WO2015056353A1 - 高セキュア無線通信システム - Google Patents

高セキュア無線通信システム Download PDF

Info

Publication number
WO2015056353A1
WO2015056353A1 PCT/JP2013/078376 JP2013078376W WO2015056353A1 WO 2015056353 A1 WO2015056353 A1 WO 2015056353A1 JP 2013078376 W JP2013078376 W JP 2013078376W WO 2015056353 A1 WO2015056353 A1 WO 2015056353A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
polarization
wireless communication
secure wireless
communication system
Prior art date
Application number
PCT/JP2013/078376
Other languages
English (en)
French (fr)
Inventor
武井 健
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US15/028,490 priority Critical patent/US10470039B2/en
Priority to JP2015542475A priority patent/JP5986323B2/ja
Priority to PCT/JP2013/078376 priority patent/WO2015056353A1/ja
Publication of WO2015056353A1 publication Critical patent/WO2015056353A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/22Scatter propagation systems, e.g. ionospheric, tropospheric or meteor scatter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K1/00Secret communication
    • H04K1/08Secret communication by varying the polarisation of transmitted waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0875Generation of secret information including derivation or calculation of cryptographic keys or passwords based on channel impulse response [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/80Wireless

Definitions

  • the present invention relates to the provision of a wireless device that realizes highly secure wireless communication, and in particular, the environment in which the wireless device is placed includes an obstacle that reflects and scatters radio waves, and uses multiple waves generated by the obstacle,
  • the present invention relates to a technique for realizing a wireless communication system capable of detecting and removing the confidentiality of information to be transmitted and external interference with the information.
  • each device existing between the transmission and reception points of the communication acts as an electromagnetic wave scatterer. Therefore, a plurality of different transmissions from the transmission point to the reception point through a plurality of multiple reflection propagation paths due to reflection by each device. Done through a pass.
  • the multiple paths due to multiple reflection are unique at the transmission point and the reception point.
  • the transmission point passes through a path different from the multiple paths from the transmission point to the reception point. From the other spatial point, the signal generated from the other spatial point also reaches the reception point via a path different from a plurality of paths from the transmission point to the reception point.
  • patent document 1 As a technique using such a principle. Using the frequency spectrum of the received signal as a key, the information to be transmitted is encrypted and transmitted from the transmission point. At the reception point, the received signal is to be decrypted using the frequency spectrum. Further, in Patent Document 2, information to be transmitted is encrypted and transmitted from a transmission point using a time-varying behavior of received power called delay spread in mobile communication as a key. Decrypt the cipher with a delay spread.
  • the transmitter transmits an impulse train, uses the unique impulse response at the reception point as a key, encrypts information to be transmitted, transmits the information from the transmission point, and receives the received signal at the reception point. Decrypt the cipher using impulse response. Due to the reversibility of electromagnetic waves and the symmetry of transmission and reception in communication, the signals of these received signals are transmitted when the signal waveform on the same time axis is transmitted from the transmission point to the reception point and when transmitted from the reception point to the transmission point. The waveform is the same. In addition, since the signal waveform is generated by interference of electromagnetic waves transmitted through a plurality of transmission lines due to inherent multiple reflected waves formed between transmission and reception points, the signal waveform is acquired at a spatial point other than the transmission and reception points. Is extremely difficult.
  • Patent Document 1 An encryption key for concealing a signal to be transmitted in an irregular signal waveform change on the time axis in a reception signal unit in mobile communication is considered.
  • the change in waveform is scarce, it is difficult to complicate the key for concealing the signal, and the degree of concealment cannot be increased.
  • Patent Document 2 it is necessary to use a large number of frequencies over a wide frequency band in order to obtain a complex frequency spectrum by fixed communication.
  • Patent Document 2 since a time change of RSSI (Received Signal Signal Strength Indicator) does not appear in fixed communication and signal change is forcibly caused, it is necessary to change a radiation pattern of a transmission signal using a plurality of antennas.
  • RSSI Receiveived Signal Signal Strength Indicator
  • Patent Document 3 since a pulse wave is used as a transmission wave, a large number of frequency components are required to generate the pulse wave, and there is a problem in that the frequency utilization efficiency is reduced as in Patent Document 1. Furthermore, with any technique, the information to be transmitted can be concealed by encryption, so that it is effective in preventing eavesdropping on the same signal, but the signal is disturbed by an external intruder and the same by “spoofing”. No consideration is given to signal modification.
  • An object of the present invention is that there are a plurality of scatterers of electromagnetic waves between a transmitter and a receiver, and the electromagnetic waves emitted from the transmitter are subjected to multiple reflections by the scatterers, and they interfere with each other to the receiver. It is intended to detect alteration of a signal transmitted between transmission and reception in a reaching radio wave environment.
  • the disclosed highly secure wireless communication system includes a transmitter for transmitting the same information at a predetermined polarization angle with a different rotational polarization for rotating the polarization of a carrier wave, and restoring received information at the predetermined polarization angle, A receiver that compares the restoration results of the predetermined polarization angles with each other;
  • the present invention there are a plurality of scatterers of electromagnetic waves between the transmitter and the receiver, and the electromagnetic waves emitted from the transmitter receive multiple reflections by the scatterers and interfere with each other to reach the receiver.
  • the electromagnetic waves emitted from the transmitter receive multiple reflections by the scatterers and interfere with each other to reach the receiver.
  • One example of this embodiment uses two transmitting antennas to realize a transmission wave whose polarization direction rotates at a first frequency, and rearranges and recombines information signals at every sampling timing of a frequency higher than the first frequency.
  • the later signal is weighted and superimposed on a carrier wave to generate the transmission wave, and the receiver reconstructs the information signal using the weight using the sampling timing.
  • the weight used by the transmitter is different from the number of sampling points in the first period of the transmission wave that rotates the original information signal at the first frequency, and a plurality of numbers assigned to the same point. Are recombined in the same number of repetitions as the same point, and a plurality of values in each period can be distinguished from each other.
  • Still another example of the present embodiment transmits an information signal weighted with an arbitrary weight from the first transmission / reception point to the second transmission / reception point, and the second transmission / reception point demodulates the signal to reproduce the weight. Then, a new information signal weighted with the reproduced weight is transmitted to the first transmission / reception point, and the reception signal is demodulated at the first transmission / reception point and transmitted from the second transmission / reception point with the weight used for the initial weighting. The new information signal is reproduced. Subsequently, the information signal weighted with the same weight is transmitted from the first transmission / reception point to the second transmission / reception point, and the second transmission / reception point demodulates the signal and uses the weight weighted with the information signal first. A new information signal is transmitted to the first transmission / reception point using the weight obtained by reproducing the signal and demodulating the received signal.
  • Still another example of the present embodiment is that the weight used for weighting the previous information signal transmission and the weight obtained by demodulating the received signal at the first transmission / reception point and the second transmission / reception point are If there is a mismatch at different sampling points in the cycle, the appearance of an outside intruder is recognized, the information signal corresponding to the sampling point that caused the mismatch is rejected, and the information signal is newly transmitted, the mismatch occurs.
  • the content of the information signal to be transmitted corresponding to the sampling point is a dummy signal that is unrelated to the monitoring / control of the device.
  • the electromagnetic wave radiated from the transmitting antenna 370 reaches the receiving antenna 380 by repeating reflection by a plurality of electromagnetic wave reflectors 372 distributed around the transmitter 375 and the receiver 385.
  • a transmission wave 391 transmitted in the first polarization direction using a transmission antenna 370 that rotates the polarization direction from the transmitter 375 is a combination of a reflected wave 393a having a path difference L1a and a reflected wave 393b having a path difference L1b.
  • the wave 392 reaches the receiver 385 in the third polarization direction.
  • the transmission wave 395 transmitted in the second polarization direction at another timing by rotating the polarization direction from the transmitter 375 is a combination of the reflected wave 397a of the path difference L2a and the reflected wave 397b of the path difference L2b.
  • the received wave 396 reaches the receiver 385 in the fourth polarization direction.
  • 393a and 393b cancel the polarization inclination of the transmission electromagnetic wave with the reception antenna 380 having a fixed polarization at P4 and P8.
  • the received power at the receiving antenna 380 varies depending on the polarization gradient of the transmission electromagnetic wave, but the received power does not become zero in any polarization.
  • the combination of path pairs whose power cancels at the receiving point can have a relationship between the path length and the rotation frequency of the polarization.Therefore, changing the combination of the path pairs can cause a difference in frequency between multiple carriers to generate the rotation polarization. It can be realized by changing.
  • the communication procedure is described below. If the fixed information is given to the transmitter and the receiver in advance and the functions of the transmitter and the receiver are exchanged using the fixed information, and the fixed information is transmitted and received with each other, the same received waveform in FIG. 2 is transmitted. Machine and receiver can get. Next, the polarization of the information signal is rotated from the transmitter using the received waveform as a key, and different weights are applied to the different polarized waves, and sent to the receiver. The receiver stores the received waveform, restores the weight for sampling points for different polarizations, extracts the information signal converted from the received signal using the key by the weight, and uses the received waveform held in advance as a key An information signal is reproduced from the demodulated received signal.
  • the period of the information signal with respect to the rotation period of the polarization is 4 to 100 times less than the current state of the device used for digital signal processing to detect the information signal independently (if the frequency is 1/100 or more 4 1 or less) is required.
