WO2015056850A1 - 돼지 생식기 호흡기 증후군 바이러스의 키메릭 변이주 - Google Patents

돼지 생식기 호흡기 증후군 바이러스의 키메릭 변이주 Download PDF

Info

Publication number
WO2015056850A1
WO2015056850A1 PCT/KR2014/001700 KR2014001700W WO2015056850A1 WO 2015056850 A1 WO2015056850 A1 WO 2015056850A1 KR 2014001700 W KR2014001700 W KR 2014001700W WO 2015056850 A1 WO2015056850 A1 WO 2015056850A1
Authority
WO
WIPO (PCT)
Prior art keywords
respiratory syndrome
syndrome virus
genital respiratory
dna
prrsv
Prior art date
Application number
PCT/KR2014/001700
Other languages
English (en)
French (fr)
Inventor
이중복
이정아
이낙형
권병준
최인수
송창선
박승용
이상원
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Publication of WO2015056850A1 publication Critical patent/WO2015056850A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • A61K2039/523Bacterial cells; Fungal cells; Protozoal cells expressing foreign proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/12011Astroviridae
    • C12N2770/12034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the present invention relates to chimeric variant strains of swine genital respiratory syndrome virus that can be used as vaccines.
  • PRRS Porcine Reproductive and Respiratory Syndrome
  • the causative agents of PRRS are the genus Arteriviruses , Arteriviridae and the genus Nidovirales.
  • the PRRS virus has a positive-sense single stranded RNA genome and is about 15.4 kilobases in size.
  • the genome of the PRRS virus has nine ORFs (Conzelmann et al., 1993; Meulenberg et al., 1993). Among them, ORF1a and ORF1b encoding non-structural proteins (NSP) account for about 80% of the virus genome (Bautista et al., 2002; Meulenberg et al., 1993; Snijder and Meulenberg, 1998, 2001).
  • Glycosylated structural proteins GP2, GP3, GP4, GP5, aglycosylated membrane (Membrane, M), nucleocapsid (N) proteins are encoded by ORF, which accounts for the remaining 20%.
  • PRRS viruses are highly mutated due to the nature of RNA viruses, and the differences between them vary greatly. PRRS viruses are largely divided into North American type and European type, and there is a genetic difference of up to 40% between North American type and European type. In addition, there is often no cross-protection between mutant strains of the same type (Meng, X. J. et al., 2000). Because of this, a standard mutant strain-based vaccine has been produced for each, but it does not effectively prevent PRRS because of poor cross-protection ability. In order to overcome this, various attempts have been made to manufacture vaccines having effective safety, immunogenicity, and defense ability.
  • the present invention provides a DNA of swine genital respiratory syndrome virus (PRRSV) chimeric variant strain having the nucleotide sequence shown in SEQ ID NO: 1.
  • PRRSV swine genital respiratory syndrome virus
  • the mutant strain having the nucleotide sequence described in SEQ ID NO: 1 was named K418.
  • 112160 and 15467-19231 in SEQ ID NO: 1 are the PRRSV FL12 (infectious clone inserting the PRRSV NVSL 97-7895 variant into the pBR322 vector) sequence, and 12161-15466 correspond to the PRRSV LMY sequence.
  • the present invention provides RNA that reverse-transcribes DNA having the nucleotide sequence set forth in SEQ ID NO: 1.
  • the present invention also provides a DNA of porcine genital respiratory syndrome virus (PRRSV) chimeric variant having a nucleotide sequence set forth in SEQ ID NO: 2.
  • PRRSV porcine genital respiratory syndrome virus
  • the mutant strain having the nucleotide sequence set forth in SEQ ID NO: 2 was named K418DM.
  • the other part of SEQ ID NO: 2 is identical to SEQ ID NO: 1, except that it is deglycosylated by mutating the parts corresponding to the regions 13886-13888 and 13940-13942, which encode the GP5 protein.
  • the present invention provides RNA which reverse-transcribes the nucleotide sequence DNA described in SEQ ID NO: 2.
  • the present invention provides a cell comprising a DNA of porcine genital respiratory syndrome virus (PRRSV) chimeric variant strain having the nucleotide sequence set forth in SEQ ID NO: 1.
  • PRRSV porcine genital respiratory syndrome virus
  • the present invention provides a cell comprising a DNA of porcine genital respiratory syndrome virus (PRRSV) chimeric variant strain having the nucleotide sequence set forth in SEQ ID NO: 2.
  • the cell may be a cell with accession number KCCM11458P.
  • the cells may be Escherichia coli DH5 ⁇ cells.
  • the present invention provides a swine genital respiratory syndrome virus vaccine comprising the DNA of the swine genital respiratory syndrome virus chimeric variant or RNA transcribed therefrom as described in SEQ ID NO: 1 or SEQ ID NO: 2.
  • the vaccine may further comprise one or more selected from the group consisting of carrier, diluent, excipient, and adjuvant.
  • the virus may be inactivated.
  • the present invention provides a method for producing swine genital respiratory syndrome virus chimeric mutant strains using the cells.
  • the present invention provides a method for producing a pig genital respiratory syndrome virus vaccine using the cells.
  • the present invention provides a method for producing a pig genital respiratory syndrome virus vaccine using the gene.
  • K418 of the present invention comprises ORF7 at ORF1 site of NVSL 97-7895 and ORF2 at LMY.
  • the present invention provides a method of producing a swine genital respiratory syndrome virus chimeric variant having a nucleotide sequence set forth in SEQ ID NO: 1 combining the ORF1 site of the PRRSV NVSL 97-7895 variant strain and the ORF2 to ORF7 of the PRRSV LMY variant strain.
  • Chimeric virus mutants of the present invention has the advantage of high safety and high antibody titer against the same genotype virus.
  • the chimeric viral mutants can be customized for each farm by replacing ORF5 of one mutant strain with ORF5 of the other mutant strain. Therefore, it can be used to effectively protect the pig genital respiratory syndrome (PRRS), a pig disease that causes serious economic damage.
  • PRRS pig genital respiratory syndrome
  • 1 shows the phylogenetic tree of PRRS virus by GP5 protein.
  • Fig. 3 is a schematic diagram showing the genome arrangement of K418 synthesized by cutting and connecting portions of the FL12 clone and the LMY mutant strain, respectively.
  • Figure 4 shows the results of immunofluorescence analysis using an antibody specific for nucleocapsid protein (N protein) of PRRSV in MARC-145 cells transfected with K418.
  • FIG. 5 is a graph illustrating multi-step growth kinetics of FL12, LMY, and K418.
  • Figure 6 is a diagram showing the production of neutralizing antibodies by K418DM in the field test.
  • RNA Since RNA is easily destroyed, it was converted to DNA, and after all the work was done, RNA was synthesized from it to transfect cells.
  • the PRRS chimeric virus was designed to include the ORF1 region of the North American isolate, NVSL 97-7895, and the ORF2 to ORF7 region of LMY, the most prevalent strain in Korea.
  • NVSL 97-7895 is known as a strong poison causing sour acid in sows (Allende et al., 2000), and LMY is a representative mutant in Korea and is not known to be highly pathogenic (Cha SH et al., 2006).
  • the GP5 protein of the PRRS virus has the highest variability in each isolate and contains a neutralizing antibody epitope that is involved in the neutralizing ability of the virus. It is also used to classify the PRRS virus strain.
  • the phylogenetic tree of the GP5 protein of the PRRS virus used as isolates and vaccine strains of each country is shown in FIG. The bottom bar means that there are 0.05 nucleotide substitutions per nucleotide position.
  • NVSL 97-7895 and LMY is a variant strain that has a genetic relationship of about 85% with each other.
  • LMY mutant strains the most prevalent strains in Korea, were distributed from the Ministry of Agriculture, Forestry and Fisheries Quarantine Inspection, and genome regions containing the entire structural genes of LMY were amplified by reverse transcription PCR using the primers of Table 1 below.
  • the PRRS virus contains a total of nine ORFs, that is, ORF1 (ORF1a, ORF1b), and ORF2-7.
  • K418 In the genome region containing the entire structural gene of the LMY mutant strain amplified in 1-2, a region from ORF2 to ORF7 was cut using restriction enzymes ECoRV and PacI, and then replaced with the corresponding region of pFL12 to prepare a plasmid. It was named K418.
  • the schematic diagram of K418 is shown in FIG.
