the load.
  • the secondary two taps of the transformer are connected;
  • the second tap of the transformer is connected to a reference power supply; or the high pass filter further includes: a capacitor;
  • the capacitor is connected between the two taps of the transformer.
  • the ninth impedance is connected between the secondary two center taps of the transformer .
  • the copper wire interface circuit provided in this embodiment is connected to the port impedance component through one end of the current output type amplifier, and the other end of the current output type amplifier is connected to the transmitting end, and the current output type amplifier is used for amplifying the signal to be transmitted, and outputting the current.
  • the output of the amplifier has high impedance characteristics
  • the port impedance component is also connected to the high-pass filter
  • the port impedance component is impedance-transformed by the high-pass filter for impedance matching with the equivalent impedance of the cable and the load.
  • One end of the high-pass filter is connected to the port impedance component, and the other end of the high-pass filter is connected to the cable.
  • the high-pass filter filters the signal to be transmitted or the received signal, and performs impedance transformation on the port impedance component.
  • One end of the echo cancellation module is connected to the port impedance component, and the other end of the echo cancellation module is connected to the receiving end, and the echo cancellation module is used for sampling processing of the received signal and cancellation processing of the signal to be transmitted. Therefore, when the component related to reception is turned off during transmission or the component related to transmission is turned off in order to reduce power consumption, since the output impedance of the current output type amplifier is high impedance, the port impedance is mainly composed of the port impedance component and Qualcomm. Filter composition.
  • the output impedance of the current output amplifier is much higher than the impedance of the port impedance component when the current output amplifier is turned off.
  • the state change of the current output amplifier has essentially no effect on the port impedance. Therefore, the specific matching relationship between the termination impedance of the user port and the characteristic impedance of the cable and the impedance within the source is unchanged. Further, the mutual crosstalk between the pairs is changed, and the transmission characteristics of the pair are avoided, and the transmission stability of the cable is improved.
  • FIG. 1 is a schematic structural diagram of a copper wire interface circuit according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural diagram of a copper wire interface circuit according to Embodiment 2 of the present invention
  • FIG. 3 is a second embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a copper wire interface circuit according to Embodiment 3 of the present invention
  • FIG. 5 is another copper wire interface according to Embodiment 3 of the present invention
  • FIG. 6 is a schematic structural diagram of a copper wire interface circuit according to Embodiment 4 of the present invention
  • FIG. 7 is a schematic structural diagram of another copper wire interface circuit according to Embodiment 4 of the present invention.
  • the copper wire interface circuit includes: a current output type amplifier 10, a port impedance component 11, a high pass filter 12, and an echo. Offset module 13.
  • One end of the current output type amplifier 10 is connected to the port impedance component, the other end of the current output type amplifier 10 is connected to the transmitting end, and the current output type amplifier 10 is used to input the signal to be transmitted.
  • the line amplification, the output of the current output type amplifier 10 has a high impedance characteristic.
  • the port impedance component 11 is also coupled to the high pass filter 12, and the impedance of the port impedance component is impedance transformed by the high pass filter 12 for impedance matching with the equivalent impedance of the cable and the load.
  • the high-pass filter 12 includes a transformer, and the primary-to-secondary ratio of the transformer is variable, it is necessary to set the value of the port impedance component according to the proportional relationship between the primary and secondary, in the copper wire.
  • an impedance value obtained by the impedance conversion of the port impedance component through the high-pass filter 12 can be impedance matched with the equivalent impedance of the cable and the load. For example, assuming that the characteristic impedance of the twisted pair cable is Z0, the load impedance is also designed according to Z0.
  • the port impedance component 11 should be designed in accordance with Z0/(n*n).
  • the impedance of the port impedance component 11 Z0/(n*n) after transformer transformation is Z0.
  • the equivalent impedance of the cable and the load is the comprehensive equivalent impedance of the cable and the load of a certain length.
  • the characteristic impedance of the cable is Z0
  • the load impedance is Z0
  • the equivalent impedance of the cable and the load is also Z0.
  • the high-pass filter 12-terminal is connected to the port impedance component 11, and the other end of the high-pass filter 12 is connected to a cable.
  • the high-pass filter 12 filters the signal to be transmitted or received, and performs impedance transformation on the port impedance component 11.
  • the echo canceling module 13 is connected to the port impedance component, and the other end of the echo canceling module 13 is connected to the receiving end.
  • the echo canceling module 13 is used for sampling processing of the received signal, and is also used for canceling processing of the signal to be transmitted.
  • the copper wire interface circuit provided in this embodiment is connected to the port impedance component through one end of the current output type amplifier, and the other end of the current output type amplifier is connected to the transmitting end, and the current output type amplifier is used for amplifying the signal to be transmitted, and outputting the current.
  • the output of the amplifier has high impedance characteristics
  • the port impedance component is also connected to the high-pass filter
  • the port impedance component is impedance-transformed by the high-pass filter for impedance matching with the equivalent impedance of the cable and the load.
  • One end of the high-pass filter is connected to the port impedance component, and the other end of the high-pass filter is connected to the cable.
  • the high-pass filter filters the signal to be transmitted or the received signal, and performs impedance transformation on the port impedance component.
  • One end of the echo cancellation module is connected to the port impedance component, and the other end of the echo cancellation module is connected to the receiving end, and the echo cancellation module is used for sampling processing of the received signal and cancellation processing of the signal to be transmitted.
  • the components related to reception are turned off at the time of transmission or turned off at the time of reception.
  • the port impedance is mainly composed of the port impedance component and the high pass filter.
  • the state change of the current output amplifier has substantially no effect on the port impedance. Therefore, the specific matching relationship between the termination impedance of the user port and the characteristic impedance of the cable and the impedance within the source is unchanged. Further, the mutual crosstalk between the pairs is changed, and the transmission characteristics of the pair are avoided, and the transmission stability of the cable is improved.
  • the copper wire interface circuit provided by the present invention, it can be implemented in a plurality of possible implementation manners. Various possible implementation manners are described below through specific embodiments.
  • the port impedance component 11 includes: a first impedance 111, a second impedance 112, and a third impedance 113.
  • One end of the first impedance 111 is connected to one end of the second impedance 112, and the other end of the first impedance 111 is connected to one end of the third impedance 113.
  • One end of the second impedance 112 is also connected to the current output type amplifier 10, and the other end of the second impedance 112 is also connected to an input pin of the high pass filter 12.
  • One end of the third impedance 113 is also connected to the current output type amplifier 10, and the other end of the third impedance 113 is also connected to the other input pin of the high pass filter 12.
  • the value of the first impedance 111 is much larger than the value of the second impedance 112, and the value of the first impedance 111 is much larger than the value of the third impedance 113, the second impedance.
  • the value of 112 is equal to the value of the third impedance 113.
  • the concept of "far greater than” in the present embodiment and the following embodiments means that one value is at least three times larger than the other value, for example, the value of the first impedance 111 is at least greater than the second impedance.
  • the value of 112 is 3 times. Therefore, as long as one value is ensured to be at least 3 times larger than the other value, the requirement of "far greater than” in the various embodiments of the present invention can be satisfied, and the specific multiple is set by the line designer according to experience, and is not given here. limit.
  • the echo cancellation module 13 includes: a fourth impedance 131, a fifth impedance 132, a sixth impedance 133, and a seventh impedance 134.
  • One end of the fourth impedance 131 is connected to one end of the fifth impedance 132, and the fourth The other end of the impedance 131 is connected to one end of the second impedance 112, and one end of the fourth impedance 131 is also connected to the receiving end.
  • One end of the fifth impedance 132 is also connected to the receiving end, and the other end of the fifth impedance 132 is connected to the other end of the third impedance 113.
  • One end of the sixth impedance 133 is connected to one end of the seventh impedance 134, the other end of the sixth impedance 133 is connected to one end of the third impedance 113, and one end of the sixth impedance 133 is also received. End connection.
  • One end of the seventh impedance 134 is also connected to the receiving end, and the other end of the seventh impedance 134 is connected to the other end of the second impedance 112.
  • the fourth impedance 131 is the same as the value of the sixth impedance 133, the fifth impedance 132 is the same as the seventh impedance 134, and the value of the fourth impedance 131 is much larger than the first
  • the value of the impedance 111 the value of the fourth impedance 131 is much larger than the value of the second impedance 112, and the value of the fourth impedance 131 is much larger than the value of the third impedance 113.
  • the value of the fifth impedance 132 is much larger than the value of the first impedance 111, the value of the fifth impedance 132 is much larger than the value of the second impedance 112, and the value of the fifth impedance 132 is large.
  • the value of the third impedance 113 is much larger than the value of the third impedance 113.
  • the high pass filter 12 includes: a transformer 121 and a DC blocking capacitor 122.
  • the transformer 121 has two input pins and two output pins, wherein one output pin is connected to one end of the equivalent impedance of the cable and the load, and the other output pin is equivalent to the equivalent impedance of the cable and the load. Connected at one end.
  • a DC blocking capacitor 122 is connected between the primary two taps of the transformer 121.
  • one end of the DC blocking capacitor 122 is connected to one output pin of the transformer 121, and the other end of the DC blocking capacitor 122 is connected to one end of the cable and the equivalent impedance of the load.
  • the DC blocking capacitor 122 includes: a first sub-capacitor that is separated by a straight and a second sub-capacitor.
  • One end of the blocking first sub-capacitor is connected to one output pin of the transformer 121, and the other end of the blocking first sub-capacitor is connected to one end of the cable and the equivalent impedance 14 of the load.
  • One end of the blocking second sub-capacitor is connected to the other output pin of the transformer 121, and the other end of the blocking second sub-capacitor is connected to the other end of the cable and the equivalent impedance 14 of the load.
  • one possible implementation manner is that the secondary two taps of the transformer 121 are connected. or,
  • the secondary two taps of the transformer 121 are connected to a reference power supply 123.
  • the high pass filter 12 further includes: a capacitor.
  • a capacitor is connected between the two taps of the transformer 121.
  • the current output type amplifier 10 is used, and the output of the current output type amplifier 10 is a high impedance characteristic.
  • the output of the current output type amplifier 10 is high impedance with respect to the port impedance component, and the current output type When the amplifier 10 is turned off, the output of the current output type amplifier 10 is also high impedance.
  • the port impedance is mainly determined by the port impedance component and a high-pass filter composed of a transformer. The opening and closing of the current output amplifier 10 does not affect the port impedance; the first impedance 111, the second impedance 112, and the third impedance 113 are formed by the resistance network.
  • the main impedance port impedance component 11 is transformed by a high-pass filter module composed of a transformer, and matched with the equivalent impedance 14 of the cable and the load; the second impedance 112 and the third impedance 113 are sampling resistors in the receiving direction; generally lowering The power consumption, the value of the first impedance 111 will be much larger than the second impedance 112 and the third impedance 113.
  • FIG. 3 is a schematic structural diagram of another copper wire interface circuit according to Embodiment 2 of the present invention. It should be noted that, except for the copper shown in FIG. 3 on the first impedance 111. The line interface circuit has been improved, and other components are completely identical to those shown in FIG. 2 and will not be described again here.