  • the difference is preferably about 10 times (one digit). Therefore, the frequency of the rotational polarization is set to be 10 times or more higher than the upper limit frequency of the information signal and 10 times or more lower than the frequency of the carrier wave (1/10 or less).
  • the receiver uses the function of the transmitter to convert the received waveform from which the information signal is newly received as a key, performs weighting corresponding to each polarization using the restored weight, and then performs rotation polarization.
  • the wave is sent back to the transmitter to update the received waveform.
  • FIG. 2 shows only the transmitter and receiver components having transmission and reception functions, but in actual operation, the transmitter 375 and the receiver 380 respectively transmit and receive. Therefore, the transmitting antenna 370 and the receiving antenna 380 can support fixed polarization and rotational polarization, respectively.
  • the information signal transmitted between the transmission and reception is converted using the unique received waveform that can be acquired only at the transmission point and the reception point as a key and radiated into free space.
  • FIG. 1 is an example of a configuration diagram of a transmitter and a receiver that realize the wireless system of the present embodiment.
  • the transmitter limits the upper limit of the frequency included in the signal in the frequency band (fI) generated by the information signal generation circuit 1 by the band limiting filter 2, and the rotation polarization frequency carrier (fr) 4 is generated by the modulation circuit 3.
  • the transmission carrier frequency carrier (fc) 6 is further superimposed by the high frequency mixer 5 and unnecessary harmonic components are removed by the spurious elimination filter 7, and the amplitude is controlled by the cosine weighting circuit 12, and the transmission vertical antenna 11 is controlled.
  • the amplitude is controlled by the sine weighting circuit 14, and simultaneously transmitted from the transmission horizontal antenna 13 to the space to form a rotationally polarized electromagnetic wave 10 that travels while rotating the polarization.
  • the cosine weighting circuit 12 and the sine weighting circuit 14 weight the amplitudes of the vertical antenna 11 and the horizontal antenna 13 with a phase difference of 90 degrees with each other at the same frequency as the transmission rotational frequency carrier (fr) 4, so that rotationally polarized electromagnetic waves
  • the rotation frequency of the polarization is the same as that of the rotation frequency carrier (fr) 4.
  • the receiver includes a receiving vertical antenna 31 whose amplitude is controlled by a string weighting circuit 32 and a receiving horizontal antenna 33 whose amplitude is controlled by a sine weighting circuit 34, and signals inputted from both antennas are added together, and a high frequency mixer 27 is superposed on the received carrier frequency carrier (fc) 28 by the low-pass filter 26, and sequentially passes through the delay unit 22 that combines the frequency of the rotational polarization and the frequency component of the information signal in a cascaded manner.
  • fc received carrier frequency carrier
  • a plurality of signals corresponding to the integer number are multiplied by the received rotational polarization frequency carrier (fr) 21 and the demodulator 23, respectively, with a phase difference that is an integral fraction of the period, and a plurality of signals equal to the integer number are multiplied.
  • fr rotational polarization frequency carrier
  • the transmitter's vertical antenna 11 and horizontal antenna 13 are composed of two linearly polarized antennas that are spatially orthogonal.
  • the vertical antenna 31 and the horizontal antenna 33 of the receiver are also composed of two linearly polarized antennas that are spatially orthogonal.
  • the baseband circuit 25 compares the contents of the plurality of registers 24 with each other and checks whether they are the same. If the contents of any register are different from the others, it can be determined that there has been an intentional change from the outside. Further, by rejecting the contents of the register including contents different from the others, the information signal sent from the transmitting unit can be kept away from the influence of the intentional changing action from the outside.
  • the present embodiment not only the presence / absence of an intentional change act from the outside can be detected, but also the alteration of the information signal to be transmitted in response to the change act can be suppressed. There is an effect to realize.
  • FIG. 3 is an example of another configuration diagram of a transmitter and a receiver that implement the wireless system of the present embodiment.
  • the receiver is newly provided with a dummy signal generation circuit 15 so that the period of the rotational polarization (Tr) is transmitted for a period of an integral value (Tr / N).
  • the dummy signal generation circuit 15 generates a dummy signal that is irrelevant to the information signal to be sent by the machine.
  • an adaptive phase shifter (TXi) 16 and an adder 17 are newly installed, and the signal generated by the dummy signal generation circuit 15 is caused by an intentional change act from the outside detected by the baseband circuit 25.
  • the adaptive phase shift circuit (TXi) 16 is adjusted so that the dummy signal is transmitted at the polarization angle corresponding to the period.
  • the polarization of the received electromagnetic wave related to the intentional change from the outside detected by the receiver at the same time as the polarization angle of the electromagnetic wave emitted from the transmitting antennas 11 and 13 during transmission.
  • the angles do not always match, but when transmitting information by dividing the period (Tr) of the rotational polarization, a different code is newly superimposed for each divided period to be emitted from the transmitter. It is possible to specify the angle of polarization at a certain point.
  • the present embodiment not only the influence on the received signal of the intentional change act from the outside is reduced, but also the transmission of data having no information to the party of the change action or the change action is hindered to the party. Since possible data can be sent, there is an effect of generating deterrence that does not cause an intentional change act from the outside.
  • FIG. 4 is an example of still another configuration diagram of a transmitter and a receiver that realize the wireless system of the present embodiment.
  • the difference from the transmitter of the embodiment of FIG. 1 is that instead of the rotationally polarized frequency carrier (fr) 4, a block code that generates different block codes in each divided period when the same period is divided into integers by the period of the rotational frequency
  • the code generation circuit 19 is provided, and the block code generated by the block code generation circuit 19 is superimposed on the information signal by the multiplier 18 instead of the modulation circuit 3.
  • 1 is that the frequency of the rotational polarization and the frequency component of the information signal are sequentially connected to each other by an integer of the period of the rotational polarization via a delay device 22 that is coupled in cascade.
  • a plurality of signals corresponding to the number of integers having a phase difference are stored in the plurality of registers 24 as they are, and the contents of each register 24 are generated by a plurality of different block codes and multipliers 37 generated by the block code generation circuit 19. The contents are multiplied and stored in the plurality of second registers 38.
  • the signal for each polarization angle of the received electromagnetic wave is obtained from the polarization angle of the electromagnetic wave when emitted by the transmitter and the block code. Since it is possible to associate them with each other, transmission of data having no information to the party of the intentional change act from the outside, which is the effect of the second embodiment, or data that may prevent the change action from being sent to the party Can be realized.
  • FIG. 5 is an example of still another configuration diagram of the transmitter and the receiver that realize the wireless system of the present embodiment. 1 differs from the transmitter of the embodiment of FIG. 1 in that the cosine weighting circuits 12 and 32 and the sine weighting circuits 14 and 34 are eliminated, and instead of the 90 degree phase shifters 20 and 40, the transmitting horizontal antenna 13 and the receiving vertical antenna 39.
  • the adder 43 of the transmission first carrier carrier (fc + fr) 41 and the transmission second carrier carrier (fc-fr) 42 instead of the transmission carrier carrier 6 and the reception carrier carrier 28 and the reception first That is, a combined signal by the adder 53 of the carrier carrier (fc + Fr) 51 and the received second carrier carrier (fc-fr) 52 is used.
  • the first carrier wave and the second carrier wave have different frequencies, and when added, a beat wave is generated at a frequency difference between the two.
  • a rotationally polarized electromagnetic wave can be generated by spatially synthesizing this beat wave with a spatial difference of 90 degrees.
  • FIG. 6 shows a time waveform at each point of the transmitter of this embodiment.
  • the waveform of the waveform A of the transmission first carrier wave carrier and the waveform B of the transmission second carrier wave carrier are combined by the adder 43 to become a waveform C.
  • the wave of the waveform C is spatially shifted by 90 degrees and synthesized in a spatially orthogonal direction, a rotationally polarized wave like the waveform D is formed.
  • the cosine weighting circuit and the sine weighting circuit that require mutual control can be eliminated, which is effective in reducing the size and manufacturing cost of the transmitter and the receiver according to the present invention.
  • FIG. 7 is an example of still another configuration diagram of a transmitter and a receiver that realize the wireless system of the present embodiment. 1 differs from the transmitter of the embodiment of FIG. 1 in that a detector circuit 44 is newly inserted into the transmitter at a common input point of the cosine weighting circuit 32 and the sine weighting circuit 34, and the output of the detector circuit 44 is compared with a comparison level generator.
  • the comparison voltage of 46 is compared with the comparator 45, the output is thinned out by the time axis signal thinning circuit 48, and is superimposed on the multiplier 56 newly introduced into the band-limited signal by the band-limiting filter 2. is there.
  • the clock is supplied from the clock generation circuit 47 to the comparator 45 and the time axis signal thinning circuit 48, and the timing of comparison and thinning is determined from the same clock, respectively. Further, a fixed information generating circuit 54 is newly installed in the transmitter, and its output is selected by the switch 55 together with the output of the information signal generating circuit 1. A change on the time axis of the received signal is detected by the detection circuit 44, and converted to a 1/0 signal by the comparator 45 at the sampling frequency of the clock generation circuit 47.
  • the converted 1/0 signal is converted into a bit string that requires resolution on the time axis that is approximately the same as the period of rotational polarization, several times, or several tens of times by the time axis signal thinning circuit 48, and the bit string is superimposed on the information signal.
  • the information signal can be concealed.
  • the same reception envelope cannot be obtained at points other than the transmission point and the reception point. Therefore, the information signal cannot be restored at other points, and the effect of concealing communication can be obtained.
  • the fixed signal generation circuit 54 it is possible to have the same fixed information at the transmission point and the reception point in advance by using the fixed signal generation circuit 54, and it is irrelevant to the content of information to be transmitted using the identification information. Since information relating to communication protocols such as communication start and communication end can be exchanged between transmission and reception, the procedure for encrypted communication of information signals according to this embodiment can be simplified, and a transmitter and a receiver Power consumption and software costs can be reduced.
