WO2015053132A1 - 素子加工用積層体、素子加工用積層体の製造方法、およびこれを用いた薄型素子の製造方法 - Google Patents

素子加工用積層体、素子加工用積層体の製造方法、およびこれを用いた薄型素子の製造方法 Download PDF

Info

Publication number
WO2015053132A1
WO2015053132A1 PCT/JP2014/076136 JP2014076136W WO2015053132A1 WO 2015053132 A1 WO2015053132 A1 WO 2015053132A1 JP 2014076136 W JP2014076136 W JP 2014076136W WO 2015053132 A1 WO2015053132 A1 WO 2015053132A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
heat
resistant resin
resin layer
element processing
Prior art date
Application number
PCT/JP2014/076136
Other languages
English (en)
French (fr)
Inventor
渡邉拓生
李忠善
富川真佐夫
竹田清佳
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201480055461.7A priority Critical patent/CN105612600B/zh
Priority to JP2014557933A priority patent/JP6435862B2/ja
Publication of WO2015053132A1 publication Critical patent/WO2015053132A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09J179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • H01L2221/68386Separation by peeling

Definitions

  • the present invention is excellent in heat resistance, and does not change the adhesive force even during the manufacturing process of a semiconductor device, an image display device, etc., and can then be temporarily bonded at a room temperature and a temporary bonding adhesive
  • the present invention relates to an element processing laminate used for a layer, a method for manufacturing the element processing laminate, and a thin element manufacturing method using the element processing laminate.
  • semiconductor devices and image display devices are becoming lighter and thinner.
  • technology development is progressing in which semiconductor chips are stacked while being connected by through silicon vias (TSVs).
  • TSVs through silicon vias
  • the non-circuit formation surface (back surface) of the semiconductor circuit formation substrate is polished to reduce the thickness, and a back electrode is formed on the back surface.
  • the processed semiconductor circuit forming substrate is peeled off from the support substrate.
  • Temporary sticking material is used to fix the semiconductor circuit forming substrate to the support substrate, but the adhesive used as the temporary sticking material is required to have heat resistance enough to withstand the semiconductor process. It must be easily peelable.
  • a silicon-based material is used for peeling by heat treatment (see, for example, Patent Document 1), or a polyamide or polyimide-based material is used for heating and peeling. (For example, refer patent document 2) etc. are proposed.
  • a material that decomposes a tetrazole compound having excellent heat resistance when irradiated with ultraviolet rays to generate bubbles to peel off has been proposed.
  • a temporary adhesive having a two-layer structure of a thermoplastic organopolysiloxane type and a curable modified siloxane type, which peels at room temperature (see, for example, Patent Document 4).
  • JP 2012-144616 A (Claims) JP 2010-254808 A (Claims) JP 2012-67317 A (Claims) JP 2013-48215 A (Claims)
  • the temporary adhesive that is peeled off by heat treatment dissolves the solder bumps in the heating process for peeling, or the adhesive strength in the semiconductor processing process is reduced, and it is peeled off in the middle of the process, or the adhesive force is increased and peeled off.
  • the adhesive is made photosensitive, since a photopolymerization initiator and a photosensitizer are added, there is a problem that volatile matter is generated in a process under high temperature vacuum conditions.
  • the object of the present invention is to remove the volatile component in the backside polishing process of the semiconductor circuit forming substrate and the generation of volatile components in the backside circuit forming process, and to prevent the substrate from being cracked due to peeling, and to peel off under mild conditions at room temperature. It is possible to provide a laminated body for element processing capable of leaving almost no temporary adhesive on the semiconductor circuit forming substrate side after peeling, and a manufacturing method of the laminated body for element processing, and a thin element using the same It is to provide a manufacturing method.
  • the temporary adhesion layer is formed in the order of the heat resistant resin layer A and the heat resistant resin layer B from the support substrate side.
  • the adhesive strength between the heat resistant resin layer B and the element processing substrate is lower than the adhesive strength between the heat resistant resin layer A and the support substrate and the adhesive strength between the heat resistant resin layer B and the heat resistant resin layer A. It is the laminated body for element processing characterized by this.
  • an element processing laminate that has sufficient heat resistance without generation of volatile components in an element processing step, and that does not generate cracks in the element processing substrate even in a polishing step. be able to.
  • the element processing substrate can be peeled off from the support substrate under mild conditions at room temperature, and productivity is improved because there is almost no temporary adhesive adhering to the element processing substrate after peeling.
  • the element processing substrate and the support substrate are bonded via a temporary adhesive layer, and the temporary adhesive layer is composed of a heat resistant resin layer A and a heat resistant resin layer B. It consists of two layers.
  • the support substrate plays a role of supporting the element processing substrate when processing the element processing substrate.
  • the element processing substrate is usually a silicon wafer. Circuits and bumps for external connection are formed on the surface in contact with the heat-resistant resin layer B, and the opposite surface is a surface on which no circuit is formed. In addition, a circuit and a bump for external connection may be formed on the surface where the circuit is not formed, and a through electrode for conducting the front and back circuits may be formed.
  • the thickness of the element processing substrate is not particularly limited, but is 600 to 800 ⁇ m, preferably 625 to 775 ⁇ m.
  • the support substrate can be a substrate such as a silicon wafer, glass or quartz wafer.
  • the thickness of the support substrate is not particularly limited, but is 600 to 800 ⁇ m, preferably 625 to 775 ⁇ m.
  • the temporary adhesive layer temporarily fixes the element processing substrate to the support substrate. It is important that the element processing substrate processed in the peeling step after the device processing step is easily peeled off from the support substrate without being peeled off in the device processing step of the element processing substrate. It is also important that the resin for the temporary adhesive layer does not remain on the element processing substrate after the peeling, in addition to the easy peeling. If the resin remains, a process of washing off the resin with an organic solvent becomes necessary, which increases the burden on the production process.
  • the temporary adhesive layer in the present invention has a two-layer configuration of the heat resistant resin layer A and the heat resistant resin layer B, and the adhesive force between the heat resistant resin layer B and the element processing substrate is the adhesion between the heat resistant resin layer A and the support substrate. It is important that the strength is lower than the adhesive strength between the heat-resistant resin layer B and the heat-resistant resin layer A.
  • the difference between the adhesive force between the heat-resistant resin layer B and the element processing substrate, the adhesive force between the heat-resistant resin layer A and the support substrate, and the adhesive force between the heat-resistant resin layer B and the heat-resistant resin layer A is preferably 10 g / cm or more. Is 50 g / cm or more.
  • the adhesive force between the heat-resistant resin layer B and the element processing substrate is 1 g / cm or more and 70 g / cm or less, preferably 10 g / cm or more and 40 g / cm or less.
  • the adhesive strength between the heat-resistant resin layer A and the support substrate and the adhesive strength between the heat-resistant resin layer B and the heat-resistant resin layer A are 20 g / cm or more, preferably 50 g / cm or more, more preferably 100 g / cm or more. is there.
  • the adhesive force is 20 g / cm or more, processing is possible without cracking the element processing substrate during the processing step.
  • the adhesive force here can be determined by measuring the stress applied when pulling up the adherend at a constant angle and a constant speed.
  • the adhesive force of the present invention is an adhesive force when peeled off at an angle of 90 ° and a pulling speed of 50 mm / min.
  • Resins that can be used for the heat-resistant resin layer A and the heat-resistant resin layer B constituting the temporary adhesive layer are acrylic resin, acrylonitrile resin, butadiene resin, urethane resin, polyester resin, polyamide resin, polyimide resin.
  • Polymer resins such as polyamide imide resins, epoxy resins, and phenol resins can be used, but polyimide resins with high heat resistance are preferred.
  • Heat resistance is defined as the thermal decomposition start temperature at which volatiles are generated by decomposition.
  • the preferred thermal decomposition starting temperature is 250 ° C. or higher, more preferably 300 ° C. or higher. When the thermal decomposition starting temperature is 250 ° C. or higher, there is no generation of volatile components in the heat treatment step during the device processing step, and the device reliability is improved.
  • the thermal decomposition starting temperature of the present invention can be measured using a thermogravimetric analyzer (TGA). The measurement method will be specifically described. A predetermined amount of resin is charged into TGA and held at 60 ° C. for 30 minutes to remove moisture absorbed by the resin. Next, the temperature is raised to 500 ° C. at 5 ° C./min. The temperature at which weight reduction starts from the obtained weight reduction curve was defined as the thermal decomposition start temperature.
  • the heat-resistant resin layer A of the present invention has at least an acid dianhydride residue and a diamine residue, and the diamine residue contains at least a polysiloxane diamine residue represented by the general formula (1). It is preferable to contain the heat resistant resin A which is.
  • n is a natural number, and the average value calculated from the average molecular weight of the polysiloxane diamine is 1 or more.
  • R 1 and R 2 may be the same or different and each represents an alkylene group having 1 to 30 carbon atoms or a phenylene group.
  • the average molecular weight of the polysiloxane diamine can be determined by calculating the amino group equivalent by neutralizing titration of the amino group of the polysiloxane diamine and doubling the amino group equivalent. For example, a predetermined amount of polysiloxane diamine as a sample is collected and placed in a beaker, and this is dissolved in a predetermined amount of a 1: 1 mixed solution of isopropyl alcohol (hereinafter referred to as IPA) and toluene, and this solution is stirred. The 0.1N hydrochloric acid aqueous solution was dropped while the amino group equivalent was calculated from the amount of the 0.1N hydrochloric acid aqueous solution dropped when the neutralization point was reached. A value obtained by doubling this amino group equivalent is the average molecular weight.
  • IPA isopropyl alcohol
  • the molecular weight is calculated from the chemical structural formula, and the relation between the numerical value of n and the molecular weight is obtained as a relational expression of a linear function. Can do.
  • the average molecular weight can be obtained by applying the average molecular weight to this relational expression.
  • n in the present invention represents an average value.
  • n is 1 or more, preferably in the range of 5 to 100, more preferably in the range of 7 to 50.
  • polysiloxane diamine represented by the general formula (1) examples include bis (3-aminopropyl) tetramethyldisiloxane, ⁇ , ⁇ -bis (3-aminopropyl) polydimethylsiloxane, ⁇ , ⁇ -bis.
  • the polyimide resin contained in the heat-resistant resin A of the present invention preferably contains 40 mol% or more of the polysiloxane diamine residue represented by the general formula (1) in all diamine residues, 60 mol% or more, 99 mol% or less is more preferable.
  • the glass transition temperature of the heat-resistant resin layer A can be reduced to 60 ° C. or less, and the support substrate, the element processing substrate, In the step of adhering via a temporary adhesive layer, good tackiness can be exhibited at a low temperature of 200 ° C. or lower.
  • the glass transition temperature of the heat resistant resin A is decreased, preferably 40 ° C. or less, more preferably 20 ° C. or less.
  • an aromatic diamine residue and / or an alicyclic diamine residue may be included.
  • Specific examples of the aromatic diamine and / or alicyclic diamine include p-phenylene diamine, m-phenylene diamine, 2,5-diaminotoluene, 2,4-diaminotoluene, 2-methoxy-1,4-phenylenediamine.
  • aromatic diamines or alicyclic diamines aromatic diamines having a highly flexible structure are preferable. Specifically, 1,3-bis (3-aminophenoxy) benzene and 3,3′-diaminodiphenyl are preferred. Sulfone, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, and 3,3′-diaminobenzophenone are particularly preferred.
  • the aromatic diamine residue having a hydroxyl group or a carboxyl group in all diamine residues is 1 mol% or more, preferably 5 mol% or more, and 40 mol% or less, preferably 30 mol. % Or less.
  • the solvent resistance is improved.
  • the effect of greatly improving the solvent resistance can be obtained by using a crosslinking agent in combination.
  • aromatic diamine having a hydroxyl group examples include 2,5-diaminophenol, 3,5-diaminophenol, 3,3′-dihydroxybenzidine, 4,4′-dihydroxy-3,3′-diaminophenylpropane, 4,4′-dihydroxy-3,3′-diaminophenyl hexafluoropropane, 4,4′-dihydroxy-3,3′-diaminophenyl sulfone, 4,4′-dihydroxy-3,3′-diaminophenyl ether, 3,3′-dihydroxy-4,4′-diaminophenyl ether, 4,4′-dihydroxy-3,3′-diaminophenylpropanemethane, 4,4′-dihydroxy-3,3′-diaminobenzophenone, 3-Bis (4-amino-3-hydroxyphenyl) benzene, 1,3-bis (3-amino-4-hydroxyphenyl)
  • aromatic diamine having a carboxyl group examples include 4,4′-dicarboxy-3,3′-diaminophenylmethane, 3,3′-dicarboxybenzidine, 4,4′-dihydroxy-3,3 ′.
  • aromatic diamine having a hydroxyl group or a carboxyl group may be used alone or in combination of two or more.
  • the polyimide resin contained in the heat-resistant resin A of the present invention preferably contains an aromatic tetracarboxylic dianhydride residue as an acid dianhydride residue.
  • aromatic tetracarboxylic dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2′dimethyl-3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 5,5′dimethyl-3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic Acid dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride, 2,3,3 ′, 4 ′,
  • tetracarboxylic dianhydride having an aliphatic ring can be contained to such an extent that the heat resistance of the polyimide resin is not impaired.
  • Specific examples of the tetracarboxylic dianhydride having an aliphatic ring include 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2 1,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,3,5-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-bicyclohexene tetracarboxylic dianhydride, 2,4,5-cyclohexanetetracarboxylic dianhydride, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2- C] furan-1,
  • various crosslinking agents such as an epoxy crosslinking agent, an isocyanate crosslinking agent, a methylol crosslinking agent, a maleimide crosslinking agent, and an acrylic crosslinking agent can be used.
  • a methylol-based crosslinking agent is particularly preferable because it is a compound that crosslinks a polyimide resin at the time of thermosetting and is taken into the polyimide resin. By introducing a crosslinked structure into the resin, the solvent resistance can be improved.
  • Specific examples of the methylol-based crosslinking agent include the following melamine derivatives and urea derivatives (manufactured by Sanwa Chemical Co., Ltd.).
  • the heat resistant resin B contained in the heat resistant resin layer B is preferably a polyimide resin having a glass transition temperature of 300 ° C. or higher.
  • the glass transition temperature is preferably 400 ° C. or higher, and more preferably the glass transition temperature is not detected before the temperature at which the heat resistant resin reaches thermal decomposition. If the glass transition temperature of the heat-resistant resin B is 300 ° C. or higher, the glass transition temperature becomes higher than the temperature in the heat treatment step in the element processing step, so there is no increase in the adhesive force in the step, and the element in the peeling step The processing substrate can be easily peeled off.
  • the heat-resistant resin B is preferably a polyimide resin having a thermal decomposition starting temperature of 250 ° C. or higher.
  • the thermal decomposition starting temperature is preferably 350 ° C. or higher, more preferably 450 ° C. or higher. If the thermal decomposition start temperature of the heat-resistant resin B is 250 ° C. or higher, there is no generation of volatile components in the heat treatment step during the device processing step, and the device reliability is improved.
  • the polyimide resin contained in the heat-resistant resin B of the present invention has at least a tetracarboxylic dianhydride residue represented by the general formula (2) and / or (3) as an acid dianhydride residue,
  • the diamine residue has at least an aromatic diamine residue represented by the general formula (4) and / or (5).
  • R 7 is an alkyl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a hydroxyl group, a halogen, a carboxyl group, a carboxylic acid ester group, a fluoroalkyl group having 1 to 30 carbon atoms, A group selected from a phenyl group, a sulfonic acid group, a nitro group and a cyano group is shown.
  • R 8 and R 9 may be the same or different, each having an alkyl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a fluoroalkyl group having 1 to 30 carbon atoms, A group selected from a hydroxyl group, a halogen, a carboxyl group, a carboxylic acid ester group, a phenyl group, a sulfonic acid group, a nitro group and a cyano group.
  • Y is a direct bond, carbonyl group, isopropylidene group, ether group, hexafluoropropylidene group, sulfonyl group, phenylene group, methylene group, fluoromethylene group, amide group, ester group, ethylene group, fluoroethylene group, phenylenebisether Group represents a bis (phenylene) isopropylidene group.
  • R 10 is an alkyl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a fluoroalkyl group having 1 to 30 carbon atoms, a hydroxyl group, a halogen, a carboxyl group, a carboxylic acid ester group, A group selected from a phenyl group, a sulfone group, a nitro group and a cyano group is shown.
  • R 11 and R 12 may be the same or different, each having an alkyl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a fluoroalkyl group having 1 to 30 carbon atoms, A group selected from a hydroxyl group, a halogen, a carboxyl group, a carboxylic acid ester group, a phenyl group, a sulfone group, a nitro group, and a cyano group.
  • X is a direct bond, carbonyl group, isopropylidene group, ether group, hexafluoropropylidene group, sulfonyl group, phenylene group, methylene group, fluoromethylene group, amide group, ester group, ethylene group, fluoroethylene group, phenylenebisether Group, bis (phenylene) isopropylidene group, fluorene group.
  • Halogen here means fluorine, chlorine, bromine and iodine.
