WO2015054983A1 - 非金属抗腐蚀换热装置及具有该换热装置的板式换热器 - Google Patents

非金属抗腐蚀换热装置及具有该换热装置的板式换热器 Download PDF

Info

Publication number
WO2015054983A1
WO2015054983A1 PCT/CN2014/071638 CN2014071638W WO2015054983A1 WO 2015054983 A1 WO2015054983 A1 WO 2015054983A1 CN 2014071638 W CN2014071638 W CN 2014071638W WO 2015054983 A1 WO2015054983 A1 WO 2015054983A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
exchange device
heat exchanger
resistant
sheet
Prior art date
Application number
PCT/CN2014/071638
Other languages
English (en)
French (fr)
Inventor
程高锋
邵国辉
谷敬佩
Original Assignee
洛阳瑞昌石油化工设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 洛阳瑞昌石油化工设备有限公司 filed Critical 洛阳瑞昌石油化工设备有限公司
Priority to EP14854711.0A priority Critical patent/EP2980522B1/en
Priority to US14/895,482 priority patent/US10234217B2/en
Publication of WO2015054983A1 publication Critical patent/WO2015054983A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0068Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/006Constructions of heat-exchange apparatus characterised by the selection of particular materials of glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2230/00Sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2240/00Spacing means

Definitions

  • Non-metal corrosion-resistant heat exchange device and plate heat exchanger having the same
  • the invention relates to a heat exchange device and a plate heat exchanger having the same, in particular to a high-efficiency non-metal corrosion-resistant heat exchange device capable of being used in a highly corrosive medium and a plate type changer having the same Heater.
  • the plate heat exchanger is a detachable heat exchange device composed of a plurality of heat transfer plates at a certain interval and pressed by a gasket.
  • the plates of the heat exchange device in the heat exchange device are generally made of metal.
  • the two groups are alternately arranged, and the sealing strip is fixed by the adhesive between the plate and the plate, and the function is to prevent fluid or smoke.
  • the leak creates a narrow flow path between the two sheets for the flow of fluid and smoke.
  • Advantages of plate heat exchanger small size, small footprint; high heat transfer efficiency; flexible assembly; low heat loss; easy to disassemble, clean and repair.
  • the disadvantages of the existing plate heat exchangers are the defects of poor corrosion resistance, especially the heat exchanger plates of the heat exchanger; especially for the hot sulfuric acid flowing in various concentrations in the heat exchanger, the concentration of chlorine ions is high.
  • heat exchanger sheets are easily corroded under such conditions, have a short service life, require frequent replacement, and increase cost.
  • the present invention discloses a high-efficiency non-metal corrosion-resistant heat exchange device and a plate heat exchanger having the heat exchange device, which can be effectively applied to remove hydrofluoric acid, phosphoric acid and Corrosion problems of various media other than strong alkali have the advantages of high heat transfer efficiency, wide application range and small pressure drop.
  • the utility model relates to a high-efficiency non-metal corrosion-resistant heat exchange device, which comprises a plurality of non-metal corrosion-resistant heat exchanger plates, upper support ribs and lower support ribs mounted on the upper and lower surfaces of each heat exchange plate, and arranged on the heat exchange plate a sealing strip for each of the upper and lower edges of the side, and a gasket, wherein the upper supporting rib and the lower supporting rib are connected and fixed to the heat exchange plate, and the sealing strip and the heat exchange plate are fixedly connected, the gasket Between the lower support ribs on the lower surface of the adjacent odd-numbered heat exchanger plates and the upper support ribs on the even-numbered heat exchanger plates, the gaskets are also distributed on the lower surface of the odd-numbered heat exchanger plates with even numbers Between the sealing strips on the upper surface of the heat exchange sheet, adjacent upper and lower support ribs located between adjacent odd-numbered and even-numbered heat exchange sheets enclose a plurality of different shapes and directions that do not communicate with each other.
  • the upper support rib and the lower support rib are connected and fixed between the heat exchange plate and the heat seal plate by adhesive bonding or welding to improve the strength and rigidity of the heat exchange plate.
  • the structural shape, arrangement, direction and size of the lower support rib of the lower surface of the odd-numbered heat exchange plate are coupled with
  • the structural shape, arrangement, orientation and dimensions of the upper support ribs on the upper surface of the numbered heat exchanger plates are identical.
  • the height of the sealing strip and the upper supporting rib and the lower supporting rib are the same after the surface of the heat exchange sheet is mounted.
  • the heat exchange sheet is a glass sheet, and the glass is all glass having heat transfer and corrosion resistance; for example, borosilicate glass, aluminosilicate glass, quartz glass, and glass ceramics , high silica glass, low alkali boron-free glass, ceramic glass.
  • the heat exchange sheet is made of ceramics, such as silicon nitride ceramics, high alumina ceramics, and silicon carbide ceramics.
  • sealing strip is a non-metallic rectangular strip made of glass or ceramic.
  • the adhesive is an organic or inorganic adhesive that resists corrosion and high temperature, such as silicone sealant, silicone rubber.
  • the gasket material is a non-metal material such as polytetrafluoroethylene or silicone rubber.
  • gasket material is a metal and non-metal composite material, such as a flexible graphite composite board.
  • the direction of the inlet and outlet of the cold fluid is parallel to the longitudinal direction of the heat exchanger sheet
  • the direction of the inlet and outlet of the hot fluid is parallel to the width direction of the heat exchanger sheet, and the cold and hot fluids are alternately flowed for heat exchange.
  • the flow direction of the cold fluid is "L"-shaped; the longitudinal direction of the cold fluid is parallel to the longitudinal direction of the heat exchanger sheet, and the flow direction of the hot fluid is inverted “L”; the inlet of the cold fluid and the hot fluid The inlet is opposite to the length of the heat exchanger plate; the cold fluid outlet and the hot fluid outlet are at both ends of the same side or the cold fluid outlet and the hot fluid outlet are respectively at the opposite ends of the two sides, and the middle rectangular slot of the heat exchange plate corresponds to In the heat exchanger, the column separates the cold and hot fluids; the cold and hot fluids achieve approximate countercurrent heat transfer.