  • FIG. 8 is an example of a wireless protocol transmitter and receiver communication protocol in the fifth embodiment.
  • the transmitter and receiver are integrated into a radio.
  • the wireless device confirms the information signal transmission request (S800, S801). If there is a transmission request, the standard information is first transmitted (S802).
  • the radio always checks whether there is a signal to be received (S803), and when a received signal is obtained (S804 to S806), it demodulates the content (S807) to determine whether it is a fixed signal or not (S808), and if the standard signal is confirmed, the standard signal is always transmitted (S809).
  • the standard signal is received immediately after sending the standard signal, it is possible to confirm the status of communication between the transmission point and the reception point.
  • the information is concealed with the key generated from the envelope information (S810) and transmitted (S811). According to the protocol described above, the receiver generates a key from the envelope information of the received signal and restores the concealed information signal included in the received signal.
  • the determination of the transmission timing of the information signal and the encryption key for concealing the information signal which are indispensable steps for sending the information signal between the transmission point and the reception point by the fixed signal, are performed. Since acquisition can be realized at the same time, highly secure transmission of information signals is actually possible.
  • FIG. 9 is an example of still another configuration diagram of the transmitter and the receiver that realize the wireless system of the present embodiment. 1 is different from the receiver in the embodiment of FIG. 1 in that a digital signal generation circuit 71 for reception rotation polarization carrier is provided instead of the reception rotation polarization carrier generation circuit 21, and a low frequency mixer 27, reception carrier frequency carrier 28 and Instead of the band-pass filter 26, a reception ⁇ DAC 73, a reception carrier frequency carrier digital signal generation circuit 74, a reception digital filter 72, and a reception sample hold circuit 75 are provided.
  • the digital signal generation circuit 71 for the reception rotation polarization carrier can generate the reception rotation polarization carrier by a digital circuit.
  • the reception high frequency signal added through the cosine weighting circuit 32 and the sine weighting circuit 34 is received by the sample hold circuit 75. It is converted into a continuous digital waveform, digitally frequency-converted by the reception ⁇ DAC 73 using the reception carrier frequency carrier digital signal generation circuit 74 as a clock, and unnecessary alias signals generated accompanying it are removed by the reception digital filter 72 and rotated. Signals can be converted to the polarized frequency band.
  • the receiver applied to the wireless system can be realized by a digital circuit, it is possible to introduce an automatic adjustment function for the temperature change and aging change of the receiver, and the reliability of the receiver can be improved. Become.
  • FIG. 10 is an example of still another configuration diagram of a transmitter and a receiver that implement the wireless system of the present embodiment.
  • the transmitter converts the digital signal of the frequency band fI generated by the digital information signal generation circuit 61 into a 1/0 bit string by the parallel-serial (parallel / serial) conversion circuit 62, and divides the same period into integers by the rotation frequency period.
  • the receiver converts the reception power of the reception vertical antenna 31 into a continuous digital waveform by the sample-and-hold circuit 95, digitally down-converts the frequency by the reception ⁇ DAC 93 using the reception carrier frequency carrier digital signal generation circuit 74 as a clock, and rotational polarization
  • the unnecessary alias signal generated incidentally via the 90-degree phase shifter 91 is removed by the reception digital filter 92 to convert the signal to the rotational polarization frequency band, and the frequency of the rotational polarization and the frequency component of the information signal
  • a plurality of signals of the same number as the integer number are stored in the plurality of registers 24 as they are, with a phase difference that is an integral number of the period of the rotation polarization, sequentially through the delay device 22 that is coupled in cascade.
  • each register 24 are multiplied by a plurality of different block codes generated by the block code generation circuit 19 by the multiplier 37, so that a plurality of second registers are generated.
  • the data is stored in the data base 38 and used for digital signal processing of the baseband circuit 25.
  • the received power of the receiving horizontal antenna 33 is converted into a continuous digital waveform by the sample-and-hold circuit 85 to generate a digital signal for the received carrier frequency carrier.
  • the frequency is digitally down-converted by the reception ⁇ DAC 83 using the circuit 74 as a clock, and the unnecessary alias signal generated accompanying it is removed by the reception digital filter 82 to convert the signal to the rotational polarization frequency band.
  • the same processing as that of the signal received by the reception vertical antenna is performed through the delay device 87 in which the frequency and the frequency component of the information signal are coupled in cascade, and are used for the digital signal processing of the second baseband circuit 88. .
  • the effect of the embodiment of FIG. 4 can be realized by a digital circuit, it is possible to introduce an automatic adjustment function for the temperature change and secular change of the receiver together with the effect of the embodiment of FIG. This has the effect of improving the reliability of the receiver.
  • FIG. 11 is an example of a configuration diagram of an elevator system to which the polarization angle division diversity radio of this embodiment is applied.
  • the elevator cage 111 moves up and down in the building 101 where the elevator is installed.
  • a base station radio 102 having a polarization angle division diversity function and a base station 2 orthogonal polarization integrated antenna 103 are connected and installed on the floor and ceiling of the building 101.
  • the terminal station 2 orthogonal polarization integrated antenna 10 is installed on the external ceiling and the external floor of the elevator 11, respectively, and is coupled to the terminal radio 112 using a high frequency cable 114.
  • the base station radio 103 and the terminal station radio 113 use the inside of the building 101 as a radio transmission medium, electromagnetic waves are subjected to multiple reflections by the inner wall of the building 101 and the outer wall of the elevator, and a multi-wave interference environment is formed.
  • polarization angle division diversity enables high-quality wireless transmission even in a multi-wave interference environment. Therefore, the elevator 111 is controlled and monitored using wireless communication using the same wireless device. Since it can be carried out remotely without using wired communication, equipment for wired communication such as cables can be deleted, and the same transportation capacity can be realized with a smaller building volume, or the elevator dimensions can be increased with the same building volume. Increase in transportation capacity can be realized by increasing the capacity.
  • FIG. 12 is an example of a configuration diagram of a substation equipment monitoring system to which the polarization angle division diversity radio of this embodiment is applied.
  • the substation monitoring system 200 of the present embodiment includes a plurality of substations 201, a terminal station radio 203 that performs polarization angle division diversity, and a terminal station 2 orthogonal polarization integrated antenna 202 that are connected to the substation 201.
  • a plurality of base station apparatuses 211 having a number smaller than the number of substations 201 are installed, and the base station apparatus 211 performs base station radio 213 that performs polarization angle division diversity.
  • the base station 2 orthogonally polarized integrated antenna 212 are connected and installed.
  • the size of the substation is on the order of several meters, and it is overwhelmingly larger than the wavelength corresponding to several hundred MHz to several GHz, which is the frequency of the electromagnetic wave used by the radio. As a result, a multi-wave interference environment is formed.
  • the polarization angle division diversity enables high-quality wireless transmission even in a multi-wave interference environment, and therefore, the control and monitoring of the substation 201 are controlled using wireless connection means using the same wireless device. Since it can be carried out remotely by a plurality of wireless base stations 211 without using wired connection means, it is possible to solve the problem of high voltage induction power that becomes a problem when using the wired connection means such as cables, and the installation cost of the cables is eliminated. This is effective in improving the safety and cost reduction of the control / monitoring system of the substation 201.
  • the electromagnetic waves emitted from the transmitter are subjected to multiple reflections by the scatterers and received by interference with each other.
  • the polarization of the electromagnetic wave is rotated, the received power on the time axis is changed at the reception point, and the information signal to be transmitted is converted using the unique received waveform representing the change as a key.
  • the information signal can be concealed from an external party existing at a spatial point other than the transmission / reception point where the unique received waveform cannot be acquired.
  • the present embodiment there are a plurality of scatterers of electromagnetic waves between the transmitter and the receiver, and the electromagnetic waves emitted from the transmitter are subjected to multiple reflections by the scatterers, and they are mutually connected.
  • the electromagnetic waves emitted from the transmitter are subjected to multiple reflections by the scatterers, and they are mutually connected.
  • SYMBOLS 1 Information signal generation circuit, 2 ... Band-limiting filter, 3 ... Modulation circuit, 4 ... Transmission carrier frequency carrier generation circuit, 5 ... Mixer, 6 ... Transmission rotation polarization frequency carrier generation circuit, 7 ... Spurious removal filter, 10 ... Rotating polarization electromagnetic wave, 11 ... transmission vertical antenna, 12 ... cosine weighting circuit, 13 ... transmission horizontal antenna, 14 ... sine weighting circuit, 15 ... dummy signal generation circuit, 16 ... adaptive phase shifter, 17 ... multiplier, 18 ... Multiplier, 19 ... Block code generation circuit, 20 ... 90 degree phase shifter, 21 ... Received carrier frequency carrier generation circuit, 22 ... Phase shifter, 23 ... Demodulation circuit, 24 ...
  • Delta sigma analog-to-digital conversion circuit 61 ... Digital information signal circuit 62 ... Parasi serial Conversion circuit, 63 ... multiplier, 64 ... block code generation circuit, 65 ... upsampler, 66 ... digital filter, 67 ... rotational polarization frequency 90 degree phase shifter, 68 ... Digital signal generation circuit for transmission rotation polarization carrier, 69 ... Transmission ⁇ DAC, 70 ... Transmission ⁇ DAC, 71 ... Digital signal generation circuit for reception rotation polarization carrier, 72 ... Digital filter, 73 ... Reception ⁇ DAC, 74 ... Reception carrier frequency carrier Digital signal generating circuit, 75 ... Sample hold circuit, 82 ... Digital filter, 83 ... Reception ⁇ DAC, 85 ...
  • base station radio 370 ... Transmitting antenna, 371 ... Fixture, 372 ... Electromagnetic reflector, 375 ... Transmitter, 380 ... Receiving antenna, 385 ... Receiver, 391 ... Transmitting wave, 393 ... Transformer, 392 ... Received wave, 395 ... Transmitting wave, 396: Received wave, 397: Reflected wave.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Radio Transmission System (AREA)

