WO2015058360A1 - 轴承式rv减速器 - Google Patents

轴承式rv减速器 Download PDF

Info

Publication number
WO2015058360A1
WO2015058360A1 PCT/CN2013/085699 CN2013085699W WO2015058360A1 WO 2015058360 A1 WO2015058360 A1 WO 2015058360A1 CN 2013085699 W CN2013085699 W CN 2013085699W WO 2015058360 A1 WO2015058360 A1 WO 2015058360A1
Authority
WO
WIPO (PCT)
Prior art keywords
power input
input shaft
bearing
mounting frame
type
Prior art date
Application number
PCT/CN2013/085699
Other languages
English (en)
French (fr)
Inventor
汤承龙
Original Assignee
山东帅克机械制造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东帅克机械制造股份有限公司 filed Critical 山东帅克机械制造股份有限公司
Publication of WO2015058360A1 publication Critical patent/WO2015058360A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly

Definitions

  • the invention belongs to the technical field of reducers, and in particular relates to a bearing type RV reducer.
  • a commonly used robot RV reducer includes a pin gear housing having a planet carrier formed by connecting two units through a connecting member, and two cycloidal wheels between the two units, two single upper body and an annular array are provided with three corresponding tapered roller shaft 7 ⁇ e, corresponding to the three axes disposed 7
  • the robot RV reducer adopting this structure first transmits the power device (the sun gear) to the three (cylinder wheels) of the crankshaft at the same time, the crankshaft drives the two cycloidal wheels to run, and the cycloidal wheel transmits the power to the pin gear housing. Secondary deceleration output.
  • crankshafts ie, the power input shaft
  • the three crankshafts are supported by the tapered roller bearings on the bearing positions of the tapered roller bearings of the planet carrier, so the crown on the crankshaft
  • the axial precision and radial precision of the bearing position of the roller bearing are very strict.
  • the two eccentric wheels on the crankshaft are respectively matched with the cycloidal wheel, and the roundness, cylindricity and phase difference of the two eccentric wheels are very strict.
  • the end of the crankshaft is also spline-mounted with the planet wheels. The phase difference between the spline groove and the eccentric wheel is very strict.
  • An object of the embodiments of the present invention is to provide a bearing type RV reducer to solve the problem that the robot RV reducer provided by the prior art requires three power input shafts to be supported and supported by the bearing positions of the tapered roller bearings on the planet carrier. Transmission, high manufacturing cost, and tapered roller bearing are prone to wear, resulting in reduced fitting accuracy, poor reliability, and reduced transmission accuracy and reduced service life.
  • a bearing type RV reducer comprising a pin gear housing, wherein the pin gear housing is rotatably mounted with a mounting bracket, and the mounting bracket is provided with two through needle rollers
  • the cycloidal wheel of the needle-toothed casing drive connection is mounted on the mounting frame with a power input shaft, the power input end of the power input shaft extends out of the mounting frame, and the power input shaft is provided with two Driving the eccentric wheels, two of the driving eccentric wheels respectively pass through the centers of the two cycloidal wheels and are matched with the corresponding cycloidal wheels
  • the mounting bracket is rotatably mounted with at least two positioning axes Two positioning axes are symmetrically disposed with respect to a center of rotation of the power input shaft, and each of the positioning shafts is provided with two transmission eccentric wheels, and the two transmission eccentric wheels respectively pass through the two pendulums
  • the reel is adapted to the corresponding cycloidal wheel.
  • the center of rotation of the two positioning shafts is on the same line as the center of rotation of the power input shaft.
  • both of the positioning shafts are rotatably mounted to the mounting frame by cylindrical roller bearings.
  • the power input shaft is rotatably mounted to the mounting frame by a rounded roller bearing.
  • the power input end of the power input shaft is provided with a spline.
  • the diameter of the drive eccentric is larger than the diameter of the drive eccentric.
  • the bearing type RV reducer realizes the input of power from the power input shaft (central shaft) and achieves one-stage deceleration. Compared with the conventional robot RV reducer, the bearing type RV reducer reduces the use of the number of power input shafts and the sun.
  • the wheel cooperates with the use of the planetary wheel, thereby reducing the manufacturing cost; since the number of the power input shaft is reduced, the matching precision of the driving eccentric and the cycloidal wheel is easily ensured, the transmission reliability is improved, and the processing and installation are facilitated, and the number is reduced.
  • the bearing type RV reducer has low processing difficulty and is easy to assemble, and the reliability and accuracy of the transmission are effectively improved, the service life is increased, and the processing and assembly precision formed by the simultaneous presence of multiple power input shafts are solved.
  • the positioning shaft plays a role in connecting the two cycloidal wheels and transmitting the power from the cycloidal gear to the pin gear housing, the power transmission direction is along the radial direction of the cycloidal wheel, and the axial machining of the positioning shaft Accuracy and assembly accuracy requirements are not very strict, so the use of cylindrical roller bearings can meet the installation accuracy and transmission accuracy requirements, which greatly reduces the processing difficulty of the positioning axis, and also reduces the processing difficulty of the bearing holes on the mounting frame, thus Reduced production costs and improved processing efficiency.
