WO2015053348A1 - 保持器及び転がり軸受、並びに液化ガス用ポンプ - Google Patents
保持器及び転がり軸受、並びに液化ガス用ポンプ Download PDFInfo
- Publication number
- WO2015053348A1 WO2015053348A1 PCT/JP2014/077014 JP2014077014W WO2015053348A1 WO 2015053348 A1 WO2015053348 A1 WO 2015053348A1 JP 2014077014 W JP2014077014 W JP 2014077014W WO 2015053348 A1 WO2015053348 A1 WO 2015053348A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cage
- rolling bearing
- bearing
- rivet
- rolling
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/62—Selection of substances
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M103/00—Lubricating compositions characterised by the base-material being an inorganic material
- C10M103/02—Carbon; Graphite
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M103/00—Lubricating compositions characterised by the base-material being an inorganic material
- C10M103/06—Metal compounds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/04—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
- F16C19/06—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/38—Ball cages
- F16C33/44—Selection of substances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/46—Cages for rollers or needles
- F16C33/4617—Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
- F16C33/4623—Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
- F16C33/4635—Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/46—Cages for rollers or needles
- F16C33/56—Selection of substances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/66—Special parts or details in view of lubrication
- F16C33/6696—Special parts or details in view of lubrication with solids as lubricant, e.g. dry coatings, powder
Definitions
- the present invention relates to a rolling bearing used in a cryogenic environment such as used in a pump for liquefied gas that pumps liquefied gas such as liquid nitrogen, liquid oxygen, and liquid natural gas.
- the present invention also relates to a cage suitable for such a rolling bearing.
- a pump for pumping liquefied gas (a pump for liquefied gas) is provided with a rolling bearing such as a deep groove ball bearing or a cylindrical roller bearing in order to support a main shaft to which an impeller for pumping liquefied gas is attached. Since this rolling bearing comes into contact with liquefied gas, the steel material constituting the bearing may be corroded by the liquefied gas and deteriorated. Therefore, it is known that the outer ring, the inner ring, and the rolling element are all made of martensitic stainless steel (SUS440C, etc.) having corrosion resistance, or the rolling element is a high-speed tool steel (AISI M50) (for example, patent literature). 1).
- AISI M50 high-speed tool steel
- both the inner and outer rings and the rolling elements are made of metal, wear increases due to metal contact, and therefore the rolling elements are made of ceramics (see, for example, Patent Document 2).
- the rolling elements are made of ceramics, electrolytic corrosion can be prevented and the bearing life can be extended.
- the boiling point (1 atm) of liquefied gas is about -196 ° C for liquid nitrogen, about -183 ° C for liquid oxygen, about -164 ° C for liquefied methane gas, and about + 1 ° C for liquefied butane gas, and its temperature range is wide.
- the inner and outer rings are made of steel, and are provided with ceramic rolling elements. The lower the temperature, the greater the amount of change in the bearing internal clearance. As the bearing internal clearance increases, the vibration increases and wears more easily.
- the present invention solves the problems of the prior art as described above, and is excellent even when used in a low temperature environment (1 ° C. or less), particularly an extremely low temperature environment ( ⁇ 30 ° C. or less), or even in a non-lubricated environment.
- An object of the present invention is to provide a long-life rolling bearing that exhibits excellent lubricity and improved wear resistance. It is another object of the present invention to provide an optimum cage for the rolling bearing. It is another object of the present invention to provide a long-life liquefied gas pump including the rolling bearing.
- the present invention provides the following cage, rolling bearing, and liquefied gas pump.
- a rolling bearing in which a plurality of rolling elements are held via a cage between an inner ring and an outer ring, and used in a liquefied gas environment or at an extremely low temperature,
- the inner ring and the outer ring are made of any steel material such as bearing steel, stainless steel, high speed tool steel or carburized steel, and the rolling element has a linear expansion coefficient of 70 which is the linear expansion coefficient of the steel material forming the inner ring and the outer ring.
- a rolling bearing characterized in that it is made of ceramics having a percentage of not less than 105% and not more than 105%.
- a cage incorporated in a rolling bearing used in a liquefied gas environment or at a cryogenic temperature A resin comprising at least one of PTFE, polyamide, PEEK and PPS; A fibrous filler comprising at least one of glass fiber, carbon fiber, calcium titanate whisker and aluminum borate whisker; A resin comprising at least one of PTFE, polyamide, PEEK and PPS; A cage comprising a resin composition comprising: (15) The cage according to the above (14), characterized in that it comprises a resin composition containing 10 to 20% by mass of glass fiber, 4.5 to 5.5% by mass of MoS 2 and the balance being PTFE. .
- the rolling bearing of the present invention is compatible with various liquefied gases at different temperatures by making the inner and outer rings made of a specific steel material, making the rolling elements made of ceramics, and keeping the linear expansion coefficient ratio of both in a specific range. In addition, even when a low-temperature liquefied gas is handled, the change in the internal clearance of the bearing is small, and the vibration is reduced and the wear resistance is superior to that of a rolling bearing having a conventional ceramic rolling element.
- the cage of the present invention is also reinforced with a fibrous filler and lubricated with a solid lubricant, so that it exhibits a sufficient lubrication life even in a non-lubricated environment where no lubricating oil or grease is used. Furthermore, the liquefied gas pump of the present invention also has a long life because it includes the rolling bearing.
- FIG. 5 is a graph showing a calculation of a radial internal clearance with respect to temperature for a rolling bearing including inner and outer rings made of SUS440C and silicon nitride balls or alumina-zirconia balls according to the present invention.
- FIG. 7 is a graph showing changes in rivet recess depth in rivet fastening evaluation-1.
- 6 is a graph showing a relationship between a pressure receiving area ratio and a rivet indentation depth ratio in rivet fastening property evaluation-1. It is a graph which shows the result of rivet fastening property evaluation-2.
- the type of the rolling bearing is not limited, and the rolling bearing incorporated in a device used in a cryogenic environment such as a liquefied gas pump is an object.
- the deep groove ball bearing 10 shown in FIG. 1 can be illustrated.
- a ball 3 that is a rolling element is rolled by a cage 4 between an inner ring 1 and an outer ring 2. It is held freely.
- the cage 4 may be divided into two in the circumferential direction.
- the two divided cages are connected by a spring pin 7 and are finally fastened by crimping a rivet 5.
- a pair of annular parts 4A and 4B divided in the circumferential direction are arranged concentrically with the inner ring 1 and the outer ring 2, and the ball 3 is sandwiched from both sides in the axial direction. Opposed.
- the end faces in the axial direction of both annular parts 4A and 4B sandwiching the ball 3 are opposed to each other, and a plurality of spherical concave portions are formed on the facing surfaces side by side at equal intervals.
- retainer 4 to radial direction is comprised by two opposing spherical recessed parts The ball 3 is held in each pocket.
- the portions 40a and 40b where the spherical concave portions are not formed are abutted with each other (hereinafter referred to as “abutting surfaces 40a and 40b”).
- the pillar is composed.
- pillars are formed between the pockets and are arranged in the circumferential direction with an equal interval.
- the through-holes 42a and 42b extended in an axial direction are provided in the part (column part) where the opposing surface of both cyclic
- an inlay joint structure is configured in both the annular parts 4A and 4B. That is, the spigot protrusion 44a is formed on one of the butted surfaces 40a and 40b of the annular parts 4A and 4B (the butted surface 40a of the annular part 4A in the example of FIG. 1), and the other (in the example of FIG. A spigot recess 44b that engages with the spigot protrusion 44a is formed on the butting surface 40b) of the annular component 4B.
- the inlay convex portion 44a By fitting the inlay convex portion 44a into the inlay concave portion 44b, the inner peripheral surface and the outer peripheral surface of both annular components 4A and 4B are aligned, and no step is produced at the joint portion of both annular components 4A and 4B.
- the through holes 42a and 42b facing each other are aligned so that the opening positions of the through holes 42a and 42b are matched.
- the through holes 42a and 42b are continuous in a straight line, and a linear hole is formed from the continuous through holes 42a and 42b.
- the rivet 5 may be inserted through all of the linear holes formed in the plurality of pillars, or may be inserted through a part thereof.
- the spigot convex part 44a and the spigot recessed part 44b may be provided in all the pillars, and may be provided in a part (one or several) pillar.
- both annular parts 4A and 4B are connected by a rivet 5.
- this rivet 5 is inserted into the through hole 42a of the annular part 4A from the opening on the axial end surface side (left side in FIG. 1) of the retainer 4, Since the end portion on which 51 is not formed protrudes from the opening on the axial end face side (the right side in FIG. 1) of the through hole 42b of the annular component 4B, both annular components 4A can be obtained by caulking the protruding end portion , 4B can be combined.
- a hemispherical caulking saddle head 52 is formed by caulking the protruding end.
- the washer 6 distributes the stress load on the axial end surfaces of the annular parts 4A and 4B by the collar head 51 and the caulking collar head 52 of the rivet 5, and thus the collar heads of the annular parts 4A and 4B. 51, it is suppressed that a contact part with the crimping saddle head 52 is damaged by the stress.
- the wharf In order to prevent the portion 51 and the caulking saddle head 52 from protruding outward in the axial direction from the side surface of the deep groove ball bearing 10, counterbore holes may be provided in the opening portions of the through holes 42 a and 42 b. If the collar head 51, the crimped collar head 52, and the washer 6 are accommodated in the counterbore, the collar head 51 and the crimped collar head 52 do not protrude axially outward from the side surface of the deep groove ball bearing 10. The axial length of the deep groove ball bearing 10 can be reduced.
- the rivet 5 by inserting the rivet 5 into the spring pin 7, it is possible to suppress the rivet 5 from being bent by the force applied when crimping the end of the rivet 5. Furthermore, when the temperature is lowered, the rivet 5 may be deformed due to the shrinkage of the cage 4, but by using the spring pin 7, the shrinkage amount of the spring pin 7 is smaller than the shrinkage amount of the cage 4. The spring pin 7 suppresses deformation of the rivet 5.
- the spring pin is a hollow tube obtained by rolling an elastic plate into a cylindrical shape, and has a slit extending in the longitudinal direction at one place on the circumference, and is cut in a C-shaped section (cut in a plane perpendicular to the longitudinal direction). A cross section). Its outer diameter is larger than the inner diameter of the linear hole and its length is equal to the length of the linear hole.
- the materials constituting the rivet 5, the washer 6, and the spring pin 7 are not particularly limited, but all are preferably stainless steel (for example, austenitic stainless steel or martensitic stainless steel), carbon steel, copper, and aluminum.
- the inner ring 1 and the outer ring 2 are made of bearing steel (for example, the linear expansion coefficient of SUJ2 is 12 to 12.5 ⁇ 10 ⁇ 6 / ° C.), stainless steel (linear expansion coefficient: 10 to 11 ⁇ 10 ⁇ 6 / ° C.). ), High-speed tool steel (linear expansion coefficient: 10 to 12 ⁇ 10 ⁇ 6 / ° C.), or carburized steel (linear expansion coefficient: 11 to 12 ⁇ 10 ⁇ 6 / ° C.).
- the linear expansion coefficient of SUJ2 is 12 to 12.5 ⁇ 10 ⁇ 6 / ° C.
- stainless steel linear expansion coefficient: 10 to 11 ⁇ 10 ⁇ 6 / ° C.
- High-speed tool steel linear expansion coefficient: 10 to 12 ⁇ 10 ⁇ 6 / ° C.
- carburized steel linear expansion coefficient: 11 to 12 ⁇ 10 ⁇ 6 / ° C.
- the bearing steel is preferably a high carbon chrome bearing steel SUJ2, SUJ3, SUJ4, SUJ5 defined by Japanese Industrial Standards of the Japan Industrial Standards Committee.
- the stainless steel is preferably martensitic stainless steel, ferritic stainless steel, austenitic stainless steel, or precipitation hardening stainless steel specified by Japanese Industrial Standards of the Japan Industrial Standards Committee. Further, SUS403, SUS420, and SUS440C are more preferable for martensitic stainless steel, SUS430 is more preferable for ferritic stainless steel, SUS303, SUS304, SUS305, SUS316, and SUS317 are more preferable for austenitic stainless steel, and precipitation hardened stainless steel. Is more preferably SUS630 or SUS631.
- the high-speed tool steel is preferably high-speed tool steel M50 defined by the American Steel Institute AISI standard or high-speed tool steel SKH4 defined by the Japanese Industrial Standards Committee.
- the carburized steel is preferably SCr420, SCM420, or SNCM420 defined by Japanese Industrial Standards of the Japan Industrial Standards Committee.
- the above steel material is subjected to sub-zero treatment in advance.
- Sub-zero treatment can minimize dimensional changes associated with use.
- the sub-zero processing conditions may be the same as those in the prior art.
- the balls 3 are formed of ceramics having a linear expansion coefficient of 70% to 105% of the linear expansion coefficient of the steel material forming the inner and outer rings.
- linear expansion coefficient ratio the linear expansion coefficient of the ceramic forming the ball / the linear expansion coefficient of the steel forming the inner and outer rings.
- the type of ceramic is not limited as long as the linear expansion coefficient ratio is satisfied, but metal oxide ceramics are preferable because of its low cost.
- zirconia ceramics are preferable, and alumina and zirconia, alumina and stabilized zirconia are particularly preferable.
- the stabilized zirconia component contains a stabilizer such as yttria, calcia, magnesia, and ceria.
- yttria / zirconia tetragonal zirconia and monoclinic zirconia, (yttria / zirconia) molar ratio is 2.0 / 98.0 to 4.0 / 96.0, and alumina is 0.01 to 5.0 mass. % Zirconia-yttria zirconia is also preferred.
- alumina component: zirconia component 10 to 30:70 to 90 is more preferable, and 20:80 is most preferable.
- FIG. 3 is a graph showing a radial internal clearance according to temperature for a rolling bearing having inner and outer rings made of SUS440C and silicon nitride balls or alumina-zirconia balls.
- the linear expansion coefficient of SUS440C is 10.1 ⁇ 10 ⁇ 6 / ° C.
- the linear expansion coefficient of silicon nitride is 2.8 ⁇ 10 ⁇ 6 / ° C. (linear expansion coefficient ratio: 27.7%)
- the alumina-zirconia The linear expansion coefficient was 9.0 ⁇ 10 ⁇ 6 / ° C. (linear expansion coefficient ratio: 90%).
- the change in the radial internal gap is suppressed to 20% even at an extremely low temperature of ⁇ 196 ° C., but in the silicon nitride ball, the change in the radial internal gap is around ⁇ 40 ° C. Already over 20%, and over -196% at -196 ° C.
- the sintered alumina particles are compressed due to the difference in volume shrinkage when cooled from sintering to room temperature, the tensile stress is applied to the sintered zirconia particles, and the crack propagates around the difference in the distribution of residual stress.
- cracks propagate through weak alumina sintered particles, but compressive stress is applied to the alumina particles due to the phase transition (tetragonal to monoclinic) of the zirconia sintered particles, and crack growth is prevented.
- the zirconia component is less than 70% by mass, the effect of applying a compressive stress to the alumina sintered particles due to the phase transition is hardly exhibited, and the strength is lowered.
- the zirconia component exceeds 90% by mass, particle growth / aggregation is likely to occur, and the strength is lowered due to abnormally grown zirconia sintered particles.