Abstract

 高セキュア無線通信システムは、搬送波の偏波を回転させる回転偏波の異なる所定の偏波角度で同一の情報を伝送する送信機と、受信情報を前記所定の偏波角度で復元し、前記所定の偏波角度の復元結果を相互に比較する受信機を有する。

Description

高セキュア無線通信システム
 本発明は、高セキュアな無線通信を実現する無線機の提供にかかわり、特に無線機の置かれる環境が電波を反射・散乱する障害物を具備し該障害物により発生する多重波を用いて、伝送する情報の秘匿および該情報に対する外部干渉を検出・除去可能な無線通信システムを実現する技術に関する。
 持続的成長可能な産業を実現する為に、エネルギ消費の高効率化と産業廃棄物削減を両立させる新しい、エネルギの発生・分配システムの実現が社会的に要請されている。そのようなエネルギ発生・分配を目的とした、新たなエネルギ・通信融合ネットワークの構築が世界各地で進んでいる。このエネルギ・通信融合ネットワークは、エネルギの発生・分配そして消費に預かる各種機器を同ネットワークで繋ぎ、該各機器の稼働状況および周囲環境に関する情報をすべてあるいは特定の機器で共用し、同情報を用いて該ネットワークで繋がれた機器の稼働状態を制御して、該ネットワークで結合したすべての機器が達成する性能をシステム全体として最適化することを目標とする。同ネットワークの実現においては、結合すべき機器の総数が非常に大きいため、該ネットワークの導入コストおよび保守コスト低減の為、無線ネットワークの使用が期待されている。
 無線ネットワークはその導入・保守コストの低下が期待できる一方で、無線通信の通信媒体となる電磁波の物理的性質により、該ネットワーク上に流れるデータの傍受および改変が容易で、同データを用いた各種機器の制御・監視情報のセキュリティ保持が困難であるという問題がある。特に、エネルギ・通信融合ネットワークで結合される各種機器が、電力、水道、ガス等の一般市民の生活に直結した資源を生成・分配する場合、悪意の同データの傍受および改変により、市民生活は大きな打撃を受ける事は必至で、各種機器の制御・監視情報のセキュリティ保持が困難であるという問題は、エネルギ・情報融合ネットワークを無線技術で実現するために必ず解決しなければならない。
 無線による通信は、通信の送受信点間に存在する各機器が電磁波散乱体として作用するので、該各機器による反射により複数の多重反射伝搬路を介して、送信点から受信点に至る複数の異なるパスを通じて行われる。多重反射による該複数のパスは送信点と受信点で固有のもので、送受信点以外の他の空間点では、送信点から受信点へと至る複数のパスとは異なるパスを経由して送信点からの信号が該他の空間点に到達し、該他の空間点から発生する信号も、送信点から受信点へと至る複数のパスとは異なるパスを経由して受信点に到達する。したがって、送信点から受信点へと至る複数のパスを選択あるいは組み合わせることによって、送受信点間で他の空間点では獲得できない情報を伝送する可能性が生じる。このような原理を用いた技術として、特許文献1がある。受信信号の周波数スペクトラムを鍵として用いて、伝達すべき情報を暗号化して送信点より送信し、受信点では受信信号を該周波数スペクトラムを用いて暗号を解読しようとするものである。また、特許文献2では、移動通信における遅延スプレッドといわれる時間的に変動する受信電力の挙動を鍵として用いて、伝達すべき情報を暗号化して送信点より送信し、受信点では受信信号を該遅延スプレッドを用いて暗号を解読する。さらに、特許文献3では、送信機はインパルス列を伝送し、受信点における固有のインパルスレスポンスを鍵として用いて、伝達すべき情報を暗号化して送信点より送信し、受信点では受信信号を該インパルスレスポンスを用いて暗号を解読する。電磁波の可逆性と、通信における送受信の対称性により、同一の時間軸上の信号波形を送信点から受信点に伝送する場合と、受信点から送信点に伝送する場合では、これら受信信号の信号波形は同一となる。また、該信号波形は送受信点間に形成される固有の多重反射波による複数の伝送路を通じて伝送される電磁波の干渉により生じるため、送受信点以外の他の空間点で該信号波形を獲得することは極めて困難である。
特開2008-199263号公報 特開2013-066078号公報 特開2005-130127号公報
 上記技術では、移動体通信における受信信号部での時間軸上の不規則な信号波形の変化を伝送すべき信号を秘匿する為の暗号鍵としており、固定通信への適用を考えると、該信号波形の変化が乏しく、信号を秘匿すべき鍵を複雑化することが困難で該秘匿の程度を高くすることが出来ない。各技術について詳細に説明すると、特許文献1では複雑な周波数スペクトラムを固定通信で得るためには広い周波数帯域に亘り多くの周波数を用いる必要があるため、周波数利用効率が低下する問題がある。特許文献2ではRSSI(Received Signal Strength Indicator)の時間的変化が固定通信では現れず、信号変化を強制的に引起す為、複数のアンテナを用いて送信信号の放射パタンを変化させる必要がある。該放射パタンをより大きく変化させるためにはアンテナの数をより多くする必要がある為、装置寸法の増大および装置コストの上昇を引き起こす問題がある。特許文献3では送信波としてパルス波を用いるため、該パルス波を生成する為に多くの周波数成分が必要となり、特許文献1と同じく周波数利用効率が低下する問題がある。更に、いずれの技術によっても、伝送すべき情報を暗号により秘匿することが出来るので、同信号の盗聴に対しては防止効果があるものの、外部侵入者による信号の妨害および、”なりすまし”による同信号の改変に対しては考慮されていない。
 本発明の目的は、送信機と受信機の間に電磁波の散乱体が複数存在し、送信機から発射された電磁波が該散乱体により多重反射を受け、それらがお互いに干渉して受信機に到達する電波環境において、送受信間で伝送される信号の改変の検出を図ることである。
 開示する高セキュア無線通信システムは、搬送波の偏波を回転させる回転偏波の異なる所定の偏波角度で同一の情報を伝送する送信機と、受信情報を前記所定の偏波角度で復元し、前記所定の偏波角度の復元結果を相互に比較する受信機を有する。
 本発明によれば、送信機と受信機の間に電磁波の散乱体が複数存在し、送信機から発射された電磁波が該散乱体により多重反射を受けそれらがお互いに干渉して受信機に到達する電波環境において、送受信間で伝送される信号の改変の検出を図ることができる。
高セキュア無線通信システムを実現する送受信機の構成図の例である。 高セキュア無線通信システムの動作原理を説明する図である。 高セキュア無線通信システムを実現する他の送受信機の構成図の例である。 高セキュア無線通信システムを実現するさらに他の送受信機の構成図の例である。 高セキュア無線通信システムを実現するさらに他の送受信機の構成図の例である。 高セキュア無線通信システムを実現する送信機の回転偏波を生成する原理を示す図の例である。 高セキュア無線通信システムを実現するさらに他の送受信機の構成図の例である。 高セキュア無線通信システムを実現する送受信機の動作アルゴリズムの例である。 高セキュア無線通信システムを実現するさらに他の送受信機の構成図の例である。 高セキュア無線通信システムを実現するさらに他の送信機の構成図の例である。 高セキュア無線通信システムを適用した昇降機システムの構成図の例である。 高セキュア無線通信システムを適用した変電設備監視システムの構成図の例である。
 本実施形態の一例は、二つの送信アンテナを用いて偏波の方向が第一の周波数で回転する送信波を実現し、情報信号を該第一の周波数より高い周波数のサンプリングタイミングごとに組み替え組み換え後の信号に重み付けをして搬送波に重畳することにより該送信波を生成し、受信機は該サンプリングタイミングを用いて該重みを用いて該情報信号を再構成する。
 本実施形態の他の一例は、送信機が用いる重みが、元の情報信号を第一の周波数で回転する送信波の第一の周期内の異なるサンプリングポイント数と、同ポイントに割り当てられた複数の値を同ポイントと同数の該周期繰り返しにおいて組み換え、各周期の複数の値が互いに識別可能である。
 本実施形態のさらに他の一例は、第一の送受信点から任意の重みで重み付けされた情報信号を第二の送受信点に伝送し、第二の送受信点では同信号を復調し該重みを再現し、該再現された重みで重み付けした新たな情報信号を第一の送受信点に伝送し、第一の送受信点では受信信号を復調し当初重み付けに使用した重みで第二の送受信点から送信された該新たな情報信号を再現する。引き続き、第一の送受信点から同一の重みで重み付けされた情報信号を第二の送受信点に伝送し、第二の送受信点では同信号を復調し先に情報信号を重み付けした重みを用いて情報信号を再現し、受信信号を復調して得られる重みを用いて新たな情報信号を第一の送受信点に伝送する。
 本実施形態のさらに他の一例は、第一の送受信点および第二送受信点において、先の情報信号伝送の重み付けに用いた重みと、受信信号を復調して得られる重みが、該第一の周期内の異なるサンプリングポイント数で不一致の場合、外部侵入者の出現を認識し、該不一致を生じたサンプリングポイントに対応する情報信号を棄却し、新たに情報信号を伝送する場合、該不一致を生じたサンプリングポイントに対応した送信する情報信号の内容を機器の監視・制御とは無関係なダミー信号とする。
 本実施形態の原理を図2を用いて詳しく説明する。送信機375が具備する送信アンテナ370と受信機385が具備する受信アンテナ380の間には電磁波散乱体である什器371が存在し、該送信アンテナ380から該受信アンテナ380に電磁波が直接到達する経路無く、該送信機375と該受信機385の周囲に分布する複数の電磁波反射物372による反射を繰り返し、送信アンテナ370から放射された電磁波は受信アンテナ380に到達する。送信機375より偏波方向を回転させる送信アンテナ370を用いて第一の偏波方向で送信された送信波391は行路差L1aの反射波393aと行路差L1bの反射波393bの合成である受信波392として第三の偏波方向で受信機385に到達する。さらに送信機375より偏波方向を回転させることにより別のタイミングで第二の偏波方向で送信された送信波395は行路差L2aの反射波397aと行路差L2bの反射波397bの合成である受信波396として第四の偏波方向で受信機385に到達する。図2の例では、393aと393bが送信電磁波の偏波の傾きにP4およびP8で固定偏波の受信アンテナ380で相殺する状況となっている。397aと397bは送信電磁波の偏波の傾きにより受信アンテナ380での受信電力が変化するがいずれの偏波でも該受信電力がゼロにはならないようになっている。このように受信点で電力が相殺するパスペアの組み合わせはパス長と偏波の回転周波数の関係できまるので、同パスペアの組み合わせの変更は、回転偏波を発生させるための複数の搬送波の周波数差を変化させることで実現可能である。
 以下、通信手順について説明する。あらかじめ送信機と受信機に固定情報を与えておき、同固定情報を用いて送信機と受信機の機能を交換して該固定情報をお互いに送受信すれば、図2の同一の受信波形を送信機と受信機は得る事ができる。次に、同受信波形を鍵として情報信号を送信機から偏波を回転させ、異なる偏波に対して異なる重み付けを行い、受信機に送る。受信機は受信波形を記憶し、異なる偏波に対するサンプリングポイントについて重みを復元し、該重みにより受信信号から鍵を用いて変換された情報信号を抽出し、あらかじめ保有している受信波形を鍵として復調後の受信信号から情報信号を再生する。偏波の回転周期に対して情報信号の周期は十分に長くするので重みを再生する為に必要なサンプリングポイントを得る間、受信信号波形を鍵として変換された情報信号の変化は無視できる。偏波の回転周期に対して情報信号の周期は、情報信号を独立して検出するデジタル信号処理に用いるデバイスの現状から、4倍以上から100倍以下(周波数ならば、100分の1以上4分の1以下)が必要である。望ましくは10倍(1桁)程度の差である。したがって、回転偏波の周波数は、情報信号の上限周波数の10倍以上高く、且つ搬送波の周波数より10倍以上低い(10分の1以下)に設定する。