  • Adjustment of the molecular weight of the polyimide resin used for the heat resistant resin layer A and the heat resistant resin layer B of the present invention is such that the tetracarboxylic acid component or diamine component used in the synthesis is equimolar, or either one component is excessive. This can be done. Either the tetracarboxylic acid component or the diamine component may be excessive, and the polymer chain terminal may be sealed with a terminal blocking agent such as an acid component or an amine component. A dicarboxylic acid or an anhydride thereof is preferably used as the terminal blocking agent for the acid component, and a monoamine is preferably used as the terminal blocking agent for the amine component. At this time, it is preferable that the acid equivalent of the tetracarboxylic acid component including the end-capping agent of the acid component or the amine component and the amine equivalent of the diamine component are equimolar.
  • the molar ratio of the tetracarboxylic acid component / diamine component of the polyimide resin can be appropriately adjusted so that the viscosity of the resin solution is in a range that can be easily used in the coating process, etc.
  • the molar ratio of the / diamine component is generally adjusted to be in the range of 100/95 to 100/100, or 95/100 to 100/100.
  • the molar ratio should be adjusted within the range where the adhesive strength does not decrease. Is preferred.
  • the method for synthesizing the polyimide resin used for the heat resistant resin layer A and the heat resistant resin layer B of the present invention is not particularly limited.
  • polyamic acid which is a polyimide resin precursor
  • tetracarboxylic dianhydride and diamine are stirred in an organic solvent at 0 to 100 ° C. for 1 to 100 hours to obtain a polyamic acid resin solution.
  • the composition of the polyimide resin is soluble in the organic solvent, after the polyamic acid is polymerized, the temperature is raised to 120 to 300 ° C. and stirred for 1 to 100 hours to convert it to polyimide to obtain a polyimide resin solution. .
  • toluene, o-xylene, m-xylene, p-xylene, or the like may be added to the reaction solution, and water generated in the imidization reaction may be removed by azeotropy with these solvents.
  • polyamic acid resin solution In the case of a polyamic acid resin solution, it is applied to a substrate such as a film or glass and dried to form a coating film, followed by heat treatment to convert it into polyimide.
  • a substrate such as a film or glass
  • the conversion from polyimide precursor to polyimide requires a temperature of 240 ° C. or higher, but by including an imidization catalyst in the polyamic acid resin composition, imidization at a lower temperature and in a shorter time becomes possible. .
  • the imidization catalyst include pyridine, trimethylpyridine, ⁇ -picoline, quinoline, isoquinoline, imidazole, 2-methylimidazole, 1,2-dimethylimidazole, 2-phenylimidazole, 2,6-lutidine, triethylamine, m -Hydroxybenzoic acid, 2,4-dihydroxybenzoic acid, p-hydroxyphenylacetic acid, 4-hydroxyphenylpropionic acid, p-phenolsulfonic acid, p-aminophenol, p-aminobenzoic acid, and the like. It is not limited.
  • the production of the element processing laminate of the present invention includes at least the following steps (Production Method 1).
  • Heat-resistant resin B is laminated on an element processing substrate, or a precursor of heat-resistant resin B is laminated and then converted to heat-resistant resin B to obtain a laminate B of element processing substrate and heat-resistant resin layer B.
  • Process. On the heat-resistant resin layer B of the laminate B, the heat-resistant resin A is laminated, or the precursor of the heat-resistant resin A is laminated and then converted to the heat-resistant resin A, and the element processing substrate and the heat-resistant resin layer B And a step of forming a laminate C of the heat-resistant resin layer A.
  • Step C A step of superimposing and bonding a support substrate on the heat resistant resin layer A of the laminate C.
  • Examples of the coating method of the present invention include a method using a bar coater, a roll coater, a slit die coater, a spin coater, screen printing and the like.
  • heat treatment is performed to remove the organic solvent in the resin composition, and when the heat-resistant resin A and the heat-resistant resin B are polyamic acid resins, imidization is performed.
  • the heat treatment temperature is 100 to 400 ° C, preferably 150 to 250 ° C.
  • the heat treatment time is usually appropriately selected from 20 seconds to 2 hours, and may be continuous or intermittent.
  • the heat treatment temperature is 160 to 500 ° C, preferably 200 to 350 ° C.
  • the heat treatment time is usually appropriately selected from 20 seconds to 4 hours, and may be continuous or intermittent.
  • the residual volatile content in the heat-resistant resin layer A and the heat-resistant resin layer B after drying and heat treatment is 1% by weight or less, preferably 0.1% by weight or less, more preferably 0.01% by weight or less. If the residual volatile content is 1% by weight or less, element processing can be performed with good yield without occurrence of voids and peeling in the element processing step.
  • the heat-resistant resin A when the heat-resistant resin B is a polyamic acid resin, the heat-resistant resin A may be applied after heat treatment and imidization after coating, or the heat-resistant resin B may be applied and dried, and then the heat-resistant resin A After coating and drying, it may be imidized by heat treatment.
  • the thickness of the heat-resistant resin layer A and the heat-resistant resin layer B can be appropriately selected.
  • the thicknesses of the heat-resistant resin layer A and the heat-resistant resin layer B can be appropriately selected within the thickness range of the temporary adhesive layer.
  • the surface of the heat resistant resin layer A of the laminated body A and / or the heat resistant resin layer B of the laminated body B may be subjected to adhesion improvement treatment.
  • adhesion improving treatment a discharge treatment such as a normal pressure plasma treatment, a corona discharge treatment, a low temperature plasma treatment or the like is preferable.
  • the adhesion process in the process B of the manufacturing method 1 and the process C of the manufacturing method 2 can be pressure-bonded using a press. Although it may be crimped at room temperature, it may be crimped by heating. The temperature at this time is 250 ° C. or lower, preferably 200 ° C. or lower.
  • the pressure bonding may be performed in air or in nitrogen. Preferably in vacuum.
  • the method for manufacturing a thin element includes at least the following steps.
  • Step A A step of thinly processing the element processing substrate.
  • Process B The process of device-processing the element processing substrate processed thinly.
  • Step C A step of peeling the device-processed element processing substrate from the support substrate.
  • the step of thinly processing the element processing substrate is a step of polishing and thinning the surface opposite to the surface in contact with the heat-resistant resin layer B of the element processing substrate.
  • the element processing substrate is thinned so as to have a thickness of 10 to 200 ⁇ m, preferably 30 to 100 ⁇ m.
  • the element processing laminate in which the element processing substrate is thinned in step A is subjected to various device processing steps on the surface polished in step B.
  • Examples include electrode formation, metal wiring formation, protective film formation, and connection bump formation.
  • metal sputtering for forming electrodes wet etching of metal layers, resist coating for metal wiring formation, drying, exposure, development, resist stripping, metal plating, dry etching, CMP (chemical machinery) Polishing: Chemical Mechanical Polishing).
  • steps such as silicon etching for TSV formation and CVD (Chemical Vapor Deposition) for forming an insulating film may be included.
  • the element processing substrate that has been subjected to device processing in step B is peeled off from the support substrate.
  • the laminated body for element processing is heated at a temperature of 250 ° C. or lower, and a thermal slide method in which the laminate is slid while sliding horizontally, a protective film is attached to the element processing substrate, and the room temperature is released from the support substrate at room temperature.
  • the room temperature peeling method is preferably applicable.
  • the peeling interface when peeled is the element processing substrate and the heat resistant resin layer. B. Therefore, since the heat-resistant resin layer B does not remain on the element processing substrate, a cleaning process is not necessary after peeling, but if a slight residue remains, the cleaning process may be performed.
  • a solution used for washing an aqueous solution of sodium hydroxide, sodium hydrogen carbonate, potassium hydroxide, tetramethylammonium hydroxide, a mixed solution of ethanolamine and dimethyl sulfoxide, or the like can be used.
  • the heat-resistant resin layer B was cut into 10 mm widths, and a 10 mm width polyimide film was measured with a “Tensilon” UTM-4-100 manufactured by TOYO BOLDWIN at a pulling rate of 50 mm / min and 90 ° peeling.
  • the measured value represents the adhesive force of the support substrate-heat resistant resin layer A.
  • the adhesive force of the heat resistant resin layer A-heat resistant resin layer B is the support substrate-heat resistant resin layer A. It can be said that it is larger than the adhesive strength of the resin layer A.
  • a peel test was performed on 10 element processing laminates, and the number of the element processing substrate cracked or cracked was evaluated.
  • Production Examples 2 to 7 (polymerization of heat resistant resin B solution) The same procedure as in Production Example 1 was carried out except that the types and amounts of acid dianhydride and diamine were changed as shown in Table 1 to obtain 15 wt% polyamic acid resin solutions (B-2 to 7).
  • Production Example 8 (polymerization of heat resistant resin B solution) To a reaction kettle equipped with a thermometer, a dry nitrogen inlet, a heating / cooling device using hot water / cooling water, and a stirring device, 127.4 g (0.6 mol) of m-TB and 146.5 g (0.4 mol) of BAHF was added together with 2788 g of NMP, dissolved, 218.1 g (1.0 mol) of PMDA was added, reacted at room temperature for 1 hour, then at 60 ° C. for 3 hours, and then reacted at 180 ° C. for 5 hours. A weight% polyimide resin solution (B-8) was obtained.
  • Production Example 9 (polymerization of heat resistant resin B solution) The same operation as in Production Example 8 was carried out except that the types and amounts of acid dianhydride and diamine were changed as shown in Table 1 to obtain a 20% by weight polyimide resin solution (B-9).
  • Production Example 10 (polymerization of heat resistant resin A solution) APPS 301 g (0.35 mol), DAE 130.1 g (0.65 mol) together with 494 g of NMP were charged into a reaction kettle equipped with a thermometer, a dry nitrogen inlet, a heating / cooling device using hot water / cooling water, and a stirring device, After dissolution, 310.2 g (1 mol) of ODPA was added, reacted at room temperature for 1 hour, then at 60 ° C. for 3 hours, and then reacted at 180 ° C. for 5 hours to obtain a 60% by weight polyimide resin solution ( A-1) was obtained.
  • Production Examples 11 to 15 (polymerization of heat resistant resin A solution) The same operation as in Production Example 10 was carried out except that the types and amounts of acid dianhydride and diamine were changed as shown in Table 2 to obtain 60 wt% polyimide resin solutions (A-2 to 5).
  • Production Example 15 54.2 g of LM100 (5% by weight based on the solid content of the polyimide resin) was added to the polyimide resin solution obtained in Production Example 14, and the mixture was stirred at room temperature for 3 hours. A-6) was obtained.
  • Tg glass transition temperatures
  • Example 1 A polyamic acid resin solution (B-3) is dried and imidized to a thickness of 20 ⁇ m on a bump forming surface of a 6-inch device processing substrate having a bump of 30 ⁇ m height on a 0.7 mm thick silicon wafer. Apply by adjusting the number of rotations with a spin coater, heat treatment at 120 ° C. for 10 minutes, dry, then heat treatment at 250 ° C. for 30 minutes to completely imidize, heat resistant resin layer B / for element processing A laminate of the substrate was obtained.
  • the polyimide resin solution (A-4) was applied to a 6-inch support substrate, which is a 0.7 mm thick silicon wafer, at a temperature of 120 ° C. with a spin coater adjusted so that the thickness after drying was 25 ⁇ m. After heat treatment for 10 minutes and drying, heat treatment was performed at 250 ° C. for 30 minutes to obtain a heat-resistant resin layer A / support substrate laminate.
  • the laminate of the heat-resistant resin layer B / element processing substrate and the laminate of the heat-resistant resin layer A / support substrate are bonded so that the heat-resistant resin layer B and the heat-resistant resin layer A face each other.
  • the laminated body for element processing was obtained by pressure bonding at 6 MPa for 90 seconds. Table 3 summarizes the characteristics of the obtained element processing laminate.
  • Example 2-7 Except that the heat-resistant resin A used for the heat-resistant resin layer A and the heat-resistant resin B used for the heat-resistant resin layer B were changed as shown in Table 3, the same operation as in Example 1 was performed to obtain a laminated body for element processing.
  • Table 3 summarizes the characteristics of the obtained element processing laminate.
  • Comparative Example 2 The polyamic acid resin solution (B-1) is dried on the bump forming surface of a 6-inch device processing substrate having bumps with a height of 30 ⁇ m on a 0.7 mm thick silicon wafer, and the thickness after imidization is 20 ⁇ m. Apply by adjusting the number of rotations with a spin coater, heat treatment at 120 ° C. for 10 minutes, dry, then heat treatment at 250 ° C. for 30 minutes to completely imidize, heat resistant resin layer B / for element processing A laminate of the substrate was obtained.
  • the element processing laminate could not be obtained without bonding.
  • Comparative Example 3 The polyimide resin solution (A-4) was applied to a 6-inch support substrate, which is a 0.7 mm thick silicon wafer, at a temperature of 120 ° C. with a spin coater adjusted so that the thickness after drying was 25 ⁇ m. After heat treatment for 10 minutes and drying, heat treatment was performed at 250 ° C. for 30 minutes to obtain a heat-resistant resin layer A / support substrate laminate.
  • a 6-inch element processing substrate having bumps with a height of 30 ⁇ m is bonded to a laminate of heat resistant resin layer A / support substrate and a 0.7 mm thick silicon wafer so that the heat resistant resin layer A and the bump forming surface face each other.
  • pressure bonding was performed at 200 ° C. and 0.6 MPa for 90 seconds to obtain a laminated body for device processing.
  • Table 3 summarizes the characteristics of the obtained element processing laminate. In the case of the heat resistant resin layer A single layer, the adhesive force between the heat resistant resin layer A and the element processing substrate was strong, and the heat resistant resin layer A and the element processing substrate could not be peeled off.
  • Example 8-12 Except that the heat-resistant resin A used for the heat-resistant resin layer A and the heat-resistant resin B used for the heat-resistant resin layer B were changed as shown in Table 4, the same operation as in Example 1 was performed to obtain a laminated body for element processing. Table 4 summarizes the characteristics of the obtained element processing laminate.
  • the temporary adhesive layer is composed of the heat-resistant resin layer A and the heat-resistant resin layer B, and the adhesive force between the element processing substrate and the heat-resistant resin layer B is between the support substrate and the heat-resistant resin layer A.
  • the element processing substrate is peeled off at the adhesive interface with the heat resistant resin layer B, there is no residue of the temporary adhesive layer on the element processing substrate side, and there is no need for a separate cleaning process.
  • Example 13 A polyamic acid resin solution (B-5) is dried and imidized to a thickness of 20 ⁇ m on the bump forming surface of a 6-inch device processing substrate having a 30 ⁇ m-high bump on a 0.7 mm thick silicon wafer. Apply by adjusting the number of rotations with a spin coater, heat treatment at 120 ° C. for 10 minutes, dry, then heat treatment at 250 ° C. for 30 minutes to completely imidize, heat resistant resin layer B / for element processing A laminate of the substrate was obtained.
  • the polyimide resin solution (A-4) is applied by adjusting the rotational speed with a spin coater so that the thickness after drying is 25 ⁇ m. After heat treatment at 120 ° C. for 10 minutes and drying, heat treatment was performed at 250 ° C. for 30 minutes to obtain a laminate of heat resistant resin layer A / heat resistant resin layer B / element processing substrate.
  • a laminate of heat-resistant resin layer A / heat-resistant resin layer B / element processing substrate and a silicon wafer having a thickness of 0.7 mm to be a support substrate are bonded so that the heat-resistant resin layer A and the support substrate face each other, and hot press Using a machine, pressure bonding was performed at 200 ° C. and 0.6 MPa for 90 seconds to obtain a laminated body for device processing.
  • Table 5 summarizes the characteristics of the obtained element processing laminate.
  • Example 14-15 Except that the heat-resistant resin A used for the heat-resistant resin layer A and the heat-resistant resin B used for the heat-resistant resin layer B were changed as shown in Table 5, the same operation as in Example 13 was performed to obtain a laminated body for element processing. Table 5 summarizes the characteristics of the obtained element processing laminate.
  • Example 16 Spin a polyimide resin solution (B-8) on a bump formation surface of a 6-inch device processing substrate having a 30- ⁇ m-high bump on a 0.7-mm-thick silicon wafer so that the thickness after drying is 20 ⁇ m.
  • the coating was performed by adjusting the number of rotations with a coater, heat-treated at 120 ° C. for 10 minutes, dried, and then heat-treated at 250 ° C. for 30 minutes to obtain a heat-resistant resin layer B / element processing substrate laminate.
  • the polyimide resin solution (A-5) was applied to a 6-inch support substrate, which is a 0.7 mm thick silicon wafer, at a temperature of 120 ° C. with a spin coater adjusted so that the thickness after drying was 25 ⁇ m. After heat treatment for 10 minutes and drying, heat treatment was performed at 250 ° C. for 30 minutes to obtain a heat-resistant resin layer A / support substrate laminate.
  • the laminate of the heat-resistant resin layer B / element processing substrate and the laminate of the heat-resistant resin layer A / support substrate are bonded so that the heat-resistant resin layer B and the heat-resistant resin layer A face each other.
  • the laminated body for element processing was obtained by pressure bonding at 6 MPa for 90 seconds. Table 6 summarizes the characteristics of the obtained element processing laminate.
  • Example 17 Except having changed the heat-resistant resin B used for the heat-resistant resin layer B as shown in Table 6, the same operation as in Example 16 was performed to obtain a laminated body for element processing. Table 6 summarizes the characteristics of the obtained element processing laminate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