- each raw material powder (alumina raw material powder or zirconia raw material powder) is mixed, the mixture is formed into a spherical shape, the molded product is degreased and sintered, and then subjected to HIP treatment.
- the impurities contained in each raw material powder are small.
- SiO 2 , Fe 2 O 3 , and Na 2 O as much as possible, the sinterability is improved and the dense powder is dense. It becomes effective for conversion. Furthermore, early peeling due to impurities can be suppressed.
- the content of SiO 2 , Fe 2 O 3 , and Na 2 O is preferably 0.3% by mass or less, more preferably 0.1% by mass or less, and still more preferably 0.02% by mass. % Or less. If the content exceeds 0.3% by mass, minute falling of particles from the rolling element surface is likely to occur during operation, resulting in a decrease in the roughness of the rolling element surface and minute damage to the raceway surface due to the dropped particles. There is a risk that vibration will increase and shorten the acoustic life. In addition, the fatigue life of the rolling elements also causes premature delamination starting from impurities.
- compression molding is generally used as the molding method, and after sintering, the material (element ball) is ground and polished to adjust to a predetermined spherical shape.
- the HIP process can be performed under normal conditions.
- the rolling fatigue life is lowered.
- the presence of sintered particles exceeding 100 ⁇ m becomes prominent.
- a ball mill mixer is also possible, but a zirconia-based bead with a pulverization media of ⁇ 1 mm or less A bead mill mixer using a slag is most effective.
- Each alumina sintered particle, zirconia sintered particle or stabilized zirconia sintered particle in the ball 3 preferably has an average particle diameter of 2 ⁇ m or less, more preferably 1 ⁇ m or less.
- average particle diameter usually, when particles are sintered, they grow to some extent, and as described in Japanese Patent No. 3910310, the presence of particles of 10 ⁇ m or more will adversely affect the service life. The effect of suppressing aggregation is expressed and the particle size becomes smaller than that of a single substance.
- the zirconia lump or the stabilized zirconia lump is preferably small, and the zirconia lump or yttria-zirconia lump of 10 to 30 ⁇ m is more preferably 5 pieces / 300 mm 2 or less, and 3 pieces / 300 mm. More preferably, it is 2 or less.
- the zirconia lump or the stabilized zirconia lump is peeled off as a starting point, and the rolling life is shortened. In particular, when there is a lump of 100 ⁇ m level, the rolling life is significantly reduced. Since the lump is not circular in cross section, the lump size is the length of the long diameter portion.
- wear can be further reduced by setting the hardness of the ceramic to Hv1000 or more and 1500 or less. More preferably, it is Hv1100-1400. In order to achieve such hardness, the particle diameter of the sintered particles and the sintering conditions may be adjusted.
- the cage 4 is preferably a plastic cage formed by molding a resin composition in order to reduce wear, and may contain a solid lubricant for imparting lubricity and a fibrous filler for reinforcement. More preferred.
- a resin component PTFE, PFA, ETFE, PVDF, FEP, PCTFE, ECTFE, PEEK, PPS, polyamide, polyimide and the like conventionally used as cage materials can be used, but PTFE, polyamide, PEEK and PPS are used. preferable.
- These resin components may be used alone or in combination of two or more.
- the resin component is a main component of the plastic material, and is preferably 50% by mass or more of the entire material.
- the solid lubricant conventionally used graphite, hexagonal boron nitride, biotite, melamine cyanurate, fluorinated graphite, MoS 2 , WS 2 and the like can be used, but graphite, MoS 2 and WS 2 are preferable. These solid lubricants may be used alone or in combination of two or more.
- lubricity can be imparted without using lubricating oil or grease.
- the liquefied gas pump may be used in a non-lubricated environment where no lubricating oil or grease is used, and the wear resistance can be improved by a solid lubricant.
- fibrous filler conventionally used aluminum borate whisker, potassium titanate whisker, carbon whisker, graphite whisker, carbon fiber, glass fiber, silicon carbide whisker, silicon nitride whisker, alumina whisker, etc. can be used. Glass fiber, carbon fiber, calcium titanate whisker and aluminum borate whisker are preferred. These fibrous fillers may be used alone or in combination. Moreover, in order to improve adhesiveness with a resin component, you may process with a silane coupling agent, a titanate coupling agent, etc. By containing a fibrous filler, dimensional stability is increased.
- heat stabilizers such as iodide compounds, antioxidants such as amine compounds and phenol compounds, and light stabilizers are used as necessary to prevent deterioration due to heat and light. Can be added.
- the resin component is preferably 50 to 90% by mass
- the fibrous filler is 10 to 30% by mass
- the solid lubricant is preferably 0 to 20% by mass
- other additives such as a heat stabilizer are added.
- the agent is added, it is preferably 0 to 10% by mass in place of a part of the resin component, the fibrous filler, and the solid lubricant.
- a preferable resin composition is exemplified by a resin composition containing 10 to 20% by mass of glass fiber, 4.5 to 5.5% by mass of MoS 2 and the balance being PTFE.
- the PTFE content is preferably 75 to 85% by mass of the total amount of the resin composition.
- Glass fibers having an average fiber diameter of 1 to 10 ⁇ m and an average fiber length of 10 to 100 ⁇ m are preferable from the viewpoint of strength and dispersibility.
- the glass fiber is preferably surface-treated with a coupling agent in order to enhance adhesion with PTFE as a base material.
- the type of coupling agent is not particularly limited, but silane coupling agents, titanate coupling agents, and the like are suitable.
- the glass fiber content is less than 10% by mass, the strength as the cage 4 is insufficient, and the wear resistance is not sufficient. Moreover, when content of glass fiber exceeds 20 mass%, although strength and abrasion resistance will increase, it will slide with a counterpart material and glass fiber will wear a counterpart material. Furthermore, it becomes inferior to the moldability when manufacturing the cage 4. As a molding method, injection molding is preferable from the viewpoint of productivity. However, as the glass fiber increases, the amount of resin is relatively reduced, the fluidity is deteriorated, and the moldability is lowered. In order to prevent such inconvenience, the glass fiber content is preferably 13.5 to 16.5% by mass.
- MoS 2 is an additive that imparts lubricity to the cage 4, and if the content is less than 4.5% by mass, it cannot contribute to imparting lubricity. However, when the content of MoS 2 exceeds 5.5% by mass, not only the lubricity is saturated, but also the dispersibility in the cage deteriorates and the moldability also deteriorates. In order to make it difficult for such inconvenience to occur, the MoS 2 content is preferably 4.7 to 5.3% by mass. MoS 2 preferably has an average particle size of 0.1 to 10 ⁇ m.
- the balance is PTFE, but PTFE also has lubricity, so that the lubricity of the cage 4 is further improved by combination with MoS 2 .
- the cage 4 is manufactured by a normal molding method using the above resin composition.
- injection molding is preferable because of high productivity.
- the bearing accuracy may be higher than the ISO 492 standard normal class, and need not be particularly high accuracy.
- a ball 18 is rotatably held by a cage 17 between an inner ring 15 and an outer ring 16, and the inner ring 15, outer ring 16, cage 17 and ball 18 are respectively provided. It consists of said each material.
- a cylindrical roller bearing or the like is also possible. Further, it is preferable to apply to a bearing having an inner diameter of 10 to 140 mm and an outer diameter of 22 to 300 mm.
- the rolling bearing of the present invention can be used in a non-lubricated environment as described above and has improved durability, so that it is used particularly for supporting the main shaft of a liquefied gas pump.
- a liquefied gas pump for example, a liquefied gas submerged pump as shown in FIG. 4 can be exemplified.
- This liquefied gas submerged pump includes a motor in a pump casing having a suction port and a discharge port, and is configured to discharge low-temperature liquid sucked from the suction port to the outside of the pump from the discharge port.
- the said rolling bearing is used for the upper bearing and lower bearing for supporting the shaft fitted to the rotor of this motor.
- Example 1 (Verification of linear expansion coefficient ratio)
- the inner ring and the outer ring of the deep groove ball bearing with the identification number “6320” were made of a steel material made of SUS440C (linear expansion coefficient: 10.1 ⁇ 10 ⁇ 6 / ° C.) and subjected to sub-zero treatment.
- As balls alumina-zirconia (linear expansion coefficient: 9.0 ⁇ 10 ⁇ 6 / ° C.), silicon nitride (linear expansion coefficient: 2.8 ⁇ 10 ⁇ 6 / ° C.), and SUS440C were prepared. Then, the glass fiber and MoS 2 with the synthetic resin cage added to the polyamide, to prepare a test bearing.
- test conditions are as follows.
- the SUS440C product is assumed to be a relative value of 1, “ ⁇ ” is 1, “ ⁇ ” is 2 or more and less than 3, “ ⁇ ” is 3 or more, and the results are also shown in Table 1.
- the radial internal gap with respect to the temperature was calculated at an external temperature of + 40 ° C. to ⁇ 196 ° C., and a relative value was obtained with the value at + 40 ° C. being 100%.
- the amount of change at ⁇ 196 ° C. was 20% or less as “ ⁇ ” and over 20% as “ ⁇ ”. The results are also shown in Table 1.
- the radial internal clearance is equivalent to that of Conventional Example 2 in which the ball is made of the same material as the inner and outer rings by using an alumina-zirconia ball having a linear expansion coefficient ratio of 89% within the scope of the present invention. It can be seen that the durability can be greatly improved since the occurrence of wear is small while maintaining the above.
- Example 2 The following shows the glass fiber in the resin composition for forming the retainer, the test methods and the results to verify the content of each MoS 2. First, the test apparatus will be described.
- the drive shaft 106 transmits the linear motion joint 104 (rotating force is transmitted, but axial force is transmitted by a mechanism that slides in the axial direction. Not connected through).
- the drive shaft 106 is supported by a support bearing 107, and the support bearing 107 is supported by a support bearing cylinder 108.
- the support bearing cylinder 108 has a cylindrical shape and is supported by the support bearing housing 110 so as to be linearly movable with clearance fit. However, the support bearing cylinder 108 is not rotated around the drive shaft by the key 109.
- a weight 105 is arranged at the motor side end of the support bearing cylinder 108.
- the thrust load of the sample counterpart shaft to the sample 123 described later is set to a predetermined magnitude. Can be done.
- An end surface is provided on the opposite side of the drive shaft 106 to the motor, and is connected to the end surface of the rotating shaft 112 via a heat insulating connecting plate 111.
- thermal insulation connecting plate 111 that are fabricated in a small ceramic thermal conductivity (Si0 2 ⁇ Al 2 O 3 and ZrO 2, etc.), heat from the rotating shaft 112 is adapted to hardly conducted to the drive shaft 106 .
- a sample housing 117 is connected via a first casing 115 and a second casing 116 that are coaxially connected to the support bearing housing 108.
- a sample stage 124 is inserted and connected from the end surface of the sample housing 117 on the side opposite to the motor, and a disk-shaped sample 123 is loaded in the central recess of the sample stage 124.
- the sample 123 has a surface opposite to the sample end face that fits into the recess of the sample stage 124 in contact with the sample holder 125 and is supported by being pressed against the bottom surface of the recess of the sample stage 124 by the force of the spring 126 disposed in the vicinity of the outer periphery of the sample.
- the spring 126 is made of SUS304, which has a small influence on the spring constant even at a low temperature in liquid nitrogen.
- a ball 127 contained in the ball holder 122 is in contact with the end surface of the sample 123 opposite to the end surface fitted to the sample stage 124.
- a solid shaft is formed coaxially with the ball holder taper portion 129 on the end surface opposite to the sample 123 of the ball holder 122, and a rigid coupling 121 (a coupling that does not have an elastic structure and does not deform). And is coaxially connected to the rotating shaft 112.
- FIG. 6 shows an enlarged view of the periphery of the ball 127.
- a ball holder taper portion 129 is provided on the end surface of the ball holder 122 facing the sample 123, and the ball 127 is accommodated therein.
- the ball 127 is pressed against the ball holder tapered portion 129 from the sample side by a ball press 128. Since the ball pressing taper portion 130 is provided on the ball side end surface of the ball pressing member 128, the ball 127 is pressed against the ball holder tapered portion 129 by fastening the ball pressing member 128 and the ball holder 122 with screws.
- An opening 132 is provided in the end surface of the ball holder 128 on the sample side, and a part of the ball 127 protrudes from the end surface of the ball holder 128 toward the sample so that the sample end face and the ball surface can come into contact with each other. It has become.
- the taper of the ball holder taper portion 129 is formed coaxially with the ball holder coupling shaft portion 131 provided on the side opposite to the sample 123, the ball 127 passes through the rigid coupling 121. It can be rotated coaxially and integrally with the rotating shaft 112.
- the linear motion joint 104 functions and absorbs the contraction, so that the thrust load does not change and is stable. Thus, the sample 123 is loaded.
- the sample housing 117 is inserted from the opening 120 of the Dewar container 119, sealed with a synthetic resin top plate 118, and liquid nitrogen is injected into the Dewar container 119 by the liquid nitrogen supply nozzle 114 inserted from the outside into the top plate 118.
- liquid nitrogen is injected into the Dewar container 119 by the liquid nitrogen supply nozzle 114 inserted from the outside into the top plate 118.
- the liquid nitrogen liquid level in the Dewar container is monitored by the liquid nitrogen level sensor 113, and the liquid nitrogen is reduced by evaporation or the like, and the liquid level is arranged in a predetermined position (about five stages on the sensor tip 113A).
- the liquid nitrogen automatic supply device (not shown) is activated to replenish liquid nitrogen from the tip 114A of the liquid nitrogen supply nozzle 114.
- the test partner shaft (correctly, the contact surface between the test partner shaft and the sample 123) is always placed in liquid nitrogen and the test is continued.
- the dynamic friction torque can be measured by the torque meter 103.
- the measured value includes the dynamic friction torque of the support bearing 107
- the dynamic friction torque value of the support bearing 107 is assumed to be constant, and the remaining value subtracted from the measured value is set as the dynamic friction torque value of the friction / wear test.
- the sample 123 is taken out, the weight value after the test is measured, and the wear weight of the sample 123 can be obtained by subtracting it from the pre-test weight value.
- the test bearing 235 is a bearing of the same type in the upper and lower sides. After being fitted to both ends of the test bearing shaft 238, the test bearing 235 is loaded into the test bearing housing 236 and loaded with the preload load of the spring 233 via the bearing retainer 234, and is in a preload state. Is supported by the spindle structure. The test bearing housing 236 is loaded and fastened from the opening on the non-motor side of the sample housing.
- the motor-side end of the test bearing shaft 238 is connected to the rotating shaft by a linear motion joint 232. Even if the test bearing shaft 238 and the sample housing are relatively displaced in the axial direction due to the effect of cooling by immersion in liquid nitrogen, the axial displacement is absorbed by the function of the linear motion joint 232 and the test bearing 235 is moved in the axial direction. No load is generated (except for the preload).
- the preload spring 233 is made of SUS304, which is less susceptible to changes in the spring constant due to the influence of cooling from liquid nitrogen.
- An end cap 239 is arranged in the vicinity of the lower test bearing 235. Since a large opening is provided at the center of the end cap 239, liquid nitrogen can freely enter and exit through the opening.