 次に、受信機が送信機の機能を用いて、該情報信号を新たに受信した受信波形を鍵として変換後、復元した重みを用いて各偏波に対応する重み付けを行った後、回転偏波を用いて送信機へと送り返し、受信波形を更新する。説明を明瞭にするため図2では送信機および受信機は其々送信および受信の機能を持つ構成要素しか図示していないが、実際の動作では送信機375および受信機380は其々送信および受信の機能を具備し、従って、送信アンテナ370および受信アンテナ380は其々固定偏波および回転偏波に対応可能である。本通信手順を用いることにより送受信間で伝送する情報信号は、送信点および受信点でのみ獲得可能な固有な受信波形を鍵として変換されて自由空間中に放射されるので、該固有な受信波形を獲得不能な他の空間点に存在する外部者に対して、該情報信号を秘匿する効果が得られる。各偏波方向Piに対して異なる重みで同一の情報信号を送ったとする。もし393a,bのパスにおいて外部侵入者があり同パス上の信号に改ざんを行ったとすると偏波P4およびP8に対応するサンプリングポイントでは受信信号に対する該改ざんの効果は得られない。送信機375と受信機385の機能を入れ替えて交互に通信を行い一回の反復で同一の情報を伝送すれば、P4及びP8の偏波に対応するサンプリングポイントにおいて外部侵入者の改ざんが行われていることが特定でき、外部侵入者の検出が可能となる。また、外部侵入者の検出後は偏波P4およびP8のサンプリングポイントで受信されるデータを棄却することで改ざんの修復をすることが可能となり、更に、該サンプリングポイントで送出されるデータをダミーデータと置換えることにより、外部侵入に対して意図的に無効な情報を提供することも可能となる。
 以下、実施例を図面を用いて説明する。
 図1は、本実施例の無線システムを実現する送信機および受信機の構成図の例である。送信機は情報信号生成回路1が生成する周波数帯域(fI)の信号を帯域制限フィルタ2によって信号に含まれる周波数の上限を制限して、変調回路3によって回転偏波周波数キャリア(fr)4が重畳され、さらに高周波ミキサ5により送信搬送波周波数キャリア(fc)6が重畳されスプリアス除去フィルタ7により不要な高調波成分が除去され、余弦重み付け回路12で振幅を制御して送信垂直アンテナ11より、および正弦重み付け回路14で振幅を制御して送信水平アンテナ13より同時に空間に放射され、偏波を回転させながら進む回転偏波電磁波10を形成する。余弦重み付け回路12および正弦重み付け回路14は送信回転周波数キャリア(fr)4と同一の周波数で互いに90度の位相差を持って垂直アンテナ11と水平アンテナ13の振幅に重み付けを行うので回転偏波電磁波の偏波の回転周波数は回転周波数キャリア(fr)4と同一になる。
 受信器は弦重み付け回路32で振幅を制御される受信垂直アンテナ31、および正弦重み付け回路34で振幅を制御される受信水平アンテナ33を具備し、両アンテナから入力された信号は加算され、高周波ミキサ27により受信搬送波周波数キャリア(fc)28と重畳され、低域通過フィルタ26により、回転偏波の周波数と情報信号の周波数成分をカスケード状に結合した遅延器22を介して、順次回転偏波の周期の整数分の一の位相差を持って、該整数の数だけの複数の信号が受信回転偏波周波数キャリア(fr)21と復調器23によって其々掛け合わされ、該整数の数だけの複数のレジスタ24に格納される。
 送信機の垂直アンテナ11と水平アンテナ13は、空間的に直交する2つの直線偏波アンテナで構成される。同様に、受信機の垂直アンテナ31と水平アンテナ33も、空間的に直交する2つの直線偏波アンテナで構成される。
 情報信号発生回路1が生成する情報信号の周波数は回転偏波の周波数と比べて十分小さいので、回転偏波の周期内では情報信号は一定と考えられる。したがって、各レジスタ24に格納されたデータは回転偏波電磁波10が送信機から受信機に至る過程で外部より意図的な変更を受けない限り同一である。ベースバンド回路25は複数のレジスタ24の内容を相互に比較して、同一の内容かどうかを検査する。いずれかのレジスタの内容が他と異なる場合、外部よりの意図的な変更があったと判断できる。また、他と異なる内容を含むレジスタの内容を棄却することにより、送信部から送られた情報信号を、外部からの意図的な変更行為の影響から遠ざけることができる。
 本実施例によれば、外部からの意図的な変更行為の有無を検出できるのみならず、同変更行為に対する送信すべき情報信号の改ざんを抑制することができるので、情報信号の高セキュアな伝送を実現する効果がある。
 図3は、本実施例の無線システムを実現する送信機および受信機の他の構成図の例である。図1の実施例と異なる点は、受信機が新たにダミー信号発生回路15を具備することで、回転偏波の周期(Tr)を整数分の一した値(Tr/N)の期間だけ送信機が送るべき情報信号とは無関係なダミー信号をダミー信号発生回路15は発生する。本実施例では適応移相器(TXi)16と加算器17が新たに設置されダミー信号発生回路15で発生した信号を、ベースバンド回路25が検出した外部からの意図的な変更行為の生じた期間に相当する偏波角度で同ダミー信号が送信されるように適応移相回路(TXi)16を調節する。送信の際に送信アンテナ11、13から発射される電磁波の偏波の角度と同時刻に受信機で検出される外部からの意図的な変更行為のあったことに関係する受信電磁波の偏波の角度は必ずしも一致するとは限らないが、回転偏波の周期(Tr)を分割して情報を送信する際に、該分割した周期毎に異なる符号を新たに重畳することで、送信機から放射された時点での偏波の角度を特定することは可能である。
 本実施例によれば、外部からの意図的な変更行為の受信信号に対する影響を削減するのみならず、その変更行為の当事者に情報を持たないデータの送信あるいはその当事者に対して変更行為を妨げる可能性のあるデータを送ることが出来るので、外部からの意図的な変更行為をさせない抑止力を発生させる効果がある。
 図4は、本実施例の無線システムを実現する送信機および受信機のさらに他の構成図の例である。図1の実施例の送信機と異なる点は、回転偏波周波数キャリア(fr)4の代わりに、回転周波数の周期で同周期を整数分割した際に各分割期間に異なるブロック符号を生成するブロック符号生成回路19を具備し、変調回路3の代わりに乗算器18によって、ブロック符号生成回路19が生成するブロック符号を情報信号に重畳することである。また図1の実施例の受信機と異なる点は、回転偏波の周波数と情報信号の周波数成分をカスケード状に結合した遅延器22を介して、順次回転偏波の周期の整数分の一の位相差を持って、該整数の数だけの複数の信号が、そのまま複数のレジスタ24に記憶され、各レジスタ24の内容がブロック符号生成回路19で生成する複数の異なるブロック符号と乗算器37により掛け合わされて、複数の第二のレジスタ38にその内容が格納されることである。
 本実施例によれば、第二のレジスタ38の内容を調べることで、受信した電磁波の各偏波角に対する信号が、送信機で発射された際の電磁波の偏波の角度と該ブロック符号を用いて対応付けできるので、実施例2の効果である、外部からの意図的な変更行為の当事者に情報を持たないデータの送信あるいはその当事者に対して変更行為を妨げる可能性のあるデータを送ることが実現可能となる。
 図5は、本実施例の無線システムを実現する送信機および受信機のさらに他の構成図の例である。図1の実施例の送信機と異なる点は、余弦重み付け回路12および32と正弦重み付け回路14および34が削除され、代わりに90度移相器20および40が送信水平アンテナ13および受信垂直アンテナ39に結合し、送信搬送波キャリア6および受信搬送波キャリア28の代わりに送信第一搬送波キャリア(fc+fr)41と送信第二搬送波キャリア(fc-fr)42の加算器43による合成信号および受信第一搬送波キャリア(fc+Fr)51と受信第二搬送波キャリア(fc-fr)52の加算器53による合成信号が用いられることである。第一搬送波キャリアと第二搬送波キャリアは周波数が異なり、加算されることで両者の周波数の差の周波数でビート波が生成される。このビート波を空間的時間的に90度違わせて空間合成することで回転偏波の電磁波を生成できる。図6は本実施例の送信機の各点の時間波形を示している。送信第一搬送波キャリアの波形Aと送信第二搬送波キャリアの波形Bの波形は加算器43により合成されて、波形Cとなる。波形Cの波を空間的に90度ずらして、且つ空間的に直交する方向で合成すると波形Dのような回転偏波が形成される。
 本実施例によれば、相互制御が必要となる余弦重み付け回路と正弦重み付け回路を削除できるので、本発明からなる送信機および受信機の小型化および製造コスト低減に効果がある。
 図7は、本実施例の無線システムを実現する送信機および受信機のさらに他の構成図の例である。図1の実施例の送信機と異なる点は、送信機に新たに検波回路44が余弦重み付け回路32と正弦重み付け回路34の共通入力点に挿入され、該検波回路44の出力が比較レベル発生器46の比較電圧と比較器45により比較され、その出力が時間軸信号間引き回路48により間引きされ、帯域制限フィルタ2より帯域制限された信号に新たに導入される乗算器56に重畳されることである。比較器45および時間軸信号間引き回路48にはクロック発生回路47よりクロックが供給され、其々、比較および間引きのタイミングを同クロックより確定する。更に、送信機には定型情報発生回路54が新たに設置されその出力は、情報信号発生回路1の出力と共にスイッチ55により選択される。検波回路44により受信信号の時間軸上の変化が検出され、比較器45により1/0の信号にクロック発生回路47のサンプリング周波数で変換される。変換後の1/0信号は時間軸信号間引き回路48により回転偏波の周期と同程度および数倍、数十倍の時間軸上の分解能を要するビット列となり、該ビット列を情報信号に重畳することにより該情報信号を秘匿することができる。該情報の再生には、情報信号を秘匿した1/0のビット列を送信点と受信点で共有する必要があるが、同一の送信機と受信機をこれら二点で用いることにより、通信に用いる電磁波の包絡線情報は送受信の相対性により同一となるから、自動的にこれら二点の送信機および受信機で得られる1/0のビット列は同一となり送信された情報信号の復元が可能となる。送信点と受信点以外の地点では、一般的に同一の受信包絡線は得られないから、他の点では情報信号は復元できず、通信の秘匿化の効果が得られる。
 本実施例では、定型信号発生回路54を用いて、あらかじめ送信点と受信点で同一の定型情報を機要有することが出来、同定型情報を用いて、伝送すべき情報の内容とは関係ない情報、例えば通信開始、通信終了などの通信プロトコルに関する情報を送受信間で交換することが出来るので、本実施例による情報信号の暗号化通信の手順を簡素化することが出来、送信機および受信機の消費電力低減およびソフトウェアコストの削減が可能となる。