 【課題】半導体回路形成基板の裏面研磨、裏面回路形成工程において揮発成分の発生、及び、剥離などによる基板の割れ発生がなく、室温で温和な条件での剥離が可能で、剥離後の半導体回路形成基板側に仮接着剤がほとんど残らない素子加工用積層体を提供する。 【解決手段】支持基板上に仮接着層を介して素子加工用基板を積層した素子加工用積層体において、仮接着層が、支持基板側から耐熱樹脂層A、耐熱樹脂層Bの順で積層されており、耐熱樹脂層Bと素子加工用基板との接着力が耐熱樹脂層Aと支持基板との接着力、及び、耐熱樹脂層Bと耐熱樹脂層Aとの接着力よりも低いことを特徴とする素子加工用積層体。

Description

素子加工用積層体、素子加工用積層体の製造方法、およびこれを用いた薄型素子の製造方法
 本発明は、耐熱性に優れ、半導体装置、画像表示装置などの製造工程を通しても接着力が変化することなく、その後、室温で温和な条件で剥離できる仮貼り用接着剤と、それを仮接着層に用いた素子加工用積層体、及び、素子加工用積層体の製造方法、また該素子加工用積層体を用いた薄型素子の製造方法に関する。
 近年、半導体装置、画像表示装置の軽量化、薄型化が進んでいる。特に、半導体装置には、半導体素子の高集積化、高密度化のために、半導体チップをシリコン貫通電極(TSV:Through Silicon Via)によって接続しながら積層する技術開発が進められている。また、パッケージを薄くする必要があり、半導体回路形成基板の厚みを100μm以下に薄型化し、加工することが検討されている。この工程では、半導体回路形成基板の非回路形成面(裏面)を研磨することで薄型化し、この裏面に裏面電極を形成する。研磨などの工程中での半導体回路形成基板の割れを防止するため、半導体回路形成基板を支持性のあるシリコンウエハやガラス基板などの支持基板に固定し、研磨、裏面回路形成加工などをした後、加工した半導体回路形成基板を支持基板から剥離する。支持基板に半導体回路形成基板を固定するには仮貼り材が用いられるが、この仮貼り材として用いられる接着剤には半導体工程に耐えるだけの耐熱性が求められ、また、加工工程終了後には容易に剥離ができることが求められる。
 このような仮接着剤としては、ケイ素系の材料を用いて、加熱処理で剥離するもの(例えば、特許文献1参照)や、ポリアミド又はポリイミド系の材料を用いて、加熱して剥離をするもの(例えば、特許文献2参照)などが提案されている。また、紫外線照射により耐熱性に優れたテトラゾール化合物が分解して気泡を発生させて剥がす材料(例えば特許文献3参照)などが提案されている。また、仮接着剤を熱可塑性オルガノポリシロキサン系と硬化性変性シロキサン系の2層構成とし、室温で剥離するものが提案されている(例えば、特許文献4参照)。
特開2012-144616号公報(特許請求の範囲) 特開2010-254808号公報(特許請求の範囲) 特開2012-67317号公報(特許請求の範囲) 特開2013-48215号公報(特許請求の範囲)
 しかしながら、加熱処理により剥離する仮接着剤は、剥離のための加熱工程で半田バンプが溶解したり、半導体加工工程での接着力が低下し、工程途中で剥がれたり、接着力が上昇し、剥がれなくなるなどの問題があった。また、接着剤を感光性にすると、光重合開始剤、光増感剤を添加するため、高温真空条件下の工程で揮発分が発生するなどの問題もあった。
 室温で剥離すれば上記のような問題は無いが、剥離後に半導体回路形成基板に仮貼り材が付着しているため、溶媒などでの洗浄除去工程が必要であり、完全に仮貼り材を除去するためには、工程上、かなり大きな負担になる問題があった。
 かかる状況に鑑み、本発明の目的は、半導体回路形成基板の裏面研磨、裏面回路形成工程において揮発成分の発生、及び、剥離などによる基板の割れ発生がなく、室温で温和な条件での剥離が可能で、剥離後の半導体回路形成基板側に仮接着剤がほとんど残らない素子加工用積層体を提供することであり、また、この素子加工用積層体の製造方法、およびこれを用いた薄型素子の製造方法を提供することである。
 すなわち本発明は、支持基板上に仮接着層を介して素子加工用基板を積層した素子加工用積層体において、仮接着層が、支持基板側から耐熱樹脂層A、耐熱樹脂層Bの順で積層されており、耐熱樹脂層Bと素子加工用基板との接着力が、耐熱樹脂層Aと支持基板との接着力、及び、耐熱樹脂層Bと耐熱樹脂層Aとの接着力よりも低いことを特徴とする素子加工用積層体である。
 本発明によれば、素子加工工程において、揮発分の発生が無い十分な耐熱性を有しており、研磨工程においても素子加工用基板の割れなどの発生が無い素子加工用積層体を提供することができる。また、素子加工用基板を室温で温和な条件で支持基板から剥離することが可能であり、剥離後、素子加工用基板に付着する仮接着剤がほぼ無いので生産性が向上する。
本発明の素子加工用積層体の概略図である。
 本発明の素子加工用積層体は、図1に示したように、素子加工用基板と支持基板が仮接着層を介して接着されており、仮接着層は耐熱樹脂層Aと耐熱樹脂層Bの2層で構成されている。支持基板は素子加工用基板を加工する時に素子加工用基板を支持する役割をはたす。
 素子加工用基板は通常、シリコンウエハである。耐熱樹脂層Bと接する面に回路、及び、外部接続用のバンプが形成されており、その反対面は回路が形成されていない面である。また、回路が形成されていない面に回路、及び、外部接続用のバンプを形成し、表裏の回路を導通するための貫通電極が形成されていても良い。素子加工用基板の厚さは特に制限は無いが、600~800μm、好ましくは625~775μmである。
 支持基板は、シリコンウエハやガラス、石英ウエハなどの基板が使用可能である。支持基板の厚さは特に制限は無いが、600~800μm、好ましくは625~775μmである。
 仮接着層は素子加工用基板を支持基板に仮固定するものである。素子加工用基板のデバイス加工工程では剥がれることなく、デバイス加工工程終了後の剥離工程で加工した素子加工用基板を支持基板から容易に剥がせることが重要である。また、容易に剥がすことだけでなく、剥がした後の素子加工用基板に仮接着層の樹脂が残っていないことも重要である。樹脂が残ると、有機溶媒などで樹脂を洗い落とす工程が必要になり、生産工程での負担が増える。
 したがって、本発明での仮接着層は耐熱樹脂層Aと耐熱樹脂層Bの2層構成であり、耐熱樹脂層Bと素子加工用基板の接着力が、耐熱樹脂層Aと支持基板との接着力、及び、耐熱樹脂層Bと耐熱樹脂層Aとの接着力よりも低いことが重要である。耐熱樹脂層Bと素子加工用基板の接着力と、耐熱樹脂層Aと支持基板との接着力、及び、耐熱樹脂層Bと耐熱樹脂層Aとの接着力の差は10g/cm以上、好ましくは50g/cm以上である。このような接着特性とすることで、素子加工用基板のデバイス加工工程では剥がれることなく、剥離工程では耐熱樹脂層Bと素子加工用基板の間で容易に剥離がおこり、素子加工用基板に樹脂が残らない。
 耐熱樹脂層Bと素子加工用基板との間の接着力は1g/cm以上、70g/cm以下、好ましくは、10g/cm以上、40g/cm以下である。接着力が1g/cm以上、70g/cm以下であれば、加工工程中に素子加工用基板が剥がれて割れたりせず、剥離工程において室温で容易に剥離が可能である。また、耐熱樹脂層Aと支持基板との接着力、及び、耐熱樹脂層Bと耐熱樹脂層Aとの接着力は20g/cm以上、好ましくは50g/cm以上、さらに好ましくは100g/cm以上である。接着力が20g/cm以上であれば、加工工程中に素子加工用基板が割れたりせずに加工が可能である。ここでの接着力は、被着体を一定の角度および一定の速度で引っ張り上げる時にかかる応力を測定することで求めることができる。本発明の接着力は、90°の角度で、引っ張り速度50mm/分で引き剥がした時の接着力である。
 仮接着層を構成する耐熱樹脂層A、耐熱樹脂層Bに用いることができる樹脂は、アクリル系樹脂、アクリロニトリル系樹脂、ブタジエン系樹脂、ウレタン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、エポキシ系樹脂、フェノール系樹脂などの高分子樹脂を用いることができるが、耐熱性の高いポリイミド系樹脂が好ましい。
 耐熱性とは分解などにより揮発分が発生する熱分解開始温度で定義されるものである。好ましい熱分解開始温度は250℃以上、さらに好ましくは300℃以上である。熱分解開始温度が250℃以上であれば、素子加工工程中の熱処理工程での揮発分の発生がなく、素子の信頼性が向上する。本発明の熱分解開始温度は熱重量分析装置(TGA)を用いて測定することができる。測定方法を具体的に説明する。所定量の樹脂をTGAに仕込み、60℃で30分保持して樹脂が吸水している水分を除去する。次に、5℃/分で500℃まで昇温する。得られた重量減少曲線の中から重量減少が開始する温度を熱分解開始温度とした。
 本発明の耐熱樹脂層Aには、少なくとも酸二無水物残基とジアミン残基を有し、ジアミン残基に少なくとも一般式(1)で示されるポリシロキサン系ジアミンの残基を含むポリイミド系樹脂である耐熱樹脂Aを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000006
 一般式(1)において、nは自然数であって、ポリシロキサン系ジアミンの平均分子量から算出される平均値が1以上である。RおよびRは、それぞれ同じでも異なっていてもよく、炭素数1~30のアルキレン基またはフェニレン基を示す。R~Rは、それぞれ同じでも異なっていてもよく、炭素数1~30のアルキル基、フェニル基またはフェノキシ基を示す。
 また上記ポリシロキサン系ジアミンの平均分子量は、ポリシロキサン系ジアミンのアミノ基の中和滴定をすることによりアミノ基当量を算出し、このアミノ基当量を2倍することで求めることができる。例えば、試料となるポリシロキサン系ジアミンを所定量採取してビーカーに入れ、これを所定量のイソプロピルアルコール(以下、IPAとする。)とトルエンの1:1混合溶液に溶解し、この溶液に撹拌しながら0.1N塩酸水溶液を滴下していき、中和点となったときの0.1N塩酸水溶液の滴下量からアミノ基当量を算出することができる。このアミノ基当量を2倍した値が平均分子量である。
 一方、用いたポリシロキサン系ジアミンがn=1であった場合およびn=10であった場合の分子量を化学構造式から計算し、nの数値と分子量の関係を一次関数の関係式として得ることができる。この関係式に上記平均分子量をあてはめ、上記nの平均値を得ることができる。
 また一般式(1)で示されるポリシロキサン系ジアミンは、nが単一ではなく複数のnを持つ混合体である場合があるので、本発明でのnは平均値を表す。nは1以上、好ましくは5~100の範囲であり、さらに好ましくは7~50の範囲である。
 一般式(1)で示されるポリシロキサン系ジアミンの具体例としては、ビス(3-アミノプロピル)テトラメチルジシロキサン、α,ω-ビス(3-アミノプロピル)ポリジメチルシロキサン、α,ω-ビス(3-アミノプロピル)ポリジエチルシロキサン、α,ω-ビス(3-アミノプロピル)ポリジプロピルシロキサン、α,ω-ビス(3-アミノプロピル)ポリジブチルシロキサン、α,ω-ビス(3-アミノプロピル)ポリジフェノキシシロキサン、α,ω-ビス(2-アミノエチル)ポリジメチルシロキサン、α,ω-ビス(2-アミノエチル)ポリジフェノキシシロキサン、α,ω-ビス(4-アミノブチル)ポリジメチルシロキサン、α,ω-ビス(4-アミノブチル)ポリジフェノキシシロキサン、α,ω-ビス(5-アミノペンチル)ポリジメチルシロキサン、α,ω-ビス(5-アミノペンチル)ポリジフェノキシシロキサン、α,ω-ビス(4-アミノフェニル)ポリジメチルシロキサン、α,ω-ビス(4-アミノフェニル)ポリジフェノキシシロキサンなどが挙げられる。上記ポリシロキサン系ジアミンは単独でも良く、2種以上を使用してもよい。
 本発明の耐熱樹脂Aに含まれるポリイミド系樹脂は、全ジアミン残基中に一般式(1)で示されるポリシロキサン系ジアミンの残基を40モル%以上含むことが好ましく、60モル%以上、99モル%以下がより好ましい。一般式(1)で示されるポリシロキサン系ジアミンの残基を40モル%以上含むことにより、耐熱樹脂層Aのガラス転移温度を60℃以下にすることができ、支持基板と素子加工用基板とを仮接着層を介して接着する工程において200℃以下の低温で良好な粘着性を発現することができる。一般式(1)で示されるポリシロキサン系ジアミンの残基の含有量を大きくするほど、耐熱樹脂Aのガラス転移温度は低下し、好ましくは40℃以下、さら好ましくは20℃以下である。