- the sample housing equipped with the test bearing 235 is inserted into the Dewar container and fixed at a predetermined position, and then liquid nitrogen is injected and immersed above the upper test bearing 235. Then, if the motor is rotated, the bearing rotation test can be performed in liquid nitrogen.
- the condition of the rotating test bearing 235 is monitored by a torque meter to monitor changes in dynamic friction torque, and is also detected by a thermocouple 237 placed in contact with the outer ring of the test bearing 235 when a sudden temperature change occurs in the test bearing 235. it can.
- this test apparatus has a plurality of support columns 443 arranged perpendicularly to the end face of the support ring 442 from the periphery of the opening of the support ring 442.
- the anti-support ring end surface of 443 is positioned below.
- a sample stage 444 having a two-stage cylindrical shape is fastened to the end surface of the support ring 443 opposite to the support ring, and when viewed from above the support ring hole, the end surface of the sample stage 444 is disposed at the center position below the support ring hole. Can be confirmed.
- the small-diameter sample 449 has a disk shape
- the large-diameter sample 450 has a ring shape. Both samples 449 and 450 are coaxially overlapped, and through holes are provided at three equal positions in the overlapping portion, and a spring pin 448 is inserted there, and a rivet 446 is directly inserted into the inner diameter hole of the spring pin 448 or the through hole. Are inserted and caulked from both sides to form a rivet head, and both samples 449 and 450 are fastened. Depending on the test conditions, a washer 447 is inserted between the rivet head and the samples 449 and 450. In some cases, the washer 447 is not inserted or the spring pin 448 is not inserted, and the rivet 446 or only the rivet 446 and the washer 447 are used for fastening.
- the small diameter sample 449 is about ⁇ 40 mm ⁇ 5 mm
- the large diameter sample 450 is about ⁇ 55-60 mm ⁇ ⁇ 30 mm ⁇ 5 mm.
- the rivet 446, washer 447 and spring pin 448 are all made of SUS304.
- the central straight portion has a diameter of ⁇ 1 mm
- the rivet head diameter is ⁇ 2 mm
- the washer 447 has an outer diameter of ⁇ 3 mm ⁇ inner diameter of ⁇ 1 mm
- the spring pin 448 has an outer diameter of ⁇ 2 to 2.25 mm.
- the two samples 449 and 450 are fastened with only the rivet 446, and the sample 449 and 450 is fastened by inserting the spring pin 448 and integrated, and then the rivet 446 with the washer 447 is inserted into the spring pin 448 and fastened. Two samples were made. Similarly, a pure PTFE sample having the same shape was manufactured.
- the inner diameter of the large-diameter sample 450 is set so that the end surface portion of the sample table 444 is fitted, and when both the fastened samples 449 and 450 are fitted, the end surface of the small-diameter sample 449 comes into contact with the end surface of the sample table. . If the small diameter sample 449 and the sample stage 444 are fastened by inserting a screw into a three equally spaced through hole provided in the small diameter sample 449, the sample can be fixed to the sample stage 444. At this time, the holding plate 445 is inserted between the screw head and the end surface of the small diameter sample 449 to form the back plate of the small diameter sample 449, and the fastening force is not concentrated on the portion corresponding to the screw head of the small diameter sample 449. It is made to act uniformly on the area corresponding to the pressing plate 449.
- the inner diameter of the pressing die 441 is such that the outer diameter of the small-diameter sample 449 is fitted.
- the end surface 451 of the pressing die is the same as that of the large-diameter sample 450 as shown in FIG. It is in contact with a region (ring-shaped portion from the outer periphery) that does not overlap the small-diameter sample 449 on the end surface.
- the pressing die 441 is pushed down from above via the spherical seat 440, the pushing die end surface 451 pushes down the ring-shaped portion from the outer periphery of the large-diameter sample 450.
- the small-diameter sample 449 Since the small-diameter sample 449 is fixed to the end surface of the sample stage 444, the small-diameter sample 449 remains in its original position even if the large-diameter sample 450 is displaced downward by lowering the push die 441 and pushing down the large-diameter sample 450. In order to stay, both the samples 449 and 450 are loaded with a relatively peeled load.
- the samples 449 and 450 or the rivets 446 cannot withstand the load, and the samples 449 and 450 and / or the rivets 446 are broken and the samples 449 and 450 are separated. If the load of the push-down load is stopped before it breaks, the rivet 446 is in a state of being bitten into the sample thickness. By measuring the depth of the rivet 446 or the depth of the washer 447, the rivet fastening property of the samples 449 and 450 can be quantitatively evaluated. In addition, since there are a total of 6 locations on the front and back of the sample, the average value of the depth of penetration at these 6 locations is referred to as “bite depth”.
- the outer diameter of the support ring 442 is set larger than the diameter of the opening of the dewar container (not shown), the portion below the support ring 442 is inserted into the dewar container, and the support ring 442 is supported at the mouth of the opening of the dewar container.
- glass fiber (diameter: 1-10 ⁇ m, length: 10-100 ⁇ m) is added to PTFE powder at 0-40 mass%, kneaded, melted, extruded, formed into a string, cut into pellets was made. This pellet was again melt-compressed to produce a round bar, which was machined into a predetermined sample shape (about ⁇ 40 mm ⁇ 5 mm). Note that the surface roughness (test end face) of the sample was better than 3.2 ⁇ Ra.
- the weight change (weight loss) before and after the test was measured. Pure PTFE (without glass fiber addition) was tested in the same manner, and the ratio (specific wear amount) to the weight loss of pure PTFE was determined.
- the specific wear amount is remarkably small when the glass fiber addition amount is 10 to 20% by mass, and particularly, when the glass fiber addition amount is 13.5 to 16.5% by mass.
- the specific wear amount increases. This is presumed that when the ball and the sample slide, the glass fiber wears the ball, and the wear powder further promotes the wear of the sample.
- a predetermined amount of MoS 2 powder (particle size 0.1 to 10 ⁇ m) was added to the PTFE powder, kneaded, melted and extruded to form a string, and cut into pellets. This pellet was again melted and compressed to form a round bar, which was then machined into a predetermined sample shape (about ⁇ 40 mm ⁇ 5 mm). Note that the surface roughness (test end face) of the sample was better than 3.2 ⁇ Ra. Further, using pure PTFE powder containing no MoS 2, it was produced in the same manner as the samples.
- the dynamic friction torque value includes the dynamic friction torque of the support bearing, and the value including this as a common raised portion for all tests was used as the dynamic friction torque value in this test.
- a dynamic friction torque value at a total rotation speed of 1 ⁇ 10 6 that is considered to be in an initial wear state and a dynamic friction torque value at a total rotation speed of 1 ⁇ 10 7 rotation that is considered to have passed a sufficiently initial wear state are obtained. It was measured. The same test was performed on pure PTFE, and the dynamic friction torque value at 1 ⁇ 10 6 rotations was measured. And the ratio (specific dynamic friction torque value) with the dynamic friction torque value of this pure PTFE was calculated
- the specific friction torque value is the smallest when the added amount of MoS 2 is 5 mass% at the total number of revolutions of 1 ⁇ 10 7 revolutions.
- pure PTFE has a larger specific friction torque value than the sample to which MoS 2 is added, but when the traveling distance advances and the total number of revolutions becomes 1 ⁇ 10 7 revolutions,
- the sample with MoS 2 added has a smaller specific friction torque value than pure PTFE. This is because PTFE is not crushed with fine particles such as sugar or salt, but with a much larger lump than that, so the sample surface roughness is markedly increased as wear progresses. As a result, it is presumed that the dynamic friction torque value increases.
- glass fiber (diameter 1 to 10 ⁇ m, length 10 to 100 ⁇ m) is constant at 15% by mass and a predetermined amount of MoS 2 powder (particle size 1 to 10 ⁇ m) is added to PTFE powder, kneaded, melted and extruded Molded into a string and cut into pellets. This pellet was again melt-compressed to produce a round bar, which was machined into a predetermined sample shape (about ⁇ 40 mm ⁇ 5 mm). Note that the surface roughness (test end face) of the sample was better than 3.2 ⁇ Ra. Similarly, a comparative sample containing 15% by mass of glass fiber and not containing MoS 2 was produced.
- the dynamic friction torque value was continuously measured in the same manner as in the verification of MoS 2 content-1 above, and the ratio (specific friction friction torque) with the dynamic friction torque value at the total rotation number of 1 ⁇ 10 6 rotations of the comparative sample. Value).
- the specific frictional torque value is the smallest when the added amount of MoS 2 is 4.5 to 5.5% by mass at the total number of revolutions of 1 ⁇ 10 7 revolutions.
- the comparative sample has a specific frictional torque value larger than that of the sample to which MoS 2 is added, but when the traveling distance advances and the total number of revolutions becomes 1 ⁇ 10 7 revolutions.
- the specific friction torque value is smaller in the sample to which MoS 2 is added than in the comparative sample. This is because PTFE wear forms do not degranulate with fine particles such as sugar or salt, but with larger lumps than that, so that the surface roughness of the sample becomes marked as wear progresses. As a result, the dynamic friction torque value is estimated to increase.
- the test bearing shaft was SUS440C (heat treated product, HrC58 or higher), and the test bearing housing was made of the same material, so that the thermal expansion coefficients of both were made the same.
- the test bearing assembled in the spindle structure was cooled with liquid nitrogen, and the dynamic friction torque value and the bearing outer ring temperature were continuously measured while rotating at 10,000 min ⁇ 1 .
- the dynamic friction torque value includes the dynamic friction torque of the support bearing, the value including this as a common raised portion for all tests was used as the dynamic friction torque value of this test. If the dynamic friction torque value suddenly increases, the bearing outer ring temperature suddenly increases, abnormal noise occurs, or other phenomena that cause damage to the bearing occur, the test is interrupted and the sample The housing was removed from the test equipment, and the bearing was turned and observed to identify the presence or absence of bearing damage. At that time, when it was confirmed that the bearing was damaged, the total number of rotations up to that time was regarded as the durability performance of the bearing. Note that there are 2 sets of rolling bearings with glass fiber and MoS 2 containing cages (indicated as # 1 and # 2 in FIG. 13), and only 1 set of rolling bearings with glass fiber containing / MoS 2 non-containing cages. A test was conducted.
- the bearing provided with the glass fiber-containing / MoS 2 -free cage was not finished at the total rotation speed of 1 ⁇ 10 7 rotations and ended the test with durability performance.
- the bearings with the MoS 2 containing cages both exceeded the total number of rotations of 1 ⁇ 10 8 rotations, and the test was terminated. That is, the bearing comprising a PTFE-made cage of glass fibers 15% by weight and the MoS 2 containing 5% by weight, although containing also 15 wt% of glass fiber, comprises a PTFE-made cage containing no MoS 2 Compared to bearings, it has 10 times or more durability performance in liquid nitrogen. From this, it can be said that the rolling bearing of the present invention is suitable as a bearing used in a low-temperature liquefied gas.
- the test bearings (one set of two) were mounted on the test apparatus shown in FIG. 7, and the dynamic friction torque value and the bearing outer ring temperature were continuously measured.
- the dynamic friction torque value includes the dynamic friction torque of the support bearing, the value including this as the common raised portion for all tests is the dynamic friction torque value of this test. If the dynamic friction torque value suddenly increases, the bearing outer ring temperature rapidly increases, abnormal noise occurs, or other phenomena that are caused by damage to the bearing occur, the test is interrupted and the sample housing Was removed from the test equipment, and the bearings were rotated and observed to identify the presence or absence of bearing damage. At that time, when it was confirmed that the bearing was damaged, the total number of rotations up to that time was regarded as the durability performance of the bearing.
- the number of balls was reduced to about 30% of the specified number, and the load applied per ball was greatly increased as compared with the case of the specified number.
- the bearing travel distance total number of revolutions
- a rolling bearing provided with glass fiber and MoS 2 containing cages and ceramic balls is suitable as a bearing used in a low-temperature liquefied gas.
- the ball is more preferably made of an alumina-zirconia composite ceramic.
- PTFE containing glass fiber and MoS 2 has about twice the rivet fastening performance compared to pure PTFE, and further triples by inserting a washer into the rivet. Can do.
- the influence of the rivet head area ratio and the washer area (ring shape) ratio on the rivet cross-sectional area was also examined.
- the rivet has a central straight part diameter of ⁇ 1 mm, a rivet head diameter of ⁇ 2 mm, and the washer has an outer diameter of ⁇ 3 mm ⁇ inner diameter of ⁇ 1 mm. Therefore, as shown below, the ratio of the rivet head pressure-receiving area to the rivet cross-sectional area 3, the washer pressure-receiving area ratio to the rivet cross-sectional area is 5, but the indentation depth ratio at that time is about 0.5 and about 0.3, respectively, as shown in FIG. It can be seen that the indentation depth ratio is small.
- FIG. 16 is a graph showing the relationship between the rivet pressure receiving area and the rivet recess depth based on this result.
- the number of rivets was limited to three so that the test bearing was always damaged at the rivet fastening portion, and the test bearings were fastened at three equal positions on the cage circumference. Other parts do not fasten the two-piece cage, and the cage is a special cage that is fastened with only the three rivets.
- test bearing is mounted on the bearing test apparatus shown in FIG. 7 (the test bearing shaft and the test bearing housing are both SUS440C heat-treated products (HrC58 or higher) having the same thermal expansion coefficient) and cooled with liquid nitrogen. In this state, it was rotated at 10,000 min ⁇ 1 , and the total number of revolutions until the rivet fastening portion was broken and became unable to rotate was measured. At that time, for the purpose of an acceleration test, the preload was adjusted with a spring so that the cage received a relatively large load. In addition, the test was performed four times for the same cage.