 図8は、実施例5における無線システムの送信機の及び受信機の通信プロトコロルの例である。送信機と受信機を一体として無線機とする。無線機は情報信号の送信要求を確認する(S800、S801)。送信要求があった場合、定型情報を先ず送信する(S802)。一方無線機は受信すべき信号の有無を常に確認しており(S803)、受信信号が得られた場合(S804~S806)、その内容を復調して(S807)定型信号かそれ以外かの判断をし(S808)、定型信号が確認されたら必ず定型信号を送信する(S809)。定型信号を送信してすぐに定型信号の受信が得られた場合、送信点と受信点で通信が行われる状況の確認が出来たこととなるので、送信機は情報信号を得られた受信信号の包絡線情報により生成した鍵で秘匿化(S810)して送信する(S811)。以上説明したプロトコルにより、受信機は受信信号の包絡線情報から鍵を生成して、受信信号に含まれる秘匿化された情報信号を復元する。
 本実施例によれば、定型信号により送信点と受信点の間で、情報信号を送る為の必須手づきである、情報信号の送信タイミングの確定と、情報信号を秘匿する為の暗号鍵の取得を同時に実現できるので、情報信号の高セキュア伝送が実際に可能となる。
 図9は、本実施例の無線システムを実現する送信機および受信機のさらに他の構成図の例である。図1の実施例の受信機と異なる点は、受信回転偏波キャリア発生回路21の代わりに受信回転偏波キャリア用デジタル信号発生回路71を具備し、高周波ミキサ27と受信搬送波周波数キャリア28と低域通過フィルタ26の代わりに受信ΔΣDAC73と受信搬送波周波数キャリア用デジタル信号発生回路74と受信デジタルフィルタ72と受信サンプルホールド回路75を具備することである。受信回転偏波キャリア用デジタル信号発生回路71は受信回転偏波キャリアをデジタル回路で生成可能であり、余弦重み付け回路32と正弦重み付け回路34を介して加算された受信高周波信号はサンプルホールド回路75により連続デジタル波形に変換され、受信搬送波周波数キャリア用デジタル信号発生回路74をクロックとして受信ΔΣDAC73によりデジタル的に周波数ダウンコンバートされ、付随して発生する不要なエイリアス信号を受信デジタルフィルタ72で除去して回転偏波の周波数帯に信号を変換することが出来る。
 本実施例によれば、無線システムに適用する受信機をデジタル回路で実現できるので、受信機の温度変化、経年変化に対する自動調整機能を導入可能であり、同受信機の信頼性向上が可能となる。
 図10は、本実施例の無線システムを実現する送信機および受信機のさらに他の構成図の例である。送信機はデジタル情報信号生成回路61が生成する周波数帯域fIのデジタル信号をパラシリ(パラレル/シリアル)変換回路62によって、1/0のビット列に変換し、回転周波数の周期で同周期を整数分割した際に各分割期間に異なるブロック符号を生成するブロック符号生成回路64を具備し、乗算器63によって、該ブロック符号生成回路64が生成するブロック符号を、1/0のビット列に変換後のデジタル情報信号に重畳し、アップサンプラ65によって周波数を上昇させ、送信搬送波周波数キャリア用デジタル信号発生回路68をクロックとして第一送信ΔΣDAC70で搬送波周波数領域に周波数変換し送信垂直アンテナ11より空間に放射すると同時に、回転偏波周波数90度移相器67を介し同クロックを用いる第二送信ΔΣDAC69で搬送波周波数領域に周波数変換し送信水平アンテナ13より空間に放射する。受信機は受信垂直アンテナ31の受信電力をサンプルホールド回路95により連続デジタル波形に変換され、受信搬送波周波数キャリア用デジタル信号発生回路74をクロックとして受信ΔΣDAC93によりデジタル的に周波数ダウンコンバートされ、回転偏波周波数90度移相器91を介し付随して発生する不要なエイリアス信号を受信デジタルフィルタ92で除去して回転偏波の周波数帯に信号を変換し、回転偏波の周波数と情報信号の周波数成分をカスケード状に結合した遅延器22を介して、順次回転偏波の周期の整数分の一の位相差を持って、該整数の数だけの複数の信号が、そのまま複数のレジスタ24に記憶され、各レジスタ24の内容がブロック符号生成回路19で生成する複数の異なるブロック符号と乗算器37により掛け合わされて、複数の第二のレジスタ38にその内容が格納されベースバンド回路25のデジタル信号処理に利用され、一方、受信水平アンテナ33の受信電力をサンプルホールド回路85により連続デジタル波形に変換され、受信搬送波周波数キャリア用デジタル信号発生回路74をクロックとして受信ΔΣDAC83によりデジタル的に周波数ダウンコンバートされ、付随して発生する不要なエイリアス信号を受信デジタルフィルタ82で除去して回転偏波の周波数帯に信号を変換し、回転偏波の周波数と情報信号の周波数成分をカスケード状に結合した遅延器87を介して、受信垂直アンテナが受信した信号と同様の処理が施され、第二のベースバンド回路88のデジタル信号処理に利用される。
 本実施例によれば、図4の実施例の効果をデジタル回路で実現できるので、図4の実施例の効果と共に、受信機の温度変化、経年変化に対する自動調整機能を導入可能であり、同受信機の信頼性向上を可能とする効果がある。
 図11は、本実施例の偏波角分割ダイバシチ無線機を適用した昇降機システムの構成図の例である。本実施例の昇降機システム100は、昇降機が設置される建物101の内部を昇降カゴ111が昇降する。建物101の内部の床部および天井部には偏波角分割ダイバシチ機能を有する基地局無線機102と基地局2直交偏波一体アンテナ103が結合し設置される。昇降機11の外部天井と外部床面には其々端末局2直交偏波一体アンテナ10が設置され、高周波ケーブル114を用いて端末無線機112に結合している。基地局無線機103と端末局無線機113は、建物101の内部を無線伝送媒体とするので、該建物101の内壁および該昇降機の外壁により電磁波は多重反射を受け、多重波干渉環境が形成される。
 本実施例では偏波角度分割ダイバシチにより、多重波干渉環境下でも高品質の無線伝送が実現可能となるので、同無線機を用いた無線通信を用いて、昇降機111の制御・監視を建物101より有線通信を用いずに遠隔で実施できるので、ケーブル等の該有線通信のための設備を削除可能で、同一の輸送能力をより小さい建物体積で実現でき、あるいは同一の建物体積で昇降機寸法を増大させることによる輸送能力向上を実現できる。
 図12は、本実施例の偏波角分割ダイバシチ無線機を適用した変電設備監視システムの構成図の例である。本実施例の変電設備監視システム200は、複数の変電機201と同変電機201には偏波角分割ダイバシチを行う端末局無線機203と端末局2直交偏波一体アンテナ202が結合し設置され、該複数の変電機201の近傍に、該変電機201の数よりも少ない数の複数の基地局装置211が設営され、該基地局装置211は偏波角分割ダイバシチを行う基地局無線機213と基地局2直交偏波一体アンテナ212が結合し設置される。変電機の寸法は数mのオーダーであり無線機が使用する電磁波の周波数である数百MHzから数GHzに対応する波長に比べ圧倒的に大きいため、該複数の変電機201により電磁波は多重反射を受け、多重波干渉環境が形成される。
 本実施例では偏波角度分割ダイバシチにより、多重波干渉環境下でも高品質の無線伝送が実現可能となるので、同無線機を用いた無線接続手段を用いて、変電機201の制御・監視を複数の無線基地局211により有線接続手段を用いずに遠隔で実施できるので、ケーブル等の該有線接続手段を用いる場合に問題となる高圧誘導電力の問題を解決でき、同ケーブルの敷設コストを削除できるので、変電機201の制御・監視システムの安全性向上およびコスト削減に効果がある。
 以上説明した実施形態によれば、送信機と受信機の間に電磁波の散乱体が複数存在し、送信機から発射された電磁波が該散乱体により多重反射を受けそれらがお互いに干渉して受信機に到達する電波環境において、電磁波の偏波を回転させて、受信点で時間軸上の受信電力を変化させ、同変化を表す固有な受信波形を鍵として伝達すべき情報信号を変換して送信点から受信点に伝送することにより、同固有な受信波形を獲得できない送受信点以外の空間点に存在する外部者に対して該情報信号の秘匿を実現できる。また、回転する送信電磁波の偏波により、送信機から受信機に至る複数の伝搬経路の特定の部分を受信点において特定の偏波に対するサンプリングポイントで無効にし、一対の送受信機の間で偏波の回転周期内で同一の重み付けを行った信号を相互に送受信することで、同サンプリングポイントの中で、送信信号と受信信号が不一致となる部分の有無を調べることで、外部侵入者の存在を検出でき、同不一致部分がある場合は、同不一致部分に相当するサンプリングポイント上の受信データを棄却することで、該外部侵入者による情報改ざんの影響を排除することができる。
 以上を纏めると、本実施形態によれば、送信機と受信機の間に電磁波の散乱体が複数存在し、送信機から発射された電磁波が該散乱体により多重反射を受け、それらがお互いに干渉して受信機に到達する電波環境において、送受信間で伝送される信号の盗聴防止と送受信点以外の他の点に存在する外部侵入者による伝送信号の改変の検出および同改変された信号の除去が可能になる。
 1…情報信号生成回路、2…帯域制限フィルタ、3…変調回路、4…送信搬送波周波数キャリア発生回路、5…ミキサ、6…送信回転偏波周波数キャリア発生回路、7…スプリアス除去フィルタ、10…回転偏波電磁波、11…送信垂直アンテナ、12…余弦重み付け回路、13…送信水平アンテナ、14…正弦重み付け回路、15…ダミー信号発生回路、16…適応移相器、17…乗算器、18…乗算器、19…ブロック符号生成回路、20…90度移相器、21…受信搬送波周波数キャリア発生回路、22…移相器、23…復調回路、24…レジスタ、25…デジタル回路、26…低域通過フィルタ、27…高周波ミキサ、28…受信回転偏波周波数キャリア発生回路、31…受信垂直アンテナ、32…余弦重み付け回路、33…受信水平アンテナ、34…正弦重み付け回路、36…ブロック符号、37…乗算器、38…第二のレジスタ、40…90度移相器、41…送信第一搬送波発生回路、42…送信第二搬送波発生回路、43…加算器、44…検波回路、45…比較器、46…基準レベル回路、47…クロック生成回路、48…時間軸信号間引き回路、51…受信第一搬送波発生回路、52…受信第二搬送波発生回路、53…加算器54…定型情報発生回路、55…スイッチ、56…乗算器、57…受信デジタルクロック回路、58…デルタシグマアナログデジタル変換回路、61…デジタル情報信号回路、62…パラシリ変換回路、63…乗算器、64…ブロック符号発生回路、65…アップサンプラ、66…デジタルフィルタ、67…回転偏波周波数90度移相器、68…送信回転偏波キャリア用デジタル信号発生回路、69…送信ΔΣDAC、70…送信ΔΣDAC、71…受信回転偏波キャリア用デジタル信号発生回路、72…デジタルフィルタ、73…受信ΔΣDAC、74…受信搬送波周波数キャリア用デジタル信号発生回路、75…サンプルホールド回路、82…デジタルフィルタ、83…受信ΔΣDAC、85…サンプルホールド回路、87…移相器、88…第二のデジタル回路、91…回転偏波周波数90度移相器、92…デジタルフィルタ、93…受信ΔΣDAC、95…サンプルホールド回路、100…昇降機システム、101…建物、102…基地局無線機、103…基地局2直交偏波一体アンテナ、111…昇降カゴ、112…端末局無線機、113…端末局2直交偏波一体アンテナ、200…変電設備監視システム、201…変電機、202…端末局2直交偏波一体アンテナ、203…端末局無線機、211…無線基地局、212…基地局2直交偏波一体アンテナ、213…基地局無線機、370…送信アンテナ、371…什器、372…電磁波反射物、375…送信機、380…受信アンテナ、385…受信機、391…送信波、393…変電機、392…受信波、395…送信波、396…受信波、397…反射波。