 本発明においては、上記ポリシロキサン系ジアミンの残基以外に、芳香族ジアミンの残基および/または脂環式ジアミンの残基を有しても良い。芳香族ジアミンおよび/または脂環式ジアミンの具体例としては、p-フェニレンジアミン、m-フェニレンジアミン、2,5-ジアミノトルエン、2,4-ジアミノトルエン、2-メトキシ-1,4-フェニレンジアミン、4,4’-ジアミノベンズアニリド、3,4’-ジアミノベンズアニリド、3,3’-ジアミノベンズアニリド、3,3’-ジメチル-4,4’-ジアミノベンズアニリド、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(3-アミノフェニル)フルオレン、9,9-ビス(3-メチル-4-アミノフェニル)フルオレン、9,9-ビス(3,5-ジメチル-4-アミノフェニル)フルオレン、9,9-ビス(3-メトキシ-4-アミノフェニル)フルオレン、9,9-ビス(4-アミノフェニル)フルオレン-4-メチル、9,9-ビス(4-アミノフェニル)フルオレン-4-メトキシ、9,9-ビス(4-アミノフェニル)フルオレン-4-エチル、9,9-ビス(4-アミノフェニル)フルオレン-4-スルホン、9,9-ビス(4-アミノフェニル)フルオレン-3-メチル、1,3-ジアミノシクロヘキサン、2,2’-ジメチルベンジジン、3,3’-ジメチルベンジジン、3,3’-ジメトキシベンジジン、2,4-ジアミノピリジン、2,6-ジアミノピリジン、1,5-ジアミノナフタレン、2,7-ジアミノフルオレン、p-アミノベンジルアミン、m-アミノベンジルアミン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルサルファイド、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)フェニル]メタン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)、3,3’-メチレンビス(シクロヘキシルアミン)、4,4’-ジアミノ-3,3’-ジメチルジシクロヘキシルメタン、4,4’-ジアミノ-3,3’-ジメチルジシクロヘキシル、ベンジジンなどが挙げられる。上記芳香族ジアミンまたは脂環式ジアミンは単独で使用してもよく、2種以上を使用してもよい。
 これら芳香族ジアミンまたは脂環式ジアミンの中でも、屈曲性の高い構造を持つ芳香族ジアミンが好ましく、具体的には、1,3-ビス(3-アミノフェノキシ)ベンゼン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,3’-ジアミノベンゾフェノンが特に好ましい。
 また、本発明においては、全ジアミン残基中に水酸基、又は、カルボキシル基を有する芳香族ジアミンの残基を1モル%以上、好ましくは5モル%以上含み、40モル%以下、好ましくは30モル%以下含む。水酸基、又は、カルボキシル基を有する芳香族ジアミンの残基を1モル%以上、40モル%以下含むことにより、耐溶媒性が向上する。さらには、架橋剤を併用することで耐溶媒性を大きく向上させる効果が得られる。
 水酸基を有する芳香族ジアミンの具体例としては、2,5-ジアミノフェノール、3,5-ジアミノフェノール、3,3’-ジヒドロキシベンジジン、4,4’-ジヒドロキシ-3,3’-ジアミノフェニルプロパン、4,4’-ジヒドロキシ-3,3’-ジアミノフェニルヘキサフルオロプロパン、4,4’-ジヒドロキシ-3,3’-ジアミノフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジアミノフェニルエーテル、3,3’-ジヒドロキシ-4,4’-ジアミノフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジアミノフェニルプロパンメタン、4,4’-ジヒドロキシ-3,3’-ジアミノベンゾフェノン、1,3-ビス(4-アミノ-3-ヒドロキシフェニル)ベンゼン、1,3-ビス(3-アミノ-4-ヒドロキシフェニル)ベンゼン、ビス(4-(4-アミノ-3-ヒドロキシフェノキシ)ベンゼン)プロパン、ビス(4-(3-アミノ-4-ヒドロキシフェノキシ)ベンゼン)スルホン、ビス(4-(3-アミノ-4-ヒドロキシフェノキシ))ビフェニルなどが挙げられる。
 カルボキシル基を有する芳香族ジアミンの具体例としては、4,4’-ジカルボキシ-3,3’-ジアミノフェニルメタン、3,3’-ジカルボキシベンジジン、4,4’-ジヒドロキシ-3,3’-ジアミノフェニルプロパン、4,4’-ジヒドロキシ-3,3’-ジアミノフェニルヘキサフルオロプロパン、4,4’-ジカルボキシ-3,3’-ジアミノフェニルスルホン、4,4’-ジカルボキシ-3,3’-ジアミノフェニルエーテル、3,3’-ジカルボキシ-4,4’-ジアミノフェニルエーテル、4,4’-ジカルボキシ-3,3’-ジアミノフェニルプロパンメタン、4,4’-ジカルボキシ-3,3’-ジアミノベンゾフェノン、3,5-ジアミノ安息香酸、2,6-ジアミノ安息香酸、9,9-ビス(4-アミノフェニル)フルオレン-4-カルボン酸、9,9-ビス(4-アミノフェニル)フルオレン-3-カルボン酸、2-カルボキシ-4,4’-ジアミノジフェニルエーテルなどが挙げられる。
 上記水酸基、又は、カルボキシル基を有する芳香族ジアミンは単独で使用しても良く、2種以上を使用してもよい。
 本発明の耐熱樹脂Aに含まれるポリイミド系樹脂は、酸二無水物残基として芳香族テトラカルボン酸二無水物の残基を含むことが好ましい。芳香族テトラカルボン酸二無水物の具体例としては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’ジメチル-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、5,5’ジメチル-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、2,3,3’,4’-ジフェニルエーテルテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,3,3’,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホキシドテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルフィドテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルメチレンテトラカルボン酸二無水物、4,4’-イソプロピリデンジフタル酸無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,3”,4,4”-パラターフェニルテトラカルボン酸二無水物、3,3”,4,4”-メタターフェニルテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物などが挙げられる。上記芳香族テトラカルボン酸二無水物は単独で使用してもよく、2種以上を使用してもよい。
 また本発明においては、ポリイミド系樹脂の耐熱性を損なわない程度に脂肪族環を持つテトラカルボン酸二無水物を含有させることができる。脂肪族環を持つテトラカルボン酸二無水物の具体例としては、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,3,5-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-ビシクロヘキセンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-C]フラン-1,3-ジオンが挙げられる。上記テトラカルボン酸二無水物は単独で使用してもよく、2種以上を使用してもよい。
 本発明の耐熱樹脂Aには、エポキシ系架橋剤、イソシアネート系架橋剤、メチロール系架橋剤、マレイミド系架橋剤、アクリル系架橋剤などの種々の架橋剤を用いることができる。この中でもメチロール系架橋剤は熱硬化時にポリイミド系樹脂を架橋し、ポリイミド系樹脂中に取り込まれる化合物であるため特に好ましい。樹脂中に架橋構造を導入することにより、耐溶媒性を向上することができる。メチロール系架橋剤の具体例としては、以下のようなメラミン誘導体や尿素誘導体(三和ケミカル(株)製)が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 本発明の耐熱樹脂層Bは素子加工用基板に接するため、高い耐熱性が求められる。したがって、耐熱樹脂層Bに含まれる耐熱樹脂Bは、ガラス転移温度が300℃以上のポリイミド系樹脂が好ましい。ガラス転移温度は、好ましくは400℃以上であり、さらに好ましくは耐熱樹脂が熱分解に達する温度までにガラス転移温度が検出されないことである。耐熱樹脂Bのガラス転移温度が300℃以上であれば、素子加工工程中の熱処理工程での温度よりもガラス転移温度が高くなるので、工程中での接着力の上昇がなく、剥離工程で素子加工用基板を容易に剥離することができる。
 耐熱樹脂Bは少なくとも熱分解開始温度が250℃以上のポリイミド系樹脂が好ましい。熱分解開始温度は、好ましくは350℃以上であり、さらに好ましくは450℃以上である。耐熱樹脂Bの熱分解開始温度が250℃以上であれば、素子加工工程中の熱処理工程での揮発分の発生がなく、素子の信頼性が向上する。
 本発明の耐熱樹脂Bに含まれるポリイミド系樹脂は、酸二無水物残基として、少なくとも一般式(2)及び/又は(3)で表わされるテトラカルボン酸二無水物の残基を有し、ジアミン残基として、少なくとも一般式(4)及び/又は(5)で表わされる芳香族ジアミンの残基を有する。
Figure JPOXMLDOC01-appb-C000008
 一般式(2)において、Rは炭素数1~30のアルキル基、炭素数1~30のアルコキシ基、水酸基、ハロゲン、カルボキシル基、カルボン酸エステル基、炭素数1~30のフルオロアルキル基、フェニル基、スルホン酸基、ニトロ基およびシアノ基から選ばれる基を示す。
Figure JPOXMLDOC01-appb-C000009
 一般式(3)において、RおよびRはそれぞれ同じでも異なっていても良く、炭素数1~30のアルキル基、炭素数1~30のアルコキシ基、炭素数1~30のフルオロアルキル基、水酸基、ハロゲン、カルボキシル基、カルボン酸エステル基、フェニル基、スルホン酸基、ニトロ基およびシアノ基から選ばれる基を示す。Yは直接結合、カルボニル基、イソプロピリデン基、エーテル基、ヘキサフルオロプロピリデン基、スルホニル基、フェニレン基、メチレン基、フルオロメチレン基、アミド基、エステル基、エチレン基、フルオロエチレン基、フェニレンビスエーテル基、ビス(フェニレン)イソプロピリデン基を表す。
Figure JPOXMLDOC01-appb-C000010
 一般式(4)において、R10は炭素数1~30のアルキル基、炭素数1~30のアルコキシ基、炭素数1~30のフルオロアルキル基、水酸基、ハロゲン、カルボキシル基、カルボン酸エステル基、フェニル基、スルホン基、ニトロ基およびシアノ基から選ばれる基を示す。
Figure JPOXMLDOC01-appb-C000011
 一般式(5)において、R11およびR12はそれぞれ同じでも異なっていても良く、炭素数1~30のアルキル基、炭素数1~30のアルコキシ基、炭素数1~30のフルオロアルキル基、水酸基、ハロゲン、カルボキシル基、カルボン酸エステル基、フェニル基、スルホン基、ニトロ基およびシアノ基から選ばれる基を示す。Xは直接結合、カルボニル基、イソプロピリデン基、エーテル基、ヘキサフルオロプロピリデン基、スルホニル基、フェニレン基、メチレン基、フルオロメチレン基、アミド基、エステル基、エチレン基、フルオロエチレン基、フェニレンビスエーテル基、ビス(フェニレン)イソプロピリデン基、フルオレン基を表す。
 ここで言うハロゲンとは、フッ素、塩素、臭素、ヨウ素のことである。
 本発明においては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物から選ばれるテトラカルボン酸二無水物の酸二無水物残基、および、p-フェニレンジアミン、4,4’-ジアミノジフェニルエーテル、2,2’-ジメチル-4,4’-ジアミノビフェニル、9,9-ビス(4-アミノフェニル)フルオレンから選ばれる芳香族ジアミンの残基を主成分として有するポリイミド系樹脂が耐熱性、高ガラス転移温度の点から好ましい。
 本発明の耐熱樹脂層Aおよび耐熱樹脂層Bに用いられるポリイミド系樹脂の分子量の調整は、合成に用いるテトラカルボン酸成分またはジアミン成分を等モルにする、または、いずれか一方の成分を過剰にすることにより行うことができる。テトラカルボン酸成分またはジアミン成分のいずれか一方を過剰とし、ポリマー鎖末端を酸成分またはアミン成分などの末端封止剤で封止することもできる。酸成分の末端封止剤としてはジカルボン酸またはその無水物が好ましく用いられ、アミン成分の末端封止剤としてはモノアミンが好ましく用いられる。このとき、酸成分またはアミン成分の末端封止剤を含めたテトラカルボン酸成分の酸当量とジアミン成分のアミン当量を等モルにすることが好ましい。