- the present invention can be suitably applied to a rolling bearing used in a cryogenic gas pump that pumps liquefied gas under a cryogenic environment.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Rolling Contact Bearings (AREA)
Abstract
液化ガス環境下あるいは極低温下で使用される転がり軸受において、内輪及び外輪は軸受鋼、ステンレス鋼、高速度工具鋼または浸炭鋼の何れかの鋼材で形成され、かつ、転動体は、その線膨張係数が内輪及び外輪を形成する鋼材の線膨張係数の70%以上105%以下であるセラミックスからなる転がり軸受。また、前記転がり軸受を備える液化ガス用ポンプ。更には、PTFEと、繊維状補強材と、固体潤滑剤とを含み、上記転がり軸受等に最適な保持器。
Description
本発明は、液体窒素や液体酸素、液体天然ガス等の液化ガスを圧送する液化ガス用ポンプに使用されるような、極低温環境下で使用される転がり軸受に関する。また、本発明は、このような転がり軸受に好適な保持器に関する。
液化ガスを圧送するポンプ(液化ガス用ポンプ)では、液化ガスを圧送するインペラーが取り付けられた主軸を支持するために、深溝玉軸受や円筒ころ軸受等の転がり軸受を備えている。この転がり軸受は液化ガスと接触するため、軸受を構成する鋼材が液化ガスにより腐食を受けて劣化するおそれがある。そこで、外輪、内輪及び転動体を、全て耐食性のあるマルテンサイト系ステンレス鋼(SUS440C等)にしたり、転動体を高速度工具鋼(AISI M50)としたものが知られている(例えば、特許文献1参照)。
但し、内外輪と転動体とを共に金属製にすると、金属接触により摩耗が大きくなることから、転動体をセラミックス製にすることも行われている(例えば、特許文献2参照)。転動体をセラミックス製にすることにより、電食を防ぐこともでき、軸受寿命を長くする効果もある。
また、極低温下で使用されるため、潤滑油やグリース等の潤滑剤を軸受内部に配して転がり軸受の潤滑を行うことができないため、転がり軸受は無潤滑環境下で回転することになり、摩耗が生じて寿命が低下するおそれがある。そこで、低摩擦係数を有する固体潤滑膜を備える保持器(例えば、特許文献3参照)や、固体潤滑剤を含有する樹脂組成物製とした保持器(例えば、特許文献4参照)を組み込むことにより、無潤滑環境下における耐摩耗性を付与することも提案されている。
しかしながら、液化ガスの沸点(1気圧)は液体窒素が約-196℃、液体酸素が約-183℃、液化メタンガスが約-164℃、液化ブタンガスが約+1℃であり、その温度範囲は広く、低温環境(1℃以下)、特に極低温環境(-30℃以下)において使用される転がり軸受、特許文献2のような内・外輪が鋼材製で、セラミックス製の転動体を備える転がり軸受では、低温になるほど軸受内部隙間の変化量が大きくなる。そして、軸受内部隙間が大きくなるほど振動も大きくなり、摩耗しやすくなる。
また、無潤滑環境下で使用されるため、特許文献3、4のように潤滑膜や固体潤滑剤により耐摩耗性を付与した保持器においても、更なる耐摩耗性の向上が強く望まれている。
そこで、本発明は上記のような従来技術が抱える問題点を解決し、低温環境(1℃以下)、特に極低温環境(-30℃以下)、更には無潤滑環境下で使用されても優れた潤滑性を示し、耐摩耗性を向上した長寿命の転がり軸受を提供することを目的とする。また、前記転がり軸受に最適な保持器を提供することを目的とする。更には、前記転がり軸受を備え、長寿命の液化ガス用ポンプを提供することを目的とする。
上記目的を達成するために本発明は、下記の保持器及び転がり軸受、並びに液化ガス用ポンプを提供する。
(1)内輪と外輪との間に、保持器を介して複数の転動体を保持してなり、液化ガス環境下あるいは極低温下で使用される転がり軸受において、
内輪及び外輪は軸受鋼、ステンレス鋼、高速度工具鋼または浸炭鋼の何れかの鋼材で形成され、かつ、転動体は、その線膨張係数が内輪及び外輪を形成する鋼材の線膨張係数の70%以上105%以下であるセラミックスからなることを特徴とする転がり軸受。
(2)保持器が、樹脂組成物からなることを特徴とする上記(1)記載の転がり軸受。
(3)軸受精度が、ISO492規格のNormal class以上であることを特徴とする上記(1)または(2)記載の転がり軸受。
(4)内輪及び外輪を形成する鋼材が、サブゼロ処理されていることを特徴とする上記(1)~(3)の何れか1項に記載の転がり軸受。
(5)転動体を形成するセラミックスの硬さが、Hv1000以上1500以下であることを特徴とする上記(1)~(4)の何れか1項に記載の転がり軸受。
(6)保持器を形成する樹脂組成物の樹脂成分が、PTFE、ポリアミド、PEEK及びPPSの少なくとも1種であることを特徴とする上記(2)記載の転がり軸受。
(7)保持器を形成する樹脂組成物が、繊維状充填材としてガラス繊維、炭素繊維、チタン酸カルシウムウィスカー及びホウ酸アルミニウムウィスカーの少なくとも1種を含有することを特徴とする上記(6)記載の転がり軸受。
(8)保持器を形成する樹脂組成物が、固体潤滑剤として黒鉛、MoS2及びWS2の少なくとも1種を含有することを特徴とする上記(7)記載の転がり軸受。
(9)保持器を形成する樹脂組成物が、ガラス繊維を10~20質量%、MoS2を4.5~5.5質量%含有し、残部がPTFEからなることを特徴とする上記(8)記載の転がり軸受。
(10)転動体が、アルミナ成分と、ジルコニア成分とを、質量比で、アルミナ成分:ジルコニア成分=5~50:50~95の割合で含むことを特徴とする上記(1)~(9)の何れか1項に記載の転がり軸受。
(11)保持器が、その周方向に2分割された分割保持器であり、かつ、該分割保持器がリベットにより一体に締結されていることを特徴とする上記(1)~(10)の何れか1項に記載の転がり軸受。
(12)リベットのリベットヘッドと分割保持器との間に、ワッシャーが挿入されていることを特徴とする上記(11)記載の転がり軸受。
(13)上記(1)~(12)の何れか1項に記載の転がり軸受を備えることを特徴とする液化ガス用ポンプ。
(14)液化ガス環境下あるいは極低温下で使用される転がり軸受に組み込まれる保持器であって、
PTFE、ポリアミド、PEEK及びPPSの少なくとも1種からなる樹脂と、
ガラス繊維、炭素繊維、チタン酸カルシウムウィスカー及びホウ酸アルミニウムウィスカーの少なくとも1種からなる繊維状充填材と、
PTFE、ポリアミド、PEEK及びPPSの少なくとも1種からなる樹脂と、
を含む樹脂組成物からなることを特徴とする保持器。
(15)ガラス繊維を10~20質量%、MoS2を4.5~5.5質量%含有し、残部がPTFEからなる樹脂組成物からなることを特徴とする上記(14)記載の保持器。
(16)周方向に2分割された分割保持器であり、かつ、該分割保持器がリベットにより一体に締結されていることを特徴とする上記(14)または(15)に記載の用保持器。
(17)リベットのリベットヘッドと分割保持器との間に、ワッシャーが挿入されていることを特徴とする上記(16)記載の保持器。
(1)内輪と外輪との間に、保持器を介して複数の転動体を保持してなり、液化ガス環境下あるいは極低温下で使用される転がり軸受において、
内輪及び外輪は軸受鋼、ステンレス鋼、高速度工具鋼または浸炭鋼の何れかの鋼材で形成され、かつ、転動体は、その線膨張係数が内輪及び外輪を形成する鋼材の線膨張係数の70%以上105%以下であるセラミックスからなることを特徴とする転がり軸受。
(2)保持器が、樹脂組成物からなることを特徴とする上記(1)記載の転がり軸受。
(3)軸受精度が、ISO492規格のNormal class以上であることを特徴とする上記(1)または(2)記載の転がり軸受。
(4)内輪及び外輪を形成する鋼材が、サブゼロ処理されていることを特徴とする上記(1)~(3)の何れか1項に記載の転がり軸受。
(5)転動体を形成するセラミックスの硬さが、Hv1000以上1500以下であることを特徴とする上記(1)~(4)の何れか1項に記載の転がり軸受。
(6)保持器を形成する樹脂組成物の樹脂成分が、PTFE、ポリアミド、PEEK及びPPSの少なくとも1種であることを特徴とする上記(2)記載の転がり軸受。
(7)保持器を形成する樹脂組成物が、繊維状充填材としてガラス繊維、炭素繊維、チタン酸カルシウムウィスカー及びホウ酸アルミニウムウィスカーの少なくとも1種を含有することを特徴とする上記(6)記載の転がり軸受。
(8)保持器を形成する樹脂組成物が、固体潤滑剤として黒鉛、MoS2及びWS2の少なくとも1種を含有することを特徴とする上記(7)記載の転がり軸受。
(9)保持器を形成する樹脂組成物が、ガラス繊維を10~20質量%、MoS2を4.5~5.5質量%含有し、残部がPTFEからなることを特徴とする上記(8)記載の転がり軸受。
(10)転動体が、アルミナ成分と、ジルコニア成分とを、質量比で、アルミナ成分:ジルコニア成分=5~50:50~95の割合で含むことを特徴とする上記(1)~(9)の何れか1項に記載の転がり軸受。
(11)保持器が、その周方向に2分割された分割保持器であり、かつ、該分割保持器がリベットにより一体に締結されていることを特徴とする上記(1)~(10)の何れか1項に記載の転がり軸受。
(12)リベットのリベットヘッドと分割保持器との間に、ワッシャーが挿入されていることを特徴とする上記(11)記載の転がり軸受。
(13)上記(1)~(12)の何れか1項に記載の転がり軸受を備えることを特徴とする液化ガス用ポンプ。
(14)液化ガス環境下あるいは極低温下で使用される転がり軸受に組み込まれる保持器であって、
PTFE、ポリアミド、PEEK及びPPSの少なくとも1種からなる樹脂と、
ガラス繊維、炭素繊維、チタン酸カルシウムウィスカー及びホウ酸アルミニウムウィスカーの少なくとも1種からなる繊維状充填材と、
PTFE、ポリアミド、PEEK及びPPSの少なくとも1種からなる樹脂と、
を含む樹脂組成物からなることを特徴とする保持器。
(15)ガラス繊維を10~20質量%、MoS2を4.5~5.5質量%含有し、残部がPTFEからなる樹脂組成物からなることを特徴とする上記(14)記載の保持器。
(16)周方向に2分割された分割保持器であり、かつ、該分割保持器がリベットにより一体に締結されていることを特徴とする上記(14)または(15)に記載の用保持器。
(17)リベットのリベットヘッドと分割保持器との間に、ワッシャーが挿入されていることを特徴とする上記(16)記載の保持器。
本発明の転がり軸受は、内・外輪を特定の鋼材製とし、転動体をセラミックス製にするとともに、両者の線膨張係数比を特定範囲内にすることにより、温度の異なる種々の液化ガスに対応でき、低温の液化ガスを取り扱う場合にも軸受内部隙間の変化が少なく、従来のセラミックス製転動体を備える転がり軸受よりも振動が低減されて、耐摩耗性に優れるようになる。また、本発明の保持器も、繊維状充填材により補強されるとともに、固体潤滑剤により潤滑性が付与されるため、潤滑油やグリースを使用しない無潤滑環境下でも十分な潤滑寿命を示す。更には、本発明の液化ガス用ポンプも、上記転がり軸受を備えるため長寿命となる。
以下、本発明に関して図面を参照して詳細に説明する。
本発明において転がり軸受の種類には制限はなく、液化ガス用ポンプのように極低温環境下で使用される装置に組み込まれる転がり軸受が対象になる。例えば、図1に示す深溝玉軸受10を例示することができるが、図示される深溝玉軸受10は、内輪1と外輪2との間に、転動体である玉3を保持器4により転動自在に保持したものである。
また、保持器4は、その周方向に2分割されていてもよく、その場合、2つの分割保持器はスプリングピン7で連結されて、最後にリベット5をかしめて締結されている。具体的には、図示されるように、その周方向に二分割された一対の環状部品4A,4Bが、内輪1及び外輪2と同心に配置されるとともに、玉3を軸方向両側から挟んで対向配置されている。玉3を挟む両環状部品4A,4Bの軸方向端面は相互に対向しており、これら対向面にはそれぞれ、複数の球面状凹部が等間隔を空けつつ周方向に並んで形成されている。そして、両対向面に形成された球面状凹部の数は同数であり、全て対向配置されているので、対向する2つの球面状凹部によって、保持器4を径方向に貫通する円形のポケットが構成され、各ポケット内に玉3が保持されている。
両環状部品4A,4Bの対向面のうち球面状凹部が形成されていない部分40a,40bは、相互に突き合わされていて(以下「突き合わせ面40a,40b」と記す)、これにより保持器4の柱が構成されている。すなわち、ポケットとポケットの間に柱が形成されており、等間隔を空けつつ周方向に並んでいる。そして、両環状部品4A,4Bの対向面が突き合わされた部分(柱部分)には、軸方向に延びる貫通孔42a,42bがそれぞれ設けられている。
また、両環状部品4A,4Bには、インロー継手構造が構成されている。すなわち、両環状部品4A,4Bの突き合わせ面40a,40bのうち一方(図1の例では、環状部品4Aの突き合わせ面40a)に、インロー凸部44aが形成され、他方(図1の例では、環状部品4Bの突き合わせ面40b)にインロー凸部44aと係合するインロー凹部44bが形成されている。インロー凸部44aをインロー凹部44bに嵌合することにより、両環状部品4A,4Bの内周面及び外周面の位置合わせが行われて、両環状部品4A,4Bの接合部分に段差が生じないようになっているとともに、対向する貫通孔42a,42bの位置合わせが行われて、両貫通孔42a,42bの開口位置が合致するようになっている。
対向する貫通孔42a,42bの開口位置が合致しているため、両貫通孔42a,42bは一直線状に連続しており、連続する両貫通孔42a,42bから直線状孔が形成されている。そして、この直線状孔内に、該直線状孔の両端にわたってリベット5が挿通されていることにより、両環状部品4A,4Bが結合され、一体化されている。なお、リベット5は、複数の柱に形成された直線状孔の全てに挿通してもよいし、一部に挿通してもよい。また、インロー凸部44aとインロー凹部44bは、全ての柱に設けてもよいし、一部(1つ又は複数)の柱に設けてもよい。
両環状部品4A,4Bはリベット5で連結されており、このリベット5を環状部品4Aの貫通孔42aに保持器4の軸方向端面側(図1では左側)の開口から挿通すると、鋲頭部51が形成されていない側の端部が環状部品4Bの貫通孔42bの軸方向端面側(図1では右側)の開口から突出するので、この突出した端部を加締めることにより両環状部品4A,4Bを結合することができる。図1の例では、突出した端部を加締めることにより、半球状の加締め鋲頭部52が形成されている。
また、ワッシャー6により、リベット5の鋲頭部51、加締め鋲頭部52による環状部品4A,4Bの軸方向端面への応力の負荷が分散されるため、環状部品4A,4Bの鋲頭部51、加締め鋲頭部52との接触部が前記応力により損傷することが抑制される。尚、深溝玉軸受10が取り付けられる装置(例えば液化ガス用ポンプ)において、深溝玉軸受10の周囲のスペースが小さく、深溝玉軸受10の軸方向長さをできる限り小さくしたい場合には、鋲頭部51及び加締め鋲頭部52が深溝玉軸受10の側面から軸方向外側に突出することを防ぐために、貫通孔42a,42bの開口部分に座ぐり穴を設けてもよい。鋲頭部51、加締め鋲頭部52及びワッシャー6を座ぐり穴内に収容すれば、鋲頭部51及び加締め鋲頭部52が深溝玉軸受10の側面から軸方向外側に突出しないので、深溝玉軸受10の軸方向長さを小さくすることができる。
更に、スプリングピン7内にリベット5を挿通することにより、リベット5の端部を加締める際に加えられる力によりリベット5が湾曲することを抑制することができる。さらに、低温化に際しては、保持器4の収縮によりリベット5が変形するおそれがあるが、スプリングピン7を用いることにより保持器4の収縮量よりもスプリングピン7の収縮量の方が小さいので、スプリングピン7によりリベット5の変形が抑制される。