  • the flow direction of the cold fluid is "2" shape; the longitudinal direction of the cold fluid is parallel to the longitudinal direction of the heat exchanger sheet, and the flow direction of the hot fluid is inverted to the "2" shape; the inlet of the cold fluid and The outlet of the hot fluid is at both ends of the same side, and the cold and hot fluids achieve approximate countercurrent heat exchange, or the inlet and outlet of the cold fluid are disposed at the width direction end of the heat exchanger sheet and are opposite to the hot fluid.
  • the flow direction of the cold fluid is "Z"-shaped; the longitudinal direction of the cold fluid is parallel to the longitudinal direction of the heat exchanger sheet, and the flow direction of the hot fluid is inverted to the "Z" shape; the inlet of the cold fluid and The outlet of the hot fluid is at both ends of the two sides, and the cold and hot fluids achieve approximate countercurrent heat transfer.
  • a plate heat exchanger with a high-efficiency non-metal corrosion-resistant heat exchange device comprising a frame and a high-efficiency non-metal corrosion-resistant heat exchange device according to any of the foregoing aspects assembled in the frame, the frame being composed of an upper cover plate and a lower bottom plate It is composed of a column, and the heat exchange device is assembled between the upper cover plate and the lower bottom plate of the frame.
  • the inner surface of the frame is treated with anti-corrosion treatment, and one of PFA spray, enamel, or PTFE anti-corrosion is used.
  • the present invention has the following beneficial effects by adopting the technical solution as described above: 1, anti-corrosion, to achieve long-term stable operation:
  • the glass Due to the use of glass plates or ceramics as heat exchanger plates, the glass has excellent corrosion resistance. Except for hydrofluoric acid, fluorosilicic acid, hot phosphoric acid and strong alkali, most other inorganic acids, organic acids and organic solvents are used. Not enough to corrode glass, it is one of the best materials for acid dew point corrosion, which can ensure long-term stable operation in low temperature flue gas environment;
  • the surface of the glass heat exchanger plate or ceramic is smooth, the fluid flow resistance is small, the heat transfer surface is not easy to scale, and there is almost no need for cleaning, so that the pressure drop is small; the pressure drop is small, the power consumption of the pump or the fan is reduced, and the test and calculation are completed.
  • the pressure drop of the non-welded high temperature plate heat exchanger is only 2/5 ⁇ 3/5 of the tube bundle type, which can reduce the operating cost;
  • the heat transfer coefficient under the same flow rate is 1.2 ⁇ 1.5 times of the shell-and-tube heat exchanger
  • the fluid upstream and downward of the heat exchange plate can realize the reverse flow heat exchange, and the heat transfer efficiency can be remarkably improved
  • the glass heat exchanger plate or ceramic adopts double-sided adhesive support rib structure, which effectively improves the strength and rigidity of the glass plate change and improves the reliability.
  • FIG. 1 is a schematic view showing the structure of a heat exchanger having a high-efficiency non-metal corrosion-resistant heat exchange device according to the present invention.
  • FIG. 2 is a schematic view showing the structure of a first form of a high-efficiency non-metal corrosion-resistant heat exchange device according to the present invention.
  • FIG 3 is a schematic view showing the structure of a second form of a high-efficiency non-metal corrosion-resistant heat exchange device according to the present invention.
  • FIG. 4 is a schematic view showing the structure of a third form of a high-efficiency non-metal corrosion-resistant heat exchange device according to the present invention.
  • FIG. 5 is a schematic view showing the structure of a fourth form of a high-efficiency non-metal corrosion-resistant heat exchange device according to the present invention.
  • FIG. 6 is a schematic view showing the structure of a fifth form of a high-efficiency non-metal corrosion-resistant heat exchange device according to the present invention.
  • FIG. 7 is a schematic view showing the structure of a sixth form of a high-efficiency non-metal corrosion-resistant heat exchange device according to the present invention.
  • FIG. 8 is a schematic view showing the structure of a seventh form of an efficient non-metal corrosion-resistant heat exchange device according to the present invention.
  • FIG. 1 is a plate heat exchanger 100 having a high-efficiency non-metal corrosion-resistant heat exchange device according to the present invention.
  • the plate heat exchanger 100 includes a frame 10 and a high efficiency non-metallic corrosion resistant heat exchange device 20 assembled within the frame 10.
  • the frame 10 is composed of an upper cover 101, a lower base 102 and a post 103.
  • the heat exchange device 20 is assembled between the frame upper cover 101 and the lower floor 102.
  • the inner surface of the frame is treated with anti-corrosion treatment, such as PFA spray, enamel, or PTFE-lined anti-corrosion treatment.
  • a schematic diagram of a first form of the high-efficiency non-metal corrosion-resistant heat exchange device 21 includes a plurality of non-metal corrosion-resistant rectangular heat exchange plates 21 mounted on each piece.
  • the upper support rib 22 and the lower support rib 23 are connected and fixed between the heat exchange sheet 21 and between the seal strip 25 and the heat exchange sheet 21 by means of adhesive or welding.
  • the upper support rib 22 and the lower support rib 23 may be oblate, hexagonal or other shapes for the purpose of improving heat transfer and strength properties of the heat exchange sheet 21.
  • the upper support rib 22 and the lower support rib 23 are arranged, arranged and oriented according to the flow direction of the medium and the requirements of the heat exchanger. Taking the adjacent odd-numbered heat exchanger plates 21 and the even-numbered heat exchanger plates 21 as an example, the structural shape, arrangement, direction and size of the lower support ribs 23 of the lower surface of the odd-numbered heat exchanger plates are changed with even numbers. The structural shape, arrangement, direction and size of the upper support ribs 22 of the upper surface of the hot plate 21 are identical. The height of the weather strip 25 and the upper support rib 22 and the lower support rib 23 after the surface of the heat exchange sheet 21 are mounted are the same.
  • the spacer 26 is distributed between the lower support rib 23 on the lower surface of the adjacent odd-numbered heat exchanger sheet 21 and the upper support rib 22 of the even-numbered heat exchanger sheet, and is distributed on the lower surface of the odd-numbered heat exchanger sheet 21.
  • the sealing strip 25 is between the sealing strip 25 on the upper surface of the even-numbered heat exchange sheet 21.