 テトラカルボン酸成分が過剰、あるいはジアミン成分が過剰になるようにモル比を調整した場合は、安息香酸、無水フタル酸、テトラクロロ無水フタル酸、アニリンなどのジカルボン酸またはその無水物、モノアミンを末端封止剤として添加してもよい。
 本発明において、ポリイミド系樹脂のテトラカルボン酸成分/ジアミン成分のモル比は、樹脂溶液の粘度が塗工工程などで使用し易い範囲になるように、適宜調整することができ、テトラカルボン酸成分/ジアミン成分のモル比が100/95~100/100、あるいは95/100~100/100の範囲となるように調整することが一般的である。ただし、モルバランスを崩していくと、樹脂の分子量が低下して形成した膜の機械的強度が低くなり、粘着力も弱くなる傾向にあるので、粘着力が弱くならない範囲でモル比を調整することが好ましい。
 本発明の耐熱樹脂層Aおよび耐熱樹脂層Bに用いられるポリイミド系樹脂を合成する方法には特に制限は無い。例えば、ポリイミド系樹脂の前駆体であるポリアミド酸を重合する時は、テトラカルボン酸二無水物とジアミンを有機溶剤中、0~100℃で1~100時間撹拌してポリアミド酸樹脂溶液を得る。ポリイミド系樹脂の組成が有機溶媒に可溶性となる場合には、ポリアミド酸を重合後、そのまま温度を120~300℃に上げて1~100時間撹拌し、ポリイミドに変換し、ポリイミド系樹脂溶液を得る。この時、トルエン、o-キシレン、m-キシレン、p-キシレンなどを反応溶液中に添加し、イミド化反応で出る水をこれら溶媒と共沸させて除去しても良い。
 ポリイミド、あるいはポリイミド前駆体であるポリアミド酸を合成する際の溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドなどのアミド系極性溶媒、また、β-プロピオラクトン、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトンなどのラクトン系極性溶媒、他には、メチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブ、エチルセロソルブアセテート、メチルカルビトール、エチルカルビトール、ジエチレングリコールジメチルエーテル(ジグライム)、乳酸エチルなどを挙げることができる。これらは単独で用いても良いし、2種以上を用いても良い。ポリイミド系樹脂溶液、あるいはポリアミド酸樹脂溶液の濃度は、通常10~80重量%が好ましく、さらに好ましくは20~70重量%である。
 ポリアミド酸樹脂溶液の場合、フィルムやガラスなどの基材に塗布、乾燥して塗工膜形成後に熱処理してポリイミドに変換する。ポリイミド前駆体からポリイミドへの変換には240℃以上の温度が必要であるが、ポリアミド酸樹脂組成物中にイミド化触媒を含有することにより、より低温、短時間でのイミド化が可能となる。イミド化触媒の具体例としては、ピリジン、トリメチルピリジン、β-ピコリン、キノリン、イソキノリン、イミダゾール、2-メチルイミダゾール、1,2-ジメチルイミダゾール、2-フェニルイミダゾール、2,6-ルチジン、トリエチルアミン、m-ヒドロキシ安息香酸、2,4-ジヒドロキシ安息香酸、p-ヒドロキシフェニル酢酸、4-ヒドロキシフェニルプロピオン酸、p-フェノールスルホン酸、p-アミノフェノール、p-アミノ安息香酸などが挙げられるが、これらに限定されるものではない。
 イミド化触媒は、ポリアミド酸固形分100質量部に対して3質量部以上が好ましく、より好ましくは5質量部以上である。イミド化触媒を3質量部以上含有することにより、より低温の熱処理でもイミド化を完結させることができる。また、好ましくは10質量部以下、より好ましくは8質量部以下である。イミド化触媒の含有量を10質量部以下とすることにより、熱処理後にイミド化触媒がポリイミド系樹脂層中に残留する量を極小化でき、揮発分の発生を抑制できる。
 本発明の耐熱樹脂層Aおよび耐熱樹脂層Bには、ポリイミド系樹脂と架橋剤の他にも、本発明の効果を損なわない範囲でその他の樹脂や充填剤を添加することができる。その他の樹脂としては、アクリル系樹脂、アクリロニトリル系樹脂、ブタジエン系樹脂、ウレタン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリアミドイミド系樹脂、エポキシ系樹脂、フェノール系樹脂などの耐熱性高分子樹脂が挙げられる。充填剤は、有機あるいは無機からなる微粒子、フィラーなどが挙げられる。微粒子、フィラーの具体例としては、シリカ、アルミナ、酸化チタン、石英粉、炭酸マグネシウム、炭酸カリウム、硫酸バリウム、マイカ、タルクなどが挙げられる。また、粘着性、耐熱性、塗工性、保存安定性などの特性を改良する目的で界面活性剤、シランカップリング剤などを添加しても良い。
 次に、本発明の素子加工用積層体の製造方法について説明する。本発明の素子加工用積層体の製造は少なくとも次の工程を含むものである(製造方法1)。
(工程A)支持基板に耐熱樹脂Aを積層、又は、耐熱樹脂Aの前駆体を積層後に耐熱樹脂Aに変換して、支持基板と耐熱樹脂層Aとの積層体Aとする工程、および、素子加工用基板に耐熱樹脂Bを積層、又は、耐熱樹脂Bの前駆体を積層後に耐熱樹脂Bに変換して、素子加工用基板と耐熱樹脂層Bとの積層体Bとする工程。
(工程B)前記積層体Aと、前記積層体Bとを、耐熱樹脂層Aと耐熱樹脂層Bが向き合うように重ね合わせて接着する工程。
 また、少なくとも次の工程を含むものであっても良い(製造方法2)。
(工程A)素子加工用基板に耐熱樹脂Bを積層、又は、耐熱樹脂Bの前駆体を積層後に耐熱樹脂Bに変換して、素子加工用基板と耐熱樹脂層Bとの積層体Bとする工程。
(工程B)前記積層体Bの耐熱樹脂層B上に、耐熱樹脂Aを積層、又は、耐熱樹脂Aの前駆体を積層後に耐熱樹脂Aに変換して、素子加工用基板と耐熱樹脂層Bと耐熱樹脂層Aとの積層体Cとする工程。
(工程C)前記積層体Cの耐熱樹脂層A上に支持基板を重ね合わせて接着する工程。
 本発明の塗布方法としては、バーコーター、ロールコーター、スリットダイコーター、スピンコーター、スクリーン印刷などを用いる方法が挙げられる。塗布後は熱処理することにより、樹脂組成物中の有機溶媒を除去する乾燥を行い、耐熱樹脂A、耐熱樹脂Bがポリアミド酸樹脂である場合はイミド化を行う。熱処理温度は100~400℃、好ましくは150~250℃である。熱処理時間は通常20秒~2時間で適宜選択され、連続的でも断続的でもかまわない。耐熱樹脂A、耐熱樹脂Bがポリアミド酸樹脂である場合は、さらにもう1段階熱処理を行っても良い。熱処理温度は160~500℃、好ましくは200~350℃である。熱処理時間は通常20秒~4時間で適宜選択され、連続的でも断続的でもかまわない。
 乾燥、熱処理した後の耐熱樹脂層A、耐熱樹脂層B中の残留揮発分は1重量%以下、好ましくは0.1重量%以下、さらに好ましくは0.01重量%以下である。残留揮発分は1重量%以下であれば、素子加工工程中でボイド、剥がれなどの発生なく、収率良く素子加工をすることができる。
 製造方法2においては、耐熱樹脂Bがポリアミド酸樹脂である場合、塗布後熱処理してイミド化した後に耐熱樹脂Aを塗布しても良いし、耐熱樹脂Bを塗布および乾燥し、さらに耐熱樹脂Aを塗布および乾燥した後に、熱処理してイミド化しても良い。
 耐熱樹脂層A、耐熱樹脂層Bの厚みは適宜選択することができる。素子加工用基板の耐熱樹脂Bと接する面には接続用のバンプがあり、バンプの高さは一般的に20~150μmである。耐熱樹脂層Aと耐熱樹脂層Bを足した仮接着層の厚みはバンプ高さよりも厚くなるため、したがって、厚み25~200μmが好ましく、より好ましくは30~160μmである。耐熱樹脂層A、耐熱樹脂層Bのそれぞれの厚みはこの仮接着層の厚み範囲の中で適宜選ぶことができる。
 製造方法1においては、工程Bの前に、積層体Aの耐熱樹脂層A、及び/又は、積層体Bの耐熱樹脂層Bの表面に接着改良処理を施しても良い。接着改良処理としては、常圧プラズマ処理、コロナ放電処理、低温プラズマ処理などの放電処理が好ましい。
 製造方法1の工程B、製造方法2の工程Cにおける接着工程は、プレスを用いて圧着することができる。室温で圧着しても良いが、加熱して圧着しても良い。この時の温度は250℃以下、好ましくは200℃以下である。圧着は空気中でも良く、窒素中でも良い。好ましくは真空中である。
 次に、本発明の素子加工用積層体を用いた薄型素子の製造方法について説明する。薄型素子の製造方法は少なくとも次の工程を含む。
(工程A)素子加工用基板を薄く加工する工程。
(工程B)薄く加工した素子加工用基板をデバイス加工する工程。
(工程C)デバイス加工した素子加工基板を支持基板から剥離する工程。
 素子加工用基板を薄く加工する工程とは、素子加工用基板の耐熱樹脂層Bと接している面とは反対側の面を研磨して薄く削る工程である。素子加工用基板の厚みは10~200μm、好ましくは30~100μmの範囲となるように薄膜化する。
 工程Aで素子加工用基板を薄膜化した素子加工用積層体は、工程Bで研磨した側の面に様々なデバイス加工工程が施される。例としては、電極形成、金属配線形成、保護膜形成、接続用バンプ形成などがあげられる。具体的には、電極を形成するための金属スパッタリング、金属層の湿式エッチング、金属配線形成のためのレジスト塗布、乾燥、露光、現像、レジスト剥離、及び、金属めっき、ドライエッチング、CMP(化学機械研磨:Chemical Mechanical Polishing)などがあげられる。また、TSV形成のためのシリコンエッチング、絶縁膜形成のためのCVD(化学気相成長:Chemical vapor deposition)などの工程が含まれることがある。
 次に、工程Bでデバイス加工が施された素子加工基板を支持基板から剥離する。剥離方法としては、素子加工用積層体を250℃以下の温度で加熱して、水平方向にスライドさせながら剥離する熱スライド法、素子加工基板に保護フィルムを貼り、室温で支持基板から剥離する室温剥離法がある。本発明においては、室温剥離法が好ましく適用できる。
 本発明の素子加工用積層体は、素子加工基板が仮接着層に室温で容易に剥離できる程度の接着力で仮固定されているため、剥離した時の剥離界面は素子加工基板と耐熱樹脂層Bの間である。したがって、素子加工基板に耐熱樹脂層Bが残ることがないので、剥離した後に洗浄工程は必要無いが、わずかな残渣が残った場合は、洗浄工程を通しても良い。洗浄に用いられる溶液としては、水酸化ナトリウム、炭酸水素ナトリウム、水酸化カリウム、テトラメチルアンモニウムヒドロキシドなどの水溶液、エタノールアミンとジメチルスルホオキシドの混合溶液などを用いることができる。
 以下に実施例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。ガラス転移温度、重量減少率、接着力の評価方法について述べる。
 (1)ガラス転移温度の測定
 下記製造例1~15に記載の耐熱樹脂溶液(B1~B9、A1~A6)を厚さ18μmの電解銅箔の光沢面に厚さ20μmになるようにバーコーターで塗布後、80℃で10分、150℃で10分乾燥し、さらに窒素雰囲気下250℃で10分加熱処理を行って、ポリイミドに変換し、樹脂積層銅箔を得た。次に得られた樹脂積層銅箔の銅箔を塩化第2鉄溶液で全面エッチングし、耐熱樹脂の単膜を得た。
 得られた耐熱樹脂の単膜約10mgをアルミ製標準容器に詰め、示差走査熱量計DSC-50(島津製作所(株)製)を用いて測定し(DSC法)、得られたDSC曲線の変曲点からガラス転移温度を計算した。80℃、1時間で予備乾燥した後、昇温速度20℃/分で500℃まで昇温し、測定を行った。
 (2)熱線膨張係数の測定
 上記で得られた耐熱樹脂の単膜を特定の幅の形状に切り出し、それを筒状にして、熱機械的分析装置SS-6100(セイコーインスルメンツ(株)製)を用いて、30~200℃の温度範囲、昇温速度5℃/分で250℃まで昇温し、測定した。得られた測定結果から、計算式(1)を用いて30~200℃の平均線熱膨張係数を計算した。ここで、L30は30℃でのサンプル長、L200は200℃でのサンプル長である。
平均線熱膨張係数=(1/L30)×[(L200-L30)/(200-30)] (1)
 (3)素子加工用基板-耐熱樹脂層Bの接着力測定
 素子加工用基板に耐熱樹脂溶液(B1~B9)を厚さ20μmになるようにスピンコーターで塗布後、80℃で10分、150℃で10分乾燥し、さらに窒素雰囲気下250℃で30分加熱処理を行ってポリイミドに変換し、耐熱樹脂層Bを積層した。耐熱樹脂層Bに10mm幅に切り目を入れ、10mm幅のポリイミドフィルムをTOYO BOLDWIN社製”テンシロン”UTM-4-100にて引っ張り速度50mm/分、90゜剥離で測定した。
 (4)支持基板-耐熱樹脂層A、耐熱樹脂層A-耐熱樹脂層Bの接着力測定