Claims (19)

  1.  搬送波の偏波を回転させる回転偏波の異なる所定の偏波角度で同一の情報を伝送する送信機と、受信情報を前記所定の偏波角度で復元し、前記所定の偏波角度の復元結果を相互に比較する受信機を有することを特徴とする高セキュア無線通信システム。
  2.  請求項1に記載の高セキュア無線システムであって、前記送信機は、前記回転偏波の回転周波数が前記情報の周波数より大きく、前記回転偏波の前記回転周波数を分割し、分割した前記回転周波数の各々に異なる符号を割り当て、前記符号を前記情報に重畳させて送信信号として伝送し、前記受信機は、受信信号に含まれる前記符号の復元結果を相互に比較することを特徴とする高セキュア無線通信システム。
  3.  請求項2に記載の高セキュア無線システムであって、前記送信機は、ダミー情報を特定の送信偏波角度に対して発生させ、前記受信機は、前記受信信号に含まれる前記符号を前記所定の偏波角度の各々で復号し、外部侵入者が影響を与える前記符号を特定し、特定した前記符号を送信する偏波角度において前記ダミー情報を前記情報に加えて伝送することを特徴とする高セキュア無線通信システム。
  4.  請求項2に記載の高セキュア無線システムであって、前記送信機は、ダミー情報を特定の送信偏波角度に対して発生させ、前記受信機は、前記受信信号に含まれる前記符号を前記所定の偏波角度の各々で復号し、外部侵入者が影響を与える前記符号を特定し、特定した前記符号を送信する偏波角度において前記ダミー情報を前記情報に置き換えて伝送することを特徴とする高セキュア無線通信システム。
  5.  請求項2乃至4のいずれか1項に記載の高セキュア無線システムであって、前記符号が循環特性を持つことを特徴とする高セキュア無線通信システム。
  6.  請求項1乃至5のいずれか1項に記載の高セキュア無線通信システムであって、前記送信機および前記受信機を有する無線機が共通して保有する定型情報を用いて送信受信を行い、前記定型情報の送信受信に基づいて前記情報の伝送のタイミングを識別することを特徴とする高セキュア無線通信システム。
  7.  請求項6の高セキュア無線通信システムであって、前記無線機は前記定型情報の受信の確認に応答して、前記定型情報を送信し、前記情報を伝送する前に前記定型情報を送信することを特徴とする高セキュア無線通信システム。
  8.  搬送波の偏波を回転させる回転偏波の異なる所定の偏波角度で同一の情報を伝送し、前記送信機と受信機との間の伝搬情報を取得し、前記伝搬情報を鍵として前記情報を暗号化する送信機と、前記暗号化された前記情報を受信する前記受信機を有することを特徴とする高セキュア無線通信システム。
  9.  請求項8に記載の高セキュア無線通信システムであって前記伝搬情報が受信電界強度の時間軸プロファイルであることを特徴とする高セキュア無線通信システム。
  10.  請求項9の高セキュア無線システムで前記伝搬情報が受信電力の包絡線検波結果を、特定の閾値でデジタル化した符号列であることを特徴とする高セキュア無線通信システム。
  11.  請求項10の高セキュア無線システムであって、デジタル化した前記符号列の周波数が前記偏波の回転周波数の100分の1以上4分の1以下であることを特徴とする高セキュア無線通信システム。
  12.  請求項1乃至11のいずれか1項に記載の高セキュア無線システムであって、前記回転偏波が、異なる2つの周波数の搬送波の加算波により生成されることを特徴とする高セキュア無線通信システム。
  13.  請求項1乃至12のいずれか1項に記載の高セキュア無線通信システムであって、前記情報が重畳された信号が搬送波周波数へと、デルタシグマ回路によりデジタル的にアップコンバートされることを特徴とする高セキュア無線通信システム。
  14.  請求項1乃至12のいずれか1項に記載の高セキュア無線システムであって、搬送波周波数を有する受信波が前記回転偏波の周波数帯域まで、デルタシグマ回路によりデジタル的にダウンコンバートされることを特徴とする高セキュア無線通信システム。
  15.  請求項1乃至14の高セキュア無線システムであって、偏波の直交する2つのアンテナを用いて前記回転偏波を生成することを特徴とする高セキュア無線通信システム。
  16.  請求項15の高セキュア無線システムであって、前記偏波の直交する2つの前記アンテナは空間的に直交する2つの直線偏波アンテナであることを特徴とする高セキュア無線通信システム。
  17.  請求項1乃至16の高セキュア無線システムであって、前記回転偏波の周波数が前記情報の上限周波数より10倍以上高く、且つ搬送波の周波数より10倍以上低いことを特徴とする高セキュア無線通信システム。
  18.  搬送波の偏波を回転させる回転偏波の異なる所定の偏波角度で同一の情報を伝送する送信機と、受信情報を前記所定の偏波角度で復元し、前記所定の偏波角度の復元結果を相互に比較する受信機を含む無線機を、昇降機と前記昇降機が設置される建物に設けることを特徴とする昇降機制御システム。
  19.  搬送波の偏波を回転させる回転偏波の異なる所定の偏波角度で同一の情報を伝送する送信機と、受信情報を前記所定の偏波角度で復元し、前記所定の偏波角度の復元結果を相互に比較する受信機を含む無線機を、変電機及び前記変電機の近傍の基地局に設けることを特徴とする変電設備監視システム
PCT/JP2013/078376 2013-10-18 2013-10-18 高セキュア無線通信システム WO2015056353A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/028,490 US10470039B2 (en) 2013-10-18 2013-10-18 Highly-secure wireless communication system
JP2015542475A JP5986323B2 (ja) 2013-10-18 2013-10-18 高セキュア無線通信システム
PCT/JP2013/078376 WO2015056353A1 (ja) 2013-10-18 2013-10-18 高セキュア無線通信システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/078376 WO2015056353A1 (ja) 2013-10-18 2013-10-18 高セキュア無線通信システム