  • the heat exchange device 20 is superposed by a plurality of odd-numbered heat exchanger plates 21 and adjacent even-numbered heat exchanger plates 21, and the lower support of the lower surface of the odd-numbered heat exchanger plates 21 at this time
  • the ribs 23 are exactly aligned on one side of the corresponding spacer 26, and the upper support ribs 22 of the upper surface of the adjacent even-numbered heat exchange plates are just completely aligned with the other side of the corresponding spacer 26, while
  • the sealing strip 25 of the lower surface of the odd-numbered heat exchange sheet 21 is just completely aligned with one side of the corresponding spacer 26, and the sealing strip 25 of the upper surface of the adjacent even-numbered heat exchange sheet 21 is just completely Aligning the other side of the corresponding gasket 26 produces a certain displacement and pressing force by means of mechanical or hydraulic means to allow the gasket 26 to completely seal the upper and lower support ribs and the sealing strip.
  • the adjacent upper and lower support ribs located between the adjacent odd-numbered and even-numbered heat exchange plates enclose a plurality of sealed passages of different shapes and directions that do not communicate with each other.
  • Two ports of the channel for fluid or smoke entering or exiting, and adjacent ones of the plurality of channels are interdigitated with each other.
  • the hot fluid channel, the cold fluid channel, and the channels of the upper and lower surfaces of the same heat exchange plate may also flow cold and hot fluids to separate the hot and cold fluids to achieve heat transfer.
  • the heat exchange device 20 is placed between the upper cover 101 and the lower base 102 of the frame 10 to form a complete heat exchanger. Different media can flow between the two channels adjacent to the same side of the heat exchanger plate, and the two media exchange heat through the heat exchanger plates.
  • the heat exchange sheet 21 may be a rectangular non-metallic flat plate.
  • the heat exchange sheet may be a glass sheet, and the glass may be all glass having heat transfer and corrosion resistance; for example, borosilicate glass, aluminosilicate glass, quartz glass, glass ceramic, High silica glass, low alkali boron-free glass and ceramic glass.
  • the heat exchange sheet 21 may also be a ceramic, and the ceramic may be a silicon nitride ceramic, a high alumina ceramic, a silicon carbide ceramic or the like.
  • the sealing strip 25 is a non-metallic rectangular strip which may be made of glass or ceramic.
  • the adhesive is an organic or inorganic adhesive which is resistant to corrosion and high temperature, such as silicone sealant, silicone rubber and the like.
  • the material of the gasket 26 may be a non-metal material such as polytetrafluoroethylene or silicone rubber, and a metal and non-metal composite material, such as a flexible graphite composite board.
  • the direction of the inlet and outlet of the cold fluid is parallel to the longitudinal direction of the heat exchanger sheet 21, and the direction of the inlet and outlet of the hot fluid is parallel to the width direction of the heat exchanger sheet 21, and the cold and hot fluids are alternately flowed for heat exchange.
  • FIG. 3 it is a schematic diagram of a second form of the high-efficiency non-metal corrosion-resistant heat exchange device of the present invention: the flow direction of the cold fluid is "L"-shaped; the long direction of the cold fluid flow and the length of the heat-exchange plate 21 The directions are parallel, and the flow direction of the hot fluid is inverted “L”; the inlet of the cold fluid and the inlet of the hot fluid are opposite each other along the length of the heat exchanger sheet 21; the cold fluid outlet and the hot fluid outlet are at both ends of the same side,
  • the middle rectangular slot of the hot plate 21 corresponds to the separation of the cold and hot fluids in the column of the heat exchanger; the cold and hot fluids achieve approximate countercurrent heat exchange.
  • FIG. 4 is a schematic view showing the structure of a third form of a high-efficiency non-metal corrosion-resistant heat exchange device according to the present invention: similar to FIG. 3, the difference is that the cold fluid outlet and the hot fluid outlet are respectively at both ends of the two sides.
  • FIG. 5 is a schematic view showing the fourth form of the structure of the high-efficiency non-metal corrosion-resistant heat exchange device of the present invention: the flow direction of the cold fluid is "2" shape; the long direction of the cold fluid flow and the length direction of the heat exchange plate 21 Parallel, the flow direction of the hot fluid is reversed to "2" shape; the inlet of the cold fluid and the outlet of the hot fluid are at both ends of the same side, and the cold and hot fluids achieve approximate countercurrent heat transfer.
  • FIG. 6 is a schematic view showing the structure of a fifth form of a high-efficiency non-metal corrosion-resistant heat exchange device according to the present invention: similar to FIG. 5, the difference is that the inlet and outlet of the cold fluid are disposed at the width direction end of the heat exchanger sheet 21, and the hot fluid countercurrent.
  • FIG. 7 is a schematic view showing the sixth form of the high-efficiency non-metal corrosion-resistant heat exchange device of the present invention: the flow direction of the cold fluid is "Z"-shaped; the long direction of the cold fluid flow and the length direction of the heat-exchange plate 21 Parallel, the direction of the flow path of the hot fluid is reversed to the "Z"shape; the inlet of the cold fluid and the outlet of the hot fluid are at both ends of the two sides, and the cold and hot fluids achieve an approximate countercurrent Heat exchange.
  • Fig. 8 shows one of the specific embodiments of the present invention: Similar to Fig. 7, the difference is that the inlet and outlet of the cold fluid are disposed at the width direction end of the heat exchanger sheet 21 and are opposite to the hot fluid.
  • no pad is provided between the lower support rib of the lower surface of the odd-numbered heat exchanger sheet 21 of the present invention and the upper support rib of the upper surface of the even-numbered heat exchanger sheet 21
  • the upper support ribs of the odd-numbered heat exchanger plates and the upper support ribs of the even-numbered heat exchanger plates are bonded by adhesive bonding or welding.
  • the seal strips of the odd-numbered heat exchanger sheets and the corresponding seal strips of the even-numbered heat exchanger sheets are also bonded together by adhesive bonding or welding. Welding methods such as: vacuum diffusion welding or brazing.
  • the upper support rib 22, the lower support rib 23, and the seal rib of the heat exchange sheet 21 may be formed by hot pressing or etching of the heat exchange sheet 21.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