  • K418 plasmids and K418DM plasmids prepared in 1-3 were linearized by treatment with AclI. Using the linear DNA thus prepared as a template, each RNA transcript was synthesized in vitro using the mMESSAGEmMACHINE Ultra T7 kit (Ambion, Austin, TX).
  • MARC-145 cells known as PRRS virus soluble cell lines, were used to confirm replication of the chimeric virus. MARC-145 cells were used from the University of Kansas-Lincoln.
  • MARC-145 cells were suspended in PBS buffer. MARC-145 cells were electroporated at 250V and 975 uF using Gene Pulser Xcell (Bio-Rad, Hercules, Calif.). RNA for the cells themselves was isolated from na ⁇ ve MARC-145 cells not infected with PRRSV. This RNA acts as a carrier to help infect viral RNA. About 5 ug of RNA for the na ⁇ ve MARC-145 cells themselves and about 10 ug of RNA transcripts of K418 and K418DM were transfected into the electroporated MARC-145 cells with 4.0 mm cuvette, respectively.
  • Transfected MARC-145 cells were diluted in DMEM medium containing 10% FBS and 1.25% DMSO and aliquoted into 6 well plates.
  • K418 and K418DM viruses were amplified in MARC-145 cells by immunofluorescence assay (IFA) using an SDOW17 antibody targeting PRRSV nucleoprotin (FIG. 4). .
  • MARC-145 cells were diluted with parental virus FL12, LMY and chimeric virus K418 of the present invention from each stock by 10-degree dilutions. After infection, culture supernatants were collected at 12, 24, 48, 72 and 96 hours after infection and virus titer was measured by Reed and Muench calculations to compare multistage growth kinetics (FIG. 5). As can be seen in Figure 5, K418 showed a growth pattern similar to FL12, LMY, it can be seen that the genetic manipulation applied to K418 did not significantly affect the virus growth. K418 showed a final titer similar to FL12, LMY, but slightly delayed virus growth.
  • MARC-145 cells transfected at 1-5 were observed for 10 days to confirm PRRS virus specific cytopathic effect (CPE). Passed supernatants produced 80% of CPE on day 5 of infection and the resulting virus titer was 10 6 TFID 50 / ml.
  • the virus-infected cell culture flask was frozen in a 70 degree freezer and thawed at room temperature three times, followed by centrifugation to recover the supernatant from which cells were removed, thereby recovering K418 and K418DM.
  • the virus was inactivated according to the following procedure to make a deadly vaccine.
  • Viruses were inactivated by adding 1 mM BEI (binary ethylenimine) to K418 and K418DM, respectively, and standing at 37 ° C. for 24 hours. Then 0.1mM sodium-thiosulphate was added to neutralize BEI and left at 37 ° C. for 2 hours.
  • BEI binary ethylenimine
  • MARC-145 cells were propagated in a tissue culture flask for 2 days, cell cultures were removed, and then inoculated with the inactivated K418 and K418DM for 1 hour at 37 ° C. Thereafter, fresh medium was added and cultured. After 3 days of culture, the amplification of the virus was confirmed by immunofluorescence analysis using the SDOW17 antibody targeted to nucleoprotin of PRRSV, and 7 days after the PRRS virus-specific cytopathic effect (CPE) was observed. .
  • the genome region corresponding to GP5 protein of K418 was amplified by reverse transcriptase polymerase PCR. In this case, primers for ORF5 of PRRSV were used. Table 2 below shows the GP5 protein gene sequence of K418 of the present invention.
  • the modified site was maintained up to about 9 passages in K418DM, but the modified site was not kept consistent thereafter. This may be because the virus tends to return to its original state and the mutation is severe due to the nature of the RNA virus. Therefore, it is necessary to check whether the deformed portion is maintained each time it is passaged.
  • the virus used as the current vaccine strain was inoculated into MARC-145 cells, cultured at 37 ° C. for 5 days, and then passaged twice.
  • the genes were identified by sequencing and stored at ⁇ 70 ° C.
  • the pathogenicity of the K418 and K418DM viruses was investigated in pigs that were negative for the four-week-old PRRS virus (purchased from a farm without PRRSV infectivity in Pocheon, Gyeonggi-do).
  • Twelve four-week-old piglets with negative antibody to the PRRS virus were prepared, eight of which were challenged and four of which were negative controls.
  • the challenge group was further divided into two groups of four, intramuscular injection of 10 4.5 TCID 50 / ml of K418 in one group and K418DM in one group, respectively.
  • serum was isolated by inoculation into MARC-145 cells after the inoculation period, and 2 days later, immunofluorescence was performed to measure viral viremia.
  • the virus was measured at 10 3-4 TCID 50 / ml.
  • the K418 inoculation group showed higher clinical symptoms and viremia than the K418DM inoculation group (see Table 4).
  • K418DM virus which showed lower pathogenicity in Example 4, was selected as the deadly vaccine vaccine and the safety as a vaccine strain was evaluated.
  • Inactivated K418DM virus 10 7 TCID 50 / ml was mixed with Montanide IMS1313 at a ratio of 70:30 (w / w) to prepare a deadly poison vaccine. This was used to carry out safety tests in mice, guinea pigs and pigs.
  • mice weighing about 20 g were inoculated into 0.5 ml of dead venom vaccine prepared in 5-1 and observed for 7 days. The test results are shown in Table 5 below. After vaccination, it was confirmed that all survived without symptoms for 7 days.
  • Serum was isolated by administering various concentrations of K418DM to pigs 4 weeks later and collecting blood. The separated serum was inactivated at 56 ° C. for 30 minutes, diluted in medium, and then mixed in the same amount with PRRS virus (200 TCID 50 /0.1 ml). It was inoculated to MARC-145 cells and cultured at 37 °C. After 3 days of culture, the antibody titer was measured by immobilizing methanol to acetone in a ratio of 1: 1, and performing immunofluorescence staining with an antibody targeting N protein using an ELISA kit (IDEXX).
  • PRRS virus 200 TCID 50 /0.1 ml
  • the domestic hog farms can be divided into three categories based on PRRSV: PRRSV-free farms, stabilized farms in which PRRSV outdoor owners are present but not causing lesions, and because they have or have been infected with past PRRSV infections. It is classified as a farm using 'Velgel PRRS Live Poison Vaccine (MLV)' by Boehringer Ingelheim. One farm was selected for each category for field testing (hereinafter referred to as A, B, and C farms, respectively). Twenty-two four-week-old piglets were selected for each farm and 18 were inoculated with K418DM, which was treated as a K418DM inoculation group, and four were treated as negative controls without any treatment. After that, it was analyzed whether neutralizing antibodies were generated for 7 weeks.
  • PRRSV-free farms stabilized farms in which PRRSV outdoor owners are present but not causing lesions, and because they have or have been infected with past PRRSV infections. It is classified as a farm using 'Ve
  • MARC-145 cells were infected with a mixture of serum collected from each pig and PRRS K418DM, and then cultured for 2 days. Thereafter, FA test was used to examine the presence of neutralizing antibodies in the serum collected from each pig.
  • the antibody used at this time was a monoclonal antibody (SDOW-17) specific to PRRSV N protein as a primary antibody, and an anti-mouse IgG FITC conjugated antibody (Alexa488) as a secondary antibody.
  • the results are shown in Table 8 and FIG. 6 (the meanings of a, A, b, B, c, and C are the same as in Table 8).
  • the positive rate of neutralizing antibody was about 38% in farm A, about 94% in farm B, and about 72% in farm C.
  • the effect of K418DM showed a big difference according to the farm conditions.
  • Farm B showed high neutralizing antibody titer in most K418DM inoculation groups.
  • K418DM increased its immunogenicity even though the piglets of farm B may have antibodies to PRRSV, which is located in farm B
  • the base sequence of the GP5 protein portion of the outdoor strain and K418DM was amplified by PCR and sequenced.
  • the GP5 protein which is a viral structural protein contributing to the immunogenicity of PRRSV
  • the GP5 protein of K418DM was due to the vaccine effect against homologous mutant strains.
  • K418DM can be usefully used as a PRRSV killed vaccine in most domestic pig farms.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 백신으로 사용할 수 있는 돼지 생식기 호흡기 증후군 바이러스의 키메릭 변이주에 관한 것이다. 본 발명의 키메릭 바이러스 변이주는 안전성이 높고 동일 유전형 바이러스에 대하여 높은 항체가를 얻을 수 있는 장점이 있다. 본 발명과 같이 한 변이주의 ORF5를 다른 변이주의 ORF5로 대체하는 방식으로 각 농장에 맞는 맞춤형 키메릭 바이러스 변이주를 제작할 수 있다. 따라서 본 발명은 심각한 경제적 피해를 유발하는 양돈 질병인 돼지 생식기 호흡기 증후군(PRRS)를 효과적으로 방어하는데 이용할 수 있다.