尚、スプリングピンとは、弾性を有する板を円筒状に丸めた中空管であり、周上の1箇所に長手方向に延びるスリットを有して断面C字状(長手方向に直交する平面で切断した断面)をなす部材である。その外径は直線状孔の内径よりも大きく、長さは直線状孔の長さと等しい。
リベット5、ワッシャー6、スプリングピン7を構成する素材は特に限定されるものではないが、何れもステンレス鋼(例えばオーステナイト系ステンレス鋼やマルテンサイト系ステンレス鋼)、炭素鋼、銅、アルミニウムが好ましい。
本発明では、内輪1及び外輪2を、軸受鋼(例えばSUJ2の線膨張係数は12~12.5×10-6/℃)、ステンレス鋼(線膨張係数:10~11×10-6/℃)、高速度工具鋼(線膨張係数:10~12×10-6/℃)、浸炭鋼(線膨張係数:11~12×10-6/℃)の何れかの鋼材で形成する。
尚、何れの鋼材も公知のもので構わないが、軸受鋼は、日本工業標準調査会の日本工業規格により規定された高炭素クロム軸受鋼SUJ2、SUJ3、SUJ4、SUJ5が好ましい。
ステンレス鋼は、日本工業標準調査会の日本工業規格により規定されたマルテンサイト系ステンレス鋼、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、析出硬化系ステンレス鋼が好ましい。また、マルテンサイト系ステンレス鋼はSUS403、SUS420、SUS440Cがより好ましく、フェライト系ステンレス鋼はSUS430がより好ましく、オーステナイト系ステンレス鋼はSUS303、SUS304、SUS305、SUS316、SUS317がより好ましく、析出硬化系ステンレス鋼はSUS630又はSUS631がより好ましい。
高速度工具鋼は、アメリカ鉄鋼協会のAISI規格により規定された高速度工具鋼M50または日本工業標準調査会の日本工業規格により規定された高速度工具鋼SKH4が好ましい。
浸炭鋼は、日本工業標準調査会の日本工業規格により規定されたSCr420、SCM420、SNCM420が好ましい。
また、上記の鋼材を、予めサブゼロ処理することが好ましい。サブゼロ処理により、使用に伴う寸法変化を最小限に抑えることができる。尚、このサブゼロ処理条件は、従来と同様で構わない。
一方、玉3を、線膨張係数が内・外輪を形成する鋼材の線膨張係数の70%以上105%以下のセラミックスで形成する。以下、(玉を形成するセラミックスの線膨張係数/内・外輪を形成する鋼材の線膨張係数)を「線膨張係数比」という。この線膨張係数比を70~105%とし、両者の熱膨張による寸法変化を抑えることにより、温度による軸受内部隙間の変化量を少なくでき、特に液体窒素等の沸点が低い液化ガスに曝される用途において耐摩耗性の向上効果に優れるようになる。線膨張係数比が70%未満もしくは105%超ではこのような効果が十分に得られない。好ましくは、線膨張係数比を80~100%とする。
セラミックスの種類としては、線膨張係数比を満足すれば制限はないが、安価であることから金属酸化物系セラミックスが好ましく、中でもジルコニア系セラミックスが好ましく、アルミナとジルコニア、アルミナと安定化ジルコニアが特に好ましい。例えば、アルミナ成分と、ジルコニア成分または安定化ジルコニア成分との比率を、質量比で、アルミナ成分:ジルコニア成分または安定化ジルコニア成分=5~50:50~95としたジルコニア-アルミナが好ましい。尚、安定化ジルコニア成分は、イットリアやカルシア、マグネシア、セリア等の安定化剤を含有する。また、正方晶系ジルコニアと単斜晶系ジルコニアからなり、(イットリア/ジルコニア)モル比が2.0/98.0~4.0/96.0で、アルミナを0.01~5.0質量%含有するジルコニア-イットリア系ジルコニアも好ましい。
特に、アルミナ成分:ジルコニア成分=10~30:70~90であることがより好ましく、20:80であることが最も好ましい。
図3は、SUS440C製の内・外輪と、窒化ケイ素製球またはアルミナ-ジルコニア製球とを備える転がり軸受について、温度によるラジアル内部隙間を計算したグラフである。尚、SUS440Cの線膨張係数を10.1×10-6/℃、窒化ケイ素の線膨張係数を2.8×10-6/℃(線膨張係数比:27.7%)、アルミナ-ジルコニアの線膨張係数を9.0×10-6/℃(線膨張係数比:90%)とした。その結果、アルミナ-ジルコニア製球では、-196℃という極低温でもラジアル内部隙間の変化量が20%に抑えられているが、窒化ケイ素製球では、ラジアル内部隙間の変化量が-40℃付近で既に20%を超えており、-196℃では60%を超えている。
焼結から室温まで冷却される際の体積収縮の差からアルミナ焼結粒子は圧縮し、ジルコニア焼結粒子は引張応力が付与され、残留応力の分布の違いから亀裂が迂回して進展する。また、亀裂は強度の弱いアルミナ焼結粒子を進展するが、ジルコニア焼結粒子の相転移(正方晶→単斜晶)によるアルミナ粒子への圧縮応力が負荷され、亀裂進展が防止される。
そのため、ジルコニア成分が70質量%未満では、相転移によるアルミナ焼結粒子への圧縮応力の負荷の効果が発現され難く、強度が低下する。また、ジルコニア成分が90質量%を超えると、粒子成長・凝集が起きやすくなり、異常成長したジルコニア焼結粒子により強度が低下する。
玉3を作製するには、原料の各粉末(アルミナ原料粉末やジルコニア原料粉末)を混合し、混合物を球形に成形した後、成形物を脱脂して焼結し、HIP処理すればよい。その際、より緻密にするために、各原料粉末に含まれる不純物は少ない方が好ましく、特にSiO2、Fe2O3、Na2Oを極力減少させることにより、焼結性を向上させて緻密化に有効となる。更に、不純物に起因する早期剥離も抑えることができる。具体的には、SiO2、Fe2O3、Na2Oの含有量はそれぞれ0.3質量%以下であることが好ましく、より好ましくは0.1質量%以下、さらに好ましくは0.02質量%以下である。含有量が0.3質量%を超えると運転時に転動体表面から粒子の微小な脱落が起こり易くなり、転動体表面の粗さの低下、脱落した粒子による軌道面の微細な損傷が発生し、振動が大きくなり音響寿命を短くするおそれがある。また、転動体の疲労寿命も不純物が起点となり早期剥離を引き起こす原因にもなる。
尚、成形方法は圧縮成形が一般的であり、焼結後に素材(素球)を研削、研磨して所定の球形状に調整する。また、HIP処理は通常の条件で行うことができる。
また、原料粉末が均一に混合せず、それぞれの焼結粒子が偏析すると、転がり疲労寿命が低下するようになる。特に、100μmを超える焼結粒子が存在すると顕著になる。偏析を防止する方法として均一に混合するだけでなく、強く粉砕する機能を持った混合を実施する必要があり、ボールミル混合機も可能であるが、粉砕メディアがφ1mm以下のジルコニア系のビ-ズを使用したビ-ズミル混合機が最も有効である。
玉3における各アルミナ焼結粒子、ジルコニア焼結粒子または安定化ジルコニア焼結粒子は、何れも平均粒径2μm以下であることが好ましく、1μm以下がより好ましい。通常、粒子の焼結を行うとある程度成長し、特許第3910310号に記載されているように、10μm以上の粒子が存在すると寿命に悪影響が及ぶようになるが、複合化させることで粒子成長・凝集が抑制される効果が発現して粒径は単体のものより小さくなる。
また、玉3の表面において、ジルコニア塊または安定化ジルコニア塊が少ないことが好ましく、10~30μmのジルコニア塊またはイットリア-ジルコニア塊が5個/300mm2以下であることがより好ましく、3個/300mm2以下であることが更に好ましい。ジルコニア塊または安定化ジルコニア塊が起点となって剥離し、転がり寿命を低下させる。特に、100μmレベルの塊が存在すると転がり寿命の低下が顕著になる。尚、塊は断面が円形ではないため、塊の大きさは長径部の長さとする。
更には、セラミックスの硬さを、Hv1000以上1500以下にすることにより、摩耗をより低減することができる。より好ましくは、Hv1100~1400である。このような硬度にするには、上記した焼結粒子の粒径や、焼結条件を調整すればよい。
保持器4は、摩耗低減から樹脂組成物を成形してなるプラスチック保持器にすることが好ましく、潤滑性を付与するための固体潤滑剤や、補強のための繊維状充填材を含有することがより好ましい。樹脂成分としては、従来から保持器材料として使用されているPTFEやPFA、ETFE、PVDF、FEP、PCTFE、ECTFE、PEEK、PPS、ポリアミド、ポリイミド等を使用できるが、PTFE、ポリアミド、PEEK及びPPSが好ましい。これら樹脂成分はそれぞれ単独でもよく、複数種を混合してもよい。また、樹脂成分は、プラスチック材料の主成分であり、材料全体の50質量%以上とすることが好ましい。
固体潤滑剤も従来から使用されている黒鉛や六方晶窒化ホウ素、素雲母、メラミンシアヌレート、フッ化黒鉛、MoS2、WS2等を使用できるが、黒鉛、MoS2及びWS2が好ましい。これら固体潤滑剤はそれぞれ単独でもよく、複数種を混合してもよい。保持器4が固体潤滑剤を含有することにより、潤滑油やグリースを使用することなく潤滑性を付与できる。液化ガス用ポンプは、潤滑油やグリースを使用しない無潤滑環境下で使用されることがあり、固体潤滑剤により耐摩耗性を向上させることができる。
繊維状充填材も従来から使用されているホウ酸アルミニウムウィスカーやチタン酸カリウムウィスカー、カーボンウィスカー、グラファイトウィスカー、炭素繊維、ガラス繊維、炭化けい素ウィスカー、窒化けい素ウィスカー、アルミナウィスカー等を使用できるが、ガラス繊維、炭素繊維、チタン酸カルシウムウィスカー、ホウ酸アルミニウムウィスカーが好ましい。これら繊維状充填材はそれぞれ単独でもよく、複数種を混合してもよい。また、樹脂成分との接着性を高めるために、シラン系カップリング剤やチタネート系カップリング剤等で処理してもよい。繊維状充填材を含有することにより、寸法安定性が増すようになる。
樹脂組成物には、その他にも、熱や光による劣化を防止するために、ヨウ化化合物等の熱安定剤、アミン化合物やフェノール化合物等の酸化防止剤、光安定化剤を必要に応じて添加することができる。
尚、樹脂組成物において、樹脂成分を50~90質量%、繊維状充填材を10~30質量%、固体潤滑剤を0~20質量%とすることが好ましく、熱安定剤等のその他の添加剤を添加する場合は、樹脂成分、繊維状充填材、固体潤滑剤の一部に代えて0~10質量%とすることが好ましい。
好ましい樹脂組成物を例示すると、ガラス繊維を10~20質量%、MoS2を4.5~5.5質量%含有し、残部がPTFEからなる樹脂組成物製とする。尚、PTFEの含有量は樹脂組成物全量の75~85質量%が好ましい。
ガラス繊維は、平均繊維径が1~10μmで、平均繊維長が10~100μmのものが強度や分散性の観点から好ましい。また、ガラス繊維は、母材となるPTFEとの接着性を高めるために、カップリング剤で表面処理されていることが好ましい。カップリング剤の種類は特に限定されるものではないが、シラン系カップリング剤やチタネート系カップリング剤等が適当である。
また、ガラス繊維の含有量が10質量%未満であると、保持器4としての強度が不足し、耐摩耗性も十分ではなくなる。また、ガラス繊維の含有量が20質量%を超えると、強度や耐摩耗性は高まるものの、相手材と摺動してガラス繊維が相手材を摩耗させてしまう。更には、保持器4を製造する際の成形性に劣るようになる。成形方法としては、生産性から射出成形が好ましいが、ガラス繊維が多くなるほど相対的に樹脂量が減って流動性が悪くなり、成形性が低下する。このような不都合を生じにくくするためには、ガラス繊維の含有量を13.5~16.5質量%にすることが好ましい。
MoS2は、保持器4に潤滑性を付与する添加剤であり、その含有量が4.5質量%未満では、潤滑性付与に寄与できない。但し、MoS2の含有量が5.5質量%を超えると、潤滑性が飽和するだけでなく、保持器中での分散性が悪くなり、成形性も低下する。このような不都合を生じにくくするためには、MoS2の含有量を4.7~5.3質量%とすることが好ましい。また、MoS2は、平均粒子径が0.1~10μmのものが好ましい。
残部は、PTFEであるが、PTFEも潤滑性を有するため、MoS2との組合せにより、保持器4の潤滑性をより向上させる。
保持器4を製造するには、上記の樹脂組成物を用いて通常の成形法により製造する。好ましくは、生産性の高さから射出成形が好ましい。
尚、軸受精度は、ISO492規格のNormal class以上であればよく、特に高精度である必要はない。
本発明は、上記した以外にも、図2に示すようなアンギュラ玉軸受にも適用できる。図示されるように、内輪15と外輪16との間に、保持器17により玉18を転動自在に保持して構成されており、内輪15、外輪16、保持器17及び玉18がそれぞ上記の各材料からなる。
その他にも、図示は省略するが、円筒ころ軸受等も可能である。また、内径が10~140mm、外径が22~300mmの軸受への適用が好適である。
また、本発明の転がり軸受は、上記したように無潤滑環境での使用が可能であり、耐久性を向上させたものであるため、特に液化ガス用ポンプの主軸を支持するために使用することが好ましい。液化ガス用ポンプとしては、例えば図4に示すような液化ガスサブマージドポンプを例示することができる。
この液化ガスサブマージポンプは、吸込口と吐出口を備えたポンプケーシング内にモータを備えており、吸込口から吸い込んだ低温液体を吐出口からポンプ外に吐き出すように構成されている。本発明では、このモータのロータに嵌合するシャフトを支持するための上部軸受及び下部軸受に、上記転がり軸受を用いる。
以下に実施例及び比較例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものではない。
[実施例1]
(線膨張係数比の検証)
呼び番号「6320」の深溝玉軸受の内輪及び外輪を、SUS440C製(線膨張係数:10.1×10-6/℃)でサブゼロ処理を施した鋼材で作製した。また、玉として、アルミナ-ジルコニア製(線膨張係数:9.0×10-6/℃)、窒化ケイ素製(線膨張係数:2.8×10-6/℃)及びSUS440C製を用意した。そして、ポリアミドにガラス繊維及びMoS2を添加した合成樹脂製の保持器とともに、試験軸受を作製した。
(線膨張係数比の検証)
呼び番号「6320」の深溝玉軸受の内輪及び外輪を、SUS440C製(線膨張係数:10.1×10-6/℃)でサブゼロ処理を施した鋼材で作製した。また、玉として、アルミナ-ジルコニア製(線膨張係数:9.0×10-6/℃)、窒化ケイ素製(線膨張係数:2.8×10-6/℃)及びSUS440C製を用意した。そして、ポリアミドにガラス繊維及びMoS2を添加した合成樹脂製の保持器とともに、試験軸受を作製した。
そして、試験軸受の耐久性を評価した。試験条件は以下の通りであり、SUS440C品を1とした相対値とし、「〇」は1、「◎」は2以上3未満、「◎◎」は3以上とし、結果を表1に併記した。
・外部温度(試験温度):-196℃
・回転数:5000min-1
・アキシアル荷重:980N
・外部温度(試験温度):-196℃
・回転数:5000min-1
・アキシアル荷重:980N
また、外部温度+40℃~-196℃とし、温度に対するラジアル内部隙間を計算し、+40℃における値を100%とする相対値を求めた。-196℃における変化量が20%以下を「◎」、20%超を「△」とし、結果を表1に併記した。
表1から、線膨張係数比が89%で本発明の範囲にあるアルミナ-ジルコニア製の玉を用いることにより、玉を内・外輪と同材料にした従来例2に比べて同等のラジアル内部隙間を維持しつつ、摩耗の発生が少ないため耐久性を大きく向上させることができることがわかる。
[実施例2]
以下に、保持器を形成する樹脂組成物のガラス繊維、MoS2の各含有量を検証するための試験方法及びその結果を示す。先ず、試験装置について説明する。
以下に、保持器を形成する樹脂組成物のガラス繊維、MoS2の各含有量を検証するための試験方法及びその結果を示す。先ず、試験装置について説明する。
(1)すべり摩擦・摩耗試験装置