提供了一种非金属抗腐蚀换热装置(20)及具有该换热装置(20)的板式换热器(100)。换热装置(20)包括多片非金属抗腐蚀的换热板片(21),安装在每片换热板片(21)上、下表面的上支撑肋(22)和下支撑肋(23),设置在换热板片(21)的各个侧边上、下边缘的密封条(25),以及垫片(26)。上支撑肋(22)、下支撑肋(23)和密封条(25)分别与换热板片(21)连接固定。垫片(26)分布在相邻的奇数编号换热板片(21)下表面的下支撑肋(23)与偶数编号换热板片(21)上表面的上支撑肋(22)之间,垫片(26)还分布在相邻的奇数编号换热板片(21)下表面的密封条(25)与偶数编号换热板片(21)上表面的密封条(25)之间。位于相邻的换热板片(21)之间的相邻上支撑肋(22)与下支撑肋(23)围成了多个彼此不互通的不同方向的冷流体和热流体的密封通道。垫片(26)通过压紧力而完全密封上支撑肋(22)、下支撑肋(23)和密封条(25)。

Description

非金属抗腐蚀换热装置及具有该换热装置的板式换热器 技术领域
本发明涉及一种换热装置和具有该换热装置的板式换热器, 特别涉及可用于强腐蚀性介 质的工况下的高效非金属抗腐蚀换热装置及具有该换热装置的板式换热器。
背景技术
板式换热器是由许多传热板片按一定的间隔, 通过垫片压紧组成的可拆卸的换热设备。 换热设备中换热装置的板片一般均为金属材质的, 组装时, 两组交替排列, 板片与板片之间 用粘结剂把密封条固定好, 其作用是防止流体或烟气泄漏并使两板片之间形成供流体和烟气 流动的狭窄的流道。 板式换热器的优点: 体积小, 占地面积小; 传热效率高; 组装灵活; 热 损失小; 拆卸、 清洗、 检修方便。
现有的板式换热器缺点是存在抗腐蚀性能差的缺陷, 尤其是换热器的换热板片; 特别是 对于换热器内若流动各种浓度的热硫酸, 含氯离子浓度高的溶液等, 换热板片在此种情况下 很容易被腐蚀, 使用寿命较短, 需要频繁更换, 增加成本。
发明内容
为了克服现有技术的不足, 本发明公开了一种高效非金属抗腐蚀换热装置及具有该换热 装置的板式换热器, 该换热装置能有效地适用于除氢氟酸、 磷酸和强碱以外的各种介质腐蚀 问题, 具有传热效率高, 适用范围广, 压降小的优点。
为实现上述发明目的, 本发明采用如下技术方案:
一种高效非金属抗腐蚀换热装置, 包括多片非金属抗腐蚀的换热板片, 安装在每片换热板 片上、 下表面的上支撑肋和下支撑肋, 设置在换热板片的各个侧边上、 下边缘的密封条, 以 及垫片, 其中所述上支撑肋和下支撑肋与换热板片之间连接固定, 密封条与换热板片之间连 接固定, 垫片分布在相邻的奇数编号换热板片下表面的下支撑肋与偶数编号换热板片的上支 撑肋之间, 垫片还分布在奇数编号换热板片下表面的密封条与偶数编号换热板片上表面的密 封条之间, 位于相邻的奇数编号和偶数编号的换热板片之间的相邻的上、 下支撑肋围成了多 个彼此不互通的不同形状和方向的冷流体和热流体的密封通道, 垫片通过压紧力而完全密封 上、 下支撑肋和密封条。
进一步的, 上支撑肋和下支撑肋与换热板片之间以及密封条与换热板片之间是通过胶粘 剂粘接或焊接的方式连接固定, 以提高换热板片的强度和刚度。
进一步的, 奇数编号换热板片的下表面的下支撑肋的结构形状、 布置、 方向和尺寸与偶 数编号换热板片的上表面的上支撑肋的结构形状、 布置、 方向和尺寸是完全相同。 进一步的, 密封条和上支撑肋、 下支撑肋在换热板片表面安装后其高度是相同的。
进一步的, 所述换热板片为玻璃板片, 该玻璃为所有具有符合具有传热及抗腐蚀特性 的玻璃; 如高硼硅酸盐玻璃、 铝硅酸盐玻璃、 石英玻璃、 微晶玻璃、 高硅氧玻璃、 低碱无硼 玻璃、 陶瓷玻璃。
进一步的, 所述换热板片为陶瓷, 如氮化硅陶瓷、 高铝陶瓷、 碳化硅陶瓷。
进一步的, 所述密封条为非金属的矩形条, 其材质为玻璃或陶瓷。
进一步的, 胶粘剂为抗腐蚀和耐高温的有机或无机胶粘剂, 如有机硅密封胶、 硅橡胶。 进一步的, 所述垫片材料为非金属材料, 如聚四氟乙烯、 硅橡胶。
进一步的, 所述垫片材料为金属与非金属复合材料, 如柔性石墨复合板。
进一步的, 冷流体的进出口方向与换热板片的长度方向平行, 热流体的进出口方向与 换热板片的宽度方向平行, 冷、 热流体实现交错流进行热交换。
进一步的, 冷流体的流路方向呈 "L "形; 冷流体流动长方向与换热板片的长度方向平 行, 热流体的流路方向呈倒 "L "形; 冷流体的进口和热流体的进口沿换热板片长度方向相对; 冷流体出口和热流体出口在同一侧面的两端或冷流体出口和热流体出口分别在两侧面的两端, 换热板片的中间矩形槽口对应在换热器中立柱将冷、 热流体隔开; 冷、 热流体实现近似逆流 换热。
进一步的, 冷流体的流路方向呈 "2"形; 冷流体流动长方向与换热板片的长度方向平 行, 热流体的流路方向呈倒烦向 "2 "形; 冷流体的进口和热流体的出口在同一侧面的两端, 冷、 热流体实现近似逆流换热, 或冷流体的进出口设置于换热板片的宽度方向端, 且与热流 体逆流。
进一步的, 冷流体的流路方向呈 "Z"形; 冷流体流动长方向与换热板片的长度方向平 行, 热流体的流路方向呈倒烦向 "Z "形; 冷流体的进口和热流体的出口在两侧面的两端, 冷、 热流体实现近似逆流换热。
一种具有高效非金属抗腐蚀换热装置的板式换热器, 包括框架和组装在框架内的前述任 一项方案所述的高效非金属抗腐蚀换热装置, 框架由上盖板, 下底板和立柱组成, 换热装置 组装在框架上盖板和下底板之间。
进一步的, 框架内表面进行了防腐处理, 其采用 PFA 喷涂、 搪瓷、 或衬聚四氟乙烯防 腐中的一种。
本发明由于采用了如上所述技术方案, 具有如下有益效果: 1、 抗腐蚀, 实现长周期稳定运行:
由于采用了玻璃板或陶瓷作为换热板片, 玻璃的耐腐蚀性特强, 除氢氟酸、 氟硅酸、 热磷酸 和强碱外, 其它绝大多数无机酸、 有机酸和有机溶剂都不足以腐蚀玻璃, 它是抗酸露点腐蚀 最好的材料之一, 能保证其在低温烟气环境中实现长周期稳定运行;
2、 压降小:
玻璃换热板或陶瓷表面光滑, 流体流动阻力小, 传热表面上不易结垢, 几乎没有清洗的必要, 从而压降很小; 压降小可使泵或风机动力消耗减少, 通过试验和计算在同样长度的流道, 非 焊接高温板式换热器的压降仅为管束式的 2/5〜3/5, 这样可以降低操作费用;
3、 传热性能好:
通过试验, 在同样流速的条件下其传热系数为管壳式换热器的 1.2〜1.5倍;
4、 传热效率高:
由于可以通过支撑肋对介质的流路进行导向, 是换热板片上下的流体实现逆流换热, 可以显 著提高传热效率;
5、 玻璃换热板或陶瓷采用双面粘接支撑肋结构, 其有效地提高了玻璃板换片的强度和刚度, 提高了可靠性。
附图说明
图 1为本发明一种具有高效非金属抗腐蚀换热装置的换热器的结构示意图。
图 2为本发明一种高效非金属抗腐蚀换热装置的第一形式结构示意图。
图 3为本发明一种高效非金属抗腐蚀换热装置的第二形式结构示意图。