 各実施例、比較例で得られた素子加工用積層体で、素子加工用基板を剥離した後、耐熱樹脂層B/耐熱樹脂層Aからなる仮接着層に10mm幅に切り目を入れ、耐熱樹脂層BをTOYO BOLDWIN社製”テンシロン”UTM-4-100にて引っ張り速度50mm/分、90゜剥離で測定した。
 剥離界面が支持基板-耐熱樹脂層Aである時、測定値は支持基板-耐熱樹脂層Aの接着力を表し、この時、耐熱樹脂層A-耐熱樹脂層Bの接着力は支持基板-耐熱樹脂層Aの接着力よりも大きいと言える。
 (5)素子加工用基板のバックグライディング
 各実施例、比較例で得られた素子加工用積層体をグラインダーDAG810(DISCO製)にセットし、素子加工用基板を厚み100μmまで研磨した。グライディング後の素子加工用基板を肉眼で観察し、割れ、クラックなどの有無を評価した。
 (6)熱処理後の外観検査
 上記でバックグライディングした素子加工用積層体を250℃に設定した熱風オーブンに入れ、1時間放置し室温に戻した後、素子加工用基板側での膨れなどの外観変化を肉眼で観察した。
 (7)耐溶媒性の評価
 上記バックグライディングした素子加工用積層体を、1Nの塩酸水溶液、1Nの水酸化ナトリウム水溶液、およびアセトンのそれぞれに25℃で10分浸漬した。素子加工用基板を剥離後、耐熱樹脂層を光学顕微鏡で観察した。
 変化がなにも見られない場合を良(A)、仮接着層の端部から500μm以内の領域に耐熱樹脂の溶解、しみ込みなどの変化が見られた場合を可(B)、その変化が端部から500μmより大きい領域であった場合を不可(C)として評価した。
 (8)素子加工用基板の剥離性評価
 上記でバックグライディングした素子加工用積層体の素子加工用基板にダイシングフレームを用いてダイシングテープを貼り、このダイシングテープ面を真空吸着によって吸着盤にセットした後、室温で支持基板の一点をピンセットで持ち上げることで支持基板を剥離した。
 10枚の素子加工用積層体で剥離テストを行い、素子加工用基板が割れたり、クラックが入った枚数を評価した。
 以下の製造例に示してある酸二無水物、ジアミンの略記号の名称は下記の通りである。
BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
PMDA:ピロメリット酸二無水物
ODPA:3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物
APPS:α,ω-ビス(3-アミノプロピル)ポリジメチルシロキサン(平均分子量:860、式(1)においてn=9)
PDA:パラフェニレンジアミン
DAE:4,4’-ジアミノジフェニルエーテル
APB:1,3-ビス(3-アミノフェノキシ)ベンゼン
DABS:4,4’-ジヒドロキシ-3,3’-ジアミノフェニルスルホン
m-TB:2,2’-ジメチル-4,4’-ジアミノビフェニル
BAHF:4,4’-ジヒドロキシ-3,3’-ジアミノフェニルヘキサフルオロプロパン
FDA:9,9-ビス(4-アミノフェニル)フルオレン
100LM:ニカラック(登録商標)MW-100LM(三和ケミカル(株)製)
NMP:N-メチル-2-ピロリドン
 製造例1(耐熱樹脂B溶液の重合)
 温度計、乾燥窒素導入口、温水・冷却水による加熱・冷却装置、および、撹拌装置を付した反応釜に、PDA 75.7g(0.7mol)、DAE 60.1g(0.3mol)をNMP 2264gと共に仕込み、溶解させた後、BPDA 176.5g(0.6mol)、PMDA 87.2g(0.4mol)を添加し、室温で1時間、続いて60℃で5時間反応させて、15重量%のポリアミド酸樹脂溶液(B-1)を得た。
 製造例2~7(耐熱樹脂B溶液の重合)
 酸二無水物、ジアミンの種類と仕込量を表1のように変えた以外は製造例1と同様の操作を行い、15重量%のポリアミド酸樹脂溶液(B-2~7)を得た。
 製造例8(耐熱樹脂B溶液の重合)
 温度計、乾燥窒素導入口、温水・冷却水による加熱・冷却装置、および、撹拌装置を付した反応釜に、m-TB 127.4g(0.6mol)、BAHF 146.5g(0.4mol)をNMP 2788gと共に仕込み、溶解させた後PMDA 218.1g(1.0mol)を添加し、室温で1時間、続いて60℃で3時間反応させた後、180℃で5時間反応させて、15重量%のポリイミド樹脂溶液(B-8)を得た。
 製造例9(耐熱樹脂B溶液の重合)
 酸二無水物、ジアミンの種類と仕込量を表1のように変えた以外は製造例8と同様の操作を行い、20重量%のポリイミド樹脂溶液(B-9)を得た。
 製造例10(耐熱樹脂A溶液の重合)
 温度計、乾燥窒素導入口、温水・冷却水による加熱・冷却装置、および、撹拌装置を付した反応釜に、APPS301g(0.35mol)、DAE 130.1g(0.65mol)をNMP494gと共に仕込み、溶解させた後、ODPA 310.2g(1mol)を添加し、室温で1時間、続いて60℃で3時間反応させた後、180℃で5時間反応させて、60重量%のポリイミド樹脂溶液(A-1)を得た。
 製造例11~15(耐熱樹脂A溶液の重合)
 酸二無水物、ジアミンの種類と仕込量を表2のように変えた以外は製造例10と同様の操作を行い、60重量%のポリイミド樹脂溶液(A-2~5)を得た。
 製造例15においては、製造例14で得られたポリイミド樹脂溶液に、LM100 54.2g(ポリイミド樹脂の固形分に対して5重量%)添加し、室温で3時間撹拌し、耐熱樹脂A溶液(A-6)を得た。
 耐熱樹脂A、耐熱樹脂Bそれぞれのガラス転移温度(Tg)も併せて表1および表2に記載した。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 実施例1
 厚さ0.7mmのシリコンウエハに、高さ30μmのバンプを有する6インチの素子加工用基板のバンプ形成面に、ポリアミド酸樹脂溶液(B-3)を乾燥、イミド化後の厚みが20μmになるようにスピンコーターで回転数を調整して塗布し、120℃で10分熱処理して乾燥した後、250℃で30分熱処理して完全にイミド化を行い、耐熱樹脂層B/素子加工用基板の積層体を得た。
 厚さ0.7mmのシリコンウエハである6インチの支持基板に、ポリイミド樹脂溶液(A-4)を乾燥後の厚みが25μmになるようにスピンコーターで回転数を調整して塗布し、120℃で10分熱処理して乾燥した後、250℃で30分熱処理して、耐熱樹脂層A/支持基板の積層体を得た。
 耐熱樹脂層B/素子加工用基板の積層体と耐熱樹脂層A/支持基板の積層体を耐熱樹脂層Bと耐熱樹脂層Aが向き合うように貼り合わせ、熱プレス機を用い、200℃、0.6MPaで90秒圧着し、素子加工用積層体を得た。得られた素子加工用積層体の特性を表3にまとめた。
 実施例2~7
 耐熱樹脂層Aに用いる耐熱樹脂A、および耐熱樹脂層Bに用いる耐熱樹脂Bを表3のごとく変えた以外は、実施例1と同様の操作を行い、素子加工用積層体を得た。得られた素子加工用積層体の特性を表3にまとめた。
 比較例1
 耐熱樹脂層Aに用いる耐熱樹脂A、および耐熱樹脂層Bに用いる耐熱樹脂Bを表3のごとく変えた以外は、実施例1と同様の操作を行い、素子加工用積層体を得た。得られた素子加工用積層体の特性を表3にまとめた。
 比較例2
 厚さ0.7mmのシリコンウエハに、高さ30μmのバンプを有する6インチの素子加工用基板のバンプ形成面に、ポリアミド酸樹脂溶液(B-1)を乾燥、イミド化後の厚みが20μmになるようにスピンコーターで回転数を調整して塗布し、120℃で10分熱処理して乾燥した後、250℃で30分熱処理して完全にイミド化を行い、耐熱樹脂層B/素子加工用基板の積層体を得た。
 耐熱樹脂層B/素子加工用基板の積層体と厚さ0.7mmのシリコンウエハである6インチの支持基板を貼り合わせ、熱プレス機を用い、200℃、0.6MPaで90秒圧着したが、接着せず、素子加工用積層体を得ることができなかった。
 比較例3
 厚さ0.7mmのシリコンウエハである6インチの支持基板に、ポリイミド樹脂溶液(A-4)を乾燥後の厚みが25μmになるようにスピンコーターで回転数を調整して塗布し、120℃で10分熱処理して乾燥した後、250℃で30分熱処理して、耐熱樹脂層A/支持基板の積層体を得た。
 耐熱樹脂層A/支持基板の積層体と厚さ0.7mmのシリコンウエハに、高さ30μmのバンプを有する6インチの素子加工用基板を耐熱樹脂層Aとバンプ形成面が向き合うように貼り合わせ、熱プレス機を用い、200℃、0.6MPaで90秒圧着し、素子加工用積層体を得た。得られた素子加工用積層体の特性を表3にまとめた。耐熱樹脂層A単層の場合は、耐熱樹脂層Aと素子加工用基板との接着力が強く、耐熱樹脂層Aと素子加工用基板とを剥離することができなかった。
Figure JPOXMLDOC01-appb-T000014
 実施例8~12
 耐熱樹脂層Aに用いる耐熱樹脂A、および耐熱樹脂層Bに用いる耐熱樹脂Bを表4のごとく変えた以外は、実施例1と同様の操作を行い、素子加工用積層体を得た。得られた素子加工用積層体の特性を表4にまとめた。
Figure JPOXMLDOC01-appb-T000015
 本発明の実施例から明らかであるように、仮接着層が耐熱樹脂層A、耐熱樹脂層Bからなり、素子加工用基板と耐熱樹脂層Bの接着力が支持基板と耐熱樹脂層Aとの接着力、及び、耐熱樹脂層Aと耐熱樹脂層Bとの接着力よりも低いことにより、素子加工用基板をバックグラインドなどの加工工程を通した後、室温で良好に剥離ができる。
 また、素子加工用基板は耐熱樹脂層Bとの接着界面できれいに剥がれているため、素子加工用基板側には仮接着層の残渣がなく、別途のクリーニング工程をする必要がなかった。
 実施例13
 厚さ0.7mmのシリコンウエハに、高さ30μmのバンプを有する6インチの素子加工用基板のバンプ形成面に、ポリアミド酸樹脂溶液(B-5)を乾燥、イミド化後の厚みが20μmになるようにスピンコーターで回転数を調整して塗布し、120℃で10分熱処理して乾燥した後、250℃で30分熱処理して完全にイミド化を行い、耐熱樹脂層B/素子加工用基板の積層体を得た。
 耐熱樹脂層B/素子加工用基板の積層体の耐熱樹脂層B上に、ポリイミド樹脂溶液(A-4)を乾燥後の厚みが25μmになるようにスピンコーターで回転数を調整して塗布し、120℃で10分熱処理して乾燥した後、250℃で30分熱処理して、耐熱樹脂層A/耐熱樹脂層B/素子加工用基板の積層体を得た。
 耐熱樹脂層A/耐熱樹脂層B/素子加工用基板の積層体と、支持基板となる厚さ0.7mmのシリコンウエハとを、耐熱樹脂層Aと支持基板が向き合うように貼り合わせ、熱プレス機を用い、200℃、0.6MPaで90秒圧着し、素子加工用積層体を得た。得られた素子加工用積層体の特性を表5にまとめた。
 実施例14~15
 耐熱樹脂層Aに用いる耐熱樹脂A、および耐熱樹脂層Bに用いる耐熱樹脂Bを表5のごとく変えた以外は、実施例13と同様の操作を行い、素子加工用積層体を得た。得られた素子加工用積層体の特性を表5にまとめた。
Figure JPOXMLDOC01-appb-T000016
 実施例13~15においても、素子加工用基板は耐熱樹脂層Bとの接着界面できれいに剥がれているため、素子加工用基板側には仮接着層の残渣がなく、別途のクリーニング工程をする必要がなかった。
 実施例16
 厚さ0.7mmのシリコンウエハに、高さ30μmのバンプを有する6インチの素子加工用基板のバンプ形成面に、ポリイミド樹脂溶液(B-8)を乾燥後の厚みが20μmになるようにスピンコーターで回転数を調整して塗布し、120℃で10分熱処理して乾燥した後、250℃で30分熱処理して、耐熱樹脂層B/素子加工用基板の積層体を得た。
 厚さ0.7mmのシリコンウエハである6インチの支持基板に、ポリイミド樹脂溶液(A-5)を乾燥後の厚みが25μmになるようにスピンコーターで回転数を調整して塗布し、120℃で10分熱処理して乾燥した後、250℃で30分熱処理して、耐熱樹脂層A/支持基板の積層体を得た。
 耐熱樹脂層B/素子加工用基板の積層体と耐熱樹脂層A/支持基板の積層体を耐熱樹脂層Bと耐熱樹脂層Aが向き合うように貼り合わせ、熱プレス機を用い、200℃、0.6MPaで90秒圧着し、素子加工用積層体を得た。得られた素子加工用積層体の特性を表6にまとめた。
 実施例17
 耐熱樹脂層Bに用いる耐熱樹脂Bを表6のごとく変えた以外は、実施例16と同様の操作を行い、素子加工用積層体を得た。得られた素子加工用積層体の特性を表6にまとめた。
Figure JPOXMLDOC01-appb-T000017
 実施例16、17においても、素子加工用基板は耐熱樹脂層Bとの接着界面できれいに剥がれているため、素子加工用基板側には仮接着層の残渣がなく、別途のクリーニング工程をする必要がなかった。
1 支持基板
2 素子加工用基板
3 仮接着層
4 耐熱樹脂層A
5 耐熱樹脂層B