  • the diameter of the driving eccentric is larger than the diameter of the driving eccentric, that is, the diameter of the mounting hole of the driving eccentric is larger than the diameter of the positioning hole of the mounting eccentric, so that the bearing between the driving eccentric and the cycloid can be used than the conventional roller diameter.
  • the large roller increases the torque resistance of the power input shaft and increases the service life of the bearing, which in turn increases the service life of the RV reducer.
  • FIG. 1 is a schematic structural view of an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a pin housing
  • Figure 3 is a left side view of Figure 2;
  • Figure 4 is a schematic structural view of the mounting bracket
  • Figure 5 is a cross-sectional view taken along line A-A of Figure 4.
  • Figure 6 is a schematic structural view of a cycloidal wheel
  • 1-pin tooth housing 2-needle groove; 3-needle; 4-bearing hole; 5-first monomer; 6-second monomer; 7-bump; 8-mounting frame; - counterbore; 1 0-threaded hole; 11-cycloidal wheel; 12-positioning hole; 1 3-toothed groove; 14-shaped hole; 15-mounting hole; 16-center hole of mounting hole; 17-power input shaft 18-spline; 19-drive eccentric; 20-tapered roller bearing inner bore; 21-positioning shaft; 22-cylindrical roller bearing inner bore; 23-drive eccentric.
  • the bearing type RV reducer comprises a mounting bracket 8 rotatably mounted on the pin gear housing 1 , wherein the inner ring array of the inner diameter of the pin gear housing 1 has a plurality of closely arranged needle roller slots 2 .
  • the needle groove 2 is a peach-shaped groove (see Figs. 2 and 3);
  • the mounting frame 8 includes a first unit 5 and a second unit 6 (see Fig. 4) which are mounted together by a locking member, the lock
  • the tensioning element is a bolting member, and may also be another connecting member for realizing the function.
  • the first unit 5 and the second unit 6 are provided with two cycloidal wheels 1 1 and the outer diameter of the two cycloidal wheels 11 .
  • the upper annular array has a plurality of slots 13 3 , and a needle roller 3 is arranged between the slot 13 and the needle groove 1 , that is, the two cycloids 1 1 form a transmission connection with the pin housing 1 through the needle roller 3 , Both ends of the needle roller 3 are set to be spherical ends.
  • a power input shaft 17 is rotatably mounted on the mounting frame 8.
  • the power input end of the power input shaft 17 extends out of the mounting frame 8.
  • the power input shaft 17 is provided with two driving eccentric wheels 19, and two driving eccentric wheels 19. Passing through the center of the two cycloidal wheels 1 1 respectively and adapting to the corresponding cycloidal wheel 11;
  • the mounting bracket 8 is rotatably mounted with at least two positioning shafts 21, preferably two positioning axes 21, two positioning axes 21 is symmetrically arranged with respect to the center of rotation of the power input shaft 17, and each of the positioning shafts 21 is provided with two transmission eccentrics 23, and the two transmission eccentrics 23 respectively pass through the two cycloidal wheels 11 and corresponding to the cycloidal line
  • the wheel 11 is adapted.
  • the two cycloidal wheels 1 1 are respectively provided with mounting holes 15 through which the power input shaft 17 passes.
  • the two mounting holes 15 are respectively adapted to the driving eccentric 19 on the power input shaft 17, and the mounting holes 15 and the driving eccentricity
  • a cylindrical roller bearing is disposed between the wheels 19;
  • a starting end of the power input shaft 17 is provided with a connecting element, the connecting element is connected to the power unit, and the connecting element is preferably a spline 18;
  • the mounting holes 15 are symmetric on both sides
  • a positioning hole 12 is disposed to accommodate the positioning shaft 21, and the two positioning holes 12 are respectively matched with the transmission eccentric 23 on the positioning shaft 21, and a cylindrical roller bearing is disposed between the transmission eccentric 23 and the positioning hole 12;
  • the diameter of the hole 15 is larger than the diameter of the positioning hole 12, that is, the diameter of the driving eccentric 19 is larger than the diameter of the driving eccentric 23;
  • the center line of the two positioning holes 12 is on the same line as the center line of the mounting hole 15, that is, The center of rotation of
  • the first unit 5 and the second unit 6 are each provided with a bearing hole 4 for mounting a positioning shaft 21, and the bearing hole 4 is disposed corresponding to the positioning hole 12, and the bearing hole 4 is a cylindrical bearing hole and is in the bearing hole.
  • the outer diameter of the cylindrical roller bearing is directly processed on the inner diameter of the inner diameter of the cylindrical roller bearing, and the inner bore 22 of the cylindrical roller bearing is directly processed on the positioning shaft 21, that is, between the bearing hole 4 and the positioning shaft 21 a cylindrical roller bearing is provided; the outer diameter of the cylindrical roller bearing is directly processed on the inner diameter of the mounting hole 15, and the two ends of the power input shaft 17 are directly corresponding to the first unit 5 and the second unit 6