图 4为本发明一种高效非金属抗腐蚀换热装置的第三形式结构示意图。
图 5为本发明一种高效非金属抗腐蚀换热装置的第四形式结构示意图。
图 6为本发明一种高效非金属抗腐蚀换热装置的第五形式结构示意图。
图 7为本发明一种高效非金属抗腐蚀换热装置的第六形式结构示意图。
图 8为本发明一种高效非金属抗腐蚀换热装置的第七形式结构示意图。
标号说明:
具有高效非金属抗腐蚀换热板的板式换热器 100 框架 10
上盖板 101 下底板 102
立柱 103 换热装置 20
换热板片 21 上支撑肋 22
下支撑板片 23 密封条 25 具体实》式
下面结合附图对本发明作进一步描述:
请参阅图 1, 为本发明一种具有高效非金属抗腐蚀换热装置的板式换热器 100。 该板式 换热器 100包括框架 10和组装在框架 10内的高效非金属抗腐蚀换热装置 20。 框架 10由上 盖板 101, 下底板 102和立柱 103组成。 换热装置 20组装在框架上盖板 101和下底板 102 之间。 框架内表面进行了防腐处理, 其可以采用 PFA 喷涂、 搪瓷、 或衬聚四氟乙烯等防腐 处理方案。
请参阅图 2, 为高效非金属抗腐蚀换热装置 21 的第一形式结构示意图, 高效非金属抗 腐蚀换热装置 20包括多片非金属抗腐蚀的矩形换热板片 21, 安装在每片换热板片上、 下表 面的上支撑肋 22和下支撑肋 23, 设置在换热板片 21 的各个侧边上、 下边缘的密封条 25, 以及垫片 26。 所述上支撑肋 22和下支撑肋 23与换热板片 21之间以及密封条 25与换热板 片 21之间是通过胶粘剂或焊接的方式连接固定。 所述上支撑肋 22和下支撑肋 23可为扁圆 形、 六边形或其它形状, 其目的是提高换热板片 21的传热和强度性能。 所述上支撑肋 22和 下支撑肋 23, 其型式、 排布及方向根据介质流向和换热器的要求进行设置。 以相邻的奇数 编号换热板片 21 和偶数编号的换热板片 21 为例, 奇数编号换热板片的下表面的下支撑肋 23 的结构形状、 布置、 方向和尺寸与偶数编号换热板片 21 的上表面的上支撑肋 22的结构 形状、 布置、 方向和尺寸是完全相同的。 密封条 25和上支撑肋 22、 下支撑肋 23在换热板 片 21表面安装后其高度是相同的。 垫片 26则分布在相邻的奇数编号换热板片 21下表面的 下支撑肋 23与偶数编号换热板片的上支撑肋 22之间, 以及分布在奇数编号换热板片 21下 表面的密封条 25与偶数编号换热板片 21上表面的密封条 25之间。
所述换热装置 20就是由多个奇数编号的换热板片 21 和相邻的偶数编号的换热板片 21 两两叠加, 此时奇数编号的换热板片 21的下表面的下支撑肋 23刚好完全对齐分布在对应的 垫片 26的一个侧面, 而相邻的偶数编号的换热板片的上表面的上支撑肋 22则刚好完全对齐 对应的垫片 26的另一个侧面, 同时, 奇数编号的换热板片 21 的下表面的密封条 25刚好完 全对齐对应的垫片 26 的一个侧面, 而相邻的偶数编号的换热板片 21 的上表面的密封条 25 则刚好完全对齐对应的垫片 26 的另一个侧面, 通过机械或液压等装置产生一定位移和压紧 力, 使垫片 26 达到完全密封上、 下支撑肋和密封条。 此时, 位于相邻的奇数编号和偶数编 号的换热板片之间相邻的上、 下支撑肋围成了多个彼此不互通的不同形状和方向的密封通道。 通道的两个端口供流体或烟气进入或流出, 所述多个通道中其相邻的通道开口互相交错, 分 别构成热流体通道、 冷流体通道, 以及同一换热板片的上、 下表面的通道中也可以流动冷、 热不同的流体, 从而使热、 冷流体隔开, 实现传热。 将所述换热装置 20置入框架 10的上盖 板 101和下底板 102之间, 从而形成了完整的换热器。 位于换热板片同一侧相邻的两个通道 之间可以流动不同的介质, 两种介质通过换热板片进行换热。
所述换热板片 21 可采用矩形非金属平板。 所述换热板片可为玻璃板片, 该玻璃可为所 有具有符合具有传热及抗腐蚀特性的玻璃; 如高硼硅酸盐玻璃、 铝硅酸盐玻璃、 石英玻璃、 微晶玻璃、 高硅氧玻璃、 低碱无硼玻璃和陶瓷玻璃等。
所述换热板片 21还可为陶瓷, 其陶瓷可以是氮化硅陶瓷、 高铝陶瓷、 碳化硅陶瓷等。 所述密封条 25为非金属的矩形条, 其材质可以为玻璃或陶瓷。
所述的胶粘剂为抗腐蚀和耐高温的有机或无机胶粘剂, 如有机硅密封胶、 硅橡胶等。 所述垫片 26 其材料可以为聚四氟乙烯、 硅橡胶等非金属材料及金属与非金属复合材料, 如柔性石墨复合板等。
在图 2中, 冷流体的进出口方向与换热板片 21 的长度方向平行, 热流体的进出口方向 与换热板片 21的宽度方向平行, 冷、 热流体实现交错流进行热交换。
请参阅图 3, 为本发明一种高效非金属抗腐蚀换热装置的第二形式结构示意图: 冷流体 的流路方向呈 "L "形; 冷流体流动长方向与换热板片 21 的长度方向平行, 热流体的流路方 向呈倒 "L "形; 冷流体的进口和热流体的进口沿换热板片 21 长度方向相对; 冷流体出口和 热流体出口在同一侧面的两端, 换热板片 21 的中间矩形槽口对应在换热器中立柱将冷、 热 流体隔开; 冷、 热流体实现近似逆流换热。
图 4所示为本发明一种高效非金属抗腐蚀换热装置的第三形式结构示意图: 与图 3相近, 区别在于冷流体出口和热流体出口分别在两侧面的两端。
图 5所示为本发明一种高效非金属抗腐蚀换热装置的第四形式结构示意图: 冷流体的流 路方向呈 "2"形; 冷流体流动长方向与换热板片 21的长度方向平行, 热流体的流路方向呈 倒烦向 "2 "形; 冷流体的进口和热流体的出口在同一侧面的两端, 冷、 热流体实现近似逆 流换热。
图 6为本发明一种高效非金属抗腐蚀换热装置的第五形式结构示意图: 与图 5相近, 区 别在于冷流体的进出口设置于换热板片 21的宽度方向端, 且与热流体逆流。
图 7所示为本发明一种高效非金属抗腐蚀换热装置的第六形式结构示意图: 冷流体的流 路方向呈 " Z "形; 冷流体流动长方向与换热板片 21的长度方向平行, 热流体的流路方向呈 倒烦向 "Z "形; 冷流体的进口和热流体的出口在两侧面的两端, 冷、 热流体实现近似逆流 换热。
图 8所示为本发明实现的具体实施方式之一: 与图 7相近, 区别在于冷流体的进出口设 置于换热板片 21的宽度方向端, 且与热流体逆流。
为本发明的另一种实施方式, 在本发明的奇数编号的换热板片 21 的下表面的下支撑肋 与偶数编号的换热板片 21 的上表面的上支撑肋之间不设置垫片, 奇数编号的换热板片的下 支撑肋与偶数编号的换热板片的上支撑肋是通过胶粘剂粘接或焊接的方式结合在一起。 奇数 编号的换热板片的密封条与偶数编号的换热板片的对应的密封条之间也是通过胶粘剂粘接或 焊接的方式结合在一起。 焊接方式如: 真空扩散焊或钎焊。
另外, 换热板片 21的上支撑肋 22和下支撑肋 23及密封挡条, 也可以由换热板片 21热 压而成或蚀刻而成。