図5に示すように、本試験装置では、駆動軸106が直動ジョイント104(回転力は伝達するが,軸方向にスライドする機構により軸方向の力は伝達しない)を介して接続されている。駆動軸106はサポート軸受107に支持されていて、サポート軸受107はサポート軸受シリンダ108に支持されている。サポート軸受シリンダ108は円筒形状で、サポート軸受ハウジング110にすきまばめで直動自在に支持されているが、キー109によりサポート軸受シリンダ108が駆動軸周りに回転することはない。サポート軸受シリンダ108のモータ側端部にはウエイト105が配置されていて、ウエイト105の重量を調整することで、後述する試料123への試料相手軸のスラスト荷重を所定の大きさに設定することができるようになっている。駆動軸106の反モータ側に端面が設けられていて、断熱コネクティングプレート111を介して回転軸112の端面と接続されている。断熱コネクティングプレート111は熱伝導率の小さいセラミックス(Si02・Al2O3やZrO2等)で製作されているため、回転軸112からの熱は駆動軸106に伝導しにくいようになっている。回転軸112の反モータ側先端は液体窒素によって冷却されるため、軸長を大きく設定していて、駆動軸106に極力熱が伝導しない(冷却されない)ようになっている。サポート軸受ハウジング108に同軸的に接続された第1のケーシング115、第2のケーシング116を介して試料ハウジング117が接続されている。試料ハウジング117の反モータ側端面から試料台124が挿入、接続されていて、試料台124の中央の凹部に円盤形状の試料123が装填されている。試料123は試料台124の凹部に勘合する試料端面と反対面を試料押さえ125と接していて、試料外周近傍に配置されたバネ126の力によって、試料台124の凹部の底面に押し付けられて支持されている。バネ126は、液体窒素中の低温でもバネ定数上影響の小さいSUS304製を用いる。試料123の試料台124に勘合した端面と反対の端面には、ボールホルダ122に内包されたボール127が接触している。ボールホルダ122の試料123とは反対側の端面には、ボールホルダテーパ部129と同軸的に中実軸が形成されていて、リジッドカップリング121(弾性構造を持っていない、変形しないカップリング)を介して回転軸112と同軸的に接続されている。
図5に示すように、本試験装置では、駆動軸106が直動ジョイント104(回転力は伝達するが,軸方向にスライドする機構により軸方向の力は伝達しない)を介して接続されている。駆動軸106はサポート軸受107に支持されていて、サポート軸受107はサポート軸受シリンダ108に支持されている。サポート軸受シリンダ108は円筒形状で、サポート軸受ハウジング110にすきまばめで直動自在に支持されているが、キー109によりサポート軸受シリンダ108が駆動軸周りに回転することはない。サポート軸受シリンダ108のモータ側端部にはウエイト105が配置されていて、ウエイト105の重量を調整することで、後述する試料123への試料相手軸のスラスト荷重を所定の大きさに設定することができるようになっている。駆動軸106の反モータ側に端面が設けられていて、断熱コネクティングプレート111を介して回転軸112の端面と接続されている。断熱コネクティングプレート111は熱伝導率の小さいセラミックス(Si02・Al2O3やZrO2等)で製作されているため、回転軸112からの熱は駆動軸106に伝導しにくいようになっている。回転軸112の反モータ側先端は液体窒素によって冷却されるため、軸長を大きく設定していて、駆動軸106に極力熱が伝導しない(冷却されない)ようになっている。サポート軸受ハウジング108に同軸的に接続された第1のケーシング115、第2のケーシング116を介して試料ハウジング117が接続されている。試料ハウジング117の反モータ側端面から試料台124が挿入、接続されていて、試料台124の中央の凹部に円盤形状の試料123が装填されている。試料123は試料台124の凹部に勘合する試料端面と反対面を試料押さえ125と接していて、試料外周近傍に配置されたバネ126の力によって、試料台124の凹部の底面に押し付けられて支持されている。バネ126は、液体窒素中の低温でもバネ定数上影響の小さいSUS304製を用いる。試料123の試料台124に勘合した端面と反対の端面には、ボールホルダ122に内包されたボール127が接触している。ボールホルダ122の試料123とは反対側の端面には、ボールホルダテーパ部129と同軸的に中実軸が形成されていて、リジッドカップリング121(弾性構造を持っていない、変形しないカップリング)を介して回転軸112と同軸的に接続されている。
図6にボール127の周辺を拡大して示すが、ボールホルダ122の試料123に対向する端面にボールホルダテーパ部129が設けられていて、そこにボール127が収容される。ボール127はボール押さえ128によって試料側からボールホルダテーパ部129に押し付けられている。ボール押さえ128のボール側端面にはボール押さえテーパ部130が設けられているため、ボール押さえ128とボールホルダ122とをねじで締結することでボール127がボールホルダテーパ部129に押し付けられる。ボール押さえ128の試料側端面には開口部132が設けられていて、そこからボール押さえ128の端面位置を越えて試料寄りにボール127の一部が突出し、試料端面とボール表面とが接触できるようになっている。前述のとおり、ボールホルダテーパ部129のテーパは、試料123と反対側に設けられたボールホルダカップリング用軸部131に同軸的に成形されているため、ボール127はリジッドカップリング121を介して回転軸112と同軸的一体的に回転させることができる。
スラスト荷重上は、駆動軸106からサポート軸受シリンダ108、サポート軸受107等、断熱コネクティングプレート111等、回転軸112、リジッドカップリング121、ボールホルダ122、ボール127は一体的になっているため、試料123の端面には上記部材の自重と前述したウエイト重量の合計荷重がスラスト荷重となって負荷されることになる。所定のスラスト荷重を負荷した状態でモータ101を回転させれば、試料123の端面とボール127とが相対回転して摺動するため、すべり摩擦・摩耗試験を行うことができる。液体窒素によって試料123の周辺が冷却されて部材が熱収縮して軸方向に縮む現象が生じても、直動ジョイント104が機能して収縮を吸収するため、スラスト荷重は変化することなく、安定して試料123に負荷される構造になっている。
試料ハウジング117をデュワー容器119の開口部120から挿入し、合成樹脂製の天板118で密閉し、天板118に外から挿入された液体窒素供給ノズル114によって液体窒素をデュワー容器119に注入し、試料相手軸レベルまでを浸漬して試験を行うことで、液体窒素中でのすべり摩擦・摩耗試験を構築できる。デュワー容器内の液体窒素液面レベルは、液体窒素レベルセンサ113により監視されていて、液体窒素が蒸発等で少なくなり、液面が所定の位置(センサ先端113A上に5段階程度に配置されたレベルの中の所定の位置)より降下した場合は、図示しない液体窒素自動供給装置が作動して液体窒素供給ノズル114の先端114Aから液体窒素が補充される。それにより、試験相手軸(正しくは、試験相手軸と試料123との接触面)は常に液体窒素中に置かれて試験が継続される。
試料相手軸回転中は、トルクメータ103によって動摩擦トルクが測定できる。ただし、測定値にはサポート軸受107の動摩擦トルクも含まれるが、サポート軸受107の動摩擦トルク値は一定として、測定値から減じた残りの値を摩擦・摩耗試験の動摩擦トルク値とする。
そして、ボール127を所定総回転数、回転させた後、試料123を取り出して試験後の重量値を測定し、試験前重量値から減じることで試料123の摩耗重量を求めることができる。
(2)軸受試験装置
本試験装置は、上記したすべり摩擦・摩耗試験装置から試料ハウジング117の周辺部分を交換して使用するようになっており、残りの大部分は共通仕様であるため、その変更点のみを示す。図7に示すように、トルクメータと駆動軸とは直動ジョイントではない通常のカップリング230で接続されている。サポート軸受シリンダはサポート軸受ハウジングに勘合しているのは図6に示した試験装置と同一であるが、セットスクリュー231が配置されていて、相互に軸方向に動くことはなく固定されている。
本試験装置は、上記したすべり摩擦・摩耗試験装置から試料ハウジング117の周辺部分を交換して使用するようになっており、残りの大部分は共通仕様であるため、その変更点のみを示す。図7に示すように、トルクメータと駆動軸とは直動ジョイントではない通常のカップリング230で接続されている。サポート軸受シリンダはサポート軸受ハウジングに勘合しているのは図6に示した試験装置と同一であるが、セットスクリュー231が配置されていて、相互に軸方向に動くことはなく固定されている。
試験軸受235は上下同一の形式の軸受で、試験軸受軸238の両端に勘合された後、試験軸受ハウジング236に装填され、軸受押さえ234を介してバネ233の予圧荷重を負荷されて、予圧状態のスピンドル構造で支持されている。試験軸受ハウジング236は試料ハウジングの反モータ側開口部から装填され締結される。
試験軸受軸238のモータ側端部は、直動ジョイント232によって回転軸と接続されている。液体窒素浸漬による冷却の影響で試験軸受軸238と試料ハウジングとが軸方向に相対的に変位したとしても、直動ジョイント232の機能により軸方向の変位は吸収されて試験軸受235に軸方向の荷重は(予圧荷重を除いて)発生しないようになっている。予圧用のバネ233は液体窒素からの冷却の影響によるばね定数変化を受けにくいSUS304製を用いる。
下側の試験軸受235の近傍には、エンドキャップ239が配置されている。エンドキャップ239の中央には大きく開口部が設けられているので、そこを通して液体窒素の出入りは自由になっている。試験軸受235を装着した試料ハウジングをデュワー容器内に挿入し、所定の位置に固定した後、液体窒素を注入して上側の試験軸受235より上位まで浸漬させる。その後、モータを回転させれば、液体窒素中で軸受の回転試験が実施できる。回転中の試験軸受235の状況はトルクメータで動摩擦トルク変化をモニタする他、試験軸受235の外輪に接触させて配置した熱電対237によっても試験軸受235に急激な温度変化が生じた場合は感知できる。
液体窒素液面センサと、図示しない液体窒素自動供給装置との働きにより、液体窒素の液面レベルが降下した場合は、液体窒素が供給ノズルより補充され、常に試料ハウジング(試験軸受235)が液体窒素中に浸漬された状態を保つことは図6に示した試験装置の場合と同一である。
(3)リベット被締結性評価試験装置
図8に示すように、本試験装置は、支持リング442の開口部口元周辺から複数の支柱443が支持リング442の端面に垂直に配置されていて、支柱443の反支持リング端面が下方に位置している。支柱443の反支持リング端面には二段円柱形状の試料台444が締結されていて、支持リング穴上方から俯瞰すると、試料台444の端面が支持リング穴の中央位置、下方に配置されているのが確認できる。
図8に示すように、本試験装置は、支持リング442の開口部口元周辺から複数の支柱443が支持リング442の端面に垂直に配置されていて、支柱443の反支持リング端面が下方に位置している。支柱443の反支持リング端面には二段円柱形状の試料台444が締結されていて、支持リング穴上方から俯瞰すると、試料台444の端面が支持リング穴の中央位置、下方に配置されているのが確認できる。
試料は2種あり、小径試料449は円盤、大径試料450はリング形状をなしている。両試料449,450を同軸的に重ね、重なり部分の3等配位置に貫通穴を設けて、そこにスプリングピン448を挿入し、スプリングピン448の内径穴か、あるいは貫通穴に直接、リベット446を挿入し、両側からかしめてリベットヘッドを形成し、両試料449,450を締結する。試験条件によっては、リベットヘッドと試料449,450との間にワッシャー447を挿入する。尚、ワッシャー447を挿入したり、スプリングピン448は挿入せずにリベット446か、リベット446とワッシャー447のみで締結する場合がある。
尚、小径試料449は約φ40mm×5mm、大径試料450は約φ55~60mm×φ30mm×5mmである、また、リベット446、ワッシャー447及びスプリングピン448は、何れもSUS304製であり、リベット446の形状は中央ストレート部直径がφ1mm、リベットヘッド直径がφ2mmであり、ワッシャー447の形状は外径φ3mm×内径φ1mmであり、スプリングピン448の形状は外径φ2~2.25mmである。
二分割した両試料449,450をリベット446のみで締結するものと、スプリングピン448を挿入して一体化した後、ワッシャー447を装着したリベット446をスプリングピン448に挿入して締結したものとの2種の試料を製作した。同様にして、同一形状の純PTFE試料を製作した。
大径試料450の内径は試料台444の端面部分が勘合するように設定されていて、締結された両試料449,450を勘合させると、小径試料449の端面が試料台端面と接することになる。小径試料449に設けられた3等配貫通穴にねじを挿入して小径試料449と試料台444とを締結すれば、試料を試料台444に固定することができる。この時、ねじ頭部と小径試料449の端面との間に押さえ板445を挿入して小径試料449の背板とし、締結力が小径試料449のねじ頭部対応部位に集中せず、小径試料449の押さえ板対応領域に均一に作用するようにする。
押し型441の内径は小径試料449の外径が勘合するようになっていて、押し型441を小径試料449に勘合させると、図9に示すように、押し型端面451は大径試料450の端面の小径試料449に重なっていない領域(外周よりのリング形状部分)と接触する。この時、押し型441を、球面座440を介して上方から押し下げてやれば,押し型端面451が大径試料450の外周よりのリング形状部分を押し下げることになる。小径試料449は試料台444の端面に固定されているため、押し型441が下降して大径試料450を押し下げて、大径試料450が下方に変位しても小径試料449は元の位置にとどまろうとするため、両試料449,450は相対的に引き剥がされる荷重が負荷されることになる。
押し下げ荷重をどんどん大きくすると、荷重に試料449,450、あるいはリベット446が耐えられなくなり、いずれは試料449,450かリベット446,あるいはその両方が破断して両試料449,450は分離してしまう。破断する前に押し下げ荷重の負荷をやめれば、試料厚み途中までリベット446が食い込んだ状態になる。そのリベット446が食い込んだ深さ、あるいはワッシャー447が食い込んだ深さを測定することで、試料449,450のリベット締結性を定量的に評価することができる。尚、食い込む箇所は試料表裏で合計6箇所あるので、その6箇所の食い込み深さの平均値を「くいこみ深さ」とする。
支持リング442の外径を図示しないデュワー容器開口部直径より大きく設定し、支持リング442より下方の部分をデュワー容器内に挿入し、支持リング442をデュワー容器開口部口元で支持し、試料位置上まで液体窒素を図示しない液体窒素供給装置と同液体窒素供給ノズルから注入して試料449,450を浸漬することにより、試料材料による液体窒素中のリベット締結性の比較評価を行うことができる。
上記の各試験装置を用いて、次の検証を行った。
(ガラス繊維含有量の検証)
ここでは、MoS2を含有せず、ガラス繊維のみを含有する保持器について、ガラス繊維の含有量と、液体窒素中での摩擦量との関係を調べた。
ここでは、MoS2を含有せず、ガラス繊維のみを含有する保持器について、ガラス繊維の含有量と、液体窒素中での摩擦量との関係を調べた。
先ず、PTFE粉末に、ガラス繊維(直径1~10μm、長さ10~100μm)を0~40質量%で変化させて添加して混練し、溶融・押し出し成形して紐状とし、裁断してペレットを作製した。このペレットを再度、溶融・圧縮押し出し成形して丸棒を製作し、それを機械加工して所定の試料形状(約φ40mm×5mm)とした。尚、試料の表面粗さ(試験端面)を3.2μRaより良好とした。
そして、図5に示したすべり摩擦・摩耗試験装置(但し、ボールは、アルミナ成分:ジルコニア成分=20:80のアルミナ-ジルコニア系複合セラミックス製で、ボール表面粗さは0.05μmRa)に試料を装着し、液体窒素(約-196℃)で冷却した状態で10000min-1にて回転させ、初期摩耗を充分過ぎると考えられる総回転数1×107回転まで走行させて試験を終了し、試料を取り出して試験前後の重量変化(重量減量)を測定した。純PTFE(ガラス繊維添加なし)についても同様に試験を行い、純PTFEの重量減量との比(比摩耗量)を求めた。