Description

돼지 생식기 호흡기 증후군 바이러스의 키메릭 변이주
본 발명은 백신으로 사용할 수 있는 돼지 생식기 호흡기 증후군 바이러스의 키메릭 변이주에 관한 것이다.
돼지 생식기 호흡기 증후군(Porcine Reproductive and Respiratory Syndrome, 이하 PRRS)은 돼지 써코바이러스 감염증 및 구제역과 함께 국내 양돈산업에 가장 큰 피해를 주는 전염병에 해당한다. PRRS는 모돈에서 유산이나 조산, 사산의 번식장애 증상을 유발하며, 자돈 및 비육돈에서는 재채기, 발열, 등의 호흡기 증상을 유발한다. 일반적으로 바이러스에 이환된 이후 세균 등의 2차 감염에 의해 심한 호흡기 증상을 야기하지만, 만성적으로 감염된 경우에는 특징적인 임상 증상 없이 증체량 감소 및 폐사율의 증가가 나타나게 된다.
PRRS의 원인이 되는 병원체는 아테리바이러스(Arterivirus) 속, 아테리비리대(Arteriviridae) 과, 니도비레일즈(Nidovirales) 목에 속하는 PRRS 바이러스이다. PRRS 바이러스는 양-방향 단일가닥 RNA 지놈(positive-sense single stranded RNA genome)을 갖고 있으며, 크기는 약 15.4 킬로베이스(kilobase)이다. PRRS 바이러스의 지놈은 9개의 ORF를 갖고 있다(Conzelmann et al., 1993; Meulenberg et al., 1993). 그중 비구조단백질(Non Structural Protein, NSP)을 코딩하는 ORF1a 및 ORF1b가 바이러스 지놈의 약 80%를 차지하고 있다(Bautista et al., 2002; Meulenberg et al., 1993; Snijder and Meulenberg, 1998, 2001). 글리코실화된 구조 단백질인 GP2, GP3, GP4, GP5와, 비글리코실화된 막(Membrane, M) 단백질, 뉴클레오캡시드 (N) 단백질은 나머지 20%를 차지하는 ORF에 의하여 코딩된다. 마이너 구조단백질인 GP2, GP3, GP4가 헤테로다이머(heterodimer)를 형성하여 바이러스가 숙주 세포 내로 침입할 때 작용하며, 메이저 구조단백질인 GP5, M은 헤테로다이머를 형성하여 바이러스의 감염력을 높여주는 작용을 한다.
PRRS 바이러스는 RNA 바이러스의 특성상 변이가 심하여 바이러스 간에 차이가 많이 난다. PRRS 바이러스는 크게 북미형과 유럽형으로 나뉘는데, 북미형과 유럽형 간에는 최대 40%까지 유전자 차이가 존재하여 서로 교차 방어가 되지 않는 것으로 알려져 있다. 또한 같은 타입에 속하는 변이주 간에도 교차 방어가 되지 않는 경우가 많다 (Meng, X. J. et al., 2000). 이로 인해 각각에 대해 표준 변이주 기반의 백신은 제작되어 있지만 교차 방어능이 좋지 못하기 때문에 PRRS를 효과적으로 예방하지 못하고 있는 실정이다. 이를 극복하기 위하여 안전성, 면역원성, 및 방어능을 효과적으로 갖춘 백신을 제작하기 위한 다양한 시도가 이루어지고 있다.
본 발명은 백신으로 사용할 수 있는 돼지 생식기 호흡기 증후군 바이러스의 키메릭 변이주, 이를 포함하는 백신 및 그 제조방법을 제공하는 것을 목적으로 한다.
상기의 목적을 달성하기 위하여, 본 발명은 서열번호 1로 기재되는 염기서열을 갖는 돼지 생식기 호흡기 증후군 바이러스(PRRSV) 키메릭 변이주의 DNA를 제공한다.
본 발명에서 상기 서열번호 1로 기재되는 염기서열을 갖는 변이주는 K418로 명명되었다. 서열번호 1에서 112160 및 15467-19231은 PRRSV FL12(PRRSV NVSL 97-7895 변이주를 pBR322 벡터에 삽입한 감염성 클론) 서열이고, 12161-15466은 PRRSV LMY 서열에 해당한다.
본 발명은 상기 서열번호 1로 기재되는 염기서열을 갖는 DNA를 역전사한 RNA를 제공한다.
또한 본 발명은 서열번호 2로 기재되는 염기서열을 갖는 돼지 생식기 호흡기 증후군 바이러스(PRRSV) 키메릭 변이주의 DNA를 제공한다.
본 발명에서 상기 서열번호 2로 기재되는 염기서열을 갖는 변이주는 K418DM으로 명명되었다. 서열번호 2에서 다른 부분은 서열번호 1과 동일하며, GP5 단백질을 코딩하는 영역인 13886-13888 및 13940-13942에 해당하는 부분에 돌연변이를 일으켜 탈글리코실화 되었다는 차이점이 있다.
본 발명은 상기 서열번호 2로 기재되는 염기서열 DNA를 역전사한 RNA를 제공한다.
본 발명은 서열번호 1로 기재되는 염기서열을 갖는 돼지 생식기 호흡기 증후군 바이러스(PRRSV) 키메릭 변이주의 DNA를 포함하는 세포를 제공한다.
본 발명은 서열번호 2로 기재되는 염기서열을 갖는 돼지 생식기 호흡기 증후군 바이러스(PRRSV) 키메릭 변이주의 DNA를 포함하는 세포를 제공한다. 상기 세포는 수탁번호 KCCM11458P인 세포일 수 있다. 또한 상기 세포는 Escherichia coli DH5α 세포일 수 있다.
본 발명은 상기 서열번호 1 또는 서열번호 2로 기재되는 돼지 생식기 호흡기 증후군 바이러스 키메릭 변이주의 DNA 또는 이로부터 역전사된 RNA를 포함하는 돼지 생식기 호흡기 증후군 바이러스 백신을 제공한다.
상기 백신은 담체, 희석제, 부형제, 및 어주번트(adjuvant)로 이루어진 군에서 선택되는 1 이상을 더 포함할 수 있다.
상기 바이러스는 불활화된 것일 수 있다.
본 발명은 상기 세포를 이용하여 돼지 생식기 호흡기 증후군 바이러스 키메릭 변이주를 생산하는 방법을 제공한다.
본 발명은 상기 세포를 이용하여 돼지 생식기 호흡기 증후군 바이러스 백신을 생산하는 방법을 제공한다.
본 발명은 상기 유전자를 이용하여 돼지 생식기 호흡기 증후군 바이러스 백신을 생산하는 방법을 제공한다.
본 발명의 K418은 NVSL 97-7895의 ORF1 부위 및 LMY의 ORF2에서 ORF7을 포함한다.
본 발명은 PRRSV NVSL 97-7895 변이주의 ORF1 부위 및 PRRSV LMY 변이주의 ORF2 내지 ORF7을 조합하여 서열번호 1로 기재되는 염기서열을 갖는 돼지 생식기 호흡기 증후군 바이러스 키메릭 변이주를 생산하는 방법을 제공한다.
또한 본 발명은
1) PRRSV NVSL 97-7895 변이주의 ORF1 부위 및 PRRSV LMY 변이주의 ORF2 내지 ORF7을 조합하는 단계; 및
2) 상기 조합된 염기서열에서 GP5를 코딩하는 유전자에 돌연변이를 유발하는 단계를 포함하는, 서열번호 2로 기재되는 염기서열을 갖는 돼지 생식기 호흡기 증후군 바이러스 키메릭 변이주를 생산하는 방법을 제공한다.