Claims

权 利 要 求 书
1. 一种高效非金属抗腐蚀换热装置, 其特征在于: 包括多片非金属抗腐蚀的换热板片, 安装在每片换热板片上、 下表面的上支撑肋和下支撑肋, 设置在换热板片的各个侧边上、 下边缘的密封条, 以及垫片, 其中所述上支撑肋和所述下支撑肋与所述换热板片之间连接 固定, 所述密封条与所述换热板片之间连接固定, 所述垫片分布在相邻的奇数编号换热板 片下表面的所述下支撑肋与偶数编号换热板片的所述上支撑肋之间,所述垫片还分布在奇 数编号换热板片下表面的所述密封条与偶数编号换热板片上表面的所述密封条之间,位于 相邻的奇数编号和偶数编号的换热板片之间的相邻的所述上、下支撑肋围成了多个彼此不 互通的不同形状和方向的冷流体和热流体的密封通道,所述垫片通过压紧力而完全密封所 述上、 下支撑肋和密封条。
2. 如权利要求 1所述的高效非金属抗腐蚀换热装置, 其特征在于: 所述上支撑肋和所述 下支撑肋与所述换热板片之间以及所述密封条与所述换热板片之间是通过胶粘剂粘接或 焊接的方式连接固定, 以提高所述换热板片的强度和刚度。
3. 如权利要求 1所述的高效非金属抗腐蚀换热装置, 其特征在于: 奇数编号换热板片的 下表面的所述下支撑肋的结构形状、布置、方向和尺寸与偶数编号换热板片的上表面的所 述上支撑肋的结构形状、 布置、 方向和尺寸是完全相同。
4. 如权利要求 3所述的高效非金属抗腐蚀换热装置, 其特征在于: 所述密封条和所述上 支撑肋、 下支撑肋在所述换热板片表面安装后其高度是相同的。
5. 如权利要求 1至 4中任一项所述的高效非金属抗腐蚀换热装置, 其特征在于: 所述换 热板片为玻璃板片, 该玻璃为所有具有符合具有传热及抗腐蚀特性的玻璃; 如高硼硅酸盐 玻璃、 铝硅酸盐玻璃、 石英玻璃、 微晶玻璃、 高硅氧玻璃、 低碱无硼玻璃、 陶瓷玻璃。
6. 如权利要求 1至 4中任一项所述的高效非金属抗腐蚀换热装置, 其特征在于: 所述换 热板片为陶瓷, 如氮化硅陶瓷、 高铝陶瓷、 碳化硅陶瓷。
7. 如权利要求 1至 4中任一项所述的高效非金属抗腐蚀换热装置, 其特征在于: 所述密 封条为非金属的矩形条, 其材质为玻璃或陶瓷。
8. 如权利要求 2所述的高效非金属抗腐蚀换热装置, 其特征在于: 所述胶粘剂为抗腐蚀 和耐高温的有机或无机胶粘剂, 如有机硅密封胶、 硅橡胶。
9. 如权利要求 1至 4中任一项所述的高效非金属抗腐蚀换热装置, 其特征在于: 所述垫 片材料为非金属材料, 如聚四氟乙烯、 硅橡胶。
10. 如权利要求 1至 4中任一项所述的高效非金属抗腐蚀换热装置, 其特征在于: 所述垫 片材料为金属与非金属复合材料, 如柔性石墨复合板。
11. 如权利要求 1至 4中任一项所述的高效非金属抗腐蚀换热装置, 其特征在于: 冷流体 的进出口方向与所述换热板片的长度方向平行,热流体的进出口方向与所述换热板片的宽 度方向平行, 冷、 热流体实现交错流进行热交换。
12. 如权利要求 1至 4中任一项所述的高效非金属抗腐蚀换热装置, 其特征在于: 冷流体 的流路方向呈 "L "形; 冷流体流动长方向与所述换热板片的长度方向平行, 热流体的流路 方向呈倒 "L "形; 冷流体的进口和热流体的进口沿所述换热板片长度方向相对; 冷流体出 口和热流体出口在同一侧面的两端或冷流体出口和热流体出口分别在两侧面的两端,所述 换热板片的中间矩形槽口对应在换热器中立柱将冷、 热流体隔开; 冷、 热流体实现近似逆 流换热。
13. 如权利要求 1至 4中任一项所述的高效非金属抗腐蚀换热装置, 其特征在于: 冷流体 的流路方向呈 " 2 "形; 冷流体流动长方向与所述换热板片的长度方向平行, 热流体的流 路方向呈倒烦向 " 2 "形; 冷流体的进口和热流体的出口在同一侧面的两端, 冷、 热流体 实现近似逆流换热, 或冷流体的进出口设置于所述换热板片的宽度方向端, 且与热流体逆 流。
14. 如权利要求 1至 4中任一项所述的高效非金属抗腐蚀换热装置, 其特征在于: 冷流体 的流路方向呈 " Z"形; 冷流体流动长方向与所述换热板片的长度方向平行, 热流体的流 路方向呈倒烦向 " Z "形; 冷流体的进口和热流体的出口在两侧面的两端, 冷、 热流体实 现近似逆流换热。
15. 一种具有高效非金属抗腐蚀换热装置的板式换热器, 其特征在于: 包括框架和组装在 框架内的根据权利要求 1-14中的任一项所述的高效非金属抗腐蚀换热装置, 所述框架由 上盖板, 下底板和立柱组成, 所述高效非金属抗腐蚀换热装置组装在所述框架上盖板和下 底板之间。
16. 如权利要求 15所述的具有高效非金属抗腐蚀换热装置的板式换热器, 其特征在于: 所述框架内表面进行了防腐处理,其采用 PFA喷涂、搪瓷、或衬聚四氟乙烯防腐中的一种。
PCT/CN2014/071638 2013-10-14 2014-01-28 非金属抗腐蚀换热装置及具有该换热装置的板式换热器 WO2015054983A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14854711.0A EP2980522B1 (en) 2013-10-14 2014-01-28 Nonmetal corrosion-resistant heat exchange device and plate-type heat exchanger having same
US14/895,482 US10234217B2 (en) 2013-10-14 2014-01-28 Nonmetal corrosion-resistant heat exchange device and plate-type heat exchanger having same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310476658.5A CN103512416B (zh) 2013-10-14 2013-10-14 高效非金属抗腐蚀换热装置及具该换热装置的板式换热器
CN201310476658.5 2013-10-14