Claims (8)

  1. 支持基板上に仮接着層を介して素子加工用基板を積層した素子加工用積層体において、仮接着層が、支持基板側から耐熱樹脂層A、耐熱樹脂層Bの順で積層されており、耐熱樹脂層Bと素子加工用基板との接着力が、耐熱樹脂層Aと支持基板との接着力及び耐熱樹脂層Bと耐熱樹脂層Aとの接着力よりも低いことを特徴とする素子加工用積層体。
  2. 耐熱樹脂層Aが、酸二無水物残基およびジアミン残基から成るポリイミド系樹脂であり、前記ジアミン残基として、少なくとも一般式(1)で表されるポリシロキサン系ジアミンの残基を有する耐熱樹脂Aを含むことを特徴とする請求項1記載の素子加工用積層体。
    Figure JPOXMLDOC01-appb-C000001
    (nは自然数であって、ポリシロキサン系ジアミンの平均分子量から算出される平均値が1以上である。RおよびRは、それぞれ同じでも異なっていてもよく、炭素数1~30のアルキレン基またはフェニレン基を示す。R~Rは、それぞれ同じでも異なっていてもよく、炭素数1~30のアルキル基、フェニル基またはフェノキシ基を示す。)
  3. 耐熱樹脂Aのジアミン残基として、一般式(1)で表されるポリシロキサン系ジアミンの残基を全ジアミン残基中40モル%以上含む請求項2記載の素子加工用積層体。
  4. 耐熱樹脂層Bが、酸二無水物残基およびジアミン残基から成るポリイミド系樹脂でありガラス転移温度が300℃以上である耐熱樹脂Bを含むことを特徴とする請求項1記載の素子加工用積層体。
  5. 耐熱樹脂Bの酸二無水物残基として、少なくとも一般式(2)及び/又は(3)で表わされるテトラカルボン酸二無水物の残基を有し、ジアミン残基として、少なくとも一般式(4)及び/又は(5)で表わされる芳香族ジアミンの残基を有することを特徴とする請求項4記載の素子加工用積層体。
    Figure JPOXMLDOC01-appb-C000002
    (Rは炭素数1~30のアルキル基、炭素数1~30のアルコキシ基、水酸基、ハロゲン、カルボキシル基、カルボン酸エステル基、炭素数1~30のフルオロアルキル基、フェニル基、スルホン酸基、ニトロ基およびシアノ基から選ばれる基を示す。)
    Figure JPOXMLDOC01-appb-C000003
    (RおよびRはそれぞれ同じでも異なっていても良く、炭素数1~30のアルキル基、炭素数1~30のアルコキシ基、炭素数1~30のフルオロアルキル基、水酸基、ハロゲン、カルボキシル基、カルボン酸エステル基、フェニル基、スルホン酸基、ニトロ基およびシアノ基から選ばれる基を示す。Yは直接結合、カルボニル基、イソプロピリデン基、エーテル基、ヘキサフルオロプロピリデン基、スルホニル基、フェニレン基、メチレン基、フルオロメチレン基、アミド基、エステル基、エチレン基、フルオロエチレン基、フェニレンビスエーテル基、ビス(フェニレン)イソプロピリデン基を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (R10は炭素数1~30のアルキル基、炭素数1~30のアルコキシ基、炭素数1~30のフルオロアルキル基、水酸基、ハロゲン、カルボキシル基、カルボン酸エステル基、フェニル基、スルホン基、ニトロ基およびシアノ基から選ばれる基を示す。)
    Figure JPOXMLDOC01-appb-C000005
    (R11およびR12はそれぞれ同じでも異なっていても良く、炭素数1~30のアルキル基、炭素数1~30のアルコキシ基、炭素数1~30のフルオロアルキル基、水酸基、ハロゲン、カルボキシル基、カルボン酸エステル基、フェニル基、スルホン基、ニトロ基およびシアノ基から選ばれる基を示す。Xは直接結合、カルボニル基、イソプロピリデン基、エーテル基、ヘキサフルオロプロピリデン基、スルホニル基、フェニレン基、メチレン基、フルオロメチレン基、アミド基、エステル基、エチレン基、フルオロエチレン基、フェニレンビスエーテル基、ビス(フェニレン)イソプロピリデン基、およびフルオレン基を表す。)
  6. 請求項1~5のいずれかに記載の素子加工用積層体を製造する方法において、少なくとも、
    支持基板に耐熱樹脂Aを積層、又は、耐熱樹脂Aの前駆体を積層後に耐熱樹脂Aに変換して、支持基板と耐熱樹脂層Aとの積層体Aとする工程、および、素子加工用基板に耐熱樹脂Bを積層、又は、耐熱樹脂Bの前駆体を積層後に耐熱樹脂Bに変換して、素子加工用基板と耐熱樹脂層Bとの積層体Bとする工程、ならびに
    前記積層体Aと、前記積層体Bとを、耐熱樹脂層Aと耐熱樹脂層Bが向き合うように重ね合わせて接着する工程を含む素子加工用積層体の製造方法。
  7. 請求項1~5のいずれかに記載の素子加工用積層体を製造する方法において、少なくとも、
    素子加工用基板に耐熱樹脂Bを積層、又は、耐熱樹脂Bの前駆体を積層後に耐熱樹脂Bに変換して、素子加工用基板と耐熱樹脂層Bとの積層体Bとする工程、
    前記積層体Bの耐熱樹脂層B上に、耐熱樹脂Aを積層、又は、耐熱樹脂Aの前駆体を積層後に耐熱樹脂Aに変換して、素子加工用基板と耐熱樹脂層Bと耐熱樹脂層Aとの積層体Cとする工程、および
    前記積層体Cの耐熱樹脂層A上に、支持基板を重ね合わせて接着する工程を含む素子加工用積層体の製造方法。
  8. 請求項1~5いずれかに記載の素子加工用積層体を用い、薄型素子を製造する方法において、少なくとも、
    素子加工用基板を薄く加工する工程、
    薄く加工した素子加工用基板をデバイス加工する工程、および
    デバイス加工した素子加工基板を支持基板から剥離する工程を含む、薄型素子の製造方法。
PCT/JP2014/076136 2013-10-07 2014-09-30 素子加工用積層体、素子加工用積層体の製造方法、およびこれを用いた薄型素子の製造方法 WO2015053132A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480055461.7A CN105612600B (zh) 2013-10-07 2014-09-30 元件加工用层叠体、元件加工用层叠体的制造方法、及使用其的薄型元件的制造方法
JP2014557933A JP6435862B2 (ja) 2013-10-07 2014-09-30 素子加工用積層体、素子加工用積層体の製造方法、およびこれを用いた薄型素子の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-209883 2013-10-07
JP2013209883 2013-10-07