본 발명의 키메릭 바이러스 변이주는 안전성이 높고 동일 유전형 바이러스에 대하여 높은 항체가를 얻을 수 있는 장점이 있다. 본 발명과 같이 한 변이주의 ORF5를 다른 변이주의 ORF5로 대체하는 방식으로 각 농장에 맞는 맞춤형 키메릭 바이러스 변이주를 제작할 수 있다. 따라서 심각한 경제적 피해를 유발하는 양돈 질병인 돼지 생식기 호흡기 증후군(PRRS)를 효과적으로 방어하는데 이용할 수 있다.
도 1은 GP5 단백질에 의한 PRRS 바이러스의 계통수(phylogenetic tree)를 나타낸다.
도 2는 PRRS 바이러스의 일반적인 지놈 배열(genomic arrangement)을 나타낸다.
도 3은 FL12 클론과 LMY 변이주의 일부를 각각 절단하고 연결하여 합성한 K418의 지놈 배열을 나타낸 모식도이다.
도 4는 K418로 형질감염된 MARC-145 세포에서 PRRSV의 뉴클레오캡시드 단백질(N 단백질)에 특이적인 항체를 이용하여 면역형광분석을 수행한 결과를 나타낸 것이다.
도 5는 FL12, LMY 및 K418의 다단계 성장역학(multi step growth kinetics)를 분석하여 나타낸 그래프이다.
도 6은 야외시험에서 K418DM에 의한 중화항체 생성 여부를 나타낸 도이다.
RNA는 쉽게 파괴되기 때문에 DNA로 바꾸어서 모든 작업을 수행한 후에 이로부터 RNA를 합성하여 세포를 형질감염시켰다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
이하에서 언급된 시약 및 용매는 특별한 언급이 없는 한 시그마 알드리치 사(Sigma Aldrich®) 로부터 구입한 것이다.
실시예 1. 키메릭 바이러스의 제조
1-1. 키메릭 바이러스의 디자인
PRRS 키메릭 바이러스는 북미형의 분리주인 NVSL 97-7895의 ORF1 부위 및 국내에 가장 만연하는 변이주인 LMY의 ORF2에서 ORF7까지의 부위를 포함하도록 디자인하였다. NVSL 97-7895는 모돈에서 유사산을 야기시키는 강독주로 알려져 있으며(Allende et al., 2000), LMY는 한국의 대표 변이주로 병원성이 강하지 않은 것으로 알려져 있다 (Cha SH et al., 2006).
PRRS 바이러스의 GP5 단백질은 분리주 별로 변이율이 가장 높은 단백질로써 바이러스의 중화능에 관여하는 중화 항체 에피토프를 포함하고 있어 중요한 역할을 하며, PRRS 바이러스의 계통을 분류하는 데에도 이용되고 있다. 각국의 분리주 및 백신주로 사용되고 있는 PRRS 바이러스의 GP5 단백질에 의한 계통수(phylogenetic tree)를 도 1에 나타내었다. 하단의 막대는 뉴클레오티드 위치마다 0.05개의 뉴클레오티드 치환이 있음을 의미한다. 도 1에서 NVSL 97-7895 및 LMY는 서로 85% 정도 유전적 관계가 있는 변이주인 것을 알 수 있다.
1-2. NVSL 97-7895 변이주 및 LMY 변이주의 준비
미국 네브라스카 링컨 대학의 Dr. Fernando Osorio 및 Dr. Asit Pattnaik로부터, NVSL 97-7895 변이주의 모든 유전자가 삽입된 감염성 클론인 FL12의 cDNA 클론인 pFL12를 공급받아 사용하였다.
한국에 가장 만연한 변이주인 LMY 변이주를 농림수산검역검사본부로부터 분양받았고, LMY의 전체 구조 유전자를 포함하는 지놈 영역을 하기 표 1의 프라이머를 사용하여 역전사 PCR로 증폭하였다.
[표 1]
Figure PCTKR2014001700-appb-I000001
1-3. 키메릭 바이러스 클론의 제작
도 2의 모식도와 같이, PRRS 바이러스는 총 9개의 ORF, 즉 ORF1(ORF1a, ORF1b), 및 ORF2 내지 7을 포함하고 있다.
1-2에서 증폭한 LMY 변이주의 전체 구조 유전자를 포함하는 지놈 영역에서 ORF2부터 ORF7까지의 부위를 제한효소인 ECoRV 및 PacI를 사용하여 절단한 후, pFL12의 해당 부위와 치환하여 플라스미드를 제작하고 이를 K418로 명명하였다. K418의 모식도는 도 3에 나타내었다.
상기 K418 플라스미드에서 GP5를 코딩하는 지놈 영역에, GP5부분의 엑토도메인(ectodomain)에 존재하는 3개의 글리코실화 부위 중 2개 (34번, 51번 아미노산)를 위치지정 돌연변이(site-directed mutagenesis)를 일으켜 다른 아미노산으로 치환함으로써 GP5의 N-글리코실화 부위를 제거하였다. GP5는 바이러스 중화능에 중요한 역할을 하는 부분인데, GP5의 탈글리코실화를 통해 중화항체 형성에 관여하는 에피토프를 노출시킴으로써 활발한 항체 생성을 유도할 수 있도록 한 것이다. 이렇게 제작된 변종 플라스미드를 K418DM으로 명명하였다. QIAprep Spin Midiprep kit (Qiagen, 한국)를 사용하여 전체 길이 변종 플라스미드를 추출, 준비하였다.
1-4. 키메릭 바이러스 RNA 전사물의 합성
1-3에서 준비한 K418 플라스미드 및 K418DM 플라스미드에 AclI를 처리하여 선형화시켰다. 이렇게 준비된 선형 DNA를 주형으로 하여 시험관내에서 mMESSAGEmMACHINE Ultra T7 키트 (Ambion, Austin, TX)를 사용하여 각각의 RNA 전사물을 합성하였다.
1-5. 키메릭 바이러스 RNA의 형질감염(transfection)
PRRS 바이러스 수용성 세포주로 알려진 MARC-145 세포를 사용하여 키메릭 바이러스의 복제를 확인하고자 하였다. MARC-145 세포는 네브라스카-링컨 대학으로부터 분양받은 것을 사용하였다.
MARC-145 세포를 PBS 버퍼에 현탁하였다. MARC-145 세포를 Gene Pulser Xcell (Bio-Rad, Hercules, CA)을 사용하여 250V 및 975 uF에서 전기천공하였다. PRRSV에 감염되지 않은 나이브(naive) MARC-145 세포로부터 세포 자체에 대한 RNA를 분리하였다. 이 RNA는 바이러스 RNA의 감염을 돕는 담체(carrier)의 역할을 수행한다. 상기 나이브 MARC-145 세포 자체에 대한 RNA 약 5 ug과 K418 및 K418DM의 RNA 전사물 약 10 ug을 각각 4.0 mm 큐벳으로 상기 전기천공된 MARC-145 세포에 형질감염시켰다.
형질감염된 MARC-145 세포는 10% FBS 및 1.25% DMSO를 포함하는 DMEM 배지에 희석하고 6 웰 플레이트에 분주하였다.