結果を図10に示すが、ガラス繊維添加量が10~20質量%の時に比摩耗量が著しく小さくなっており、特に13.5~16.5質量%の時に最少となる。これに対し、ガラス繊維添加量が20質量%を超えると、逆に比摩耗量が大きくなる。これは、ボールと試料とが摺動する時に、ガラス繊維がボールを摩耗させ、その摩耗粉が更に試料の摩耗を促進させたと推定される。
(MoS2含有量の検証-1)
ここでは、ガラス繊維を含有せず、MoS2のみを含有する場合について、MoS2含有量と、液体窒素中での動摩擦トルクとの関係を調べた。
ここでは、ガラス繊維を含有せず、MoS2のみを含有する場合について、MoS2含有量と、液体窒素中での動摩擦トルクとの関係を調べた。
先ず、PTFE粉末に、MoS2粉末(粒径0.1~10μm)を所定量添加して混錬し、溶融・押し出し成形して紐状にし、裁断してペレットを作製した。このペレットを再度、溶融・圧縮押し出し成形して丸棒を製作し,それを機械加工して所定の試料形状(約φ40mm×5mm)とした。尚、試料の表面粗さ(試験端面)を3.2μRaより良好とした。また、MoS2を含有しない純PTFE粉末を用いて、同様の試料を作製した。
そして、図5に示したすべり摩擦・摩耗試験装置(但し、ボールは、アルミナ成分:ジルコニア成分=20:80のアルミナ-ジルコニア系複合セラミックス製で、ボール表面粗さは0.05μmRa)に試料を装着し、液体窒素で冷却した状態で10000min-1にて回転させ、動摩擦トルク値を連続して測定した。尚、動摩擦トルク値にはサポート軸受の動摩擦トルクも含まれているが、全試験に共通の底上げ分としてそれを含んだ値を本試験の動摩擦トルク値とした。その際、初期摩耗状態であると考えられる総回転数1×106回転時の動摩擦トルク値と、充分初期摩耗状態を過ぎたと考えられる総回転数1×107回転時の動摩擦トルク値とを測定した。純PTFEについて同様の試験を行い、1×106回転時の動摩擦トルク値を測定した。そして、この純PTFEの動摩擦トルク値との比(比動摩擦トルク値)を求めた。
結果を図11に示すが、総回転数1×107回転では、比動摩擦トルク値は、MoS2添加量が5質量%の時に最も小さくなっている。また、総回転数1×106回転時点では、純PTFEの方がMoS2を添加した試料よりも比動摩擦トルク値が大きいが、走行距離が進んで総回転数1×107回転になると、純PTFEよりもMoS2を添加した試料の方が比動摩擦トルク値が小さくなる。これは、PTFEの摩耗形態が砂糖や塩のような細かい粒の摩耗粉で脱粒していくのではなく、それよりも格段に大きい塊で脱粒するので、摩耗が進むと試料面粗さが格段に大きくなり、その結果、動摩擦トルク値が大きくなるためと推測される。
(MoS2含有量の検証-2)
ここでは、ガラス繊維及びMoS2を含有する場合の、MoS2の含有量と、液体窒素中での動摩擦トルクとの関係を調べた。
ここでは、ガラス繊維及びMoS2を含有する場合の、MoS2の含有量と、液体窒素中での動摩擦トルクとの関係を調べた。
先ず、PTFE粉末に、ガラス繊維(直径1~10μm、長さ10~100μm)を15質量%で一定、MoS2粉末(粒径1~10μm)を所定量添加して混錬し、溶融・押し出し成形して紐状にし、裁断してペレットを作製した。このペレットを再度、溶融・圧縮押し出し成形して丸棒を製作し、それを機械加工して所定の試料形状(約φ40mm×5mm)とした。尚、試料の表面粗さ(試験端面)を3.2μRaより良好とした。また、同様にして、ガラス繊維を15質量%含有し、MoS2を含有しない比較用試料を作製した。
そして、上記のMoS2含有量の検証-1と同様にして動摩擦トルク値を連続して測定し、比較用試料の総回転数1×106回転時の動摩擦トルク値との比(比動摩擦トルク値)を求めた。
結果を図12に示すが、総回転数1×107回転では、MoS2添加量が4.5~5.5質量%の時に比動摩擦トルク値が最も小さくなっている。また、総回転数1×106回転時点では、比較用試料の方がMoS2を添加した試料よりも比動摩擦トルク値が大きいが、走行距離が進んで総回転数1×107回転になると、比較用試料よりもMoS2を添加した試料の方が比動摩擦トルク値が小さくなっている。これは、PTFEの摩耗形態が砂糖や塩のような細かい粒の摩耗粉で脱粒していくのではなく、それよりも格段に大きい塊で脱粒するので、摩耗が進むと試料面あらさが格段に大きくなり、その結果、動摩擦トルク値が大きくなるためと推測される。
(ガラス繊維及びMoS2含有保持器を備える転がり軸受と、ガラス繊維含有、MoS2非含有保持器を備える転がり軸受との耐久性能比較)
上記の結果を踏まえ、ガラス繊維及びMoS2含有保持器を備える転がり軸受と、ガラス繊維を含有し、MoS2を含有しない保持器を備える転がり軸受との液体窒素中での耐久性能を比較した。
上記の結果を踏まえ、ガラス繊維及びMoS2含有保持器を備える転がり軸受と、ガラス繊維を含有し、MoS2を含有しない保持器を備える転がり軸受との液体窒素中での耐久性能を比較した。
先ず、PTFE粉末に、ガラス繊維(直径1~10μm、長さ10~100μm)を15質量%、MoS2粉末(粒径0.1~10μm)を5質量%添加して混錬し、溶融・押し出し成形して紐状にし、裁断してペレットを作製した。このペレットを再度、溶融・圧縮押し出し成形して丸棒を製作し、それを機械加工してアンギュラ玉軸受(内径25mm)用のもみ抜き保持器(ガラス繊維及びMoS2含有保持器)を作製した。また、PTFE粉末に、ガラス繊維を15質量%添加し、MoS2未添加にして同様の保持器(ガラス繊維含有・MoS2非含有保持器)を作製した。
そして、各保持器、アルミナ成分:ジルコニア成分=20:80のアルミナ-ジルコニア系複合セラミック製のボール、SUS440Cの熱処理品(HrC58以上)からなる内外輪を用いてアンギュラ玉軸受を組み立て、図7に示した軸受試験装置に装着した。尚、試験装置において、試験軸受軸をSUS440C(熱処理品、HrC58以上)とし、試験軸受ハウジングを同材料にすることにより、両者の熱膨張係数を同一にした。試験は、スピンドル構造に組み上げた試験軸受を液体窒素で冷却した状態とし、10000min-1にて回転させながら、動摩擦トルク値・軸受外輪温度を連続して測定した。動摩擦トルク値にはサポート軸受の動摩擦トルクも含まれているが、全試験に共通の底上げ分としてそれを含んだ値を本試験の動摩擦トルク値とした。そして、動摩擦トルク値が急激に大きくなったり、軸受外輪温度が急激に高くなったり、異音が発生したり、その他軸受の損傷が原因とされる現象が発生した場合に試験を中断して試料ハウジンングを試験装置から取り外し、軸受を手回し・観察して軸受損傷の有無を同定した。その時、軸受損傷と確認された場合、それまでの総回転数をその軸受の耐久性能とした。尚、ガラス繊維及びMoS2含有保持器を備える転がり軸受については2セット(図13に#1、#2と表記)、ガラス繊維含有・MoS2非含有保持器を備える転がり軸受については1セットのみ試験を行った。
結果を図13に示すが、ガラス繊維含有・MoS2非含有保持器を備える軸受が総回転数1×107回転に到達せずに耐久性能で試験終了となったのに対し、ガラス繊維及びMoS2含有保持器を備える軸受は、2セットとも総回転数1×108回転を超えて走行し、試験打ち切りとなった。即ち、ガラス繊維を15質量%並びにMoS2を5質量%含有するPTFE製の保持器を備える軸受は、ガラス繊維を同じく15質量%含有するものの、MoS2を含有しないPTFE製の保持器を備える軸受に比べて、液体窒素中で10倍以上の耐久性能を有する。このことから、本発明の転がり軸受は、低温液化ガス中で使用する軸受として好適であると言える。
(ボール材質による耐久性能比較)
ここでは、ガラス繊維及びMoS2含有保持器を組み込んだ軸受において、ボール素材による耐久性能を比較した。
ここでは、ガラス繊維及びMoS2含有保持器を組み込んだ軸受において、ボール素材による耐久性能を比較した。
先ず、PTFE粉末に、ガラス繊維(直径1~10μm、長さ10~100μm)を15質量%、MoS2(粒径0.1~10μm)を5質量%添加して混錬し、溶融。押し出し成形して紐状にし、裁断してペレットを作製した。このペレットを再度、溶融・圧縮押し出し成形して丸棒を製作し、それを機械加工してアンギュラ玉軸受(内径25mm)用のもみ抜き保持器を作製した。
そして、(1)SUS440C(熱処理品、HrC58以上)製のボール、(2)窒化珪素製ボール、(3)アルミナ成分:ジルコニア成分=20:80のアルミナ-ジルコニア系複合セラミックス製ボールと、上記保持器並びにSUS440C(熱処理品、HrC58以上)製内外輪を用いて試験軸受を組み立てた。
上記試験軸受(2個1セット)を図7に示す試験装置に装着し、動摩擦トルク値・軸受外輪温度を連続して測定した。動摩擦トルク値にはサポート軸受の動摩擦トルクも含まれているが、全試験に共通の底上げ分としてそれを含んだ値を本試験の動摩擦トルク値とする。動摩擦トルク値が急激に大きくなったり、軸受外輪温度が急激に高くなったり、異音が発生したり、その他軸受の損傷が原因とされる現象が発生した場合に試験を中断して、試料ハウジンングを試験装置から取り外し、軸受を手回し・観察し、軸受損傷の有無を同定した。その時、軸受損傷と確認された場合、それまでの総回転数をその軸受の耐久性能とした。
尚、評価試験を加速するためにボール個数を規定個数の約30%に減数し、ボール1個あたりに負荷される荷重を規定個数の場合に対して格段に大きくして試験を行った。ボールに負荷される荷重が大きくなると、保持器に対する摩擦力が大きくなり、保持器が変形しやすくなったり、摩耗しやすくなったりするので、軸受走行距離(総回転数)を小さくして試験を加速することが可能となる。
結果を図14に示すが、SUS440C製ボールを用いた試験軸受が総回転数6.2×106で試験終了となったのに対し、窒化珪素製ボールを用いた試験軸受では総回転数4.2×107まで耐久性能が向上した。更に、アルミナ-ジルコニア系複合セラミックス製ボールを用いた試験軸受では、総回転数8.5×107まで耐久性能を更に向上させることができた。従って、液体窒素中で、PTFEにガラス繊維を15質量%及びMoS2を5質量%添加した保持器を有する転がり軸受は、ボールを窒化珪素製にした場合はSUS440C製ボールの約7倍、アルミナ-ジルコニア系複合セラミックス製にした場合はSUS440C製ボールの約14倍の耐久性能を有する。このことから、ガラス繊維及びMoS2含有保持器と、セラミックス製ボールとを備える転がり軸受は、低温液化ガス中で使用する軸受として好適であると言える。特に、ボールを、アルミナ-ジルコニア系複合セラミックス製とすることがより好適である。
(リベット締結性評価-1)
ここでは、リベット及びワッシャーを用いて締結したときと、スプリングピン、リベット及びワッシャーを用いて締結したときの締結効果を評価した。
ここでは、リベット及びワッシャーを用いて締結したときと、スプリングピン、リベット及びワッシャーを用いて締結したときの締結効果を評価した。
先ず、PTFE粉末に、ガラス繊維(直径1~10μm、長さ10~100μm)を15質量%、MoS2粉末(粒径0.1~10μm)を5質量%添加して混錬し、溶融・押し出し成形して紐状にし、裁断してペレットを作製した。このペレットを再度、溶融・圧縮押し出し成形して丸棒を製作し、それを機械加工して図8に示したリベット被締結性評価試験装置用の小径試料及び大径試料を製作した。また、純PTFE製の小径試料及び大径試料を作製した。
そして、何れもSUS304製のリベットを用いて小径試料及び大径試料を、液体窒素で冷却された状態の同試験装置(試料台及び押し型:SUS304)に装着し、締結された両試料を引き剥がす方向に一定荷重を負荷した後、締結部分に残存するリベットヘッドの食い込み深さを、計6箇所で測定してその平均値を求め、それによって試料の被締結性能を比較した。また、スプリングピンを挿入し、さらにリベットヘッドと試料との間にワッシャー(SUSU304製)を挿入した場合も同様の試験を行い、ワッシャーの有無の違いによる試料の被締結性能を比較した。
結果を図15に示すが、ガラス繊維及びMoS2を含有するPTFEは、純PTFEに比べてリベット被締結性能は約2倍であり、更にリベットにワッシャーを挿入することにより約3倍にすることができる。
また、ガラス繊維及びMoS2含有PTFEについて、リベット断面積に対するリベットヘッド面積比、並びにワッシャー面積(リング形状の)比の影響についても検討した。尚、リベットの形状は中央ストレート部直径がφ1mm、リベットヘッド直径がφ2mmであり、ワッシャーの形状は外径φ3mm×内径φ1mmであるため、下記に示すように、リベット断面積に対するリベットヘッド受圧面積比は3、リベット断面積に対するワッシャー受圧面積比は5となるが、その時のくぼみ深さ比は図15に示すようにそれぞれ約0.5と約0.3となるため、受圧面積比が大きくなるとくぼみ深さ比は小さくなることが分かる。即ち、ワッシャーを挿入して受圧面積を大きくした方が、ガラス繊維及びMoS2含有PTFEの被締結性能がより発揮されることになり、言い換えればワッシャー挿入構造に有利な材質と言える。図16に、この結果を基に、リベット受圧面積とリベットくぼみ深さとの関係をグラフ化して示す。
リベット断面積:π(12)/4
リベットヘッド受圧面積:π(22-12)/4
スプリングワッシャー端面積:π(22-12)/4
ワッシャー面積:π(32-12)/4
ワッシャー受圧面積:π(32-22)/4
リベット断面積に対するリベットヘッド受圧面積:(22-12)/(12)=3
リベット断面積に対するワッシャー受圧面積:(32-22)/(12)=5
リベット断面積:π(12)/4
リベットヘッド受圧面積:π(22-12)/4
スプリングワッシャー端面積:π(22-12)/4
ワッシャー面積:π(32-12)/4
ワッシャー受圧面積:π(32-22)/4
リベット断面積に対するリベットヘッド受圧面積:(22-12)/(12)=3
リベット断面積に対するワッシャー受圧面積:(32-22)/(12)=5
(リベット締結性評価-2)
ここでは、上記のリベット締結性評価-1の結果を踏まえ、ガラス繊維及びMoS2含有PTFE製保持器と、純PTFE製保持器とのリベット被締結性能を比較した。
ここでは、上記のリベット締結性評価-1の結果を踏まえ、ガラス繊維及びMoS2含有PTFE製保持器と、純PTFE製保持器とのリベット被締結性能を比較した。
先ず、PTFE粉末に、ガラス繊維(直径1~10μm、長さ10~100μm)を15質量%、MoS2粉末(粒径0.1~10μm)を5質量%添加して混錬し、溶融・押し出し成形して紐状にし、裁断してペレットを作製した。このペレットを再度、溶融・圧縮押し出し成形して丸棒を製作し、それを機械加工して深溝玉軸受(内径25mmm)用の二分割もみ抜き保持器を製作した。また、純PTFE製の同保持器を作製した。
そして、それぞれの材質からなる二分割保持器を用い、リベットのみで締結したものと、スプリングピンを挿入して一体化した後、ワッシャーを装着したリベットをスプリングピンに挿入して締結したものとの2種の保持器を作製し、それを用いて深溝玉軸受(内径25mm)を組み立て試験軸受とした。尚、内外輪にはSUS440Cの熱処理品(HrC58以上)、ボールにはアルミナ成分:ジルコニア成分=20:80のアルミナ-ジルコニア系複合セラミックス製ボールを用いた。その際、試験軸受が必ずリベット締結部分で破損するようにリベット個数を3個に制限し、保持器円周上3等配位置で締結した。それ以外の部品では二分割保持器を締結せず、保持器は上記3個のリベットのみで締結されている特殊保持器となる。
そして、試験軸受を図7に示した軸受試験装置(試験軸受軸及び試験軸受ハウジングを、共にSUS440Cの熱処理品(HrC58以上)として熱膨張係数を一致させている)に装着し、液体窒素で冷却した状態とし、10000min-1にて回転させ、リベット締結部分が破損して回転不能になるまでの総回転数を測定した。その際、加速試験を目的として、保持器が比較的大きな荷重を受けるようにバネで予圧荷重を調整した。また、試験は同一保持器につき、各4回行った。