  • the first impedance 111 includes: a first sub-impedance l l la , a second sub-impedance l l lb o
  • the first sub-impedance 111a is connected in series with the second sub-impedance 111b, and a reference power source 114 is connected between the first sub-impedance 111a and the second sub-impedance 111b.
  • the value of the first sub-impedance 111a is the same as the value of the second sub-impedance 111b.
  • the port impedance component 11 includes: an eighth impedance 115 and a ninth impedance 116.
  • One end of the eighth impedance 115 is connected to the current output type amplifier 10, one end of the eighth impedance 115 is also connected to one input pin of the high pass filter 12, and the other end of the eighth impedance 115 is connected to the current output type amplifier 10, and the eighth One end of the impedance 115 is also connected to the other input pin of the high pass filter 12.
  • a ninth impedance 116 is coupled between the two center taps of the transformer 121 in the high pass filter 12.
  • the ninth impedance 116 is connected between the secondary two taps of the transformer 121.
  • the value of the eighth impedance 115 is much larger than the value of the ninth impedance 116.
  • the echo cancellation module 13 includes: a tenth impedance 135, an eleventh impedance 136, and a twelfth impedance
  • One end of the tenth impedance 135 is connected to one end of the eleventh impedance 136, the other end of the tenth impedance 135 is connected to one input pin of the high-pass filter 12, and one end of the tenth impedance 135 is also connected to the receiving end.
  • One end of the eleventh impedance 136 is also connected to the receiving end, and the other end of the eleventh impedance 136 is connected to one end of the ninth impedance 116.
  • One end of the twelfth impedance 137 is connected to one end of the thirteenth impedance 138, the other end of the twelfth impedance 137 is connected to the other input pin of the high pass filter 12, and one end of the twelfth impedance 137 is also connected to the receiving end. .
  • One end of the thirteenth impedance 138 is also connected to the receiving end, and the other end of the seventh impedance 134 is connected to the other end of the ninth impedance 116.
  • the tenth impedance 135 is the same as the twelfth impedance 137, the eleventh impedance 136 is the same as the thirteenth impedance 138, and the value of the tenth impedance 135 is much larger than the value of the eighth impedance 115.
  • the value of the tenth impedance 135 is much larger than the value of the ninth impedance 116, and the value of the eleventh impedance 136 is much larger than the value of the eighth impedance 115, the eleventh impedance.
  • the value of 136 is much larger than the value of the ninth impedance 116.
  • the high pass filter 12 includes: a transformer 121 and a DC blocking capacitor 122.
  • the transformer 121 has two input pins and two output pins, wherein one output pin is connected to one end of the equivalent impedance of the cable and the load, and the other output pin is equivalent to the equivalent impedance of the cable and the load. Connected at one end.
  • a DC blocking capacitor 122 is connected between the primary two taps of the transformer 121.
  • one end of the DC blocking capacitor 122 is connected to one output pin of the transformer 121, and the other end of the DC blocking capacitor 122 is connected to one end of the cable and the equivalent impedance 14 of the load.
  • the DC blocking capacitor 122 includes: a first vertical sub-capacitor, and a second sub-capacitor. One end of the blocking first sub-capacitor is connected to one output pin of the transformer 121, and the other end of the blocking first sub-capacitor is connected to one end of the cable and the equivalent impedance of the load.
  • One end of the blocking second sub-capacitor is connected to the other output pin of the transformer 121, and the other end of the blocking second sub-capacitor is connected to the other end of the cable and the equivalent impedance of the load.
  • one possible implementation is that the secondary two taps of the transformer 121 are connected. Or,
  • the secondary two taps of the transformer 121 are connected to a reference power supply.
  • the high pass filter 12 further includes: a capacitor.
  • a capacitor is connected between the two taps of the transformer 121.
  • the current output type amplifier 10 is used, and the output of the current output type amplifier 10 is a high impedance characteristic; the port impedance component 11 mainly composed of the eighth impedance 115 and the ninth impedance 116 of the resistance network is impedance-transformed by the transformer 121, and the line The equivalent impedance 14 of the cable and the load is matched; the ninth impedance 116 is the sampling resistance of the receiving direction; generally, to reduce the power consumption, the value of the eighth impedance 115 is much larger than the ninth impedance 116.
  • the echo cancellation module 13 includes an impedance network tenth impedance 135, an eleventh impedance 136, a twelfth impedance 137 and a thirteenth impedance 138, wherein the tenth impedance 135, the eleventh impedance 136, the twelfth impedance 137, and the The thirteen impedance 138 samples the voltage across the ninth impedance 116 resistor and the secondary voltage of the transformer 121, respectively, to complete sampling of the received signal and cancellation of the signal in the transmit direction.
  • the impedances of the tenth impedance 135 and the eleventh impedance 136 are much larger than the eighth impedance 115 and the ninth impedance 116.
  • FIG. 5 is a schematic structural diagram of another copper wire interface circuit according to Embodiment 3 of the present invention. It should be noted that, except that the eighth impedance 115 and the ninth impedance 116 are in FIG. 5. The copper wire interface circuit shown is improved, and other components are completely identical to those shown in FIG. 4 and will not be described again here. As shown in FIG. 5, the eighth impedance 115 includes: a third sub-impedance 115a and a fourth sub-impedance 115b.
  • the third sub-impedance 115a is connected in series with the fourth sub-impedance 115b, and a reference power source 114 is connected between the third sub-impedance 115a and the fourth sub-impedance 115b.
  • the value of the third sub-impedance 115a is the same as the value of the fourth sub-impedance 115b.
  • the eighth impedance 115 is an impedance
  • the ninth impedance 116 includes: a fifth sub-impedance and a sixth sub-impedance.
  • the fifth sub-impedance is connected in series with the sixth sub-impedance, and a reference power supply is connected between the fifth sub-impedance and the sixth sub-impedance.
  • the value of the fifth sub-impedance is the same as the value of the sixth sub-impedance.
  • the form of the sixth sub-impedance is similar to the splitting of the eighth impedance 115, which is not shown here.
  • FIG. 6 is a schematic structural diagram of a copper wire interface circuit according to Embodiment 4 of the present invention.
  • the port impedance component 11 includes: a fourteenth impedance 117, a fifteenth impedance 118, and a sixteenth impedance 119. .
  • One end of the fourteenth impedance 117 is connected to one input pin of the high-pass filter 12, one end of the fourteenth impedance 117 is also connected to one end of the fifteenth impedance 118, and the other end of the fourteenth impedance 117 is connected to the high-pass filter 12 The other input pin is connected, and the other end of the fourteenth impedance 117 is also connected to one end of the sixteenth impedance 119.
  • the other end of the fifteenth impedance 118 is connected to the current output type amplifier 10.
  • the other end of the sixteenth impedance 119 is connected to the current output type amplifier 10.
  • the value of the fourteenth impedance 117 is much larger than the value of the fifteenth impedance 118, and the value of the fourteenth impedance 117 is much larger than the value of the sixteenth impedance 119.
  • the value of the fifteenth impedance 118 is equal to the value of the sixteenth impedance 119.
  • the echo cancellation module 13 includes: a seventeenth impedance 139, an eighteenth impedance 1310, a nineteenth impedance 1311, and a twentieth impedance 1312.
  • One end of the seventeenth impedance 139 is connected to one end of the eighteenth impedance 1310, and the other end of the seventeenth impedance 139 is connected to the other end of the fifteenth impedance 118, and one end of the seventeenth impedance 139 is also connected to the receiving end.
  • the other end of the eighteenth impedance 1310 is connected to one end of the sixteenth impedance 119, and one end of the eighteenth impedance 1310 is also connected to the receiving end.
  • One end of the nineteenth impedance 1311 is connected to one end of the twentieth impedance 1312, the other end of the nineteenth impedance 1311 is connected to the other end of the sixteenth impedance 119, and one end of the nineteenth impedance 1311 is also connected to the receiving end.
  • the other end of the twentieth impedance 1312 is connected to one end of the fifteenth impedance 118, and a section of the twentieth impedance 1312 is also connected to the receiving end.
  • the seventeenth impedance 139 and the nineteenth impedance 1311 are the same, the eighteenth impedance 1310 is the same as the twentieth impedance 1312, and the seventeenth impedance 139 is much larger than the fourteenth impedance 117.
  • the value of the seventeenth impedance 139 is much larger than the value of the fifteenth impedance 118, and the value of the seventeenth impedance 139 is much larger than the value of the sixteenth impedance 119.
  • the value of the eighteenth impedance 1310 is much larger than the value of the fourteenth impedance 117, and the value of the eighteenth impedance 1310 is much larger than the value of the fifteenth impedance 118, the tenth The value of the eight impedance 1310 is much larger than the value of the sixteenth impedance 119.
  • the high pass filter 12 includes: a transformer 121 and a DC blocking capacitor 122.
  • the transformer 121 has two input pins and two output pins, wherein one output pin is connected to one end of the cable and the equivalent impedance 14 of the load, and the other output pin has an equivalent impedance to the cable and the load 14 The other end of the connection.
  • a DC blocking capacitor 122 is connected between the primary two taps of the transformer 121.
  • one end of the DC blocking capacitor 122 is connected to one output pin of the transformer 121, and the other end of the DC blocking capacitor 122 is connected to one end of the cable and the equivalent impedance 14 of the load.
  • the DC blocking capacitor 122 includes: a first sub-capacitor that is separated by a straight and a second sub-capacitor.
  • One end of the first blocking sub-capacitor is connected to one output pin of the transformer, and the other end of the blocking first sub-capacitor is connected to one end of the cable and the equivalent impedance of the load.
  • One end of the second sub-capacitor is connected to the other output pin of the transformer, and the other end of the second sub-capacitor is connected to the other end of the equivalent impedance of the cable and the load.
  • one possible implementation is that the secondary two taps of the transformer 121 are connected. Or,
  • the secondary two taps of the transformer 121 are connected to a reference power supply.
  • the high pass filter 12 further includes: a capacitor.
  • a capacitor is connected between the two taps of the transformer 121.
  • the current output type amplifier 10 is used, and the output of the amplifier is a high impedance characteristic.
  • the output of the current output type amplifier 10 is high impedance with respect to the port impedance component, and the current output type amplifier 10 is turned off.
  • the output of the current output type amplifier 10 is also high impedance.
  • the port impedance is mainly determined by the port impedance component and the high-pass filter consisting of a transformer, current
  • the opening and closing of the output amplifier 10 does not affect the port impedance
  • the port impedance component mainly composed of the fourteenth impedance 117 of the resistor network is impedance-converted by the transformer 121, and matches the equivalent impedance 14 of the cable and the load
  • the five impedances 118 and the sixteenth impedances 119 are sampling resistors in the receiving direction; generally, to reduce power consumption, the value of the fourteenth impedance 117 is much larger than the fifteenth impedance 118 and the sixteenth impedance 119.
  • the echo cancellation module 13 includes a seventeenth impedance 139, an eighteenth impedance 1310, a nineteenth impedance 1311 and a twentieth impedance 1312 of the impedance network, wherein the seventeenth impedance 139, the eighteenth impedance 1310, and the nineteenth impedance 1311 And the twentieth impedance 1312 samples the voltages on the two sides of the fifteenth impedance 118 and the sixteenth impedance 119, respectively, to complete sampling of the received signal and cancellation of the signal in the transmission direction.
  • the impedance of the seventeenth impedance 139 and the eighteenth impedance 1310 is much larger than the fourteenth impedance 117, the fifteenth impedance 118, and the sixteenth impedance 119.
  • FIG. 7 is a schematic structural diagram of another copper wire interface circuit according to Embodiment 4 of the present invention. It should be noted that, except for the fourteenth impedance 117, the copper shown in FIG. The line interface circuit has been improved, and other components are completely identical to those shown in FIG. 6 and will not be described again here. As shown in FIG. 7, the fourteenth impedance 117 includes: a seventh sub-impedance 1 17a and an eighth sub-impedance 117b.
  • the seventh sub-impedance 117a is connected in series with the eighth sub-impedance 117b, and a reference power supply is connected between the seventh sub-impedance 1 17a and the eighth sub-impedance 1 17b.
  • the value of the seventh sub-impedance 1 17a is the same as the value of the eighth sub-impedance 117b.
  • the foregoing storage medium includes: a medium such as a ROM, a RAM, a magnetic disk, or an optical disk that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Telephone Function (AREA)

Abstract

一种铜线接口电路,包括:电流输出型放大器(10)与端口阻抗部件(11)以及发送端连接,电流输出型放大器(10)用于将待发送信号进行放大;端口阻抗部件(11)与高通滤波器(12)连接,端口阻抗部件(11)的阻抗经过高通滤波器(12)阻抗变换后用于与线缆和负载的等效阻抗进行阻抗匹配;高通滤波器(12)与端口阻抗部件(11)以及电缆连接,高通滤波器(12)用于对待发送信号或接收信号进行滤波,并对端口阻抗部件(11)进行阻抗变换;回波抵消模块(13)与端口阻抗部件(11)以及接收端连接,回波抵消模块用于对接收信号的采用处理和对待发送信号的抵消处理。避免了线对间的相互串绕发生变化,提高了线缆的传输稳定性。

Description

铜线接口电路
技术领域
本发明涉及通信技术, 尤其涉及一种铜线接口电路。 背景技术
随着通信技术的发展, 千兆铜线(G.Fast)将铜线接入的速率引入了千兆 的时代, G.fast是在短距离双绞线上传输超高速率带宽的接入技术。 G.fast的 高频段初始阶段会采用到 106MHz,并且可以扩展到 212MHz,频率越高 G.fast 可获得的带宽也越高。但信号频率越高传输距离越短,成本和功耗越大。 G.fast 在上、下行速率划分上没有采用类似 VDSL2的 FDD频分方式,而是采用 TDD 时分复用方式, 采用不同的时间窗分给上、 下行流量。
G.Fast技术, 相对于已有的 DSL技术, 使用的信号频率往高频扩展 了很多, 同时使得在一捆线缆中不同端口之间的串扰比已有的 DSL技术 严重很多。 与线缆连接的某个用户端口的端接阻抗匹配与否, 不仅会影响 其他线对间的相互串扰, 也会影响该线缆中其他线对两端的传输特性。 由 阻抗匹配的定义可知, 阻抗匹配指的是信号传输过程中负载阻抗、 线缆特 征阻抗和信源内阻抗之间的特定配合关系。因此无论端口处于发送、接收、 激活或去激活状态都需要保持端口阻抗基本不变。
现有技术中, 用户端口与采用 G.Fast技术的线缆通过接口电路连接, 该接口电路为了节省功耗, 根据 G.Fast技术采用 TDD时分复用的特点, 在接收线缆传输的信号时或端口处于去激活状态时, 该接口电路与发送有 关的器件会停止工作, 类似的, 当向线缆发送信号时, 该接口电路域接收 有关的器件会停止工作。但是, 由于现有技术中 G.Fast接口电路本身设计 的缺陷, 当技术中的接口电路中的部分器件处于工作或者停止工作的不同 状态时, 该器件的阻抗特性会发生变化, 造成用户端口的端接阻抗不能匹 配, 从而导致线对间的相互串扰发生变化, 且线对两端的传输特性发生变 化, 造成线缆的传输稳定性降低。 发明内容 本发明实施例提供一种铜线接口电路, 能够避免线对两端的传输特性 发生变化, 提高了线缆的传输稳定性。
本发明的第一个方面是提供一种铜线接口电路, 包括:
电流输出型放大器的一端与端口阻抗部件连接, 所述电流输出型放大 器的另一端与发送端连接, 所述电流输出型放大器用于将待发送信号进行 放大, 所述电流输出型放大器的输出具有高阻抗特性;
所述端口阻抗部件还与高通滤波器连接, 所述端口阻抗部件的阻抗经 过高通滤波器阻抗变换后用于与线缆和负载的等效阻抗进行阻抗匹配; 所述高通滤波器一端与所述端口阻抗部件连接, 所述高通滤波器另一 端与所述电缆连接, 所述高通滤波器用于对待发送信号或接收信号进行滤 波, 并对端口阻抗部件进行阻抗变换;
回波抵消模块的一端与所述端口阻抗部件连接, 所述回波抵消模块的 另一端与接收端连接, 所述回波抵消模块用于对所述接收信号的采样处 理, 还用于对待发送信号的抵消处理。
结合第一个方面, 在第一种可能的实现方式中, 所述端口阻抗部件包 括: 第一阻抗、 第二阻抗、 第三阻抗;
所述第一阻抗的一端与所述第二阻抗的一端连接, 所述第一阻抗的另 一端与所述第三阻抗的一端连接;
所述第二阻抗的一端还与所述电流输出型放大器连接, 所述第二阻抗 的另一端还与所述高通滤波器的一个输入管脚连接;
所述第三阻抗的一端还与所述电流输出型放大器连接, 所述第三阻抗 的另一端还与所述高通滤波器的另一个输入管脚连接;
其中, 所述第一阻抗的取值远大于所述第二阻抗的取值, 所述第一阻 抗的取值远大于所述第三阻抗的取值, 所述第二阻抗的取值与所述第三阻 抗的取值相等;
所述回波抵消模块包括: 第四阻抗、 第五阻抗、 第六阻抗、 第七阻抗; 所述第四阻抗的一端与所述第五阻抗的一端连接, 所述第四阻抗的另 一端与所述第二阻抗的一端连接, 所述第四阻抗的一端还与接收端连接; 所述第五阻抗的一端还与所述接收端连接, 所述第五阻抗的另一端与 所述第三阻抗的另一端连接; 所述第六阻抗的一端与所述第七阻抗的一端连接, 所述第六阻抗的另 一端与所述第三阻抗的一端连接, 所述第六阻抗的一端还与接收端连接; 所述第七阻抗的一端还与所述接收端连接, 所述第七阻抗的另一端与 所述第二阻抗的另一端连接;
其中, 所述第四阻抗与所述第六阻抗的取值相同, 所述第五阻抗与所 述第七阻抗相同, 所述第四阻抗的取值远大于所述第一阻抗的取值、 所述 第四阻抗的取值远大于所述第二阻抗的取值、所述第四阻抗的取值远大于 所述第三阻抗的取值, 所述第五阻抗的取值远大于所述第一阻抗的取值、 所述第五阻抗的取值远大于所述第二阻抗的取值、所述第五阻抗的取值远 大于所述第三阻抗的取值。
结合第一个方面的第一种可能的实现方式, 在第二种可能的实现方式 中, 所述第一阻抗包括: 第一子阻抗、 第二子阻抗;
所述第一子阻抗与所述第二子阻抗串联, 所述第一子阻抗与所述第二 子阻抗之间连接一参考电源;
其中, 所述第一子阻抗的取值与所述第二子阻抗的取值相同。
结合第一个方面, 在第三种可能的实现方式中, 所述端口阻抗部件包 括: 第八阻抗、 第九阻抗;
所述第八阻抗的一端与所述电流输出型放大器连接, 所述第八阻抗的 一端还与所述高通滤波器的一个输入管脚连接, 所述第八阻抗的另一端与 所述电流输出型放大器连接, 所述第八阻抗的一端还与所述高通滤波器的 另一个输入管脚连接;
所述第九阻抗连接在所述高通滤波器中变压器的次级两个中心抽头 之间;
其中, 所述第八阻抗的取值远大于所述第九阻抗的取值;
所述回波抵消模块包括: 第十阻抗、 第十一阻抗、 第十二阻抗、 第十 三阻抗;
所述第十阻抗的一端与所述第十一阻抗的一端连接, 所述第十阻抗的 另一端与所述高通滤波器的一个输入管脚连接, 所述第十阻抗的一端还与 接收端连接;
所述第十一阻抗的一端还与所述接收端连接, 所述第十一阻抗的另一 端与所述第九阻抗的一端连接;
所述第十二阻抗的一端与所述第十三阻抗的一端连接, 所述第十二阻 抗的另一端与所述高通滤波器的另一个输入管脚连接, 所述第十二阻抗的 一端还与接收端连接;
所述第十三阻抗的一端还与所述接收端连接, 所述第七阻抗的另一端 与所述第九阻抗的另一端连接;
其中, 所述第十阻抗与所述第十二阻抗的取值相同, 所述第十一阻抗 与所述第十三阻抗相同, 所述第十阻抗的取值远大于所述第八阻抗的取 值、 所述第十阻抗的取值远大于所述第九阻抗的取值, 所述第十一阻抗的 取值远大于所述第八阻抗的取值、 所述第十一阻抗的取值远大于所述第九 阻抗的取值。
结合第一个方面的第三种可能的实现方式, 在第四种可能的实现方式 中, 所述第八阻抗包括: 第三子阻抗、 第四子阻抗;
所述第三子阻抗与所述第四子阻抗串联, 所述第三子阻抗与所述第四 子阻抗之间连接一参考电源;
其中, 所述第三子阻抗的取值与所述第四子阻抗的取值相同。
结合第一个方面的第三种可能的实现方式或第四种可能的实现方式, 在第五种可能的实现方式中, 所述第九阻抗包括: 第五子阻抗、 第六子阻 抗;
所述第五子阻抗与所述第六子阻抗串联, 所述第五子阻抗与所述第六 子阻抗之间连接一参考电源;
其中, 所述第五子阻抗的取值与所述第六子阻抗的取值相同。
结合第一个方面, 在第六种可能的实现方式中, 所述端口阻抗部件包 括: 第十四阻抗、 第十五阻抗、 第十六阻抗;
所述第十四阻抗的一端与所述高通滤波器的一个输入管脚连接, 所述 第十四阻抗的一端还与所述第十五阻抗的一端连接, 所述第十四阻抗的另 一端与所述高通滤波器的另一个输入管脚连接, 所述第十四阻抗的另一端 还与所述第十六阻抗的一端连接;
所述第十五阻抗的另一端与所述电流输出型放大器连接;
所述第十六阻抗的另一端与所述电流输出型放大器连接; 其中, 所述第十四阻抗的取值远大于所述第十五阻抗的取值, 所述第 十四阻抗的取值远大于所述第十六阻抗的取值, 所述第十五阻抗的取值与 第十六阻抗的取值相等;
所述回波抵消模块包括: 第十七阻抗、 第十八阻抗、 第十九阻抗、 第 二十阻抗;
所述第十七阻抗的一端与所述第十八阻抗的一端连接, 所述第十七阻 抗的另一端与所述第十五阻抗的另一端连接, 所述第十七阻抗的一端还与 接收端连接;
所述第十八阻抗的另一端与所述第十六阻抗的一端连接, 所述第十八 阻抗的一端还与所述接收端连接;
所述第十九阻抗的一端与所述第二十阻抗的一端连接, 所述第十九阻 抗的另一端与所述第十六阻抗的另一端连接, 所述第十九阻抗的一端还与 所述接收端连接;
所述第二十阻抗的另一端与所述第第十五阻抗的一端连接, 所述第二 十阻抗的一段还与所述接收端连接;
其中, 所述第十七阻抗与所述第十九阻抗的取值相同, 所述第十八阻 抗与所述第二十阻抗相同, 所述第十七阻抗的取值远大于所述第十四阻抗 的取值、 所述第十七阻抗的取值远大于所述第十五阻抗的取值、 所述第十 七阻抗的取值远大于所述第十六阻抗的取值, 所述第十八阻抗的取值远大 于所述第十四阻抗的取值、所述第十八阻抗的取值远大于所述第十五阻抗 的取值、 所述第十八阻抗的取值远大于所述第十六阻抗的取值。
结合第一个方面的第六种可能的实现方式, 在第七种可能的实现方式 中, 所述第十四阻抗包括: 第七子阻抗、 第八子阻抗;
所述第七子阻抗与所述第八子阻抗串联, 所述第七子阻抗与所述第八 子阻抗之间连接一参考电源;
其中, 所述第七子阻抗的取值与所述第八子阻抗的取值相同。
结合第一个方面或第一个方面的上述各个可能的实现方式, 在第八种 可能的实现方式中, 所述高通滤波器, 包括: 变压器、 隔直电容;
所述变压器具有两个所述输入管脚、 两个输出管脚, 其中, 一个输出 管脚与所述线缆和负载的等效阻抗的一端连接, 另一个输出管脚与所述线 缆和负载的等效阻抗的另一端连接;
所述隔直电容连接在所述变压器的初级两个抽头之间; 或者, 所述隔直电容的一端与所述变压器的一个输出管脚连接, 所述隔直电 容的另一端与所述线缆和负载的等效阻抗的一端连接; 或者,
所述隔直电容包括: 隔直第一子电容, 隔直第二子电容;
所述隔直第一子电容的一端与所述变压器的一个输出管脚连接, 所述 隔直第一子电容的另一端与所述线缆和负载的等效阻抗的一端连接;
所述隔直第二子电容的一端与所述变压器的另一个输出管脚连接, 所 述隔直第二子电容的另一端与所述线缆和负载的等效阻抗的另一端连接。
结合第一个方面的第八种可能的实现方式, 在第九种可能的实现方式 中, 所述变压器的次级两个抽头连接; 或者,
所述变压器的次级两个抽头连接, 与一参考电源连接; 或者, 所述高通滤波器还包括: 电容;
所述电容连接在所述变压器的次级两个抽头之间。
结合第一个方面的第三种可能的实现方式或第八种可能的实现方式, 在第十种可能的实现方式中, 所述第九阻抗连接所述变压器的次级两个中 心抽头之间。
本实施例提供的铜线接口电路, 通过电流输出型放大器的一端与端口 阻抗部件连接, 电流输出型放大器的另一端与发送端连接, 电流输出型放 大器用于将待发送信号进行放大, 电流输出型放大器的输出具有高阻抗特 性, 端口阻抗部件还与高通滤波器连接, 端口阻抗部件经过高通滤波器阻 抗变换后用于与线缆和负载的等效阻抗进行阻抗匹配。 高通滤波器一端与 端口阻抗部件连接, 高通滤波器另一端与电缆连接, 高通滤波器于对待发 送信号或接收信号进行滤波, 并对端口阻抗部件进行阻抗变换。 回波抵消 模块的一端与端口阻抗部件连接, 回波抵消模块的另一端与接收端连接, 回波抵消模块用于对接收信号的采样处理和对待发送信号的抵消处理。 从 而当为了降低功耗, 而在发送时关闭与接收有关的部件或者在接收时关闭 与发送有关的部件时, 由于电流输出型放大器的输出阻抗为高阻, 端口阻抗 主要由端口阻抗部件和高通滤波器组成。 因为电流输出型放大器的使能时与电 流输出型放大器关闭后的输出阻抗相对于端口阻抗部件的阻抗要高很多, 因此 电流输出型放大器的状态变化对端口阻抗基本无影响。 从而保证了用户端口 的端接阻抗与线缆特征阻抗和信源内阻抗之间的特定匹配关系不变。进一 步避免了线对间的相互串扰发生变化, 且避免了线对两端的传输特性发生 变化, 提高了线缆的传输稳定性。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图做一简单地介绍, 显而易见 地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。 图 1为本发明提供的实施例一的铜线接口电路的结构示意图; 图 2为本发明提供的实施例二的一种铜线接口电路的结构示意图; 图 3为本发明提供的实施例二的另一种铜线接口电路的结构示意图; 图 4为本发明提供的实施例三的一种铜线接口电路的结构示意图; 图 5为本发明提供的实施例三的另一种铜线接口电路的结构示意图; 图 6为本发明提供的实施例四的一种铜线接口电路的结构示意图; 图 7为本发明提供的实施例四的另一种铜线接口电路的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然,所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普技术人员在没有做出创造性劳动前提下 所获得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明提供的实施例一的铜线接口电路的结构示意图, 如图 1 所示, 该铜线接口电路包括: 电流输出型放大器 10、 端口阻抗部件 11、 高通滤波器 12、 回波抵消模块 13。
电流输出型放大器 10的一端与端口阻抗部件连接, 电流输出型放大 器 10的另一端与发送端连接, 电流输出型放大器 10用于将待发送信号进 行放大, 电流输出型放大器 10的输出具有高阻抗特性。
端口阻抗部件 11还与高通滤波器 12连接, 端口阻抗部件的阻抗经过 高通滤波器 12阻抗变换后用于与线缆和负载的等效阻抗进行阻抗匹配。
需要说明的是, 由于高通滤波器 12包括一变压器, 并且该变压器的 初级与次级比例可变, 因此需要根据该初级与次级的比例关系来设定端口 阻抗部件的取值, 在铜线接口电路进行接收及发送信号的过程中, 该端口 阻抗部件的取值经过高通滤波器 12的阻抗变换后得到的一阻抗值能够与 线缆和负载的等效阻抗进行阻抗匹配。例如假设双绞线线缆的特征阻抗为 Z0, 则负载阻抗也按照 Z0设计。假设高通滤波器 12里的变压器次级和初 级匝数比为 l :n, 则端口阻抗部件 11应该按照 Z0/(n*n)设计。 端口阻抗部 件 11的阻抗 Z0/(n*n)经过变压器变换后的阻抗即为 Z0。
其中, 线缆和负载的等效阻抗为一定长度的线缆与负载的综合等效阻 抗。 接上例, 线缆的特征阻抗为 Z0, 负载阻抗为 Z0, 则线缆和负载的等 效阻抗也为 Z0。
高通滤波器 12—端与端口阻抗部件 11连接, 高通滤波器 12另一端 与电缆连接, 高通滤波器 12用于对待发送信号或接收信号进行滤波, 并 对端口阻抗部件 11进行阻抗变换。
回波抵消模块 13的一端与端口阻抗部件连接, 回波抵消模块 13的另 一端与接收端连接, 回波抵消模块 13用于对接收信号的采样处理, 还用 于对待发送信号的抵消处理。
本实施例提供的铜线接口电路, 通过电流输出型放大器的一端与端口 阻抗部件连接, 电流输出型放大器的另一端与发送端连接, 电流输出型放 大器用于将待发送信号进行放大, 电流输出型放大器的输出具有高阻抗特 性, 端口阻抗部件还与高通滤波器连接, 端口阻抗部件经过高通滤波器阻 抗变换后用于与线缆和负载的等效阻抗进行阻抗匹配。 高通滤波器一端与 端口阻抗部件连接, 高通滤波器另一端与电缆连接, 高通滤波器于对待发 送信号或接收信号进行滤波, 并对端口阻抗部件进行阻抗变换。 回波抵消 模块的一端与端口阻抗部件连接, 回波抵消模块的另一端与接收端连接, 回波抵消模块用于对接收信号的采样处理和对待发送信号的抵消处理。 从 而当为了降低功耗, 而在发送时关闭与接收有关的部件或者在接收时关闭 与发送有关的部件时, 由于电流输出型放大器的输出阻抗为高阻, 端口阻抗 主要由端口阻抗部件和高通滤波器组成。 因为电流输出型放大器的使能时与电 流输出型放大器关闭后的输出阻抗相对于端口阻抗部件的阻抗要高很多, 因此 电流输出型放大器的状态变化对端口阻抗基本无影响。 从而保证了用户端口 的端接阻抗与线缆特征阻抗和信源内阻抗之间的特定匹配关系不变。进一 步避免了线对间的相互串扰发生变化, 且避免了线对两端的传输特性发生 变化, 提高了线缆的传输稳定性。
对于本发明提供的铜线接口电路, 其可以有多个可能的实现方式来实 现, 下面通过具体的实施例对各个可能的实现方式进行说明。
实施例二
图 2为本发明提供的实施例二的一种铜线接口电路的结构示意图, 如 图 2所示, 端口阻抗部件 11包括: 第一阻抗 111、 第二阻抗 112、 第三阻 抗 113。
所述第一阻抗 111的一端与所述第二阻抗 112的一端连接, 所述第一 阻抗 111的另一端与所述第三阻抗 113的一端连接。
所述第二阻抗 112的一端还与所述电流输出型放大器 10连接, 所述 第二阻抗 112的另一端还与所述高通滤波器 12的一个输入管脚连接。
所述第三阻抗 113的一端还与所述电流输出型放大器 10连接, 所述 第三阻抗 113的另一端还与所述高通滤波器 12的另一个输入管脚连接。
其中, 所述第一阻抗 111的取值远大于所述第二阻抗 112的取值, 和 所述第一阻抗 111的取值远大于所述第三阻抗 113的取值, 所述第二阻抗 112的取值与所述第三阻抗 113的取值相等。
需要说明的是, 在本实施例以及下述实施例中 "远大于" 的概念指: 一个取值至少大于另一个取值 3倍, 例如上文中第一阻抗 111的取值至少 大于第二阻抗 112的取值 3倍。 因此, 只要保证一个取值至少大于另一个 取值 3倍, 即可满足本发明个各实施例中对于 "远大于" 的要求, 其具体 倍数由线路设计人员根据经验设定, 此处不予限制。
所述回波抵消模块 13包括: 第四阻抗 131、 第五阻抗 132、 第六阻抗 133、 第七阻抗 134。
所述第四阻抗 131的一端与所述第五阻抗 132的一端连接, 所述第四 阻抗 131的另一端与所述第二阻抗 112的一端连接, 所述第四阻抗 131的 一端还与接收端连接。
所述第五阻抗 132的一端还与所述接收端连接, 所述第五阻抗 132的 另一端与所述第三阻抗 113的另一端连接。
所述第六阻抗 133的一端与所述第七阻抗 134的一端连接, 所述第六 阻抗 133的另一端与所述第三阻抗 113的一端连接, 所述第六阻抗 133的 一端还与接收端连接。
所述第七阻抗 134的一端还与所述接收端连接, 所述第七阻抗 134的 另一端与所述第二阻抗 112的另一端连接。
其中, 所述第四阻抗 131与所述第六阻抗 133的取值相同, 所述第五 阻抗 132与所述第七阻抗 134相同, 所述第四阻抗 131的取值远大于所述 第一阻抗 111的取值、 所述第四阻抗 131的取值远大于所述第二阻抗 112 的取值、 所述第四阻抗 131的取值远大于所述第三阻抗 113的取值, 所述 第五阻抗 132的取值远大于所述第一阻抗 111的取值、 所述第五阻抗 132 的取值远大于所述第二阻抗 112的取值、 所述第五阻抗 132的取值远大于 所述第三阻抗 113的取值。
高通滤波器 12, 包括: 变压器 121、 隔直电容 122。
变压器 121具有两个输入管脚、 两个输出管脚, 其中, 一个输出管脚 与线缆和负载的等效阻抗的一端连接, 另一个输出管脚与线缆和负载的等 效阻抗的另一端连接。
隔直电容 122连接在变压器 121的初级两个抽头之间。 或者, 隔直电容 122的一端与变压器 121的一个输出管脚连接,隔直电容 122 的另一端与线缆和负载的等效阻抗的一端连接。 或者,
进一步, 可选的, 隔直电容 122包括: 隔直第一子电容, 隔直第二子 电容。
隔直第一子电容的一端与变压器 121的一个输出管脚连接, 所述隔直 第一子电容的另一端与所述线缆和负载的等效阻抗 14的一端连接。
隔直第二子电容的一端与变压器 121的另一个输出管脚连接, 隔直第 二子电容的另一端与线缆和负载的等效阻抗 14的另一端连接。
进一步的,一种可能的实现方式为:变压器 121的次级两个抽头连接。 或者,
另一种可能的实现方式为: 变压器 121的次级两个抽头连接, 与一参 考电源 123连接。 或者,
在一种可能的实现方式为: 高通滤波器 12还包括: 电容。
电容连接在所述变压器 121的次级两个抽头之间。
其中, 使用电流输出型放大器 10, 该电流输出型放大器 10的输出为高阻 抗特性, 电流输出型放大器 10正常工作时, 电流输出型放大器 10的输出相对 于端口阻抗部件为高阻, 电流输出型放大器 10关闭时, 电流输出型放大器 10 的输出也是高阻。 端口阻抗主要由端口阻抗部件和由变压器组成的高通滤波 器决定, 电流输出型放大器 10的打开与关闭对端口阻抗并不影响; 由电阻网 络第一阻抗 111、 第二阻抗 112, 第三阻抗 113为主要构成的端口阻抗部件 11 经由变压器组成的高通滤波器模块变换后,与线缆和负载的等效阻抗 14匹配; 第二阻抗 112和第三阻抗 113为接收方向的采样电阻; 一般为降低功耗, 第一 阻抗 111的取值会远大于第二阻抗 112和第三阻抗 113。
进一步的, 在图 2的基础上, 图 3为本发明提供的实施例二的另一种 铜线接口电路的结构示意图, 需要说明的是, 除了在第一阻抗 111上图 3 所示的铜线接口电路有所改进, 其他的部件与图 2中所示部件完全一致此 处不再赘述。 如图 3所示, 第一阻抗 111包括: 第一子阻抗 l l la、 第二子 阻抗 l l lb o
第一子阻抗 111a与第二子阻抗 111b串联, 所述第一子阻抗 111a与 所述第二子阻抗 111b之间连接一参考电源 114。
其中, 所述第一子阻抗 111a的取值与所述第二子阻抗 111b的取值相 同。
实施例三
图 4为本发明提供的实施例三的一种铜线接口电路的结构示意图, 如 图 4所示, 端口阻抗部件 11包括: 第八阻抗 115、 第九阻抗 116。
第八阻抗 115的一端与电流输出型放大器 10连接, 第八阻抗 115的 一端还与高通滤波器 12的一个输入管脚连接, 第八阻抗 115的另一端与 电流输出型放大器 10连接, 第八阻抗 115的一端还与高通滤波器 12的另 一个输入管脚连接。 第九阻抗 116连接在高通滤波器 12中变压器 121的次级两个中心抽 头之间。
具体的, 第九阻抗 116连接变压器 121的次级两个抽头之间。
其中, 所述第八阻抗 115的取值远大于所述第九阻抗 116的取值。 回波抵消模块 13包括: 第十阻抗 135、 第十一阻抗 136、 第十二阻抗
137、 第十三阻抗 138。
第十阻抗 135的一端与第十一阻抗 136的一端连接, 第十阻抗 135的 另一端与高通滤波器 12的一个输入管脚连接, 第十阻抗 135的一端还与 接收端连接。
第十一阻抗 136的一端还与接收端连接, 所述第十一阻抗 136的另一 端与所述第九阻抗 116的一端连接。
第十二阻抗 137的一端与第十三阻抗 138的一端连接,第十二阻抗 137 的另一端与高通滤波器 12的另一个输入管脚连接, 第十二阻抗 137的一 端还与接收端连接。
第十三阻抗 138的一端还与接收端连接, 第七阻抗 134的另一端与第 九阻抗 116的另一端连接。
其中, 第十阻抗 135与第十二阻抗 137的取值相同, 第十一阻抗 136 与第十三阻抗 138相同,所述第十阻抗 135的取值远大于所述第八阻抗 115 的取值、 所述第十阻抗 135的取值远大于所述第九阻抗 116的取值, 所述 第十一阻抗 136的取值远大于所述第八阻抗 115的取值、所述第十一阻抗 136的取值远大于所述第九阻抗 116的取值。
高通滤波器 12, 包括: 变压器 121、 隔直电容 122。
变压器 121具有两个输入管脚、 两个输出管脚, 其中, 一个输出管脚 与线缆和负载的等效阻抗的一端连接, 另一个输出管脚与线缆和负载的等 效阻抗的另一端连接。
隔直电容 122连接在变压器 121的初级两个抽头之间。 或者, 隔直电容 122的一端与变压器 121的一个输出管脚连接,隔直电容 122 的另一端与线缆和负载的等效阻抗 14的一端连接。 或者,
进一步, 可选的, 隔直电容 122包括: 隔直第一子电容, 隔直第二子 电容。 隔直第一子电容的一端与变压器 121的一个输出管脚连接, 所述隔直 第一子电容的另一端与所述线缆和负载的等效阻抗的一端连接。
隔直第二子电容的一端与变压器 121的另一个输出管脚连接, 隔直第 二子电容的另一端与线缆和负载的等效阻抗的另一端连接。
进一步的,一种可能的实现方式为:变压器 121的次级两个抽头连接。 或者,
另一种可能的实现方式为: 变压器 121的次级两个抽头连接, 与一参 考电源连接。 或者,
在一种可能的实现方式为: 高通滤波器 12还包括: 电容。
电容连接在所述变压器 121的次级两个抽头之间。
其中, 使用电流输出型放大器 10, 该电流输出型放大器 10的输出为高阻 抗特性; 由电阻网络第八阻抗 115, 第九阻抗 116主要构成的端口阻抗部件 11 经变压器 121阻抗变换后, 与线缆和负载的等效阻抗 14匹配; 第九阻抗 116为 接收方向的采样电阻; 一般为降低功耗, 第八阻抗 115的取值会远大于第九阻 抗 116。
回波抵消模块 13包含阻抗网络第十阻抗 135, 第十一阻抗 136, 第十二阻 抗 137和第十三阻抗 138, 其中第十阻抗 135、 第十一阻抗 136、 第十二阻抗 137 和第十三阻抗 138分别采样第九阻抗 116电阻两侧的电压和变压器 121次级电 压, 完成对接收信号的采样和对发送方向信号的抵消。一般第十阻抗 135和第 十一阻抗 136的阻抗取值远大于第八阻抗 115和第九阻抗 116。
进一步的, 在图 4的基础上, 图 5为本发明提供的实施例三的另一种 铜线接口电路的结构示意图, 需要说明的是, 除了第八阻抗 115以及第九 阻抗 116在图 5所示的铜线接口电路有所改进, 其他的部件与图 4中所示 部件完全一致此处不再赘述。 如图 5所示, 第八阻抗 115包括: 第三子阻 抗 115a、 第四子阻抗 115b。
第三子阻抗 115a与第四子阻抗 115b串联, 第三子阻抗 115a与第四 子阻抗 115b之间连接一参考电源 114。
其中, 第三子阻抗 115a的取值与第四子阻抗 115b的取值相同。
或者, 另一种可行的实现方式为第八阻抗 115为一阻抗, 而第九阻抗 116包括: 第五子阻抗、 第六子阻抗。 第五子阻抗与第六子阻抗串联, 第五子阻抗与第六子阻抗之间连接一 参考电源。
其中, 第五子阻抗的取值与第六子阻抗的取值相同。
由于, 将第九阻抗 116拆分为第五子阻抗、 第六子阻抗的形式与对第 八阻抗 115进行拆分类似, 此处不再图中示出。
实施例四
图 6为本发明提供的实施例四的一种铜线接口电路的结构示意图, 如 图 4所示, 端口阻抗部件 11包括: 第十四阻抗 117、 第十五阻抗 118、 第 十六阻抗 119。
第十四阻抗 117的一端与高通滤波器 12的一个输入管脚连接, 第十 四阻抗 117的一端还与第十五阻抗 118的一端连接, 第十四阻抗 117的另 一端与高通滤波器 12的另一个输入管脚连接, 第十四阻抗 117的另一端 还与第十六阻抗 119的一端连接。
第十五阻抗 118的另一端与电流输出型放大器 10连接。
第十六阻抗 119的另一端与电流输出型放大器 10连接。
其中,所述第十四阻抗 117的取值远大于所述第十五阻抗 118的取值, 和所述第十四阻抗 117的取值远大于所述第十六阻抗 119的取值, 第十五 阻抗 118的取值与第十六阻抗 119的取值相等。
回波抵消模块 13包括: 第十七阻抗 139、 第十八阻抗 1310、 第十九 阻抗 1311、 第二十阻抗 1312。
第十七阻抗 139的一端与第十八阻抗 1310的一端连接, 第十七阻抗 139的另一端与第十五阻抗 118的另一端连接, 第十七阻抗 139的一端还 与接收端连接。
第十八阻抗 1310的另一端与第十六阻抗 119的一端连接, 第十八阻 抗 1310的一端还与接收端连接。
第十九阻抗 1311的一端与第二十阻抗 1312的一端连接, 第十九阻抗 1311的另一端与第十六阻抗 119的另一端连接, 第十九阻抗 1311的一端 还与接收端连接。
第二十阻抗 1312的另一端与第十五阻抗 118的一端连接, 第二十阻 抗 1312的一段还与接收端连接。 其中, 第十七阻抗 139与第十九阻抗 1311的取值相同, 第十八阻抗 1310与第二十阻抗 1312相同, 所述第十七阻抗 139的取值远大于所述第 十四阻抗 117的取值、所述第十七阻抗 139的取值远大于所述第十五阻抗 118的取值、 所述第十七阻抗 139的取值远大于所述第十六阻抗 119的取 值, 所述第十八阻抗 1310的取值远大于所述第十四阻抗 117的取值、 所 述第十八阻抗 1310的取值远大于所述第十五阻抗 118的取值、 所述第十 八阻抗 1310的取值远大于所述第十六阻抗 119的取值。
高通滤波器 12, 包括: 变压器 121、 隔直电容 122。
变压器 121具有两个输入管脚、 两个输出管脚, 其中, 一个输出管脚 与线缆和负载的等效阻抗 14的一端连接, 另一个输出管脚与线缆和负载 的等效阻抗 14的另一端连接。
隔直电容 122连接在变压器 121的初级两个抽头之间。 或者, 隔直电容 122的一端与变压器 121的一个输出管脚连接,隔直电容 122 的另一端与线缆和负载的等效阻抗 14的一端连接。 或者,
进一步, 可选的, 隔直电容 122包括: 隔直第一子电容, 隔直第二子 电容。
隔直第一子电容的一端与变压器的一个输出管脚连接, 所述隔直第一 子电容的另一端与所述线缆和负载的等效阻抗的一端连接。
隔直第二子电容的一端与变压器的另一个输出管脚连接, 隔直第二子 电容的另一端与线缆和负载的等效阻抗的另一端连接。
进一步的,一种可能的实现方式为:变压器 121的次级两个抽头连接。 或者,
另一种可能的实现方式为: 变压器 121的次级两个抽头连接, 与一参 考电源连接。 或者,
在一种可能的实现方式为: 高通滤波器 12还包括: 电容。
电容连接在所述变压器 121的次级两个抽头之间。
其中, 使用电流输出型放大器 10, 该放大器的输出为高阻抗特性, 电流 输出型放大器 10正常工作时, 电流输出型放大器 10的输出相对于端口阻抗部 件为高阻, 电流输出型放大器 10关闭时, 电流输出型放大器 10的输出也是高 阻。 端口阻抗主要由端口阻抗部件和由变压器组成的高通滤波器决定, 电流 输出型放大器 10的打开与关闭对端口阻抗并不影响; 由电阻网络第十四阻抗 117主要构成的端口阻抗部件经变压器 121阻抗变换后, 与线缆和负载的等效 阻抗 14匹配; 第十五阻抗 118和第十六阻抗 119为接收方向的采样电阻; 一般 为降低功耗, 第十四阻抗 117的取值会远大于第十五阻抗 118和第十六阻抗 119。
回波抵消模块 13包含阻抗网络第十七阻抗 139, 第十八阻抗 1310, 第十九 阻抗 1311和第二十阻抗 1312, 其中第十七阻抗 139、 第十八阻抗 1310、 第十九 阻抗 1311和第二十阻抗 1312分别采样第十五阻抗 118和第十六阻抗 119电阻两 侧的电压, 完成对接收信号的采样和对发送方向信号的抵消。 一般第十七阻 抗 139和第十八阻抗 1310的阻抗取值远大于第十四阻抗 117,第十五阻抗 118,第 十六阻抗 119。
进一步的, 在图 6的基础上, 图 7为本发明提供的实施例四的另一种 铜线接口电路的结构示意图, 需要说明的是, 除了第十四阻抗 117在图 7 所示的铜线接口电路有所改进, 其他的部件与图 6中所示部件完全一致此 处不再赘述。 如图 7所示, 第十四阻抗 117包括: 第七子阻抗 1 17a、 第八 子阻抗 117b。
第七子阻抗 117a与第八子阻抗 117b串联, 第七子阻抗 1 17a与第八 子阻抗 1 17b之间连接一参考电源。
其中, 第七子阻抗 1 17a的取值与第八子阻抗 117b的取值相同。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤。 而前述 的存储介质包括: R0M、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制。 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换。 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种铜线接口电路, 其特征在于, 包括:
电流输出型放大器的一端与端口阻抗部件连接, 所述电流输出型放大 器的另一端与发送端连接, 所述电流输出型放大器用于将待发送信号进行 放大, 所述电流输出型放大器的输出具有高阻抗特性;
所述端口阻抗部件还与高通滤波器连接, 所述端口阻抗部件的阻抗经 过高通滤波器阻抗变换后用于与线缆和负载的等效阻抗进行阻抗匹配; 所述高通滤波器一端与所述端口阻抗部件连接, 所述高通滤波器另一 端与所述电缆连接, 所述高通滤波器用于对待发送信号或接收信号进行滤 波, 并对端口阻抗部件进行阻抗变换;
回波抵消模块的一端与所述端口阻抗部件连接, 所述回波抵消模块的 另一端与接收端连接, 所述回波抵消模块用于对所述接收信号的采样处 理, 还用于对待发送信号的抵消处理。
2、 根据权利要求 1所述的铜线接口电路, 其特征在于, 所述端口阻 抗部件包括: 第一阻抗、 第二阻抗、 第三阻抗;
所述第一阻抗的一端与所述第二阻抗的一端连接, 所述第一阻抗的另 一端与所述第三阻抗的一端连接;
所述第二阻抗的一端还与所述电流输出型放大器连接, 所述第二阻抗 的另一端还与所述高通滤波器的一个输入管脚连接;
所述第三阻抗的一端还与所述电流输出型放大器连接, 所述第三阻抗 的另一端还与所述高通滤波器的另一个输入管脚连接;
其中, 所述第一阻抗的取值远大于所述第二阻抗的取值, 所述第一阻 抗的取值远大于所述第三阻抗的取值, 所述第二阻抗的取值与所述第三阻 抗的取值相等;