형질감염 48시간 후에 PRRSV의 뉴클레오프로틴을 타겟으로 하는 SDOW17 항체를 이용하여 면역형광분석(immunofluorescence assay, IFA)를 통해 MARC-145 세포에서 K418 및 K418DM 바이러스가 증폭되고 있음을 확인했다(도 4).
1-6. 키메라 바이러스의 다단계 성장 역학
96 웰 플레이트에 MARC-145 세포를 역가 측정 2일 전에 배양한 후 MARC-145 세포에 모바이러스(parental virus)인 FL12, LMY와 본 발명의 키메라 바이러스인 K418을 원액부터 10진 희석하여 각 웰에 감염시킨 후, 감염 12, 24, 48, 72, 96 시간 후에 배양 상청액을 수집하여 Reed 및 Muench 계산법으로 바이러스 역가를 측정함으로써 다단계 성장 역학을 비교하였다(도 5). 도 5에서 알 수 있는 바와 같이, K418은 FL12, LMY와 유사한 성장 패턴을 나타내어, K418에 가해진 유전자 조작이 바이러스 성장에 별로 영향을 주지 않았다는 것을 알 수 있었다. K418은 FL12, LMY와 유사한 최종 역가를 나타내었으나, 바이러스 성장이 약간 지연되었다.
1-7. 키메릭 바이러스를 이용한 사독백신의 제작
1-5에서 형질감염시킨 MARC-145 세포를 10일 동안 관찰하여 PRRS 바이러스 특이적인 세포변성효과(CPE)를 확인하였다. 계대된 상청액은 감염 5일차에 80%의 CPE를 생산하였고, 산출된 바이러스 역가는 106 TFID50/ml이었다.
상기 바이러스가 감염된 세포배양플라스크를 70도 냉동고에 얼리고 상온에 녹이는 과정을 3번 반복한 후 원심분리하여 세포를 제거한 상층액을 회수하여 이로부터 K418 및 K418DM을 회수(rescue)하였다.
사독백신을 만들기 위해 하기의 과정에 따라 바이러스를 불활화시켰다.
상기 K418 및 K418DM에 1mM BEI(binary ethylenimine)를 각각 첨가하고 37℃에서 24시간 동안 방치함으로써 바이러스를 불활화시켰다. 그 후 BEI를 중화하기 위해 0.1mM 나트륨-티오설페이트(Na-thiosulphate)를 첨가하고 37℃에서 2시간 동안 방치하였다.
바이러스의 불활화 여부를 확인하기 위해 하기의 과정을 수행하였다. MARC-145 세포를 조직배양용 플라스크에 2일간 증식시킨 후 세포 배양액을 제거한 다음, 상기 불활화된 K418 및 K418DM을 접종하여 37℃에서 1시간 동안 감작시켰다. 그 후 새로운 배지를 더하여 배양했다. 배양한지 3일 후에 PRRSV의 뉴클레오프로틴을 타겟으로 하는 SDOW17 항체를 이용하여 면역형광분석으로 바이러스의 증폭 여부를 확인하였으며, 7일 후에 PRRS 바이러스 특이적인 세포변성효과 (CPE)가 나타나는지 여부를 관찰하였다.
면역형광분석 결과 바이러스의 증폭이 나타나지 않았고, CPE가 관찰되지 않았으므로 K418 및 K418DM이 성공적으로 불활화되었음을 확인하였다. 특히 CPE 관찰 시 PRRS 바이러스 특이적인 CPE 뿐만 아니라 기타 바이러스에 의한 CPE 및 다른 이유로 인한 세포변성효과가 나타나지 않았다.
실시예 2. MLV 및 NVSL 97-7895와의 상동성 비교
상기 실시예 1에서 합성한 K418과, 국내에 시판되고 있는 생독 백신주인 베링거 인겔하임 사의 ‘인겔백 PRRS 생독백신(MLV)’, K418의 모바이러스이고 강독주인 NVSL 97-7895 간의 관계를 알아보고자 하기의 과정을 수행하였다.
K418의 GP5 단백질에 해당하는 지놈 영역을 역전사 중합효소 PCR을 통해 증폭하였다. 이때 프라이머는 PRRSV의 ORF5에 대한 프라이머를 사용하였다. 하기 표 2는 본 발명의 K418의 GP5 단백질 유전자 염기서열을 나타낸다.
[표 2]
Figure PCTKR2014001700-appb-I000002
K418, MLV, 및 NVSL 97-7895의 GP5 단백질 유전자 염기서열을 각각 비교 분석한 결과, MLV와 K418은 서로 약 94%의 상동성을 나타냄을 알 수 있었다. 또한 NVSL 97-7895와 K418은 서로 약 89%의 상동성을 나타냄을 알 수 있었다. 상동성 비교 분석 결과는 하기 표 3에 나타내었다.
[표 3]
Figure PCTKR2014001700-appb-I000003
실시예 3. 세포 계대 연구
실시예 1에서 제작한 K418 및 K418DM을 계대하였을 때 변형된 부위가 언제까지 연구되는지 확인하였다.
그 결과 K418DM에서 약 9번의 계대까지는 변형된 부위가 유지되나, 그 후에는 변형된 부위가 일관성있게 유지되지 않았다. 이는 바이러스가 원래의 상태로 돌아가려는 경향을 보이고, RNA 바이러스의 특성상 변이가 심하기 때문으로 생각된다. 따라서 계대할 때마다 변형된 부위가 유지되는지 여부를 확인할 필요가 있다.
현재 백신주로 사용한 바이러스는 MARC-145 세포에 접종하여 37℃에서 5일 배양한 후 2번 계대하였으며, 염기서열 분석을 통해 유전자를 확인한 후 -70℃에서 보관하였다.
실시예 4. 돼지에서의 병원성 확인
4주령의 PRRS 바이러스에 대한 항체가 음성인 돼지(경기도 포천의 PRRSV 감염력이 없는 농장에서 구입)에서 K418 및 K418DM 바이러스의 병원성을 조사하였다.
PRRS 바이러스에 대한 항체가 음성인 4주령의 자돈 12마리를 준비하여 8마리는 공격접종군으로, 4마리는 음성대조군으로 하였다. 공격접종군을 다시 4마리씩 2개 군으로 나누어, 1개 군에는 K418을, 1개 군에는 K418DM을 각각 104.5 TCID50/ml 씩 근육 주사하였다.
공격 접종 후 일주일간 임상증상을 관찰하였다.
또한 공격접종 후 기간별로 채혈하여 혈청을 분리한 후 MARC-145 세포에 접종하고, 2일 후에 면역형광분석을 실시하여 혈청 내 바이러스혈증(viremia)를 측정하였다.
그 결과, 공격접종군은 모두 발열 및 호흡기 증상을 동반한 임상증상이 나타났으나, 음성대조군에서는 임상증상이 나타나지 않았다. 또한 공격접종군의 혈청에서는 바이러스가 103~4TCID50/ml로 측정되었다. 공격접종군 내에서는 K418 접종군이 K418DM 접종군에 비해 임상증상 및 혈청 내 바이러스혈증이 더 높게 나타났다(표 4 참조).
[표 4]
Figure PCTKR2014001700-appb-I000004
실시예 5. 안전성 시험
5-1. 사독백신의 제작
실시예 4에서 병원성이 더 낮게 나타난 K418DM 바이러스를 사독백신주로 선정하고 백신주로서의 안전성을 평가하였다. 불활화가 확인된 K418DM 바이러스 107 TCID50/ml을 Montanide IMS1313과 70:30 (w/w) 의 비율로 혼합하여 사독 백신을 제작하였다. 이를 이용하여 마우스, 기니픽, 돼지에서의 안전성 시험을 수행하였다.