Publications (1)

Publication Number Publication Date
WO2015053132A1 true WO2015053132A1 (ja) 2015-04-16

Family

ID=52812950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076136 WO2015053132A1 (ja) 2013-10-07 2014-09-30 素子加工用積層体、素子加工用積層体の製造方法、およびこれを用いた薄型素子の製造方法

Country Status (4)

Country Link
JP (1) JP6435862B2 (ja)
CN (1) CN105612600B (ja)
TW (1) TW201522045A (ja)
WO (1) WO2015053132A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021646A1 (ja) * 2014-08-08 2016-02-11 東レ株式会社 仮貼り用接着剤、接着剤層、ウエハ加工体およびこれを用いた半導体装置の製造方法、リワーク溶剤、ポリイミド共重合体、ポリイミド混合樹脂、ならびに樹脂組成物
WO2018159665A1 (ja) * 2017-03-03 2018-09-07 日産化学株式会社 異物除去用コーティング膜形成組成物
WO2018194133A1 (ja) * 2017-04-21 2018-10-25 三井化学株式会社 半導体基板の製造方法、半導体装置およびその製造方法
CN111344130A (zh) * 2017-06-08 2020-06-26 日产化学株式会社 柔性器件用基板的制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159089B (zh) * 2016-08-22 2019-07-23 达迈科技股份有限公司 可离型的软性基板及其制造方法
KR102439479B1 (ko) * 2016-12-08 2022-09-05 닛산 가가쿠 가부시키가이샤 박리층의 제조 방법
KR102481072B1 (ko) * 2016-12-08 2022-12-27 닛산 가가쿠 가부시키가이샤 박리층의 제조 방법
TWI675899B (zh) 2018-04-25 2019-11-01 達興材料股份有限公司 暫時黏著被加工物之方法及黏著劑

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012937A1 (en) * 2006-07-28 2008-01-31 Tokyo Ohka Kogyo Co., Ltd. Wafer bonding method, thinning method and detaching method
JP2013179135A (ja) * 2012-02-28 2013-09-09 Shin Etsu Chem Co Ltd ウエハ加工体、ウエハ加工用部材、ウエハ加工用仮接着材、及び薄型ウエハの製造方法
JP2014070183A (ja) * 2012-09-28 2014-04-21 Nitto Denko Corp 半導体装置製造用接着シート、及び半導体装置の製造方法
JP2014072445A (ja) * 2012-09-28 2014-04-21 Nitto Denko Corp 半導体装置の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130071658A1 (en) * 2010-03-24 2013-03-21 Sekisui Chemical Co., Ltd. Adhesive composition, adhesive tape, method for processing semiconductor wafer and method for producing tsv wafer
US8999817B2 (en) * 2012-02-28 2015-04-07 Shin-Etsu Chemical Co., Ltd. Wafer process body, wafer processing member, wafer processing temporary adhesive material, and method for manufacturing thin wafer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012937A1 (en) * 2006-07-28 2008-01-31 Tokyo Ohka Kogyo Co., Ltd. Wafer bonding method, thinning method and detaching method
JP2013179135A (ja) * 2012-02-28 2013-09-09 Shin Etsu Chem Co Ltd ウエハ加工体、ウエハ加工用部材、ウエハ加工用仮接着材、及び薄型ウエハの製造方法
JP2014070183A (ja) * 2012-09-28 2014-04-21 Nitto Denko Corp 半導体装置製造用接着シート、及び半導体装置の製造方法
JP2014072445A (ja) * 2012-09-28 2014-04-21 Nitto Denko Corp 半導体装置の製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10941320B2 (en) 2014-08-08 2021-03-09 Toray Industries, Inc. Adhesive for temporary bonding, adhesive layer, wafer work piece and method for manufacturing semiconductor device using same, rework solvent, polyimide copolymer, polyimide mixed resin, and resin compostion
WO2016021646A1 (ja) * 2014-08-08 2016-02-11 東レ株式会社 仮貼り用接着剤、接着剤層、ウエハ加工体およびこれを用いた半導体装置の製造方法、リワーク溶剤、ポリイミド共重合体、ポリイミド混合樹脂、ならびに樹脂組成物
US10177022B2 (en) 2014-08-08 2019-01-08 Toray Industries, Inc. Adhesive for temporary bonding, adhesive layer, wafer work piece and method for manufacturing semiconductor device using same, rework solvent, polyimide copolymer, polyimide mixed resin, and resin composition
JP7268595B2 (ja) 2017-03-03 2023-05-08 日産化学株式会社 異物除去用コーティング膜形成組成物
KR20190120234A (ko) * 2017-03-03 2019-10-23 닛산 가가쿠 가부시키가이샤 이물제거용 코팅막 형성 조성물
KR102501979B1 (ko) * 2017-03-03 2023-02-21 닛산 가가쿠 가부시키가이샤 이물제거용 코팅막 형성 조성물
WO2018159665A1 (ja) * 2017-03-03 2018-09-07 日産化学株式会社 異物除去用コーティング膜形成組成物
US11319514B2 (en) 2017-03-03 2022-05-03 Nissan Chemical Corporation Composition for forming a coating film for removing foreign matters
JPWO2018159665A1 (ja) * 2017-03-03 2019-12-26 日産化学株式会社 異物除去用コーティング膜形成組成物
US10988647B2 (en) 2017-04-21 2021-04-27 Mitsui Chemicals, Inc. Semiconductor substrate manufacturing method, semiconductor device, and method for manufacturing same
JPWO2018194133A1 (ja) * 2017-04-21 2020-02-27 三井化学株式会社 半導体基板の製造方法、半導体装置およびその製造方法
KR102442262B1 (ko) * 2017-04-21 2022-09-08 미쓰이 가가쿠 가부시키가이샤 반도체 기판의 제조 방법, 반도체 장치 및 그의 제조 방법
KR20190123793A (ko) * 2017-04-21 2019-11-01 미쓰이 가가쿠 가부시키가이샤 반도체 기판의 제조 방법, 반도체 장치 및 그의 제조 방법
WO2018194133A1 (ja) * 2017-04-21 2018-10-25 三井化学株式会社 半導体基板の製造方法、半導体装置およびその製造方法
CN111344130A (zh) * 2017-06-08 2020-06-26 日产化学株式会社 柔性器件用基板的制造方法

Also Published As

Publication number Publication date
CN105612600A (zh) 2016-05-25
JPWO2015053132A1 (ja) 2017-03-09
JP6435862B2 (ja) 2018-12-12
CN105612600B (zh) 2018-06-08
TW201522045A (zh) 2015-06-16

Similar Documents

Publication Publication Date Title
JP6908088B2 (ja) 仮貼り用接着剤、接着剤層、ウエハ加工体およびこれを用いた半導体装置の製造方法、リワーク溶剤、ポリイミド共重合体、ポリイミド混合樹脂、ならびに樹脂組成物
JP6435862B2 (ja) 素子加工用積層体、素子加工用積層体の製造方法、およびこれを用いた薄型素子の製造方法
TWI652286B (zh) Polyimine resin composition and laminated film, and manufacturing method of semiconductor device
JP6819293B2 (ja) 仮貼り用積層体フィルム、仮貼り用積層体フィルムを用いた基板加工体および積層基板加工体の製造方法、ならびにこれらを用いた半導体装置の製造方法
JP6834941B2 (ja) 樹脂組成物、樹脂層、永久接着剤、仮貼り接着剤、積層フィルム、ウエハ加工体および電子部品または半導体装置の製造方法
JP6303503B2 (ja) 樹脂組成物、硬化膜、積層フィルム、および半導体装置の製造方法
WO2013039029A1 (ja) ポリイミド樹脂、これを用いた樹脂組成物および積層フィルム
JP2017141317A (ja) 仮貼り樹脂組成物、樹脂層、永久接着剤、仮貼り接着剤、ウエハ加工体およびこれらを用いた半導体装置の製造方法
JP2020136600A (ja) 半導体または電子部品製造用粘着フィルムならびに半導体または電子部品の製造方法
JP6221252B2 (ja) ポリイミド樹脂、これを含有する樹脂組成物、これを用いた積層フィルムおよび積層体
JP7052384B2 (ja) 仮保護膜用樹脂組成物、およびこれを用いた半導体電子部品の製造方法
JP7183840B2 (ja) 仮貼り用接着剤組成物およびこれを用いた半導体電子部品の製造方法
JP2020050734A (ja) 犠牲層用樹脂組成物、およびこれを用いた半導体電子部品の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014557933

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14851938

Country of ref document: EP

Kind code of ref document: A1