結果を図17に示すが、液体窒素中で、ガラス繊維及びMoS2含有PTFE製保持器を備える試験軸受は、純PTFE保持器を備える試験軸受に対して、(1)リベットのみ、ワッシャーなしの時に3倍以上、(2)リベット及びワッシャーありの時に5倍以上のリベット被締結性能(耐久性能)があることがわかる。このことからも、ガラス繊維及びMoS2を含有するPTFE樹脂組成物は、低温液化ガス中で使用する軸受の保持器材料として好適であると言える。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2013年10月9日出願の日本特許出願(特願2013-212029)に基づくものであり、その内容はここに参照として取り込まれる。
本出願は、2013年10月9日出願の日本特許出願(特願2013-212029)に基づくものであり、その内容はここに参照として取り込まれる。
本発明は、極低温環境下、例えば液化ガスを圧送する液化ガス用ポンプに使用される転がり軸受に好適に適用することができる。
1 内輪
2 外輪
3 玉
4 保持器
5 リベット
6 ワッシャー
7 スプリングピン
2 外輪
3 玉
4 保持器
5 リベット
6 ワッシャー
7 スプリングピン
Claims (17)
- 内輪と外輪との間に、保持器を介して複数の転動体を保持してなり、液化ガス環境下あるいは極低温下で使用される転がり軸受において、
内輪及び外輪は軸受鋼、ステンレス鋼、高速度工具鋼または浸炭鋼の何れかの鋼材で形成され、かつ、転動体は、その線膨張係数が内輪及び外輪を形成する鋼材の線膨張係数の70%以上105%以下であるセラミックスからなることを特徴とする転がり軸受。 - 保持器が、樹脂組成物からなることを特徴とする請求項1記載の転がり軸受。
- 軸受精度が、ISO492規格のNormal class以上であることを特徴とする請求項1または2記載の転がり軸受。
- 内輪及び外輪を形成する鋼材が、サブゼロ処理されていることを特徴とする請求項1~3の何れか1項に記載の転がり軸受。
- 転動体を形成するセラミックスの硬さが、Hv1000以上1500以下であることを特徴とする請求項1~4の何れか1項に記載の転がり軸受。
- 保持器を形成する樹脂組成物の樹脂成分が、PTFE、ポリアミド、PEEK及びPPSの少なくとも1種であることを特徴とする請求項2記載の転がり軸受。
- 保持器を形成する樹脂組成物が、繊維状充填材としてガラス繊維、炭素繊維、チタン酸カルシウムウィスカー及びホウ酸アルミニウムウィスカーの少なくとも1種を含有することを特徴とする請求項6記載の転がり軸受。
- 保持器を形成する樹脂組成物が、固体潤滑剤として黒鉛、MoS2及びWS2の少なくとも1種を含有することを特徴とする請求項7記載の転がり軸受。
- 保持器を形成する樹脂組成物が、ガラス繊維を10~20質量%、MoS2を4.5~5.5質量%含有し、残部がPTFEからなることを特徴とする請求項8記載の転がり軸受。
- 転動体が、アルミナ成分と、ジルコニア成分とを、質量比で、アルミナ成分:ジルコニア成分=5~50:50~95の割合で含むことを特徴とする請求項1~9の何れか1項に記載の転がり軸受。
- 保持器が、その周方向に2分割された分割保持器であり、かつ、該分割保持器がリベットにより一体に締結されていることを特徴とする請求項1~10の何れか1項に記載の転がり軸受。
- リベットのリベットヘッドと分割保持器との間に、ワッシャーが挿入されていることを特徴とする請求項11記載の転がり軸受。
- 請求項1~12の何れか1項に記載の転がり軸受を備えることを特徴とする液化ガス用ポンプ。
- 液化ガス環境下あるいは極低温下で使用される転がり軸受に組み込まれる保持器であって、
PTFE、ポリアミド、PEEK及びPPSの少なくとも1種からなる樹脂と、
ガラス繊維、炭素繊維、チタン酸カルシウムウィスカー及びホウ酸アルミニウムウィスカーの少なくとも1種からなる繊維状充填材と、
PTFE、ポリアミド、PEEK及びPPSの少なくとも1種からなる樹脂と、
を含む樹脂組成物からなることを特徴とする保持器。 - ガラス繊維を10~20質量%、MoS2を4.5~5.5質量%含有し、残部がPTFEからなる樹脂組成物からなることを特徴とする請求項14記載の保持器。
- 周方向に2分割された分割保持器であり、かつ、該分割保持器がリベットにより一体に締結されていることを特徴とする請求項14または15に記載の用保持器。
- リベットのリベットヘッドと分割保持器との間に、ワッシャーが挿入されていることを特徴とする請求項16記載の保持器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/025,926 US20160223019A1 (en) | 2013-10-09 | 2014-10-08 | Cage, rolling bearing and pump for liquefied gas |
CN201480054152.8A CN105593545A (zh) | 2013-10-09 | 2014-10-08 | 保持架和滚动轴承、以及液化气用泵 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013212029 | 2013-10-09 | ||
JP2013-212029 | 2013-10-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015053348A1 true WO2015053348A1 (ja) | 2015-04-16 |
Family
ID=52813163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/077014 WO2015053348A1 (ja) | 2013-10-09 | 2014-10-08 | 保持器及び転がり軸受、並びに液化ガス用ポンプ |
Country Status (4)
Country | Link |
---|---|
US (1) | US20160223019A1 (ja) |
JP (1) | JP2015096768A (ja) |
CN (1) | CN105593545A (ja) |
WO (1) | WO2015053348A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105061956A (zh) * | 2015-07-30 | 2015-11-18 | 洛阳轴研科技股份有限公司 | 一种聚醚醚酮改性聚四氟乙烯复合材料、轴承保持架及其制备方法 |
US20190390710A1 (en) * | 2018-06-21 | 2019-12-26 | Aktiebolaget Skf | Rolling bearing assembly |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014212072A1 (de) * | 2014-06-24 | 2015-12-24 | Aktiebolaget Skf | Lagerkäfig oder Lagerkäfigsegment |
WO2017078151A1 (ja) * | 2015-11-06 | 2017-05-11 | Ntn株式会社 | 極低温環境用転がり軸受 |
JP2017106559A (ja) * | 2015-12-10 | 2017-06-15 | Ntn株式会社 | 転がり軸受 |
JP2017150593A (ja) * | 2016-02-25 | 2017-08-31 | Ntn株式会社 | 極低温環境用転がり軸受 |
JP6764741B2 (ja) * | 2016-09-23 | 2020-10-07 | 株式会社Ihi | 保持器及びその製造方法、並びに転がり軸受 |
CN107090158A (zh) * | 2017-05-09 | 2017-08-25 | 常州德毅新材料科技有限公司 | 一种耐磨聚醚醚酮材料及其制备方法 |
CN107574002B (zh) * | 2017-10-16 | 2021-02-19 | 中船重型装备有限公司 | 一种免维护盾构机拖车轮 |
US11162533B2 (en) * | 2018-10-22 | 2021-11-02 | Aktiebolaget Skf | Rolling bearing |
CN111520407A (zh) * | 2020-04-23 | 2020-08-11 | 洛阳轴承研究所有限公司 | 一种轴承保持架及其制备方法 |
CN111810539B (zh) * | 2020-07-31 | 2022-02-08 | 苏州汇智精保持架科技有限公司 | 一种方便拆装的轴承保持架 |
KR102490414B1 (ko) * | 2021-01-20 | 2023-01-18 | 정정옥 | 무급유형 베어링. |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005201334A (ja) * | 2004-01-14 | 2005-07-28 | Ntn Corp | アンギュラ玉軸受 |
JP2010180953A (ja) * | 2009-02-05 | 2010-08-19 | Jtekt Corp | 分割型保持器の組立方法 |
JP2012167814A (ja) * | 2011-01-25 | 2012-09-06 | Nsk Ltd | 転がり軸受 |
JP2013072439A (ja) * | 2011-09-26 | 2013-04-22 | Ntn Corp | 転がり軸受 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003336640A (ja) * | 2002-05-16 | 2003-11-28 | Nsk Ltd | 多点接触玉軸受 |
JP2014020490A (ja) * | 2012-07-19 | 2014-02-03 | Nsk Ltd | 転がり軸受及び液化ガス用ポンプ装置 |
JP2014020491A (ja) * | 2012-07-19 | 2014-02-03 | Nsk Ltd | アンギュラ玉軸受及び液化ガス用ポンプ装置 |
-
2014
- 2014-10-08 WO PCT/JP2014/077014 patent/WO2015053348A1/ja active Application Filing
- 2014-10-08 US US15/025,926 patent/US20160223019A1/en not_active Abandoned
- 2014-10-08 CN CN201480054152.8A patent/CN105593545A/zh active Pending
- 2014-10-08 JP JP2014207537A patent/JP2015096768A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005201334A (ja) * | 2004-01-14 | 2005-07-28 | Ntn Corp | アンギュラ玉軸受 |
JP2010180953A (ja) * | 2009-02-05 | 2010-08-19 | Jtekt Corp | 分割型保持器の組立方法 |
JP2012167814A (ja) * | 2011-01-25 | 2012-09-06 | Nsk Ltd | 転がり軸受 |
JP2013072439A (ja) * | 2011-09-26 | 2013-04-22 | Ntn Corp | 転がり軸受 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105061956A (zh) * | 2015-07-30 | 2015-11-18 | 洛阳轴研科技股份有限公司 | 一种聚醚醚酮改性聚四氟乙烯复合材料、轴承保持架及其制备方法 |
US20190390710A1 (en) * | 2018-06-21 | 2019-12-26 | Aktiebolaget Skf | Rolling bearing assembly |
US10830276B2 (en) * | 2018-06-21 | 2020-11-10 | Aktiebolaget Skf | Rolling bearing assembly |
Also Published As
Publication number | Publication date |
---|---|
CN105593545A (zh) | 2016-05-18 |
US20160223019A1 (en) | 2016-08-04 |
JP2015096768A (ja) | 2015-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015053348A1 (ja) | 保持器及び転がり軸受、並びに液化ガス用ポンプ | |
JP4766051B2 (ja) | 樹脂製保持器及び転がり軸受 | |
JP6178117B2 (ja) | 転がり軸受用保持器、転がり軸受、及び転がり軸受用保持器の製造方法 | |
US7811002B2 (en) | Rolling device | |
Zaretsky et al. | Ceramic bearings for use in gas turbine engines | |
US9284982B2 (en) | Cage and rolling bearing | |
US20160319868A1 (en) | Plastic rolling bearing cage for an angular ball bearing, and angular ball bearing | |
KR101233869B1 (ko) | 구름 베어링 및 그 제조 방법 | |
JP2014020490A (ja) | 転がり軸受及び液化ガス用ポンプ装置 | |
JPWO2018088540A1 (ja) | ボールねじ装置 | |
CN202851630U (zh) | 角接触球轴承及液化气用泵装置 | |
KR102110756B1 (ko) | 회전축 하우징 및 시일 | |
EP1862707A1 (en) | Ball screw | |
JP2016075386A (ja) | 転がり軸受及びその製造方法、並びに液化ガス用ポンプ | |
Niizeki | Ceramic bearing for special environments | |
JP2006046373A (ja) | 転がり軸受 | |
JPH0942296A (ja) | 耐食性転がり軸受 | |
JP2004076928A (ja) | 転がり軸受用合成樹脂製保持器及び転がり軸受 | |
JP2008256166A (ja) | スラスト針状ころ軸受 | |
JP3811599B2 (ja) | 軸受用保持器 | |
KR20230048869A (ko) | 극저온 회전 베어링 | |
GB2389632A (en) | Rolling bearing arrangement | |
JP2007146889A (ja) | 転がり支持装置 | |
JP2005226829A (ja) | 転動装置 | |
Buchner | A Comparison of Spindle Ball Bearings with Steel or Ceramic Balls for Very High Speed Applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14852982 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15025926 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14852982 Country of ref document: EP Kind code of ref document: A1 |