5-2. 마우스에서의 안전성 시험
체중 약 20g인 마우스 8마리의 복강에 5-1에서 제작한 사독 백신 0.5ml을 접종한 후 7일간 관찰했다. 시험 결과는 하기 표 5에 나타내었다. 백신 접종 후 7일간 이상 증상 없이 모두 생존하는 것을 확인하였다.
[표 5]
Figure PCTKR2014001700-appb-I000005
5-3. 기니픽에서의 안전성 시험
체중 약 300g의 기니픽 2마리에 5-1에서 제작한 사독 백신 2ml를 근육 접종하고, 동량을 다른 2마리에 복강 접종하여 7일간 관찰했다. 시험 결과는 하기 표 6에 나타내었다. 백신 접종 후 7일간 이상 증상 없이 모두 생존하는 것을 확인하였다.
[표 6]
Figure PCTKR2014001700-appb-I000006
5-4. 돼지에서의 안전성 시험
PRRS 바이러스 항체가 음성인 건강한 4주령 자돈 6마리에 5-1에서 제작한 사독백신을 근육 접종하였다. 1~2시간 내에 과민반응이 없는 것을 확인하였으며, 시험 기간 동안 백신 주사 부위의 괴사, 발열 증상 및 호흡기 질환 증상의 부작용이 없었음을 확인하였다. 시험 결과는 하기 표 7에 나타내었다.
[표 7]
Figure PCTKR2014001700-appb-I000007
실시예 6. 돼지에서의 면역원성 확인
K418DM의 최소면역원성을 시험하기 위해 항원량을 다양하게 하여 접종하고 생성된 항체의 역가를 측정하였다. 불활화가 확인된 K418DM 바이러스를 Montanide IMS1313과 70:30 (w/w) 또는 50:50 (w/w) 의 비율로 혼합하여 사독 백신을 제작하고 이를 사용하였다.
다양한 농도의 K418DM을 돼지에 투여하고 4주 후에 채혈하여 혈청을 분리하였다. 분리된 혈청을 56℃, 30분간 비동화하여 배지로 2진 희석한 후, PRRS 바이러스 (200 TCID50/0.1ml)로 동량 혼합하여 37℃에서 1시간 동안 반응시켰다. 이를 MARC-145 세포에 접종하여 37℃에서 배양했다. 배양 3일 후에 메탄올:아세톤을 1:1의 비율로 혼합한 시약에 고정하고, ELISA 키트 (IDEXX)를 사용하여 N 단백질을 타겟으로 하는 항체로 면역형광염색을 수행하여 항체가를 측정했다.
그 결과, 107 TCID50/ml이상의 항원량에서 최소면역원성이 형성되는 것을 확인하였다. 혈청 내 항체는 백신 접종 2주 후부터 생성되기 시작하여 시간이 지날수록 상승하는 패턴을 보였으며, 108 TCID50/ml 이상의 항원량을 투여했을 경우에 접종 6주차에 가장 높은 일반항체가가 나타났다. 108 TCID50/ml의 항원량을 투여했을 경우에는 중화항체가는 8배 이상으로 농림수산검역검사본부의 검정기준(중화항체가 1:4 이상)에 부합하는 결과를 얻었다.
K418DM의 최소면역원성 실험 결과에 대해서는 하기 표 8에 나타내었다.
[표 8]
Figure PCTKR2014001700-appb-I000008
실시예 7. 야외 시험
K418DM의 임상 효능을 평가하기 위하여 총 3개의 양돈 농장을 선정하여 야외 시험을 진행하였다.
국내 양돈 농장을 PRRSV를 기준으로 크게 세 가지로 나누어보면, PRRSV가 감염되지 않은 농장, PRRSV 야외주가 상재하고 있지만 병변을 일으키고 있지는 않은 안정화된 농장, 그리고 과거 PRRSV 감염 이력이 있거나 현재 감염 상태이기 때문에 PRRSV 생독백신인 베링거 인겔하임 사의 ‘인겔백 PRRS 생독백신(MLV)'를 사용하는 농장으로 분류된다. 야외 시험을 하기 위해 각 분류별로 1개씩 농장을 선정하였다(이하 각각 A, B, C 농장이라 함). 각 농장별로 22마리의 4주령 자돈을 선발하여 18마리에 K418DM을 접종하고 이를 K418DM 접종군으로, 4마리에 아무런 처치를 하지 않고 음성대조군으로 하였다. 그 후 7주간 중화항체 생성여부에 대하여 분석하였다.
MARC-145 세포에 각 자돈에서 채혈한 혈청과 PRRS K418DM을 혼합하여 감염시킨 후 2일간 배양하였다. 그 후 FA 검사법으로 각 자돈에서 채혈한 혈청 내의 중화항체 존재 여부를 검사하였다. 이 때 사용한 항체는, 1차 항체로 PRRSV N 단백질에 특이적인 단일클론항체 (SDOW-17)을 사용하였고, 2차 항체로 항-마우스 IgG FITC 컨주게이션된 항체(Alexa488)를 사용하였다. 그 결과는 하기 표 8 및 도 6(a, A, b, B, c, C의 의미는 표 8과 동일)에 나타내었다. A농장에서는 중화항체 양성율이 약 38%였으며, B농장에서는 약 94%, C농장에서는 약 72%로 나타나, 농장 상황에 따라 K418DM의 효과가 큰 차이를 보이는 것을 확인하였다.
PRRSV가 감염되지 않은 A농장에서 항체 양성율이 비교적 낮게 나타난 것은 개체 차이에 따른 것으로 보이며, 접종군의 개체수를 늘린 후 진행한다면 통계적으로 더욱 정확한 결과를 얻을 수 있을 것으로 예상된다.
B농장은 대부분의 K418DM 접종군에서 높은 중화항체가를 확인하였다. B농장의 자돈들은 B농장에서 상재하고 있는 야외주 PRRSV에 대한 항체를 가지고 있을 것임에도 불구하고 K418DM에 의해 면역원성이 더욱 증가한 이유를 규명하기 위하여, 상기 야외주와 K418DM의 GP5 단백질 부분의 염기서열을 PCR로 증폭한 후 시퀀싱하였다. 그 결과, 야외주 PRRSV의 면역원성에 기여하는 바이러스 구조단백질인 GP5 단백질과 K418DM의 GP5 단백질 간에 약 96%의 높은 상동성이 존재함이 밝혀졌다. 이로부터 B농장의 K418DM 접종군에서 높은 중화항체가가 나타난 이유는 상동성 변이주에 대한 백신 효과 때문임을 알 수 있었다.
C농장에서도 K418DM 접종군에서 약 72%의 비교적 높은 중화항체가가 확인되었다. C농장에는 과거 감염되었거나 현재 감염되어 있는 야외주 PRRSV 또는 약독화된 생독백신주가 상재하고 있을 것이므로 C농장의 자돈들도 대부분 이에 대한 항체를 가지고 있을 것으로 예상되었다. K418DM에 의해 면역원성이 더욱 증가한 이유를 규명하기 위하여 C농장에서 접종하고 있는 PRRSV 생독백신의 GP5 단백질과 K418DM의 상동성을 비교한 결과, 약 91%의 상동성이 있음이 확인되었다. 이로부터 C농장의 K418DM 접종군에서 높은 중화항체가가 나타난 이유는 상동성 변이주에 대한 백신 효과 때문임을 알 수 있었다.
[표 9]
Figure PCTKR2014001700-appb-I000009
상기 야외시험 결과로부터, K418DM이 국내 대부분의 양돈 농장에서 PRRSV 사독백신으로서 유용하게 사용될 수 있음을 확인할 수 있었다.