  • An inner ring 20 having a tapered roller bearing is machined, Instruction manual
  • the power input shaft 17 is provided with a tapered roller bearing between the first unit 5 and the second unit 6, respectively.
  • a plurality of shaped holes 14 are symmetrically disposed on the two cycloidal wheels 11 with respect to the center line 16 of the mounting hole: the first unit 5 is provided with a plurality of convex portions corresponding to the shaped holes 14 at positions corresponding to the shaped holes 14 7 , the cross-sectional area of the protrusion 7 is smaller than the cross-sectional area of the shaped hole 14; one end of each protrusion 7 protruding from the first unit 5 is provided with a threaded hole 10, and the second unit 6 is provided with A plurality of counterbore 9 corresponding to the projections 7 are mounted with bolts and connected to the threaded holes 10 (see Figs. 4 and 5).
  • the power is input from the spline 18 end of the power input shaft 17, and the power input shaft 17 is rotated, and the driving eccentric 19 on the power input shaft 17 drives the cycloidal wheel 11 to operate, and is supplemented by two positioning shafts 21; Positioning and providing inertial power, and finally, the cycloidal wheel 11 acts to drive the pinion housing 7 and output the decelerated power.
  • the bearing type RV reducer realizes the input of power from the power input shaft 17 (central axis) and achieves one-stage deceleration. Compared with the conventional robot RV reducer, the diameter of the needle roller 3 is correspondingly reduced, and the needle roller 3 is added. The number of bearings meets the speed ratio requirements and strength requirements of the first stage deceleration.
  • the bearing type RV reducer reduces the use of 17 number of power input shafts and the use of the sun gear with the planetary gears, thereby reducing the manufacturing cost;
  • the number of turns is reduced, so that the size chain of the power input shaft 17 on the cycloidal wheel 11 disappears, the matching precision of the driving eccentric 19 and the cycloidal wheel 11 is easily ensured, the transmission reliability is improved, and the processing and installation are facilitated, and the number of the turns is reduced.
  • the bearing type RV reducer has low processing difficulty and is easy to assemble, and the reliability and accuracy of the transmission are effectively improved, the service life is increased, and the multiple power input shafts 17 are simultaneously formed to cause machining and assembly. A dimensional chain problem with increased precision.
  • the power input shaft is rotatably mounted on the mounting frame and the two driving eccentric wheels provided on the power input shaft respectively pass through the centers of the two cycloidal wheels, the power is input from the power input shaft through the power input shaft.
  • the two driving eccentric wheels drive the two cycloidal movements, and at the same time, the two positioning axes are used for positioning and providing inertial power. Finally, the two cycloidal movements drive the movement of the needle housing and output the decelerated power.
  • the bearing type RV reducer realizes the input of power from the power input shaft (central axis) and achieves one-stage deceleration.
  • the bearing type RV reducer reduces the use of the number of power input shafts and the use of the sun gear with the planetary gears, thereby reducing the manufacturing cost; since the number of power input shafts is reduced, thereby driving
  • the matching precision of the eccentric wheel and the cycloidal wheel is easy to ensure, the transmission reliability is improved, and it is easy to process and install.
  • the roundness, cylindricity and phase difference of the two driving eccentric wheels are high when the multiple power input shafts are simultaneously present.
  • the positioning shaft plays the role of connecting the two cycloidal wheels and transmitting the power from the cycloidal gear to the pin gear housing, the power transmission direction is along the radial direction of the cycloidal wheel, and the axial direction of the positioning shaft
  • the machining accuracy and assembly accuracy requirements are not very strict, so the use of cylindrical roller bearings can meet the installation accuracy and transmission accuracy requirements, which greatly reduces the processing difficulty of the positioning shaft, and also reduces the processing difficulty of the bearing holes on the mounting frame. Thereby reducing production costs and improving processing efficiency.
  • the power transmission of the power input shaft still uses the spline, but compared with the conventional robot RV reducer, there is no phase relationship between the spline and the driving eccentric, which greatly reduces the processing difficulty and is assembled. The positional relationship and the connection relationship between the two cycloidal wheels are not affected, thereby greatly reducing the assembly difficulty.
  • the diameter of the driving eccentric is larger than the diameter of the driving eccentric, that is, the diameter of the mounting hole of the driving eccentric is larger than the diameter of the positioning hole of the mounting eccentric, thereby driving the bearing between the eccentric and the cycloid can be used compared with the conventional rolling
  • the large diameter roller increases the torque resistance of the power input shaft and increases the service life of the bearing, which in turn increases the service life of the RV reducer.