所述回波抵消模块包括: 第四阻抗、 第五阻抗、 第六阻抗、 第七阻抗; 所述第四阻抗的一端与所述第五阻抗的一端连接, 所述第四阻抗的另 一端与所述第二阻抗的一端连接, 所述第四阻抗的一端还与接收端连接; 所述第五阻抗的一端还与所述接收端连接, 所述第五阻抗的另一端与 所述第三阻抗的另一端连接;
所述第六阻抗的一端与所述第七阻抗的一端连接, 所述第六阻抗的另 一端与所述第三阻抗的一端连接, 所述第六阻抗的一端还与接收端连接; 所述第七阻抗的一端还与所述接收端连接, 所述第七阻抗的另一端与 所述第二阻抗的另一端连接;
其中, 所述第四阻抗与所述第六阻抗的取值相同, 所述第五阻抗与所 述第七阻抗相同, 所述第四阻抗的取值远大于所述第一阻抗的取值、 所述 第四阻抗的取值远大于所述第二阻抗的取值、所述第四阻抗的取值远大于 所述第三阻抗的取值, 所述第五阻抗的取值远大于所述第一阻抗的取值、 所述第五阻抗的取值远大于所述第二阻抗的取值、所述第五阻抗的取值远 大于所述第三阻抗的取值。
3、 根据权利要求 2所述的铜线接口电路, 其特征在于, 所述第一阻 抗包括: 第一子阻抗、 第二子阻抗;
所述第一子阻抗与所述第二子阻抗串联, 所述第一子阻抗与所述第二 子阻抗之间连接一参考电源;
其中, 所述第一子阻抗的取值与所述第二子阻抗的取值相同。
4、 根据权利要求 1所述的铜线接口电路, 其特征在于, 所述端口阻 抗部件包括: 第八阻抗、 第九阻抗;
所述第八阻抗的一端与所述电流输出型放大器连接, 所述第八阻抗的 一端还与所述高通滤波器的一个输入管脚连接, 所述第八阻抗的另一端与 所述电流输出型放大器连接, 所述第八阻抗的一端还与所述高通滤波器的 另一个输入管脚连接;
所述第九阻抗连接在所述高通滤波器中变压器的次级两个中心抽头 之间;
其中, 所述第八阻抗的取值远大于所述第九阻抗的取值;
所述回波抵消模块包括: 第十阻抗、 第十一阻抗、 第十二阻抗、 第十 三阻抗;
所述第十阻抗的一端与所述第十一阻抗的一端连接, 所述第十阻抗的 另一端与所述高通滤波器的一个输入管脚连接, 所述第十阻抗的一端还与 接收端连接;
所述第十一阻抗的一端还与所述接收端连接, 所述第十一阻抗的另一 端与所述第九阻抗的一端连接; 所述第十二阻抗的一端与所述第十三阻抗的一端连接, 所述第十二阻 抗的另一端与所述高通滤波器的另一个输入管脚连接, 所述第十二阻抗的 一端还与接收端连接;
所述第十三阻抗的一端还与所述接收端连接, 所述第七阻抗的另一端 与所述第九阻抗的另一端连接;
其中, 所述第十阻抗与所述第十二阻抗的取值相同, 所述第十一阻抗 与所述第十三阻抗相同, 所述第十阻抗的取值远大于所述第八阻抗的取 值、 所述第十阻抗的取值远大于所述第九阻抗的取值, 所述第十一阻抗的 取值远大于所述第八阻抗的取值、 所述第十一阻抗的取值远大于所述第九 阻抗的取值。
5、 根据权利要求 4所述的铜线接口电路, 其特征在于, 所述第八阻 抗包括: 第三子阻抗、 第四子阻抗;
所述第三子阻抗与所述第四子阻抗串联, 所述第三子阻抗与所述第四 子阻抗之间连接一参考电源;
其中, 所述第三子阻抗的取值与所述第四子阻抗的取值相同。
6、 根据权利要求 4或 5所述的铜线接口电路, 其特征在于, 所述第 九阻抗包括: 第五子阻抗、 第六子阻抗;
所述第五子阻抗与所述第六子阻抗串联, 所述第五子阻抗与所述第六 子阻抗之间连接一参考电源;
其中, 所述第五子阻抗的取值与所述第六子阻抗的取值相同。
7、 根据权利要求 1所述的铜线接口电路, 其特征在于, 所述端口阻 抗部件包括: 第十四阻抗、 第十五阻抗、 第十六阻抗;
所述第十四阻抗的一端与所述高通滤波器的一个输入管脚连接, 所述 第十四阻抗的一端还与所述第十五阻抗的一端连接, 所述第十四阻抗的另 一端与所述高通滤波器的另一个输入管脚连接, 所述第十四阻抗的另一端 还与所述第十六阻抗的一端连接;
所述第十五阻抗的另一端与所述电流输出型放大器连接;
所述第十六阻抗的另一端与所述电流输出型放大器连接;
其中, 所述第十四阻抗的取值远大于所述第十五阻抗的取值, 所述第 十四阻抗的取值远大于所述第十六阻抗的取值, 所述第十五阻抗的取值与 第十六阻抗的取值相等;
所述回波抵消模块包括: 第十七阻抗、 第十八阻抗、 第十九阻抗、 第 二十阻抗;
所述第十七阻抗的一端与所述第十八阻抗的一端连接, 所述第十七阻 抗的另一端与所述第十五阻抗的另一端连接, 所述第十七阻抗的一端还与 接收端连接;
所述第十八阻抗的另一端与所述第十六阻抗的一端连接, 所述第十八 阻抗的一端还与所述接收端连接;
所述第十九阻抗的一端与所述第二十阻抗的一端连接, 所述第十九阻 抗的另一端与所述第十六阻抗的另一端连接, 所述第十九阻抗的一端还与 所述接收端连接;
所述第二十阻抗的另一端与所述第第十五阻抗的一端连接, 所述第二 十阻抗的一段还与所述接收端连接;
其中, 所述第十七阻抗与所述第十九阻抗的取值相同, 所述第十八阻 抗与所述第二十阻抗相同, 所述第十七阻抗的取值远大于所述第十四阻抗 的取值、 所述第十七阻抗的取值远大于所述第十五阻抗的取值、 所述第十 七阻抗的取值远大于所述第十六阻抗的取值, 所述第十八阻抗的取值远大 于所述第十四阻抗的取值、所述第十八阻抗的取值远大于所述第十五阻抗 的取值、 所述第十八阻抗的取值远大于所述第十六阻抗的取值。
8、 根据权利要求 7所述的铜线接口电路, 其特征在于, 所述第十四 阻抗包括: 第七子阻抗、 第八子阻抗;
所述第七子阻抗与所述第八子阻抗串联, 所述第七子阻抗与所述第八 子阻抗之间连接一参考电源;
其中, 所述第七子阻抗的取值与所述第八子阻抗的取值相同。
9、 根据权利要求 1-8任意一项所述的铜线接口电路, 其特征在于, 所 述高通滤波器, 包括: 变压器、 隔直电容;
所述变压器具有两个所述输入管脚、 两个输出管脚, 其中, 一个输出 管脚与所述线缆和负载的等效阻抗的一端连接, 另一个输出管脚与所述线 缆和负载的等效阻抗的另一端连接;
所述隔直电容连接在所述变压器的初级两个抽头之间; 或者, 所述隔直电容的一端与所述变压器的一个输出管脚连接, 所述隔直电 容的另一端与所述线缆和负载的等效阻抗的一端连接; 或者,
所述隔直电容包括: 隔直第一子电容, 隔直第二子电容;
所述隔直第一子电容的一端与所述变压器的一个输出管脚连接, 所述 隔直第一子电容的另一端与所述线缆和负载的等效阻抗的一端连接;
所述隔直第二子电容的一端与所述变压器的另一个输出管脚连接, 所 述隔直第二子电容的另一端与所述线缆和负载的等效阻抗的另一端连接。
10、 根据权利要求 9所述的铜线接口电路, 其特征在于, 所述变压器 的次级两个抽头连接; 或者,
所述变压器的次级两个抽头连接, 与一参考电源连接; 或者, 所述高通滤波器还包括: 电容;
所述电容连接在所述变压器的次级两个抽头之间。
11、 根据权利要求 4或 9所述的铜线接口电路, 其特征在于, 所述第 九阻抗连接所述变压器的次级两个中心抽头之间。
PCT/CN2013/085953 2013-10-25 2013-10-25 铜线接口电路 WO2015058403A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016525884A JP6360169B2 (ja) 2013-10-25 2013-10-25 銅線インターフェース回路
PCT/CN2013/085953 WO2015058403A1 (zh) 2013-10-25 2013-10-25 铜线接口电路
KR1020167012928A KR101897526B1 (ko) 2013-10-25 2013-10-25 구리 배선 인터페이스 회로
EP13896081.0A EP3048741B1 (en) 2013-10-25 2013-10-25 Copper wire interface circuit
CN201380002108.8A CN104813592B (zh) 2013-10-25 2013-10-25 铜线接口电路
US15/136,476 US9742463B2 (en) 2013-10-25 2016-04-22 Copper wire interface circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/085953 WO2015058403A1 (zh) 2013-10-25 2013-10-25 铜线接口电路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/136,476 Continuation US9742463B2 (en) 2013-10-25 2016-04-22 Copper wire interface circuit