Claims (17)

  1. 서열번호 1로 기재되는 염기서열을 갖는 돼지 생식기 호흡기 증후군 바이러스(PRRSV) 키메릭 변이주의 DNA.
  2. 제1항의 돼지 생식기 호흡기 증후군 바이러스 키메릭 변이주의 DNA를 역전사한 RNA.
  3. 서열번호 2로 기재되는 염기서열을 갖는 돼지 생식기 호흡기 증후군 바이러스(PRRSV) 키메릭 변이주의 DNA.
  4. 제3항의 돼지 생식기 호흡기 증후군 바이러스 키메릭 변이주의 DNA를 역전사한 RNA.
  5. 제1항의 돼지 생식기 호흡기 증후군 바이러스 키메릭 변이주의 DNA를 포함하는 세포.
  6. 제3항의 돼지 생식기 호흡기 증후군 바이러스 키메릭 변이주의 DNA를 포함하는 세포.
  7. 제 6항에 있어서, 상기 세포는 수탁번호 KCCM11458P인 세포.
  8. 제5항 또는 제6항에 있어서, 상기 세포는 Escherichia coli DH5α 세포인 세포.
  9. 제1항 또는 제3항의 DNA, 또는 제2항 또는 제4항의 RNA를 포함하는 돼지 생식기 호흡기 증후군 바이러스 백신.
  10. 제3항의 DNA 또는 제4항의 RNA를 포함하는 돼지 생식기 호흡기 증후군 바이러스 백신.
  11. 제10항에 있어서, 상기 백신은 담체, 희석제, 부형제, 및 어주번트(adjuvant)로 이루어진 군에서 선택되는 1 이상을 더 포함하는, 돼지 생식기 호흡기 증후군 바이러스 백신.
  12. 제10항에 있어서, 상기 DNA 또는 RNA는 불활화된 것인 돼지 생식기 호흡기 증후군 바이러스(PRRSV) 백신.
  13. 제5항 내지 제7항 중 어느 한 항의 세포를 이용하여 돼지 생식기 호흡기 증후군 바이러스를 생산하는 단계를 포함하는 돼지 생식기 호흡기 증후군 바이러스 키메릭 변이주의 생산방법.
  14. 제5항 내지 제7항 중 어느 한 항의 세포를 이용하여 돼지 생식기 호흡기 증후군 바이러스 백신을 생산하는 방법.
  15. 제1항 또는 제3항의 DNA, 또는 제2항 또는 제4항의 RNA를 이용하여 돼지 생식기 호흡기 증후군 바이러스 백신을 생산하는 방법.
  16. PRRSV NVSL 97-7895 변이주의 ORF1 부위 및 PRRSV LMY 변이주의 ORF2 내지 ORF7을 조합하여 서열번호 1로 기재되는 DNA 서열을 갖는 돼지 생식기 호흡기 증후군 바이러스 키메릭 변이주를 생산하는 방법.
  17. 1) PRRSV NVSL 97-7895 변이주의 ORF1 부위 및 PRRSV LMY 변이주의 ORF2 내지 ORF7을 조합하는 단계; 및
    2) 상기 1)단계에서 조합된 염기서열에서 GP5를 코딩하는 유전자에 돌연변이를 유발하는 단계를 포함하는, 서열번호 2로 기재되는 DNA 서열을 갖는 돼지 생식기 호흡기 증후군 바이러스 키메릭 변이주를 생산하는 방법.
PCT/KR2014/001700 2013-10-19 2014-02-28 돼지 생식기 호흡기 증후군 바이러스의 키메릭 변이주 WO2015056850A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130124958 2013-10-19
KR10-2013-0124958 2013-10-19