Publications (1)

Publication Number Publication Date
WO2015056353A1 true WO2015056353A1 (ja) 2015-04-23

Family

ID=52827820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078376 WO2015056353A1 (ja) 2013-10-18 2013-10-18 高セキュア無線通信システム

Country Status (3)

Country Link
US (1) US10470039B2 (ja)
JP (1) JP5986323B2 (ja)
WO (1) WO2015056353A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017406A (ja) * 2015-06-29 2017-01-19 株式会社日立製作所 無線通信システム、および、それを用いた昇降機システム、変電設備監視システム
JP2017046117A (ja) * 2015-08-25 2017-03-02 株式会社日立製作所 無線通信システム
WO2017119285A1 (ja) * 2016-01-05 2017-07-13 株式会社日立製作所 無線通信システム、無線機、無線通信方法、昇降機制御システム及び変電所制御システム
WO2017213102A1 (ja) * 2016-06-09 2017-12-14 株式会社日立製作所 無線システム、およびそれを用いた昇降機制御システム、変電設備監視システム
WO2018008437A1 (ja) * 2016-07-07 2018-01-11 株式会社日立製作所 無線システム、およびそれを用いた昇降機制御システム、変電設備監視システム
US10148338B1 (en) 2017-08-24 2018-12-04 Hitachi, Ltd. Wireless communication system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016075785A1 (ja) * 2014-11-13 2016-05-19 株式会社日立製作所 無線通信システムおよびその利用システム
JP6228108B2 (ja) * 2014-12-18 2017-11-08 株式会社日立製作所 無線通信システム
JP6454596B2 (ja) * 2015-05-13 2019-01-16 株式会社日立製作所 無線機
WO2017195761A1 (ja) * 2016-05-10 2017-11-16 株式会社日立製作所 送信機および受信機
JP2019102994A (ja) * 2017-12-04 2019-06-24 株式会社日立製作所 無線通信システムおよび無線監視制御システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002152191A (ja) * 2000-08-30 2002-05-24 Matsushita Electric Ind Co Ltd データ伝送装置、無線通信システム及び無線通信方法
JP2003224533A (ja) * 2002-01-29 2003-08-08 Nippon Signal Co Ltd:The 無線通信装置
JP2004032679A (ja) * 2002-02-28 2004-01-29 Matsushita Electric Ind Co Ltd 通信装置及び通信システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955992A (en) * 1998-02-12 1999-09-21 Shattil; Steve J. Frequency-shifted feedback cavity used as a phased array antenna controller and carrier interference multiple access spread-spectrum transmitter
US20020181439A1 (en) * 2000-08-30 2002-12-05 Masayuki Orihashi Data transmitting apparatus, radio communication system and radio communication method
JP2005130127A (ja) 2003-10-22 2005-05-19 Sumitomo Electric Ind Ltd 秘話通信方法および通信端末装置
JP2008199263A (ja) 2007-02-13 2008-08-28 Doshisha 無線通信における秘密鍵生成方法および無線通信装置
JP2013066078A (ja) 2011-09-16 2013-04-11 Toyohashi Univ Of Technology 管理局、無線秘密鍵管理システム及びその方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002152191A (ja) * 2000-08-30 2002-05-24 Matsushita Electric Ind Co Ltd データ伝送装置、無線通信システム及び無線通信方法
JP2003224533A (ja) * 2002-01-29 2003-08-08 Nippon Signal Co Ltd:The 無線通信装置
JP2004032679A (ja) * 2002-02-28 2004-01-29 Matsushita Electric Ind Co Ltd 通信装置及び通信システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017406A (ja) * 2015-06-29 2017-01-19 株式会社日立製作所 無線通信システム、および、それを用いた昇降機システム、変電設備監視システム
JP2017046117A (ja) * 2015-08-25 2017-03-02 株式会社日立製作所 無線通信システム
WO2017119285A1 (ja) * 2016-01-05 2017-07-13 株式会社日立製作所 無線通信システム、無線機、無線通信方法、昇降機制御システム及び変電所制御システム
WO2017213102A1 (ja) * 2016-06-09 2017-12-14 株式会社日立製作所 無線システム、およびそれを用いた昇降機制御システム、変電設備監視システム
WO2018008437A1 (ja) * 2016-07-07 2018-01-11 株式会社日立製作所 無線システム、およびそれを用いた昇降機制御システム、変電設備監視システム
JPWO2018008437A1 (ja) * 2016-07-07 2018-10-11 株式会社日立製作所 無線システム、およびそれを用いた昇降機制御システム、変電設備監視システム
US10149180B2 (en) 2016-07-07 2018-12-04 Hitachi, Ltd. Radio communication system, elevator control system using same, and substation facility monitoring system
US10148338B1 (en) 2017-08-24 2018-12-04 Hitachi, Ltd. Wireless communication system

Also Published As

Publication number Publication date
JP5986323B2 (ja) 2016-09-06
JPWO2015056353A1 (ja) 2017-03-09
US20160255499A1 (en) 2016-09-01
US10470039B2 (en) 2019-11-05

Similar Documents

Publication Publication Date Title
JP5986323B2 (ja) 高セキュア無線通信システム
US10574448B2 (en) Multidimensional coded modulation for wireless communications with physical layer security
JP5914746B2 (ja) 無線通信システム、送信機、受信機、昇降機制御システム、及び、変電設備監視システム
JP6228108B2 (ja) 無線通信システム
JP5868546B2 (ja) 無線通信システム、昇降機制御・監視システム、および、変電設備制御・監視システム
Uribe et al. A technical review of wireless security for the internet of things: Software defined radio perspective
JP6280993B2 (ja) 無線通信システムおよびその利用システム
JP6199492B2 (ja) 無線通信システム、送信機、及び受信機
Vo-Huu et al. Counter-jamming using mixed mechanical and software interference cancellation
Döttling et al. Vulnerabilities of wireless key exchange based on channel reciprocity
JP6581437B2 (ja) 無線通信システム
JP6439079B2 (ja) 送信機および受信機
Zhao et al. Orbital angular momentum multiplexing with non-degenerate modes in secondary frequency domain
JP6475042B2 (ja) 無線送信機、無線受信機、および無線通信システム
WO2022123195A1 (en) Apparatus for generating covert radio communications
JP2021040258A (ja) 無線システムおよび無線通信方法
WO2018185883A1 (ja) 無線通信システム
WO2023037661A1 (ja) 無線通信システムおよび無線通信方法
Risley et al. Electronic security risks associated with use of wireless, point-to-point communications in the electric power industry
JP6952536B2 (ja) 無線通信システム
White Investigation into the Development of a Wireless IoT Penetration Testbed
JP2020072293A (ja) 無線システム及び無線通信方法
CN117768878A (zh) 列车无线网络安全传输系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895564

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15028490

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015542475

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13895564

Country of ref document: EP

Kind code of ref document: A1