Abstract

一种轴承式RV减速器,包括针齿壳(1),针齿壳(1)内转动有安装架(8),安装架(8)设有两个通过滚针与针齿壳(1)传动连接的摆线轮(11),安装架(8)上转动安装有一动力输入轴(17),动力输入轴(17)的动力输入端伸出安装架(8),动力输入轴(17)上设有两个驱动偏心轮(19),两个驱动偏心轮(19)分别穿过两个摆线轮(11)的中心且与相应的摆线轮(11)相适配;安装架(8)上转动安装有至少两定位轴(21),两定位轴(21)相对于动力输入轴(17)的回转中心对称设置,每个定位轴(21)上均设有两个传动偏心轮(23),两个传动偏心轮(23)分别穿过两个摆线轮(11)且与相应的摆线轮(11)相适配。实现动力中心输入和一级减速,与传统相比,减少了动力输入轴个数和太阳轮配合行星轮的使用,便于加工和安装。

Description

说 明 书
轴承式 RV减速器 技术领域
本发明属于减速器技术领域, 尤其涉及一种轴承式 RV减速器。
背景技术
目前, 常用的机器人 RV减速器包括针齿壳, 该针齿壳上设有通过连接元件 将两个单体连接而成的行星架, 两单体之间设有两个摆线轮, 两单体上均环形 阵列且相对应设置有三个圓锥滚子轴^ e的轴7 位, 三组相对应设置的轴7 |c位上 均设有与动力装置相连的曲柄轴, 每个曲柄轴均穿过两摆线轮上的圓孔。 采用 该结构的机器人 RV减速器首先将动力装置(太阳轮)同时传至三个曲柄轴的(行 星轮) 上, 曲柄轴带动两摆线轮运转, 摆线轮将动力传至针齿壳实现二级减速 输出。
但是, 该结构的机器人 RV减速器会存在以下缺点:
( 1 ) 因为有三个曲柄轴(即动力输入轴)进行传动, 三个曲柄轴均通过圓 锥滚子轴承在行星架的圓锥滚子轴承的轴承位上进行支撑, 因此曲柄轴上圓锥 滚子轴承轴承位的轴向精度和径向精度要求都非常严格, 曲柄轴上两个偏心轮 分别与摆线轮相适配, 对两偏心轮的圆度、 圆柱度、 相位差要求非常严格, 曲 柄轴的端部还要通过花键安装行星轮, 对花键槽与偏心轮之间的相位差要求非 常严格, 这些尺寸链大大增加了曲柄轴的加工难度, 制造成本高, 而且对曲柄 轴的装配精度也有很高的要求;
( 2 )在使用过程中, 圓锥滚子轴承容易磨损, 导致配合精度降低, 可靠性 变差, 进而使用寿命降低。
发明内容
本发明实施例的目的在于提供一种轴承式 RV减速器,以解决现有技术提供 的机器人 RV 减速器需要三个动力输入轴在行星架上通过圓锥滚子轴承的轴承 位支撑并进行动力传递, 制造成本高, 且圓锥滚子轴承容易磨损, 导致配合精 度降低, 可靠性变差, 进而传动精度降低和使用寿命降低的问题。
为解决上述技术问题, 本发明实施例的技术方案是: 轴承式 RV减速器, 包 括针齿壳, 所述针齿壳内转动安装有安装架, 所述安装架设有两个通过滚针与 说 明 书 所述针齿壳传动连接的摆线轮, 所述安装架上转动安装有一动力输入轴, 所述 动力输入轴的动力输入端伸出所述安装架, 所述动力输入轴上设有两个驱动偏 心轮, 两个所述驱动偏心轮分别穿过两个所述摆线轮的中心且与相应的所述摆 线轮相适配; 所述安装架上转动安装有至少两个定位轴, 两所述定位轴相对于 所述动力输入轴的回转中心对称设置, 每个所述定位轴上均设有两个传动偏心 轮, 两个所述传动偏心轮分别穿过两个所述摆线轮且与相应的所述摆线轮相适 配。
作为一种改进, 两所述定位轴的回转中心与所述动力输入轴的回转中心位 于同一直线上。
作为进一步的改进, 两所述定位轴均通过圓柱滚子轴承转动安装于所述安 装架上。
作为一种改进, 所述动力输入轴通过圆雉滚子轴承转动安装于所述安装架 上。
作为再进一步的改进, 所述动力输入轴的动力输入端设有花键。
作为一种改进, 所述驱动偏心轮的直径大于所述传动偏心轮的直径。
由于采用了上述技术方案, 本发明实施例的有益效果是:
由于安装架上转动安装有一动力输入轴且动力输入轴上设有的两个驱动偏 心轮分别穿过两个摆线轮的中心, 从而动力从动力输入轴输入, 通过动力输入 轴上的两个驱动偏心轮带动两摆线轮动作, 同时辅以两定位轴进行定位和提供 惯性动力, 最终两摆线轮动作带动针齿壳动作并将减速后的动力输出。 采用该 轴承式 RV减速器实现了动力从动力输入轴(中心轴)输入且达到一级减速, 相 对于传统机器人 RV减速器,该轴承式 RV减速器减少了动力输入轴个数的使用 和太阳轮配合行星轮的使用, 从而降低了制造成本; 由于动力输入轴的个数減 少, 从而驱动偏心轮和摆线轮的配合精度容易保证, 传动可靠性提高且便于加 工和安装, 同时减少了多个动力输入轴同时存在时对两驱动偏心轮的圓度、 圓 柱度、 相位差高精度的要求和行星轮的装配难度以及加工制造的难度。 综上所 述采用该轴承式 RV减速器加工难度低,且便于装配,传动可靠性和精度得到有 效提高, 增加了使用寿命, 解决了多个动力输入轴同时存在而形成的导致加工 和装配精度难度增大的尺寸链问题。 说 明 书 由于定位轴起到的作用是将两摆线轮连接起来, 并将动力由摆线轮传递给 针齿壳, 所以动力传递方向是沿摆线轮的径向, 对于定位轴的轴向加工精度和 装配精度要求都不用非常严格, 因此使用圆柱滚子轴承即可满足安装精度和传 动精度要求, 这就大大降低了定位轴的加工难度, 也降低了安装架上轴承孔的 加工难度, 从而降低了生产成本, 提高了加工效率。
动力输入轴的动力输入端的动力传递仍然采用花鍵, 但是, 与传统机器人
RV减速器相比, 该花键与驱动偏心轮之间不存在相位关系, 大大降低了加工难 度, 并且装配时不影响两摆线轮之间的位置关系和连接关系, 从而大大降低了 装配难度。
由于驱动偏心轮的直径大于传动偏心轮的直径, 即安装驱动偏心轮的安装 孔直径大于安装传动偏心轮的定位孔直径, 从而驱动偏心轮与摆线轮之间轴承 可以使用比传统滚子直径大的滚子, 进而增加了动力输入轴的扭矩抗力, 同时 提高了轴承的使用寿命, 进而提高了 RV减速器的使用寿命。
附图说明
图 1是本发明实施例的结构示意图;
图 2是针齿壳的结构示意图;
图 3是图 2的左视图;
图 4是安装架的结构示意图;
图 5是图 4中 A-A的剖视图;
图 6是摆线轮的结构示意图;
图中, 1-针齿壳; 2-滚针槽; 3-滚针; 4-轴承孔; 5-第一单体; 6-第二单 体; 7-凸起; 8-安装架; 9-沉孔; 1 0-螺纹孔; 11-摆线轮; 12-定位孔; 1 3-齿 槽; 14-异形孔; 15-安装孔; 16-安装孔的中心线; 17-动力输入轴; 18-花键; 19-驱动偏心轮; 20-圓锥滚子轴承的内圏; 21 -定位轴; 22-圓柱滚子轴承的内 圏; 23-传动偏心轮。
具体实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实 施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅 仅用以解释本发明, 并不用于限定本发明。 说 明 书
如图 1所示, 该轴承式 RV减速器包括转动安装在针齿壳 1上的安装架 8 , 该针齿壳 1的内径最小的内圏上环形阵列有若干密集排列的滚针槽 2 ,该滚针槽 2为桃形槽 (参见图 2和图 3 ); 该安装架 8 包括通过锁紧元件安装在一起的第 一单体 5和第二单体 6 (参见图 4 ), 该锁紧元件为螺栓连接件, 也可以为其他 的实现该功能的连接件, 该第一单体 5和第二单体 6之间设有两摆线轮 1 1 , 两 摆线轮 11的外径上均环形阵列有若干齿槽 1 3 , 该齿槽 1 3与滚针槽 1之间设有 滚针 3 , 即两摆线轮 1 1通过滚针 3与针齿壳 1形成传动连接, 该滚针 3的两端 设为球形端。
该安装架 8上转动安装有一动力输入轴 1 7 ,该动力输入轴 17的动力输入端 伸出安装架 8 , 该动力输入轴 17上设有两个驱动偏心轮 19 , 两个驱动偏心轮 19 分别穿过两个摆线轮 1 1的中心且与相应的摆线轮 11相适配; 该安装架 8上转 动安装有至少两个定位轴 21, 优选为两个定位轴 21, 两定位轴 21相对于动力 输入轴 17的回转中心对称设置, 每个定位轴 21上均设有两个传动偏心轮 23, 两个传动偏心轮 23分别穿过两个摆线轮 11且与相应的摆线轮 11相适配。
两摆线轮 1 1上均设有供动力输入轴 17穿过的安装孔 15 ,两安装孔 15分别 与动力输入轴 17上的驱动偏心轮 1 9相适配, 该安装孔 15与驱动偏心轮 19之 间设有圓柱滚子轴承; 该动力输入轴 17的起始端设有连接元件, 该连接元件与 动力装置相连, 该连接元件优选为花键 18 ; 该安装孔 15的两侧均对称设置有一 容纳定位轴 21的定位孔 12 , 两定位孔 12分别与定位轴 21上的传动偏心轮 23 相适配, 该传动偏心轮 23与定位孔 12之间设有圓柱滚子轴承; 该安装孔 15的 直径大于定位孔 12的直径, 也就是说, 驱动偏心轮 1 9的直径大于传动偏心轮 23的直径; 两定位孔 12的中心线与安装孔 15的中心线在同一直线上, 即两定 位轴 21的回转中心与动力输入轴 17的回转中心位于同一直线上 (参见图 6 )。
该第一单体 5和第二单体 6上均设有安装定位轴 21的轴承孔 4 , 该轴承孔 4与定位孔 12相对应设置, 该轴承孔 4为圓柱形轴承孔且在轴承孔 4的内径上 直接加工有圓柱滚子轴承的外圏, 该定位轴 21上与轴承孔 4相对应位置上直接 加工有圓柱滚子轴承的内圏 22 ,即轴承孔 4与定位轴 21之间设有圆柱滚子轴承; 该安装孔 15 的内径上直接加工有圓柱滚子轴承的外圏, 该动力输入轴 17 的两 端与第一单体 5和第二单体 6相对应位置上直接加工有圆锥滚子轴承的内圈 20 , 说 明 书
即动力输入轴 17分别与第一单体 5和第二单体 6之间均设有圓锥滚子轴承。
两摆线轮 11上相对于安装孔的中心线 16均对称设置有若干异形孔 1 4 : 该 第一单体 5上与异形孔 14相对应位置设有若干与异形孔 14相适配的凸起 7 ,该 凸起 7的横截面积小于异形孔 14的横截面积; 每个凸起 7凸出第一单体 5的一 端设有螺纹孔 10 , 该第二单体 6上设有与凸起 7相对应的若干沉孔 9 , 该沉孔 9 上安装有螺栓并与螺紋孔 10连接(参见图 4和图 5 )。
在实际应用中, 动力从动力输入轴 17 的花键 18端输入, 带动动力输入轴 17转动, 动力输入轴 17上的驱动偏心轮 19带动摆线轮 11动作, 同时辅以两定 位轴 21进行定位和提供惯性动力, 最终, 摆线轮 11动作带动针齿壳 7动作并 将减速后的动力输出。采用该轴承式 RV减速器实现了动力从动力输入轴 17 (中 心轴)输入且达到一级减速, 与传统机器人 RV减速器相比较, 相应减小了滚针 3的直径, 增加了滚针 3的数量, 满足一级减速的速比要求和强度要求, 该轴承 式 RV减速器减少了动力输入轴 17个数的使用和太阳轮配合行星轮的使用, 从 而降低了制造成本; 由于动力输入轴 Π的个数减少, 从而摆线轮 11上安装动 力输入轴 17的尺寸链消失, 驱动偏心轮 19和摆线轮 11的配合精度容易保证, 传动可靠性提高且便于加工和安装, 同时减少了多个动力输入轴 17同时存在时 对两驱动偏心轮 19的圓度、 圆柱度、 相位差高精度的要求和行星轮的装配难度 以及加工制造难度。综上所述采用该轴承式 RV減速器加工难度低,且便于装配, 传动可靠性和精度得到有效提高, 增加了使用寿命, 解决了多个动力输入轴 17 同时存在而形成的导致加工和装配精度增大的尺寸链问题。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明 的保护范围之内。
工业实用性
1.由于安装架上转动安装有一动力输入轴且动力输入轴上设有的两个驱动 偏心轮分别穿过两个摆线轮的中心, 从而动力从动力输入轴输入, 通过动力输 入轴上的两个驱动偏心轮带动两摆线轮动作, 同时辅以两定位轴进行定位和提 供惯性动力, 最终两摆线轮动作带动针齿壳动作并将减速后的动力输出。 采用 该轴承式 RV减速器实现了动力从动力输入轴 (中心轴)输入且达到一级减速, 说 明 书 相对于传统机器人 RV减速器,该轴承式 RV减速器减少了动力输入轴个数的使 用和太阳轮配合行星轮的使用, 从而降低了制造成本; 由于动力输入轴的个数 减少, 从而驱动偏心轮和摆线轮的配合精度容易保证, 传动可靠性提高且便于 加工和安装, 同时减少了多个动力输入轴同时存在时对两驱动偏心轮的圓度、 圓柱度、 相位差高精度的要求和行星轮的装配难度以及加工制造的难度。
2.由于定位轴起到的作用是将两摆线轮连接起来,并将动力由摆线轮传递给 针齿壳, 所以动力传递方向是沿摆线轮的径向, 对于定位轴的轴向加工精度和 装配精度要求都不用非常严格, 因此使用圆柱滚子轴承即可满足安装精度和传 动精度要求, 这就大大降低了定位轴的加工难度, 也降低了安装架上轴承孔的 加工难度, 从而降低了生产成本, 提高了加工效率。
3.动力输入轴的动力输入端的动力传递仍然采用花键, 但是, 与传统机器人 RV减速器相比, 该花键与驱动偏心轮之间不存在相位关系, 大大降低了加工难 度, 并且装配时不影响两摆线轮之间的位置关系和连接关系, 从而大大降低了 装配难度。
4.由于驱动偏心轮的直径大于传动偏心轮的直径,即安装驱动偏心轮的安装 孔直径大于安装传动偏心轮的定位孔直径, 从而驱动偏心轮与摆线轮之间轴承 可以使用比传统滚子直径大的滚子, 进而增加了动力输入轴的扭矩抗力, 同时 提高了轴承的使用寿命, 进而提高了 RV减速器的使用寿命。

Claims

权 利 要 求 书
1、 轴承式 RV减速器, 包括针齿壳, 所述针齿壳内转动安装有安装架, 所 述安装架设有两个通过滚针与所述针齿壳传动连接的摆线轮, 其特征在于, 所 述安装架上转动安装有一动力输入轴, 所述动力输入轴的动力输入端伸出所述 安装架, 所述动力输入轴上设有两个驱动偏心轮, 两个所述驱动偏心轮分别穿 过两个所述摆线轮的中心且与相应的所述摆线轮相适配; 所述安装架上转动安 装有至少两个定位轴, 两所述定位轴相对于所述动力输入轴的回转中心对称设 置, 每个所述定位轴上均设有两个传动偏心轮, 两个所述传动偏心轮分别穿过 两个所述摆线轮且与相应的所述摆线轮相适配。
2、 根据权利要求 1所述的轴承式 RV减速器, 其特征在于, 两所述定位轴 的回转中心与所述动力输入轴的回转中心位于同一直线上。
3、 根据权利要求 2所述的轴承式 RV减速器, 其特征在于, 两所述定位轴 均通过圆柱滚子轴承转动安装于所述安装架上。
4、 根据权利要求 1所述的轴承式 RV减速器, 其特征在于, 所述动力输入 轴通过圆锥滚子轴承转动安装于所述安装架上。
5、 根据权利要求 4所述的轴承式 RV减速器, 其特征在于, 所述动力输入 轴的动力输入端设有花键。
6、 根据权利要求 1所述的轴承式 RV减速器, 其特征在于, 所述驱动偏心 轮的直径大于所述传动偏心轮的直径。
PCT/CN2013/085699 2013-10-21 2013-10-22 轴承式rv减速器 WO2015058360A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201320649227.X 2013-10-21
CN201320649227.XU CN203516608U (zh) 2013-10-21 2013-10-21 轴承式rv减速器

Publications (1)

Publication Number Publication Date
WO2015058360A1 true WO2015058360A1 (zh) 2015-04-30

Family

ID=50375541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085699 WO2015058360A1 (zh) 2013-10-21 2013-10-22 轴承式rv减速器

Country Status (2)

Country Link
CN (1) CN203516608U (zh)
WO (1) WO2015058360A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103527719B (zh) * 2013-10-21 2016-06-01 山东帅克机械制造股份有限公司 轴承式rv减速器
CN108869641B (zh) * 2017-05-12 2021-07-23 昆山光腾智能机械有限公司 针齿摆线减速器及工业机器人
CN107191550B (zh) * 2017-07-13 2023-06-09 北京辐全智能科技股份有限公司 Rv减速器
CN109854687A (zh) * 2019-04-01 2019-06-07 长安大学 一种基于rv轴承的减速器
CN110195767A (zh) * 2019-05-12 2019-09-03 天津大学 一种封闭式内摆线活齿减速器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145468A (en) * 1991-01-07 1992-09-08 Compudrive Corporation Adjustable cycloidal speed reducer
EP0543754A1 (fr) * 1991-11-21 1993-05-26 S.A. DES ETABLISSEMENTS STAUBLI (France) Réducteur de vitesse du type cycloidal pour robots et autres manipulateurs industriels
CN2307155Y (zh) * 1997-04-04 1999-02-10 黄祖德 多偏心轴平动齿轮减速器
CN101832365A (zh) * 2010-04-17 2010-09-15 吴声震 工业机器人单级摆线减速器
CN103016639A (zh) * 2012-11-06 2013-04-03 吴小杰 仿rv-e型搬运焊接机器人摆线减速器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145468A (en) * 1991-01-07 1992-09-08 Compudrive Corporation Adjustable cycloidal speed reducer
EP0543754A1 (fr) * 1991-11-21 1993-05-26 S.A. DES ETABLISSEMENTS STAUBLI (France) Réducteur de vitesse du type cycloidal pour robots et autres manipulateurs industriels
CN2307155Y (zh) * 1997-04-04 1999-02-10 黄祖德 多偏心轴平动齿轮减速器
CN101832365A (zh) * 2010-04-17 2010-09-15 吴声震 工业机器人单级摆线减速器
CN103016639A (zh) * 2012-11-06 2013-04-03 吴小杰 仿rv-e型搬运焊接机器人摆线减速器

Also Published As

Publication number Publication date
CN203516608U (zh) 2014-04-02

Similar Documents

Publication Publication Date Title
JP4913045B2 (ja) 偏心揺動型減速機および偏心揺動型減速機を用いた産業用ロボットの旋回部構造
CN103527719B (zh) 轴承式rv减速器
KR101066233B1 (ko) 감속 장치
WO2015058360A1 (zh) 轴承式rv减速器
TWI609143B (zh) 偏心擺動減速裝置
KR20080047576A (ko) 중공 감속기
EP2602509B1 (en) Speed reduction mechanism, and motor torque transmission device including the same
EP2733002B1 (en) Wheel drive unit
US20170314644A1 (en) Speed reducer
CN110285198A (zh) 一种摆线轮减速器
JP5388746B2 (ja) 揺動型減速機
TWI605213B (zh) Gear transmission and crankshaft structure used therefor
JP2015175383A (ja) インホイールモータ駆動装置
CN111868412B (zh) 行星齿轮箱以及相关的机器人关节和机器人
CN212928677U (zh) 传动机构
JP4632852B2 (ja) 産業用ロボットの旋回部構造
JP2008014500A5 (zh)
JP2008025846A (ja) ロボット等の旋回部構造
JP2015183831A (ja) インホイールモータ駆動装置
CN220791939U (zh) Rv减速器及工业机器人
CN220816433U (zh) Rv减速器及工业机器人
CN108843743B (zh) 一种双侧啮合双圆弧锥齿轮章动减速器及其工作方法
CN213017530U (zh) 内啮合传动机构
JP2005047006A (ja) ロボット等の旋回部構造
TWI815665B (zh) 粉末冶金的諧和式減速機的波產生器、減速機構及減速馬達

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13895818

Country of ref document: EP

Kind code of ref document: A1