Publications (1)

Publication Number Publication Date
WO2015058403A1 true WO2015058403A1 (zh) 2015-04-30

Family

ID=52992159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085953 WO2015058403A1 (zh) 2013-10-25 2013-10-25 铜线接口电路

Country Status (6)

Country Link
US (1) US9742463B2 (zh)
EP (1) EP3048741B1 (zh)
JP (1) JP6360169B2 (zh)
KR (1) KR101897526B1 (zh)
CN (1) CN104813592B (zh)
WO (1) WO2015058403A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015196188A1 (en) * 2014-06-20 2015-12-23 Ikanos Communications, Inc. Dual band analog front end for high speed data transmissions in dmt systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050970A1 (en) * 1998-03-31 1999-10-07 Telefonaktiebolaget Lm Ericsson (Publ) A method and an arrangement in an analog line interface circuit
CN1434599A (zh) * 2003-03-07 2003-08-06 北京港湾网络有限公司 用户接口电路二四线转换及直流馈电装置
CN101359932A (zh) * 2008-09-03 2009-02-04 华为技术有限公司 一种数字用户线线路驱动装置、方法和接入系统
CN101505174A (zh) * 2008-02-04 2009-08-12 深圳华为通信技术有限公司 抑制电磁干扰的接口电路及方法
CN102082886A (zh) * 2011-01-20 2011-06-01 华为技术有限公司 一种数字用户线路的电路及设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528630A (en) * 1994-04-20 1996-06-18 At&T Corp. Coupler for communication systems which utilize more than one frequency band
EP1155507B1 (de) * 1999-02-25 2002-08-28 Infineon Technologies AG Schaltung zur gemeinsamen übertragung von sprache und daten über eine telefonleitung
JP2001007739A (ja) * 1999-06-24 2001-01-12 Nec Corp 通信装置
FR2798022B1 (fr) * 1999-08-30 2008-09-26 St Microelectronics Sa Circuit hybride d'emission-reception
US7583797B2 (en) * 2000-07-10 2009-09-01 Broadcom Corporation Single ended analog front end
EP1391055B1 (en) * 2001-02-01 2006-12-27 Analog Devices, Inc. Line interface with a matching impedance coupled to a feedback path
JP3607639B2 (ja) * 2001-05-09 2005-01-05 日本電気通信システム株式会社 2線4線変換回路
GB0321658D0 (en) * 2003-09-16 2003-10-15 South Bank Univ Entpr Ltd Bifilar transformer
US7212627B2 (en) * 2004-09-21 2007-05-01 Analog Devices, Inc. Line interface with analog echo cancellation
JP4936128B2 (ja) * 2007-06-07 2012-05-23 横河電機株式会社 損失補償回路
JP5098617B2 (ja) * 2007-12-12 2012-12-12 横河電機株式会社 プリエンファシス回路
JP4837715B2 (ja) * 2008-10-23 2011-12-14 カナレ電気株式会社 アクティブコネクタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050970A1 (en) * 1998-03-31 1999-10-07 Telefonaktiebolaget Lm Ericsson (Publ) A method and an arrangement in an analog line interface circuit
CN1434599A (zh) * 2003-03-07 2003-08-06 北京港湾网络有限公司 用户接口电路二四线转换及直流馈电装置
CN101505174A (zh) * 2008-02-04 2009-08-12 深圳华为通信技术有限公司 抑制电磁干扰的接口电路及方法
CN101359932A (zh) * 2008-09-03 2009-02-04 华为技术有限公司 一种数字用户线线路驱动装置、方法和接入系统
CN102082886A (zh) * 2011-01-20 2011-06-01 华为技术有限公司 一种数字用户线路的电路及设备

Also Published As

Publication number Publication date
CN104813592B (zh) 2016-12-07
CN104813592A (zh) 2015-07-29
EP3048741A4 (en) 2016-10-05
US20160241302A1 (en) 2016-08-18
KR20160072207A (ko) 2016-06-22
KR101897526B1 (ko) 2018-10-31
JP6360169B2 (ja) 2018-07-18
EP3048741B1 (en) 2018-09-12
EP3048741A1 (en) 2016-07-27
JP2016534599A (ja) 2016-11-04
US9742463B2 (en) 2017-08-22

Similar Documents

Publication Publication Date Title
JP6377680B2 (ja) 送信機−受信機間の阻止のためのインピーダンス平衡
US9154178B2 (en) Duplexer with enhanced isolation
WO2018227902A1 (zh) 一种多通道回声消除电路、方法和智能设备
TWI504173B (zh) 數位用戶迴路之訊號收發電路
MY185907A (en) Transceiver arrangement, communication device, method and computer program
CN204291039U (zh) 一种适用于交换机的rj45接口电路
TWI519086B (zh) 電力線通訊分集耦合技術
JP2020508009A (ja) コンパクト両円偏波マルチバンドの導波路フィードネットワーク
US9246464B2 (en) Magnetic interface circuit having a 3-wire common mode choke
WO2019015392A1 (zh) 一种信号传输电路
WO2015058403A1 (zh) 铜线接口电路
US8861687B2 (en) Integrated hybird circuit applied to a digital subscriber loop and setting method thereof
WO2016061777A1 (zh) 微带多工器
TWI715115B (zh) 能夠消除回音的通訊裝置
TWI753784B (zh) 天線介面配置
US9966928B2 (en) Multi-port CATV power splitter with increased bandwidth
CN101911481A (zh) 信号分路器
CN103580643A (zh) 具有相移电路的双工器
US11476579B2 (en) Wideband RF choke
EP3164944B1 (en) Hybrid coil circuit
WO2023000446A1 (zh) 一种分频器、分频器的控制方法、设备和存储介质
CN204408450U (zh) 应急通信主机用语音信号处理电路
CN104577273B (zh) 平面低通带通双频滤波器
EP1973272A1 (en) Combiner with active balun for providing broadband internet access on catv networks
CN208589971U (zh) 脉冲滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896081

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013896081

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013896081

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016525884

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020167012928

Country of ref document: KR