Publications (1)

Publication Number Publication Date
WO2015056850A1 true WO2015056850A1 (ko) 2015-04-23

Family

ID=52828275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001700 WO2015056850A1 (ko) 2013-10-19 2014-02-28 돼지 생식기 호흡기 증후군 바이러스의 키메릭 변이주

Country Status (2)

Country Link
KR (2) KR20150045873A (ko)
WO (1) WO2015056850A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110904055A (zh) * 2019-11-15 2020-03-24 华南农业大学 猪繁殖与呼吸综合征病毒重组疫苗株prrsv-sp及其制备方法与应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102148259B1 (ko) 2018-10-01 2020-09-03 대한민국(농림축산식품부 농림축산검역본부장) 돼지 생식기 호흡기 증후군 바이러스의 키메릭 변이주
KR102335864B1 (ko) * 2018-12-27 2021-12-06 주식회사 바이오포아 돼지 생식기 및 호흡기 증후군 바이러스의 키메라 바이러스 및 이를 이용한 백신
WO2020138761A1 (ko) * 2018-12-27 2020-07-02 주식회사 바이오포아 돼지 생식기 및 호흡기 증후군 바이러스의 키메라 바이러스 및 이를 이용한 백신
WO2023128051A1 (ko) * 2021-12-30 2023-07-06 주식회사 바이오포아 돼지생식기호흡기증후군바이러스 유래 펩타이드를 발현하는 키메라 바이러스 및 이를 포함하는 백신 조성물

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080311143A1 (en) * 2007-06-15 2008-12-18 Protatek International, Inc. Construction of chimera prrsv, compositions and vaccine preparations
KR20120131533A (ko) * 2011-05-25 2012-12-05 건국대학교 산학협력단 면역원성이 증강된 돼지 생식기 호흡기 증후군 바이러스의 제작과 그 이용
KR20130010426A (ko) * 2012-01-18 2013-01-28 서울대학교산학협력단 한국형 돼지 생식기 호흡기 증후군 바이러스 예방 백신 조성물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080311143A1 (en) * 2007-06-15 2008-12-18 Protatek International, Inc. Construction of chimera prrsv, compositions and vaccine preparations
KR20120131533A (ko) * 2011-05-25 2012-12-05 건국대학교 산학협력단 면역원성이 증강된 돼지 생식기 호흡기 증후군 바이러스의 제작과 그 이용
KR20130010426A (ko) * 2012-01-18 2013-01-28 서울대학교산학협력단 한국형 돼지 생식기 호흡기 증후군 바이러스 예방 백신 조성물

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK 18 April 2008 (2008-04-18), "Porcine reproductive and respiratory syndrome virus strain NVSL 97-7895, complete genome", accession no. Y545985.1 *
LEE, JEONG A ET AL.: "Vaccine efficacy of a chimeric mutant of porcine reproductive and respiratory syndrome virus", 2013, 4TH FALL CONFERENCE OF THE KOREAN VACCINE SOCIETY, vol. A-10, 31 August 2013 (2013-08-31), pages 78 *
TRUONG, H. M. ET AL.: "A highly pathogenic porcine reproductive and respiratory syndrome virus generated from an infectious cDNA clone retains the in vivo virulence and transmissibility properties of the parental virus", VIROGOGY, vol. 325, no. 2, 1 August 2004 (2004-08-01), pages 308 - 319, XP004520316, DOI: doi:10.1016/j.virol.2004.04.046 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110904055A (zh) * 2019-11-15 2020-03-24 华南农业大学 猪繁殖与呼吸综合征病毒重组疫苗株prrsv-sp及其制备方法与应用
CN110904055B (zh) * 2019-11-15 2023-10-13 华南农业大学 猪繁殖与呼吸综合征病毒重组疫苗株prrsv-sp及其制备方法与应用

Also Published As

Publication number Publication date
KR20160036552A (ko) 2016-04-04
KR20150045873A (ko) 2015-04-29
KR101614679B1 (ko) 2016-04-21

Similar Documents

Publication Publication Date Title
AU2021201224B2 (en) PRRS virus variant, European PRRS virus cDNA clone, and uses thereof
CA2198461C (en) Polynucleic acids isolated from a porcine reproductive and respiratory syndrome virus (prrsv), proteins encoded by the polynucleic acids, vaccines based on the proteins and/or polynucleic acids, a method of protecting a pig from a prrsv and a method of detecting a prrsv
US7608272B2 (en) Methods and compositions for vaccination of animals with PRRSV antigens with improved immunogenicity
US6001370A (en) Attenuated strain of the virus causing the porcine reproductive respiratory syndrome (PRRS), and vaccines
KR100996105B1 (ko) 돼지 생식기 호흡기 증후군 바이러스의 n 단백질돌연변이체
US9187731B2 (en) PRRS virus inducing type I interferon in susceptible cells
US9315781B2 (en) Infectious CDNA clone of european PRRS virus and uses thereof
US20020012670A1 (en) Recombinant attenuation of porcine reproductive and respiratory syndrome (PRRSV)
WO2015056850A1 (ko) 돼지 생식기 호흡기 증후군 바이러스의 키메릭 변이주
JP2004534522A (ja) 生きた弱毒化されたprrsウイルス株
Castillo-Olivares et al. Generation of a candidate live marker vaccine for equine arteritis virus by deletion of the major virus neutralization domain
KR102193460B1 (ko) 돼지생식기호흡기증후군 예방용 백신 조성물 및 이의 예방 방법
MXPA02007198A (es) Atenuacion recombinante de prrsv.
WO2012015270A2 (ko) 돼지생식기호흡기증후군 바이러스 감수성 세포주
WO2024029707A1 (ko) 북미형 및 유럽형 돼지생식기호흡기증후군 바이러스의 키메라 균주 및 그의 제조방법
Rajkhowa Porcine Reproductive and Respiratory Syndrome Virus
FOUR Dong Sun, Won-Il Kim, Yong-Il Cho, Hai Hoang, Kyoung-Jin Yoon
EA044385B1 (ru) Вариант вируса ррсс, клон кднк вируса ррсс европейского типа и их применение
Zhang et al. CELL SURFACE EXPRESSION OF VIRAL PROTEINS OF PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME VIRUS IN INSECT CELLS AND THEIR ROLE IN PROTECTION AGAINST RESPIRATORY DISEASE
MX2008003046A (en) Methods and compositions for vaccination of animals with prrsv antigens with improved immunogenicity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14854415

Country of ref document: EP

Kind code of ref document: A1