Publications (1)

Publication Number Publication Date
WO2015054983A1 true WO2015054983A1 (zh) 2015-04-23

Family

ID=49895537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071638 WO2015054983A1 (zh) 2013-10-14 2014-01-28 非金属抗腐蚀换热装置及具有该换热装置的板式换热器

Country Status (4)

Country Link
US (1) US10234217B2 (zh)
EP (1) EP2980522B1 (zh)
CN (1) CN103512416B (zh)
WO (1) WO2015054983A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109798792A (zh) * 2019-03-22 2019-05-24 江苏格莱夫科技有限公司 一种余热回收的换热设备
CN114738882A (zh) * 2022-03-29 2022-07-12 朱德梅 一种增强密封的热交换芯体

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512416B (zh) 2013-10-14 2015-12-30 洛阳瑞昌石油化工设备有限公司 高效非金属抗腐蚀换热装置及具该换热装置的板式换热器
CN105737643A (zh) * 2014-12-11 2016-07-06 王云达 换热装置及换热器
CN104633694B (zh) * 2015-02-03 2017-06-06 上海齐耀热能工程有限公司 全搪玻璃通道的板式空气预热器
CN105135918B (zh) * 2015-08-27 2017-03-29 洛阳明远石化技术有限公司 一种新型高效焊接板式换热器
CN105135919B (zh) * 2015-09-30 2017-03-29 山东旺泰科技有限公司 整体密封的碳化硅换热器
US11384025B2 (en) 2016-04-18 2022-07-12 Purdue Research Foundation Ceramic and ceramic composite components
CN105727683A (zh) * 2016-05-09 2016-07-06 洛阳瑞昌石油化工设备有限公司 一种烟气冷凝静电处理装置和处理工艺
WO2018067026A1 (en) * 2016-10-04 2018-04-12 Deta Engineering Llc Plate heat exchanger and design of seal unit therefor
CN106500532B (zh) * 2016-11-24 2019-03-08 中国航空工业集团公司金城南京机电液压工程研究中心 一种螺旋式微通道换热器
CN106440890A (zh) * 2016-11-30 2017-02-22 广东芬尼克兹节能设备有限公司 板式热交换器结构
DE102017001567B4 (de) * 2017-02-20 2022-06-09 Diehl Aerospace Gmbh Verdampfer und Brennstoffzellenanordnung
US11384992B2 (en) * 2017-08-29 2022-07-12 Welcon Inc. Heat exchanger
US11209223B2 (en) * 2019-09-06 2021-12-28 Hamilton Sundstrand Corporation Heat exchanger vane with partial height airflow modifier
CN110981492A (zh) * 2019-12-27 2020-04-10 苏州风享环保科技有限公司 一种碳化硅陶瓷热交换模块及其制造方法
CN111988971A (zh) * 2020-09-18 2020-11-24 珠海银河温控技术有限公司 一种换热单元以及换热模组
CN112648867A (zh) * 2020-11-30 2021-04-13 合肥通用机械研究院有限公司 一种强化传热的一体化扩散焊热交换器
CN113834354B (zh) * 2021-09-16 2024-01-16 陕西益信伟创智能科技有限公司 一种三维均混流换热器芯体及换热器
CN114623705B (zh) * 2022-03-15 2022-10-18 大连理工大学 一种基于gd型杂化极小曲面扰动结构的换热器
CN115070366B (zh) * 2022-06-14 2023-08-15 西安热工研究院有限公司 一种避免化学蚀刻的pche换热器加工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282907A (ja) * 2004-03-29 2005-10-13 Matsushita Electric Ind Co Ltd 熱交換器
CN1993597A (zh) * 2004-07-16 2007-07-04 松下电器产业株式会社 热交换器
CN101405559A (zh) * 2006-03-22 2009-04-08 松下电器产业株式会社 热交换器及其制造方法
CN102003717A (zh) * 2009-09-01 2011-04-06 中国石化集团洛阳石油化工工程公司 一种板式空气预热器
CN102032587A (zh) * 2010-12-20 2011-04-27 洛阳瑞昌石油化工设备有限公司 一种换热板片为玻璃的板式空气预热器
CN103512416A (zh) * 2013-10-14 2014-01-15 洛阳瑞昌石油化工设备有限公司 高效非金属抗腐蚀换热装置及具该换热装置的板式换热器
CN203534318U (zh) * 2013-10-14 2014-04-09 洛阳瑞昌石油化工设备有限公司 高效非金属抗腐蚀换热装置及具该换热装置的板式换热器

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH382200A (de) * 1961-02-27 1964-09-30 Franklin Dipl Ing Froehlich Wärmeaustauscher
US4582126A (en) * 1984-05-01 1986-04-15 Mechanical Technology Incorporated Heat exchanger with ceramic elements
IL93994A (en) * 1989-04-19 1994-07-31 Urch John Francis Heat Exchanger
US5392849A (en) * 1990-09-28 1995-02-28 Matsushita Refrigeration Company Layer-built heat exchanger
JP3414012B2 (ja) * 1994-12-26 2003-06-09 ダイキン工業株式会社 熱交換エレメント
JPH09184693A (ja) * 1995-12-28 1997-07-15 Ebara Corp 熱交換エレメント
US6059025A (en) * 1998-03-05 2000-05-09 Monsanto Enviro-Chem Systems, Inc. Heat exchanger configuration
GB0005374D0 (en) * 2000-03-06 2000-04-26 Air Prod & Chem Apparatus and method of heating pumped liquid oxygen
US6357396B1 (en) * 2000-06-15 2002-03-19 Aqua-Chem, Inc. Plate type heat exchanger for exhaust gas heat recovery
GB0210434D0 (en) * 2002-05-08 2002-06-12 Smiths Group Plc Apparatus
EP1624271B1 (en) * 2003-06-05 2010-03-03 Panasonic Ecology Systems Co., Ltd. Heat exchanger
US20050189097A1 (en) * 2004-03-01 2005-09-01 The Boeing Company Formed sheet heat exchanger
DE102005009202A1 (de) * 2005-02-25 2006-08-31 Sgl Carbon Ag Blockwärmetauscher für staubhaltige Rauchgase
WO2007119394A1 (ja) * 2006-03-22 2007-10-25 Matsushita Electric Industrial Co., Ltd. 熱交換器とその製造方法
JP4085415B2 (ja) * 2006-09-27 2008-05-14 テイ・エス テック株式会社 車両用シート
JP4816517B2 (ja) * 2006-09-28 2011-11-16 パナソニック株式会社 熱交換素子
ES2481447T3 (es) * 2008-01-10 2014-07-30 Haldor Topsoe A/S Método y sistema para la purificación del gas de escape de motores diesel
GB2500871B (en) * 2012-04-05 2017-03-01 Ford Global Tech Llc An Air to Liquid Heat Exchanger
WO2013157045A1 (ja) * 2012-04-20 2013-10-24 三菱電機株式会社 熱交換素子
US20170023311A1 (en) * 2015-07-24 2017-01-26 Nicholas F. Urbanski Enhanced Heat Transfer In Plate-Fin Heat Exchangers
US20170030656A1 (en) * 2015-07-31 2017-02-02 Sfi Electronics Technology Inc. Thermal energy storage facility having functions of heat storage and heat release

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282907A (ja) * 2004-03-29 2005-10-13 Matsushita Electric Ind Co Ltd 熱交換器
CN1993597A (zh) * 2004-07-16 2007-07-04 松下电器产业株式会社 热交换器
CN101405559A (zh) * 2006-03-22 2009-04-08 松下电器产业株式会社 热交换器及其制造方法
CN102003717A (zh) * 2009-09-01 2011-04-06 中国石化集团洛阳石油化工工程公司 一种板式空气预热器
CN102032587A (zh) * 2010-12-20 2011-04-27 洛阳瑞昌石油化工设备有限公司 一种换热板片为玻璃的板式空气预热器
CN103512416A (zh) * 2013-10-14 2014-01-15 洛阳瑞昌石油化工设备有限公司 高效非金属抗腐蚀换热装置及具该换热装置的板式换热器
CN203534318U (zh) * 2013-10-14 2014-04-09 洛阳瑞昌石油化工设备有限公司 高效非金属抗腐蚀换热装置及具该换热装置的板式换热器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109798792A (zh) * 2019-03-22 2019-05-24 江苏格莱夫科技有限公司 一种余热回收的换热设备
CN109798792B (zh) * 2019-03-22 2024-04-12 山东恒辉节能技术集团有限公司 一种余热回收的换热设备
CN114738882A (zh) * 2022-03-29 2022-07-12 朱德梅 一种增强密封的热交换芯体
CN114738882B (zh) * 2022-03-29 2023-11-28 宁波艾尔通风设备有限公司 一种增强密封的热交换芯体

Also Published As

Publication number Publication date
EP2980522A1 (en) 2016-02-03
EP2980522A4 (en) 2016-12-07
CN103512416A (zh) 2014-01-15
US10234217B2 (en) 2019-03-19
EP2980522B1 (en) 2019-12-04
US20160116233A1 (en) 2016-04-28
CN103512416B (zh) 2015-12-30

Similar Documents

Publication Publication Date Title
WO2015054983A1 (zh) 非金属抗腐蚀换热装置及具有该换热装置的板式换热器
CN102032587B (zh) 一种换热板片为玻璃的板式空气预热器
CN101458044B (zh) 一种高效全铝合金换热器
WO2018141245A1 (zh) 一种板式气气热交换器
CN203534318U (zh) 高效非金属抗腐蚀换热装置及具该换热装置的板式换热器
CN102360743B (zh) 一种变压器板翅式换热器的制造方法
CN206891241U (zh) 一种强化传热的抗腐蚀板式换热器
CN100507426C (zh) 导热复合材料紧凑型板壳式换热器
CN201722401U (zh) 全焊式三流程波纹板空气预热器
CN203479128U (zh) 一种空气预热器用板翅式板束
TWI326760B (en) Heat exchanger
CN203223935U (zh) 一种板式陶瓷空气预热器
CN108426265A (zh) 一种复合管烟气热水器
CN206572991U (zh) 一种抗腐蚀板式换热器
CN103017193B (zh) 一种板式陶瓷空气预热器
CN206321100U (zh) 一种用于回收废烟气余热的气相和液相热交换板式换热器
CN201093917Y (zh) 宽通道可拆板式换热器
CN219714114U (zh) 一种餐厨有机浆液螺旋板式换热装置
CN206362221U (zh) 换热器
CN203116570U (zh) 一种便于拆装组合的单元式抗腐蚀板式换热器
CN220853243U (zh) 一种全焊接式板式换热器
CN216205543U (zh) 一种气气板式换热器
CN211452029U (zh) 非金属板式空气预热器的换热板支撑结构
CN115790217B (zh) 一种塑料板模块化串并联组合式热交换器
CN221036964U (zh) 一种可拆洗高效换热水箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854711

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014854711

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14895482

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE