WO2015052893A1 - Atr素子、液浸プローブ、及び、分光光度計 - Google Patents

Atr素子、液浸プローブ、及び、分光光度計 Download PDF

Info

Publication number
WO2015052893A1
WO2015052893A1 PCT/JP2014/004989 JP2014004989W WO2015052893A1 WO 2015052893 A1 WO2015052893 A1 WO 2015052893A1 JP 2014004989 W JP2014004989 W JP 2014004989W WO 2015052893 A1 WO2015052893 A1 WO 2015052893A1
Authority
WO
WIPO (PCT)
Prior art keywords
incident
measurement light
atr
light
element body
Prior art date
Application number
PCT/JP2014/004989
Other languages
English (en)
French (fr)
Inventor
蛯沢 勝英
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to US15/028,553 priority Critical patent/US20160299063A1/en
Priority to JP2015514263A priority patent/JP5839641B2/ja
Priority to DE112014004680.9T priority patent/DE112014004680B4/de
Publication of WO2015052893A1 publication Critical patent/WO2015052893A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources

Definitions

  • the present invention relates to an immersion probe suitable for measuring, for example, a concentration change of a reactive group of a synthetic resin, and more particularly to an ATR element.
  • the change in the concentration of the reactive group for example, —NCO, —OH, —COOH
  • the concentration of the reactive group for example, —NCO, —OH, —COOH
  • an immersion probe comprising a sensing element immersed in a reaction solution, an irradiation optical fiber that irradiates the sensing element with measurement light, and a light receiving optical fiber that receives the measurement light that has passed through the measurement target.
  • This immersion probe is provided with a gap portion in which the measurement object is filled in the sensing element, and the measurement light transmitted through the measurement object filled in the gap portion is received by the light receiving optical fiber. Since part of the wavelength component is absorbed when the measurement light passes through the measurement target in the gap, the concentration of the reactive group can be measured by analyzing the measurement light received by the light receiving optical fiber.
  • the reaction liquid since the reaction liquid is agitated in the chemical reaction tank, the reaction liquid mixed with air bubbles accompanying the agitation may be filled in the voids. It becomes difficult to measure the correct concentration.
  • the ATR method (Attenuated Total Reflection) is known as one of methods for analyzing and measuring substances.
  • An immersion probe to which this ATR method is applied is also known (for example, Patent Document 2).
  • a measurement object is brought into close contact with an ATR element (typically a crystal) having a large refractive index
  • the incident angle of measurement light is set to be larger than the critical angle
  • total reflection occurs between the measurement object and the ATR substance.
  • This reflected light is called evanescent light.
  • the energy of the reflected light at the wavelength specific to the measurement object decreases according to the intensity of the absorption.
  • the substance can be analyzed and measured by measuring the spectrum of the reflected light.
  • the distance from the reaction vessel containing the reaction solution in which the immersion probe is immersed to the spectrophotometer to which the measurement result is transmitted may be considerably separated. Since this interval is connected by an optical fiber, the wavelength of the measurement light irradiated to the immersion probe becomes a problem.
  • the present invention has been made based on the above technical problem, and uses a measurement light in the near infrared region, which is easy to guide with an optical fiber, and has a small absorption coefficient for the measurement light. Another object of the present invention is to provide an ATR element capable of accurately specifying the state of a substance.
  • the present inventors have studied an ATR element that can realize an immersion probe that can obtain a significantly higher number of reflections than before.
  • the ATR element having a reflection surface on the side surface continuous in the circumferential direction is used, and the measurement light is continuously reflected on the reflection surface to effectively utilize the evanescent light, thereby surpassing the conventional multiple reflection. It was found that the number of reflections would be obtained.
  • the ATR element of the present invention is based on this finding, and is composed of an axially symmetric solid body having a reflecting surface that is continuous in the circumferential direction, an incident part for allowing measurement light to enter the element body, and an incident part from the incident part.
  • the incident portion is referenced from the symmetry axis in the reference cross section x orthogonal to the symmetry axis of the element body. It is preferable that the distance is 80% or more and less than 100% of the distance to the outer periphery of the cross section x (Condition A) and that the angle is 45 degrees or less with respect to the reference cross section x (Condition B).
  • Condition A is exclusively required to increase the number of times the measurement light is reflected.
  • Condition B is required exclusively for the measurement light to follow the spiral path.
  • the element main body has a columnar shape or a cylindrical shape.
  • the reflection surface is an arc surface, and this reflection surface has a constant distance from the axis of symmetry.
  • the inner peripheral surface can be used as a reflection surface in addition to the outer peripheral surface, which is effective in increasing the number of times the measurement light is reflected.
  • the element body includes a first end face facing in the axial direction and a second end face facing the first end face, and the incident portion is provided by forming a recess in the first end face.
  • the part is preferably provided by forming a recess in the second end surface. This is because it is easier to form the incident portion and the emission portion in the depression than to form the end surface of the element body protruding.
  • the incident portion is formed continuously with the outer periphery of the first end surface and the emitting portion is formed continuously with the outer periphery of the second end surface.
  • the present invention provides an immersion probe using the ATR element of the present invention described above.
  • this immersion probe is composed of an axially symmetric solid body having an element body having a reflection surface that is continuous in the circumferential direction, an incident portion for allowing measurement light to enter the element body, and an incident portion that is incident on the reflection surface of the element body.
  • An ATR element including measurement light reflected from the light source, first light guide means for guiding the measurement light emitted from the light source to the incident part, and measurement light emitted from the emission part.
  • a second light guide means for guiding to a predetermined part, wherein the ATR element is composed of the ATR element of the present invention described above.
  • the immersion probe according to the present invention can increase the number of reflections of the measurement light on the reflection surface of the ATR element to be used, and can also effectively use the evanescent light. Therefore, the immersion probe is a substance having a small absorption coefficient for the measurement light. Even if it exists, it contributes to measuring the state of a substance correctly.
  • the present invention provides a spectrophotometer using the immersion probe of the present invention described above. That is, this spectrophotometer includes a light source that emits measurement light and a photometer main body that spectrally detects measurement light that has passed through the immersion probe, and the immersion probe of the present invention described above by the immersion probe. It is characterized by comprising. Since the spectrophotometer according to the present invention can increase the number of times the measurement light is reflected on the reflection surface of the ATR element constituting the immersion probe, the state of the substance can be accurately determined even for a substance having a small absorption coefficient with respect to the measurement light. Can be measured.
  • the measurement light is continuously reflected on the reflection surface, thereby realizing the number of times of reflection that has not been obtained so far. To do. As a result, it is possible to accurately measure the state of a substance even when the measurement light in the near infrared region is used and the substance has a small absorption coefficient with respect to the measurement light.
  • FIG. 1 It is a three-plane figure which shows the cylindrical ATR element in this embodiment, (a) is a top view, (b) is a side view, (c) is a bottom view, (d) is a deformation
  • An example is shown. It is a figure explaining the condition A of this embodiment. It is a figure explaining the condition B of this embodiment. It is a figure which shows typically the passage path
  • the ATR element 10 includes an element main body 11, and an incident surface 19 and an output surface 21 that are provided integrally with the element main body 11.
  • FIG. 1B the side on which the entrance surface 19 is provided and the side on which the exit surface 21 is provided are combined.
  • the element body 11 has a cylindrical shape that is one form of axial symmetry, and has an outer peripheral surface 13, one end surface (first end surface) 15 and the other end surface (second end surface) that face each other in the direction of the symmetry axis y. 17 is provided.
  • the outer peripheral surface 13 is a surface that divides the element body 11 from its periphery, but the ATR element 10 functions as a surface that reflects light traveling inside the element body 11 on the inside thereof. Therefore, the outer peripheral surface 13 may be referred to as the reflective surface 13 for matters relating to light reflection.
  • the element main body 11 has a high refractive index, and a material that can cause total reflection when irradiated with light can be widely applied.
  • a material that can cause total reflection when irradiated with light can be widely applied.
  • quartz glass, sapphire, cubic zirconia (cubic-ZrO 2 ), zinc selenide (ZnSe), zinc sulfide (ZnS), diamond, and the like are applicable.
  • cubic zirconia or sapphire is preferable because it has a high refractive index and is inert to the specimen.
  • the incident surface 19 is provided on the first end surface 15 of the element body 11, and when the measurement target is irradiated with infrared light as measurement light by the immersion probe including the ATR element 10, the measurement light is transmitted to the element body 11. It is the surface which makes it enter.
  • the incident surface 19 is formed so that the normal N thereof satisfies the following two conditions A and B with respect to the reflecting surface 13. These two conditions A and B are necessary for the measurement light incident on the ATR element 10 to follow the spiral passing path toward the second end face 17 by repeating the reflection on the reflecting surface 13 a plurality of times. It is.
  • the normal N of the incident surface 19 substitutes for the optical axis of the measurement light.
  • the actual measurement light DL is a light beam having a certain intensity distribution introduced by, for example, an optical fiber, and this light beam is spirally passed through the reflection surface 13 of the ATR element 10 in the presence of evanescent light.
  • this light beam is spirally passed through the reflection surface 13 of the ATR element 10 in the presence of evanescent light.
  • light incidence and reflection will be explained using a simple model.
  • Condition A is that the normal line N of the incident surface 19 exists in an area of 80% or more and less than 100% of the radius r of the reference cross section x orthogonal to the symmetry axis y, as shown in FIG. Stipulate.
  • This condition A is required in order for the measurement light DL to be reflected more on the reflecting surface 13. That is, as can be seen by comparing FIG. 2B and FIG. 2C, the number of times the measurement light DL is reflected by the reflection surface 13 is more incident when the measurement light DL is incident closer to the outer peripheral surface (reflection surface) 13. Become more.
  • the incident surface 19 of the present embodiment is provided continuously with the outer peripheral surface 13 of the first end surface 15. As described above, by providing the incident surface 19 on the outermost periphery of the element body 11, it is possible to increase the number of times reflected by the reflecting surface 13.
  • the condition B defines that the angle ⁇ NS formed by the normal line N of the incident surface 19 and the reference cross section x is 45 degrees or less.
  • This condition B is required for the measurement light DL to follow a spiral passage route. That is, as shown in FIG. 3A, if the normal line N is parallel to the reference section x, that is, if the angle ⁇ NS is 0 degree, the measurement light DL is reflected light having the opposite direction on the reflection surface 13. Therefore, theoretically, the measurement light DL is repeatedly reflected within the same reference cross section x. In order to leave the state of FIG. 3A and the measurement light DL follows the spiral passage route, the angle ⁇ NS only needs to exceed 0 degree.
  • the angle ⁇ NS is more preferably 30 degrees or less, and further preferably 15 degrees or less.
  • the incident surface 19 is provided by forming a recess 20 in the first end surface 15. That is, the hollow 20 is formed by cutting a part of the originally flat first end surface 15, and the wall surface formed along with the formation of the hollow 20 is the incident surface 19.
  • the wall surface (incident surface 19) is formed in a flat shape.
  • the depressions 20 may be provided on the first end surface 15 at a plurality of locations in the same rotational direction in plan view from the viewpoint of securing the intensity of incident light. From the viewpoint of reducing the loss of the measurement light DL due to reflection or refraction at the joint surface, it is preferable that the element body 11 including the protruding portion is integrally formed.
  • the incident surface 19 can also be formed by projecting a part of the flat first end surface 15.
  • the incident surface 19 can also be formed by projecting a part of the flat first end surface 15.
  • the element body 11 is integrally formed including the protruding portion.
  • portions other than the protruding portion may be removed by cutting.
  • the exit surface 21 is provided to allow the measurement light DL incident from the entrance surface 19 to be extracted outside after repeatedly reflecting on the reflecting surface 13 a plurality of times and following a spiral passage. Therefore, the emission surface 21 is provided at a position corresponding to the passage route. Similarly to the incident surface 19, the exit surface 21 is also provided in the recess 22.
  • the emission surface 21 of the present embodiment is the second end surface 17 and is provided on the opposite side across the symmetry axis y. Therefore, the exit surface 21 has the above-described condition A and condition B similarly to the entrance surface 19. However, this is a preferred form, and basically functions as long as the position corresponds to the spiral passage route.
  • the exit surface 21 may be provided at the position of the second end surface 17 in FIG. 1B relative to the entrance surface 19 of the first end surface 15 in FIG. 1B, or the first end surface 15 in FIG.
  • the exit surface 21 may be provided at the position of the second end surface 17 in FIG.
  • the exit surface 21 may be provided at the position of the second end surface 17 in FIG. 9 with respect to the entrance surface 19 of the first end surface 15 in FIG.
  • the exit surface 21 can be provided at a plurality of locations as in the case of the entrance surface 19, and it is also preferable to provide a plurality of exit surfaces from the viewpoint of securing the intensity of the emitted light.
  • the ATR element 10 described above has the first end face 15 while repeating the total reflection at the reflection face 13 when the measurement light DL is incident on the inside of the element body 11 from the incident face 19. From the side toward the second end surface 17 side, the spiral passage route P is followed, and the light is emitted from the emission surface 21 toward the outside.
  • the reflection surface 13 of the ATR element 10 only needs to be partly in contact with the measurement target. However, from the viewpoint of effectively using all of the spiral passage path P, the ATR element 10 is immersed in the measurement target. It is preferable that the entire surface of the reflecting surface 13 is in contact with the measurement target.
  • the measurement light DL is continuously reflected on the reflection surface 13 that is continuous in the circumferential direction, and the reflection is also continuous in the axial direction. Can be significantly increased.
  • the ATR element 10 uses a cylindrical element body 11, the form of the element body of the present invention is not limited to this.
  • the cross section may be polygonal.
  • an element body 111 having a hexagonal cross section can be used as shown in FIG.
  • the element body 11 described above does not have to have a constant diameter in the axial direction y.
  • the diameter is reduced from the first end face 15 toward the second end face 17.
  • the element body 211 may be used.
  • a pattern in which the diameter is reduced and the diameter is enlarged can be continuously repeated.
  • the element main body 11 demonstrated above consists of a solid cylinder, as shown in FIG. 7, the element main body 311 can be comprised from the cylinder which has a hollow.
  • the cylindrical element body 311 can be a reflective surface as well as the outer peripheral surface 113, and therefore, compared to the element main body 11 in which only the outer peripheral surface 13 is a reflective surface, The number of reflections can be doubled.
  • the element bodies 111, 211, and 311 are also preferably provided with the conditions A and B.
  • the radius r in FIG. 2 corresponds to the radius r as shown in FIG.
  • the distance from the symmetry axis y to the midpoint of each side may be used.
  • one side of the hexagon can be considered as a reflection surface of the element body 111, and is continuously reflected by this reflection surface to follow a spiral passage path.
  • evanescent light is present under certain conditions on the reflection surfaces (side surfaces of the element bodies) of each form.
  • the spectrophotometer 1 includes an ATR probe 30 including an ATR element 10, a light source 3, a spectrometer 5, a photodetector 7, and a data processing / display device 9. .
  • An optical fiber is connected between the light source 3 and the ATR probe 30, between the ATR probe 30 and the spectrometer 5, between the spectrometer 5 and the photodetector 7, and between the photodetector 7 and the data processing / display device 9. ing.
  • the drawing position of the optical fiber is shown in a simplified manner in FIG. 8, the actual position is as shown in FIG. The same applies to FIG.
  • the light source 3 generates the measurement light DL and emits it toward the ATR probe 30 (ATR element 10).
  • the light source 3 is not particularly limited, and a halogen tungsten lamp and other known light sources can be used.
  • a halogen tungsten lamp and other known light sources can be used.
  • the measurement light DL is incident on the incident surface 19 of the ATR element 10
  • it is effective to reduce the diffusion loss on the incident surface 19 by passing the collimating lens 4 through the collimating lens 4.
  • the measurement light DL is incident on the incident surface 19
  • it is effective to reduce the reflection loss at the incident surface 19 to be perpendicular to the incident surface 19.
  • it is effective to reduce the signal light loss by condensing the measurement light DL emitted from the emission surface 21 by passing through the condenser lens 6 before entering the optical fiber 37.
  • the spectroscope 5 receives the light emitted from the ATR probe 30 and divides it by wavelength.
  • the spectrometer 5 is not particularly limited, and a diffraction grating spectrometer, an FTIR spectrometer, and other known spectrometers can be used.
  • the photodetector 7 receives and detects the light separated by the spectrometer 5.
  • the photodetector 7 is not particularly limited, and a photodiode, an avalanche photodiode, a photomultiplier tube, and other known photodetectors can be used.
  • the data processing / display device 9 generates spectral information based on the infrared light received from the photodetector 7 and displays the generated spectral information as image information.
  • the data processing / display device 9 is not particularly limited, and a personal computer can be used for the data processing portion, and a display device attached to the personal computer can be used for the display portion. .
  • the ATR probe 30 includes a first holder 31 on the first end face 15 side of the ATR element 10 and a second holder 33 on the second end face 17 side of the ATR element 10. .
  • the first holder 31 holds the side of the first end face 15 and fixes the optical fiber 35 that guides the measurement light DL irradiated to the incident face 19 from the light source 3.
  • the second holder 33 holds the second end face 17 side, receives the measurement light DL emitted from the emission surface 21, and fixes the optical fiber 37 that leads to the spectrometer 5.
  • An O-ring 39 is provided between the first holder 31 and the ATR element 10 and between the second holder 31 and the ATR element 10, respectively, so as to be hermetically sealed from the outside and to be measured inside the holding portion.
  • the measurement light DL is refracted using the prism 23 and is incident on the incident surface 19, and the measurement light DL emitted from the emission surface 21 is refracted by the prism 23. Allow that.
  • the optical fiber 35 can be routed parallel to the symmetry axis y. The same applies to the emission surface 21.
  • the spectrophotometer 1 is configured such that the measurement light DL from the light source 3 is incident on the incident surface 19 of the ATR element 10 via the optical fiber 35 in a state where the ATR probe 30 is immersed in the liquid measurement target L.
  • the measurement light DL incident and emitted from the emission surface 21 is received by the optical fiber 37 and guided to the spectrometer 5.
  • the spectral state of the measurement target is displayed through the photodetector 7 and the data processing / display device 9, whereby the reaction state of the measurement target can be grasped.
  • the measurement light DL is reflected by the reflection surface 13 many times, and thus the degree of absorption of the specific wavelength for the measurement target S becomes significant.
  • the ATR probe 30 measures the measurement object S in contact with the outer peripheral surface 13 of the ATR element 10, there is little possibility that a measurement error due to the presence of bubbles occurs. Therefore, the spectrophotometer 1 using the ATR element 10 can measure with high accuracy.
  • the measuring object S of the spectrophotometer 1 is arbitrary, but if the reaction liquid in the process of producing a synthetic resin containing a reactive group (for example, —NCO, —OH, —COOH) is the measuring object S, the degree of progress of the reaction Can be grasped accurately. Therefore, regardless of whether organic or inorganic, synthetic resin products, liquid crystal products, pigment products, etc. that have a synthetic reaction in the manufacturing process can be manufactured by monitoring the synthetic reaction process to produce the desired final product.
  • a reactive group for example, —NCO, —OH, —COOH
  • Example 1 An experiment for confirming the effect of the ATR element 10 according to the present embodiment, particularly an experiment for intentionally generating bubbles around the ATR element 10 was performed.
  • the manufacturing conditions of the ATR element used in the experiment are as follows.
  • Example 1 Comparative Example 1 the measurement results greatly fluctuate after starting the blowing of bubbles, whereas in Example 1 according to this embodiment, the measurement results before and after the blowing of bubbles. It was confirmed that there was no difference. That is, in this embodiment, it can be seen that the measurement result is not affected by the presence or absence of bubbles.
  • Example 2 The ATR element 10 of Example 1 was immersed in toluene as the measurement target S, and the absorbance spectrum was measured (see FIG. 10).
  • the spectrophotometer of Example 1 was used as the measurement condition, and the selected wavelength of the spectroscope was set in the range of 1100 nm to 1700 nm in 1 nm increments.
  • Comparative Example 2 Absorbance spectra were measured in the same manner as in Example 2 except that an ATR element “661.820-NIR” manufactured by Hellma was used. The measurement results are shown in FIG.
  • Example 2 In the absorbance spectrum of Example 2, there are a methyl group at about 1160 nm and a benzene ring at about 1680 nm, and peaks estimated to be derived from each. Although illustration is omitted, since the reproducibility when this spectrum is repeatedly measured is high, the spectrophotometer of the present invention can be used to deepen consideration of various substance spectra having a benzene ring and a methyl group. From these peaks, it is predicted that the presence of toluene around the ATR element 10 according to the present embodiment can be determined. On the other hand, in the absorbance spectrum of Comparative Example 2, no peak was observed, and the grounds for the presence of toluene around the ATR element “661.820-NIR” could not be grasped.
  • the configuration described in the above embodiment can be selected or changed to another configuration as appropriate without departing from the gist of the present invention.
  • the first end surface 15 and the second end surface 17 are orthogonal to the symmetry axis y, but the present invention is not limited to this and may be inclined with respect to the symmetry axis y.
  • the first end surface 15 and the second end surface 17 are parallel to each other.
  • the present invention is not limited to this, and for example, the directions may be inclined opposite to each other.
  • the desired final product can be manufactured suitably.
  • process management related to manufacturing in various fields such as chemicals, pharmaceuticals, powdered industrial products, foods, etc. It can be used in a wide variety of applications such as epoxy, various resins and plastics typified by reactive hot melt, testing / analysis / measurement, pharmaceuticals / bio, education / research institutes, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

近赤外領域の測定光を用い、かつ、測定光に対する吸収係数の小さい物質であっても、物質の状態を正確に特定できるATR素子を提供する。 周方向に連なる反射面13を有する素子本体11と、素子本体11に測定光DLを入射させる入射面19と、入射面19から入射され、素子本体11の反射面13で反射される測定光DLが外部に出射される出射面21と、を備え、入射面19から入射した測定光DLが、反射面13で反射を繰り返しながら、螺旋状の通過経路を辿り、出射面21から外部に向けて出射されるATR素子10。

Description

ATR素子、液浸プローブ、及び、分光光度計
 本発明は、例えば合成樹脂の反応基の濃度変化を測定するのに好適な液浸プローブに関し、特にATR素子に関する。
 ポリウレタン、ポリエステルなどの合成樹脂を作製する過程で、反応の進行程度を把握するために、測定対象である反応液が含む反応基(例えば、-NCO,-OH,-COOH)の濃度の変化をインラインで正確に測定することが求められる。
 これまで、反応液中に浸漬される検知素子と、検知素子に測定光を照射する照射用光ファイバと、測定対象を通過した測定光を受光する受光用光ファイバと、を備える液浸プローブが知られている(例えば、特許文献1)。この液浸プローブは、検知素子に測定対象が充填される空隙部を設け、この空隙部に充填される測定対象を透過する測定光を受光用光ファイバで受光する。測定光は空隙部の測定対象を透過する際に一部の波長成分が吸収されるため、受光用光ファイバで受光した測定光を分析することで、反応基の濃度を測定することができる。しかし、化学反応槽の中では反応液が撹拌されているので、撹拌に伴う気泡が混じった反応液が空隙部に充填されることがあり、この気泡は反応基の濃度検知にとってノイズとなり、正確な濃度の測定が困難になる。
 ここで、物質を分析・測定する手法の一つとして、ATR法(全反射減衰法:Attenuated Total Reflection))が知られている。このATR法を適用した液浸プローブも知られている(例えば、特許文献2)。
 なお、ATR法による分析の要旨は、概略以下の通りである。屈折率の大きいATR素子(典型的には結晶)に測定対象を密着させ、測定光の入射角を臨界角よりも大きくとり、測定対象とATR物質の間で全反射が起きるように設定する。全反射が生じるとき、測定対象とATR素子の界面で光は測定対象の側に少しだけもぐりこんでから反射されてくる。この反射光はエバネッセント(evanescent)光と称される。測定対象において測定光を吸収する領域では、吸収の強さに応じて測定対象固有の波長における反射光のエネルギーが減少する。この反射光のスペクトルを測定することにより物質の分析・測定をすることができる。
特開2009-250825号公報 特開2004-85433号公報
 上述した合成樹脂の反応基の濃度を測定することを想定すると、液浸プローブを浸漬する反応液を収容する反応槽から測定結果が伝えられる分光光度計までの距離が相当に離れることがある。この間を光ファイバで結ぶことになるので、液浸プローブに照射する測定光の波長が問題となる。
 反応基の濃度を正確に測定することを念頭に置くと、例えば2500nm以上の波長域の測定光を用いることが推奨されるが、この波長域の光は光ファイバにおける減衰が大きくなるために、実用化が困難である。一方、波長が1000~2000nmの近赤外線領域の光は、光ファイバにおける減衰が小さく、光ファイバによる導光の問題はない。しかし、近赤外線領域の光は、反応基における吸収係数が極端に小さいために、反応基の濃度測定を正確に行なうことは困難である。
 本発明は、以上の技術的課題に基づいてなされたもので、光ファイバによる導光が容易である近赤外領域の測定光を用い、かつ、当該測定光に対する吸収係数の小さい物質であっても、物質の状態を正確に特定できるATR素子を提供することを目的とする。
 吸収係数の小さい物質を測定対象とする場合には、反射回数をできるだけ多くすることにより、測定光がプローブに入射してから出射されるまでの間に測定対象に吸収される合計の光量を増やすことが望まれる。
 ATR法を適用したプローブは、反射回数が1回の単反射型のものに加えて、反射回数が複数回の多重反射型のものが知られている。ところが、これまで知られている台形状の多重反射型プローブのATR素子は、反射回数が20回程度であるために、本発明が志向する測定対象には未だ不十分である。
 そこで本発明者等は、これまでに比べて格段に多い反射回数が得られる液浸プローブを実現できるATR素子を検討した。その結果、周方向に連なる側面を反射面とするATR素子を用い、当該反射面に測定光を連続的に反射させて、エバネッセント光を有効的に活用することにより、これまでの多重反射を凌駕する回数の反射が得られるであろうことを知見した。
 本発明のATR素子は、この知見に基づくものであり、軸対称な立体からなり、周方向に連なる反射面を有する素子本体と、素子本体に測定光を入射させる入射部と、入射部から入射され、素子本体の反射面で反射される測定光が外部に出射される出射部と、を備え、入射部から入射した測定光が、反射面で反射を繰り返しながら、螺旋状の通過経路を辿り、出射部から外部に向けて出射されることを特徴とする。
 本発明のATR素子において、測定光が、反射面で反射を繰り返しながら、螺旋状の通過経路を辿るために、入射部は、素子本体の対称軸に直交する基準断面xにおいて、対称軸から基準断面xの外周までの距離の80%以上、100%未満の位置にあること(条件A)、及び、基準断面xと45度以下の角度をなしていること(条件B)が好ましい。
 条件Aは、専ら、測定光が反射する回数を稼ぐために要求される。
 条件Bは、専ら、測定光が螺旋状の通過経路を辿るために要求される。
 本発明のATR素子は、素子本体が、円柱状の形態を有しているか、または、円筒状の形態を有していることが好ましい。
 円柱状の素子本体は、反射面が円弧面になり、この反射面は対称軸からの距離が一定である。
 また、ATR素子が円筒状をなしていれば、外周面に加えて内周面を反射面とすることができるので、測定光の反射回数を増やすのに有効である。
 本発明のATR素子において、素子本体は、軸方向に対向する第1端面と第1端面に対向する第2端面を備え、入射部は、第1端面に窪みを形成することで設けられ、出射部は、第2端面に窪みを形成することで設けられることが好ましい。
 入射部及び出射部を窪みに形成する方が、素子本体の端面を突出させて形成するよりも容易だからである。
 本発明のATR素子において、入射部は、第1端面の外周に連なって形成され、出射部は、第2端面の外周に連なって形成されることが、反射の回数を増やす上で好ましい。
 本発明は、以上説明した本発明のATR素子を用いた液浸プローブを提供する。
 つまり、この液浸プローブは、軸対称な立体からなり、周方向に連なる反射面を有する素子本体と、素子本体に測定光を入射させる入射部と、入射部から入射され、素子本体の反射面で反射される測定光が外部に出射される出射部と、を備えるATR素子と、光源から出射される測定光を入射部に導く第1導光手段と、出射部から出射される測定光を所定の部位まで導く第2導光手段と、を備え、ATR素子が以上説明した本発明のATR素子からなることを特徴とする。
 本発明の液浸プローブは、用いるATR素子の反射面における測定光の反射回数を稼ぐことができ、しかもエバネッセント光をも有効的に活用することができるので、測定光に対する吸収係数の小さい物質であっても、物質の状態を正確に測定するのに寄与する。
 本発明は、以上説明した本発明の液浸プローブを用いた分光光度計を提供する。
 つまり、この分光光度計は、測定光を出射する光源と、液浸プローブを経た測定光を分光して検出する光度計本体と、を備え、液浸プローブが以上説明した本発明の液浸プローブからなることを特徴とする。
 本発明の分光光度計は、液浸プローブを構成するATR素子の反射面における測定光の反射回数を稼ぐことができるので、測定光に対する吸収係数の小さい物質であっても、物質の状態を正確に測定できる。
 本発明によれば、周方向に連なる側面を反射面とするATR素子を用い、当該反射面に対して測定光を連続的に反射させることにより、これまでには得られない回数の反射を実現する。その結果、近赤外領域の測定光を用い、かつ、当該測定光に対する吸収係数の小さい物質であっても、物質の状態を正確に測定できる。
 さらに、本発明によれば、有機・無機を問わず、合成樹脂製品、液晶製品、顔料製品など、製造過程で合成反応を有するものであれば、その合成反応過程をモニタリングすることにより、所望とされる最終製品の製造を好適に行うことができ、反応生成物の製造方法を提供することができる。しかも、化学品、医薬品、粉体工業品、食品等、各分野の製造に係わるプロセス管理のみならず、業種別では、化学、ポリウレタン、ポリエステル、エポキシ、反応性ホットメルトに代表される各種樹脂並びにプラスチック、試験・分析・測定、医薬品・バイオ、教育・研究機関等の幅広い利用が可能である。
本実施形態における円柱状のATR素子を示す三面図であり、(a)は平面図、(b)は側面図、(c)は底面図であり、(d)は(b)に対応する変形例を示す。 本実施形態の条件Aを説明する図である。 本実施形態の条件Bを説明する図である。 図1のATR素子における測定光の通過経路を模式的に示す図であり、(a),(b),(c)は、図1の(a),(b),(c)に対応する図である。 本実施形態における角柱状のATR素子を示す三面図であり、(a)は平面図、(b)は側面図、(c)は底面図である。 本実施形態における円錐台状のATR素子を示す三面図であり、(a)は平面図、(b)は側面図、(c)は底面図である。 本実施形態における円筒状のATR素子を示す三面図であり、(a)は平面図、(b)は側面図、(c)は底面図である。 本実施形態のATR素子を用いた分光光度計の構成を示す図である。 図8の分光光度計に用いられる液浸プローブの構成を示す図である。 本実施形態の効果を確認するために行った実験の概要を示す図である。 実施例1、比較例1の結果を示すグラフであり、(a)は本実施形態による液浸プローブを用いた結果、(b)は従来の液浸プローブを用いた結果を示す。 実施例2、比較例2の結果を示すグラフであり、(a)は本実施形態による液浸プローブを用いた結果、(b)は従来の液浸プローブを用いた結果を示す。
 以下、添付図面を参照して本発明の実施形態を詳細に説明する。
 本実施形態にかかるATR素子10は、図1に示すように、素子本体11と、素子本体11に一体的に設けられる入射面19及び出射面21とを備えている。なお、図1(b)は、入射面19が設けられる側と出射面21が設けられる側を組み合わせている。
[素子本体11]
 素子本体11は、軸対称の一形態である円柱状をなしており、外周面13と、対称軸yの方向に対向する一方の端面(第1端面)15及び他方の端面(第2端面)17を備えている。ここで、外周面13は、素子本体11をその周囲と区画する面であるが、ATR素子10においては、素子本体11の内部を進む光をその内側で反射する面として機能する。したがって、光の反射に係る事項については、外周面13を反射面13と称することがある。
 素子本体11は、高い屈折率を有し、光を照射することにより全反射が生じうる素材を広く適用することができる。例えば、石英ガラス、サファイア、立方晶ジルコニア(cubic-ZrO)、セレン化亜鉛(ZnSe)、硫化亜鉛(ZnS)、ダイアモンドなどが該当する。この中では、コストをも考慮すると、屈折率が高く、被検体に対して不活性であることから、立方晶ジルコニア又はサファイアが好ましい。
[入射面19]
 入射面19は、素子本体11の第1端面15に設けられており、ATR素子10を備える液浸プローブにより、測定対象に測定光として赤外光を照射する際に、測定光を素子本体11に入射させる面である。
 入射面19は、その法線Nが反射面13に対して以下の2つの条件A,Bを満たすように形成されている。この2つの条件A,Bは、ATR素子10に入射した測定光が、反射面13で複数回の反射を繰り返すことで、第2端面17に向けて、螺旋状の通過経路を辿るために必要である。入射面19の法線Nは、測定光の光軸を代替している。
 なお、実際の測定光DLは、例えば光ファイバーなどにより導入される、一定の強度分布を有する光束であり、エバネッセント光の存在下で、この光束がATR素子10の反射面13により螺旋状の通過経路を辿ることになるが、以下の説明においては、簡単のため、光の入射・反射などは単純なモデルで説明する。
 条件Aは、入射面19の法線Nが、図2(a)に示すように、対称軸yに直交する基準断面xの半径rの80%以上、100%未満の領域に存在することを規定する。この条件Aは、反射面13において、測定光DLがより多く反射するために要求される。つまり、図2(b)と図2(c)を比較すると判るように、測定光DLがより外周面(反射面)13の近くに入射される方が、反射面13により反射される回数が多くなる。
 本実施形態の入射面19は、条件Aに従って、第1端面15の外周面13に連なって設けられている。このように、入射面19を素子本体11の最外周に設けることで、反射面13で反射される回数を増やすことができる。
 次に、条件Bは、入射面19の法線Nが、基準断面xとなす角度θNSが45度以下であることを規定する。この条件Bは、測定光DLが螺旋状の通過経路を辿るために要求される。
 つまり、図3(a)に示すように、法線Nが基準断面xと平行、つまり角度θNSが0度だとすれば、測定光DLは反射面13で向きが反対の反射光となるので、理論上は、測定光DLは同一の基準断面xの範囲内で反射を繰り返すことになる。
 図3(a)の状態を脱して測定光DLが螺旋状の通過経路を辿るためには、角度θNSが0度を超えればよい。ただし、この角度θNSが図3(b)に示すように大きすぎると、通過経路における螺旋のピッチが大きくなるので、反射の回数を増やす上で不利である。そこで、図3(c)に示すように、角度θNSを45度以下にすることが好ましい。反射の回数は、角度θNSが小さいほど多くなるので、角度θNSは30度以下がより好ましく、15度以下がさらに好ましい。
 次に、入射面19は、第1端面15に窪み20を形成することで設けられる。つまり、もともとは平坦な第1端面15の一部を切削することで、窪み20を形成し、窪み20の形成に伴って形成される壁面を入射面19とする。なお、この壁面(入射面19)は平面状に形成されている。また、入射光の干渉を低減できる範囲であれば、入射光の強度を確保する点から、この窪み20を第1端面15に平面視同一回転方向の複数個所に設けても構わない。
 接合面における反射や屈折による測定光DLの損失を低減する観点からは、突出部分を含めて素子本体11は一体的に形成されていることが好ましいが、上記の切削加工によれば、簡便に一体的に形成することができるので好適である。
 入射面19は、図1(d)に示すように、平坦な第1端面15の一部を突出させて形成することもできる。この場合は、素子本体11の製作にあたって、突出部分と素子本体11の要部とを個別に作製しておいて接合する方法が考えられるが、この場合においても、接合面における反射や屈折による測定光DLの損失を低減する観点からは、突出部分を含めて素子本体11は一体的に形成されていることが好ましい。
 この一体的構造を実現するにあたっては、突出部分を考慮した寸法に素子本体11を形成した後に突出部分以外の部分を切削により除去すればよい。
 このように、1つの入射面19を形成する場合には、窪み20を切削加工するほうが(図1(b)参照)、突出部分以外の部分を切削加工するよりも(図1(d)参照)、工数や材料費の観点から好適であるが、複数個の入射面を形成する場合には、工数や材料費の観点からは、いずれの方法も採用することができる。このことは、出射面21についても同様である。
[出射面21]
 出射面21は、入射面19から入射した測定光DLが、反射面13で複数回の反射を繰り返して螺旋状の通過経路を辿った後に、外部に取り出すために設けられている。したがって、出射面21は、通過経路に対応する位置に設けられることになる。出射面21も、入射面19と同様に、窪み22に設けられている。
 本実施形態の出射面21は、第2端面17であって、対称軸yを挟んで、反対側に設けられている。したがって、出射面21は、入射面19と同様に、前述した条件A、条件Bを備えている。ただし、これは好ましい形態であって、基本的には、螺旋状の通過経路に対応する位置であれば機能する。
 これは、上述したように、測定光DLは一定の強度分布を有する光束であることから、この光束が螺旋状の経路を通過することにより、必ず出射面21から出射されることになるからである。
 したがって、図1(b)における第1端面15の入射面19に対して、同図の第2端面17の位置に出射面21を設けてもよいし、図1(d)における第1端面15の入射面19に対して、同図の第2端面17の位置に出射面21を設けてもよい。さらに、図9における第1端面15の入射面19に対して、同図の第2端面17の位置に出射面21を設けてもよい。
 また、出射面21は入射面19の場合と同様に複数個所に設けることもでき、出射光の強度を確保する観点からは、複数個所設けることも好ましい。
[反射形態]
 さて、以上説明したATR素子10は、図4に示すように、測定光DLが入射面19から素子本体11の内部に入射されると、反射面13で全反射を繰り返しながら、第1端面15の側から第2端面17の側に向けて、螺旋状の通過経路Pを辿り、出射面21から外部に向けて出射される。なお、ATR素子10の反射面13は、その一部が測定対象に接していれば良いが、螺旋状の通過経路Pの全てを有効活用する観点からは、ATR素子10を測定対象内に浸漬させて、反射面13の全周に亘り測定対象に接していることが好ましい。
[素子本体の形状変更例]
 以上説明したように、ATR素子10によれば、測定光DLが周方向に連なる反射面13を連続的に反射され、かつ、その反射が軸方向にも連続するので、測定光DLの反射回数を著しく多くすることができる。
 ATR素子10は、円柱の素子本体11を用いているが、本発明の素子本体の形態はこれに限らない。横断面が多角形であってもよく、例えば、図5に示すように横断面が六角形の素子本体111を用いることができる。
 また、以上説明した素子本体11は、径が軸方向yに亘って一定である必要はなく、図6に示すように、例えば、第1端面15から第2端面17に向けて径が縮小された素子本体211にしてもよい。さらに、径が縮小し、また径が拡大するというパターンを連続的に繰り返すこともできる。
 さらに、以上説明した素子本体11は、中実な円柱からなるが、図7に示すように、中空を有する円筒から素子本体311を構成することができる。円筒状の素子本体311は、図7に示すように、外周面113だけでなく、内周面213も反射面になり得るので、外周面13だけが反射面になる素子本体11に比べて、反射回数を倍増させることもできる。
 素子本体111,211,311についても、条件A,条件Bを備えることが好ましいが、横断面が六角形の素子本体111の場合、図2の半径rに対応するのは、図5に示すように、対称軸yから各辺の中点までの距離とすればよい。
 この場合、六角形の一辺が素子本体111の反射面と考えることができ、この反射面で連続的に反射されて螺旋状の通過経路を辿ることになる。
 なお、素子本体111、211、311についても、各形態の反射面(素子本体の側面)において、一定条件下で、エバネッセント光が存在することになる。
[分光光度計]
 次に、ATR素子10を用いたFourier Transform Infrared Spectroscopy分光光度計1について、図8及び図9を参照して説明する。
 分光光度計1は、図8に示すように、ATR素子10を備えるATRプローブ30と、光源3と、分光器5と、光検出器7と、データ処理・表示装置9と、を備えている。光源3とATRプローブ30の間、ATRプローブ30と分光器5の間、分光器5と光検出器7の間、光検出器7とデータ処理・表示装置9の間は、光ファイバにより接続されている。なお、図8では光ファイバの引き出し位置は簡略化して示しているが、実際は図9に示されている通りである。図10も同様である。
 光源3は、測定光DLを生成し、かつ、ATRプローブ30(ATR素子10)に向けて出射する。光源3としては、特に限定されるものではなく、ハロゲンタングステンランプ、その他の公知の光源を用いることができる。
 測定光DLを、ATR素子10の入射面19に入射させる前に、コリメートレンズ4を通過させることによって平行化することが、入射面19における拡散損失を低減するのに有効である。
 また、測定光DLを入射面19に入射させる際には、入射面19に対して垂直にすることが、入射面19における反射損失を低減するのに有効である。
 さらに、出射面21から出射される測定光DLが光ファイバ37に入射される前に、集光レンズ6を通過させることによって集光することが、信号光損失を低減するのに有効である。
 分光器5は、ATRプローブ30から出射される光線を受光するとともに、波長別に分ける。分光器5としては、特に限定されるものではなく、回折格子分光器、FTIR分光器、その他の公知の分光器を用いることができる。
 光検出器7は、分光器5で分光された光を受光して検出する。光検出器7としては、特に限定されるものではなく、フォトダイオード、アバランシェ・フォトダイオード、光電子倍増管、その他の公知の光検出器を用いることができる。
 データ処理・表示装置9は、光検出器7から受光した赤外光に基づいてスペクトル情報を生成するとともに、生成されたスペクトル情報を画像情報として表示する。データ処理・表示装置9については、特に限定されるものではなく、データ処理部分については、パーソナルコンピュータを用いることができ、また、表示部分については、パーソナルコンピュータに付随する表示装置を用いることができる。
 ATRプローブ30は、図9に示すように、ATR素子10の第1端面15の側に第1ホルダ31を、また、ATR素子10の第2端面17の側に第2ホルダ33を備えている。
 第1ホルダ31は、第1端面15の側を保持するとともに、入射面19に照射する測定光DLを光源3から導く光ファイバ35を固定する。また、第2ホルダ33は、第2端面17の側を保持するとともに、出射面21から出射される測定光DLを受光するとともに、分光器5に導く光ファイバ37を固定する。
 第1ホルダ31とATR素子10の間、及び、第2ホルダ31とATR素子10の間に、それぞれ、Oリング39を設けることにより外部から気密に封止して、保持部分の内部へ測定対象が侵入するのを防止する。
 なお、図9に示すように、本発明は、プリズム23を用いて測定光DLを屈折させて入射面19に入射させること、また、出射面21から出射した測定光DLをプリズム23により屈折させることを許容する。プリズム23を用いることにより、光ファイバ35を対称軸yに平行に引き回すことができる。出射面21についても同様である。
 分光光度計1は、図9に示すように、ATRプローブ30を液状の測定対象Lに浸漬した状態で、光源3からの測定光DLが光ファイバ35を介してATR素子10の入射面19に入射され、出射面21から出射された測定光DLが光ファイバ37で受光されるとともに分光器5に導かれる。以後、光検出器7及びデータ処理・表示装置9を経て、測定対象のスペクトル情報を表示させることで、測定対象の反応状態を把握することができる。
 この過程において、ATR素子10の中では、測定光DLは、反射面13で反射する回数が多いために、測定対象Sに対する固有の波長が吸収される程度が顕著となる。加えてATRプローブ30は、ATR素子10の外周面13に接する測定対象Sを測定するものであるから、気泡の存在による測定誤差が生ずるおそれが小さい。したがって、ATR素子10を用いる分光光度計1は、高い精度の測定が可能になる。
 分光光度計1の測定対象Sは任意であるが、反応基(例えば、-NCO,-OH,-COOH)を含む、合成樹脂の製造過程の反応液を測定対象Sにすると、反応の進行程度を正確に把握することができる。
 したがって、有機・無機を問わず、合成樹脂製品、液晶製品、顔料製品など、製造過程で合成反応を有するものであれば、その合成反応過程をモニタリングすることにより、所望とされる最終製品の製造を好適に行うことができ、化学品、医薬品、粉体工業品、食品等、各分野の製造に係わるプロセス管理のみならず、業種別では、化学、ポリウレタン、ポリエステル、エポキシ、反応性ホットメルトに代表される各種樹脂並びにプラスチック、試験・分析・測定、医薬品・バイオ、教育・研究機関等の幅広い利用が可能である。
[実施例]
 以下、本発明を実施例を用いてより詳細に説明する。
(実施例1)
 本実施形態に従うATR素子10の効果を確認する実験、特にATR素子10の周囲に意図的に気泡を生じさせる実験を行った。
 実験に用いたATR素子(図1(a)、(b)、(c)参照、窪み20、22は各1つ)の製作条件は以下の通りである。
 材質:サファイア
 形状:円柱(直径20mm、測定対象Sに浸漬する有効長60mm)
 角度θNS:2.5度(推定螺旋ピッチ1.75mm)
 測定光入射半径位置:0.915r(反射経路は推定12角形状)
 推定反射回数:411回
 また、分光光度計を構成した条件は以下の通りである。
 光源:ハロゲンタングステンランプ Ocean Optics社製「HL-2000」
 分光器:回折格子分光器 HORIBA社製「microHR」,600線/mm
 光検出器:APD検出器 AUREA社製 「SPD-A-M1」
 実験は、測定を開始して所定の時間が経過してから気泡を吹き付ける、というものである(図10参照)。なお、測定対象Sはトルエンを用い、分光器5の分光波長は1400nmである。
(比較例1)
 実施例1と同様にして、測定対象Sが充填される空隙部Tを有する透過型プローブ(Hellma社製の「IN237P10」)130についても行った。
 結果を図11に示すが、比較例1は気泡の吹き付けを開始してから、測定結果が大きくぶれているのに対して、本実施形態に従う実施例1は、気泡の吹付の前後で測定結果に差異はないことが確認された。すなわち、本実施形態においては、気泡の有無により測定結果に影響がないことが分かる。
(実施例2)
 実施例1のATR素子10を測定対象Sであるトルエン中に浸漬させ、吸光度スペクトルを測定した(図10参照)。
 測定条件は、実施例1の分光光度計を用い、分光器の選択波長を1nm刻みで1100nmから1700nmの範囲に亘って行った。
(比較例2)
 Hellma社製のATR素子「661.820-NIR」を用いた点を除けば、実施例2と同様にして、吸光度スペクトルを測定した。
 測定結果を図12に示す。
 実施例2の吸光度スペクトルには、約1160nmにメチル基、及び約1680nmにベンゼン環と、それぞれに由来すると推定されるピークが存在する。図示は省略するが、本スペクトルを繰り返し測定した時の再現性は高いことから、本発明の分光光度計を用いてベンゼン環やメチル基を有する種々の物質スペクトルの考察を深めることで、将来的にはこれらのピークから、本実施形態によるATR素子10の周囲にトルエンが存在することを断定できるようになることが予測される。
 これに対し、比較例2の吸光度スペクトルでは、何らのピークも認めることができず、ATR素子「661.820-NIR」の周囲にトルエンの存在を示す根拠を把握できなかった。
 以上、本発明の好適な実施形態を説明したが、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。
 例えば、素子本体11は第1端面15及び第2端面17が対称軸yに対して直交するが、本発明はこれに限定されず、対称軸yに対して傾斜していてもよい。また、素子本体11は第1端面15と第2端面17が互いに平行をなしているが、本発明はこれに限定されず、例えば、互いに向きが逆に傾斜していてもよい。
 このように、本発明によれば、有機・無機を問わず、合成樹脂製品、液晶製品、顔料製品など、製造過程で合成反応を有するものであれば、その合成反応過程をモニタリングすることにより、所望とされる最終製品の製造を好適に行うことができ、化学品、医薬品、粉体工業品、食品等、各分野の製造に係わるプロセス管理のみならず、業種別では、化学、ポリウレタン、ポリエステル、エポキシ、反応性ホットメルトに代表される各種樹脂並びにプラスチック、試験・分析・測定、医薬品・バイオ、教育・研究機関等の幅広い利用が可能である。
1   分光光度計
3   光源
4   コリメートレンズ
5   分光器(光度計本体)
6   集光レンズ
7   光検出器(光度計本体)
9   データ処理・表示装置
10  ATR素子
11  素子本体
13  外周面,反射面
15  第1端面
17  第2端面
19  入射面
21  出射面
20,22 窪み
23  プリズム
30  ATRプローブ
31  第1ホルダ
33  第2ホルダ
35,37 光ファイバ
39  Oリング
111,211,311 素子本体
113 外周面,反射面
213 内周面
DL  測定光
N   法線
T   空隙部
P   通過経路

Claims (9)

  1.  軸対称な立体からなり、周方向に連なる反射面を有する素子本体と、
     前記素子本体に測定光を入射させる入射部と、
     前記入射部から入射され、前記素子本体の前記反射面で反射される前記測定光が外部に出射される出射部と、を備え、
     前記入射部から入射した前記測定光が、前記反射面で反射を繰り返しながら、螺旋状の通過経路を辿り、前記出射部から外部に向けて出射される、
    ことを特徴とするATR素子。
  2.  前記入射部は、
     前記素子本体の対称軸に直交する基準断面(x)において、前記対称軸から前記基準断面の外周までの距離の80%以上、100%未満の位置にあり、
     前記入射部の法線が前記基準断面となす角度が、0度を超え、45度以下である、
    請求項1に記載のATR素子。
  3.  前記素子本体は、
     円柱状、または、円筒状の形態を有している、
    請求項1又は請求項2に記載のATR素子。
  4.  前記素子本体は、軸方向に対向する第1端面と前記第1端面に対向する第2端面を備え、
     前記入射部は、前記第1端面に窪みを形成することで設けられ、
     前記出射部は、前記第2端面に窪みを形成することで設けられ、
    請求項1~請求項3のいずれか一項に記載のATR素子。
  5.  前記入射部は、前記第1端面の外周に連なって形成され、
     前記出射部は、前記第2端面の外周に連なって形成される、
    請求項4に記載のATR素子。
  6.  請求項1~5のいずれか一項に記載のATR素子と、
     光源から出射される前記測定光を前記入射部に導く第1導光手段と、
     前記出射部から出射される前記測定光を所定の部位まで導く第2導光手段と、を備える
    ことを特徴とする液浸プローブ。
  7.  請求項6に記載の液浸プローブと、
     測定光を出射する光源と、前記液浸プローブを経た前記測定光を分光して検出する光度計本体と、を備える、
    ことを特徴とする分光光度計。
  8.  軸対称な立体からなり、周方向に連なる反射面を有する素子本体と、
     前記素子本体に測定光を入射させる入射部と、
     前記入射部から入射され、前記素子本体の前記側面で反射される前記測定光が外部に出射される出射部と、を備え、
     前記入射部は、
     前記素子本体の対称軸に直交する基準断面において、前記対称軸から前記基準断面の外周までの距離の80%以上、100%未満の位置にあり、
     前記入射部の法線が前記基準断面となす角度が、0度を超え、45度以下である、
    ことを特徴とするATR素子。
  9. 前記測定光は、波長が1000~2000nmの近赤外線領域の光である、請求項1又は請求項8に記載のATR素子。
PCT/JP2014/004989 2013-10-11 2014-09-30 Atr素子、液浸プローブ、及び、分光光度計 WO2015052893A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/028,553 US20160299063A1 (en) 2013-10-11 2014-09-30 Atr element, immersion probe, and spectrophotometer
JP2015514263A JP5839641B2 (ja) 2013-10-11 2014-09-30 Atr素子、液浸プローブ、及び、分光光度計
DE112014004680.9T DE112014004680B4 (de) 2013-10-11 2014-09-30 ATR-Element, Eintauchprüfkopf und Spektrofotometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013213415 2013-10-11
JP2013-213415 2013-10-11

Publications (1)

Publication Number Publication Date
WO2015052893A1 true WO2015052893A1 (ja) 2015-04-16

Family

ID=52812729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004989 WO2015052893A1 (ja) 2013-10-11 2014-09-30 Atr素子、液浸プローブ、及び、分光光度計

Country Status (4)

Country Link
US (1) US20160299063A1 (ja)
JP (1) JP5839641B2 (ja)
DE (1) DE112014004680B4 (ja)
WO (1) WO2015052893A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017114770A1 (de) 2015-12-30 2017-07-06 Blue Ocean Nova AG Vorrichtung zur analyse von einem sich in einem produktraum befindenden zu analysierenden gut
CN107463946A (zh) * 2017-07-12 2017-12-12 浙江大学 一种结合模板匹配与深度学习的商品种类检测方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6010009B2 (ja) * 2013-10-11 2016-10-19 Dic株式会社 Atr素子、及び、液浸プローブ
DE102016008886B4 (de) * 2016-07-20 2020-09-17 Spectrolytic GmbH ATR-Spektrometer
CN107132196B (zh) * 2016-11-15 2020-11-10 惠州市长润发涂料有限公司 一种红外光谱法测定聚氨酯中-nco含量的方法
WO2024011021A1 (en) * 2022-07-08 2024-01-11 Daylight Solutions, Inc. Test cell assembly including attenuated total reflector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337552A (ja) * 1989-07-03 1991-02-18 Kubota Corp 多重内部反射式の成分分析法及びその装置
JPH07174696A (ja) * 1993-12-17 1995-07-14 Chubu Electric Power Co Inc 塩分検知装置
JPH08145879A (ja) * 1994-11-25 1996-06-07 Kdk Corp 過酸化水素の定量方法及びその装置
JPH1010040A (ja) * 1996-06-21 1998-01-16 Nippon Soken Inc ガス分析装置用ガスセル
JPH11118704A (ja) * 1997-10-08 1999-04-30 Nikon Corp 耐久性検査装置及びパルス光照射装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3669545A (en) * 1971-05-06 1972-06-13 Wilks Scientific Corp Apparatus and method for analysis by attenuated total reflection
CA1273223A (en) * 1985-06-25 1990-08-28 Richard D. Mclachlan Methods and apparatus for measuring the light absorbance of a fluid medium
US4988195A (en) * 1989-02-17 1991-01-29 Axiom Analytical, Inc. Internal reflectance apparatus and method using cylindrical elements
US5051551A (en) * 1989-05-18 1991-09-24 Axiom Analytical, Inc. Immersion probe for infrared internal reflectance spectroscopy
US5170056A (en) * 1991-02-28 1992-12-08 Galileo Electro-Optics Corporation Optical fiber coupled devices for remote spectroscopy in the infrared
GB9108974D0 (en) * 1991-04-26 1991-06-12 Nat Res Dev Optical probe heads
US5436454A (en) * 1993-10-15 1995-07-25 Nicolet Instrument Corporation Optical probe for remote attenuated total reflectance measurements
US5459316A (en) * 1994-01-31 1995-10-17 Axiom Analytical, Inc. Immersion probe for infrared internal reflectance spectroscopy
EP0714024B1 (en) * 1994-11-25 2002-01-30 Kyoto Dai-ichi Kagaku Co., Ltd. Method of and apparatus for determining hydrogen peroxide
US5739537A (en) * 1995-12-21 1998-04-14 Perstorp Analytical, Inc. NIR absorbance measuring instrument with ATR probe
US5838403A (en) * 1996-02-14 1998-11-17 Physical Optics Corporation Liquid crystal display system with internally reflecting waveguide for backlighting and non-Lambertian diffusing
US6496636B1 (en) * 1997-06-13 2002-12-17 Mark Stephen Braiman Support planar and tapered quasi-planar germanium waveguides for infrared evanescent-wave sensing
DE19856591C2 (de) * 1998-12-08 2001-03-08 Basf Ag Vorrichtung zur spektroskopischen Analyse eines fluiden Mediums mittels abgeschwächter Reflexion
AU1583300A (en) * 1998-12-11 2000-07-03 Abraham Katzir Forming transparent crystalline elements by cold working and using them in infrared systems
US7384581B2 (en) * 1998-12-11 2008-06-10 Abraham Katzir Forming transparent crystalline elements by cold working
JP2001116687A (ja) * 1999-10-18 2001-04-27 Rikogaku Shinkokai 化学変化モニター方法および装置
DE60143254D1 (de) * 2000-02-07 2010-11-25 Panasonic Corp Vorrichtung zur messung biologischer informationen mit einer sonde zur aufnahme biologischer informationen
AU2001241643A1 (en) * 2000-03-10 2001-09-24 Wilks Enterprise, Inc. Spectroscopy analyzer using a detector array
EP1362225B1 (en) * 2001-02-23 2004-09-29 Telefonaktiebolaget LM Ericsson (publ) Monochromator arrangement
US6841792B2 (en) * 2001-03-27 2005-01-11 Euro-Celtique, S.A. ATR crystal device
WO2003066245A1 (en) * 2002-02-01 2003-08-14 Metastable Instruments, Inc. Method and apparatus for cleaning with electromagnetic radiation
WO2003073069A1 (en) * 2002-02-25 2003-09-04 Waters Investments Limited An opaque additive to block stray light in teflon af light-guiding flowcells
ATE336718T1 (de) * 2002-04-03 2006-09-15 Univ Jw Goethe Frankfurt Main Infrarotmessvorrichtung für die spektrometrie wässriger und nicht wässriger systeme
FR2870598B1 (fr) * 2004-05-18 2006-07-14 Total France Sa Sonde de mesure de la lumiere dans un liquide, sonde de detection du seuil de floculation d'un milieu colloidal, procede de detection associe et application a la determination de la floculation des asphaltenes
US20050279354A1 (en) * 2004-06-21 2005-12-22 Harvey Deutsch Structures and Methods for the Joint Delivery of Fluids and Light
JP4565061B2 (ja) * 2004-10-06 2010-10-20 地方独立行政法人山口県産業技術センター 光分岐回路及びセンサ
DE502007006187D1 (de) * 2007-06-13 2011-02-17 Mettler Toledo Ag ATR-Sensor
JP5041933B2 (ja) * 2007-09-10 2012-10-03 学校法人 創価大学 界面活性剤濃度測定装置及び界面活性剤濃度測定方法
DE102010006161B3 (de) * 2010-01-21 2011-01-13 Technische Universität Dresden Verfahren und Vorrichtung zur Bestimmung des Geschlechtes von befruchteten und nicht bebrüteten Vogeleiern
WO2014138660A1 (en) * 2013-03-08 2014-09-12 Bruker Nano, Inc. Method and apparatus of physical property measurement using a probe-based nano-localized light source

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337552A (ja) * 1989-07-03 1991-02-18 Kubota Corp 多重内部反射式の成分分析法及びその装置
JPH07174696A (ja) * 1993-12-17 1995-07-14 Chubu Electric Power Co Inc 塩分検知装置
JPH08145879A (ja) * 1994-11-25 1996-06-07 Kdk Corp 過酸化水素の定量方法及びその装置
JPH1010040A (ja) * 1996-06-21 1998-01-16 Nippon Soken Inc ガス分析装置用ガスセル
JPH11118704A (ja) * 1997-10-08 1999-04-30 Nikon Corp 耐久性検査装置及びパルス光照射装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017114770A1 (de) 2015-12-30 2017-07-06 Blue Ocean Nova AG Vorrichtung zur analyse von einem sich in einem produktraum befindenden zu analysierenden gut
DE102015122995A1 (de) 2015-12-30 2017-07-06 Blue Ocean Nova AG Vorrichtung zur Analyse von einem sich in einem Produktraum befindenden zu analysierenden Gut
CN108603832A (zh) * 2015-12-30 2018-09-28 蓝海新星股份有限公司 用于分析位于产品室中的待分析物品的设备
US11156561B2 (en) 2015-12-30 2021-10-26 Blue Ocean Nova AG Device for analyzing a product to be analyzed located in a product space
CN107463946A (zh) * 2017-07-12 2017-12-12 浙江大学 一种结合模板匹配与深度学习的商品种类检测方法
CN107463946B (zh) * 2017-07-12 2020-06-23 浙江大学 一种结合模板匹配与深度学习的商品种类检测方法

Also Published As

Publication number Publication date
US20160299063A1 (en) 2016-10-13
JP5839641B2 (ja) 2016-01-06
DE112014004680T5 (de) 2016-06-30
DE112014004680B4 (de) 2021-05-12
JPWO2015052893A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
JP5839641B2 (ja) Atr素子、液浸プローブ、及び、分光光度計
US7595882B1 (en) Hollow-core waveguide-based raman systems and methods
US9194794B2 (en) Optical absorption spectroscopy
US9784620B2 (en) Spectroscopy systems and methods using quantum cascade laser arrays with lenses
US8059273B2 (en) Micro spectrometer for parallel light and method of use
US5980831A (en) Support planar germanium waveguides for infrared evanescent-wave sensing
US20120257193A1 (en) Miniaturized on-line trace analysis
JP2008116314A (ja) 微少量液体測定装置
US8592768B1 (en) Angularly partitioned evanescent wave absorption sensor
US7459697B2 (en) Fluorescence measuring equipment
EP3492909B1 (en) Chemical sensing device using fluorescent sensing material
JP6010009B2 (ja) Atr素子、及び、液浸プローブ
US9658103B2 (en) Measuring apparatus for measuring the optical properties of a medium using a light source and light receiver as well as a dispersing element
Walsh et al. Midinfrared fiber sensor for the in situ detection of chlorinated hydrocarbons
Korotcenkov et al. Optical and fiber optic chemical sensors
JP5861855B1 (ja) 光度計、および合成反応過程のモニタリング方法
Kraft Vibrational spectroscopic sensors fundamentals, instrumentation and applications
Thompson Cavity‐Enhanced Spectroscopy in Condensed Phases: Recent Literature and Remaining Challenges
JP2014115268A (ja) 分光分析装置
Ray et al. Exciting fluorescence compounds on an optical fiber’s side surface with a liquid core waveguide
US7729582B2 (en) Fibre optic cable and method for producing the same
JP6332790B2 (ja) 光ファイバセンサ装置及びその製造方法
Dakin et al. Optical fibre chemical sensing using direct spectroscopy
TWI557408B (zh) 玻璃毛細管結構及其加工方法
US20130056620A1 (en) Device for lighting an object, with light source provided with a member for sampling a portion of said light, application to the measurement of flux variations of the source

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015514263

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853118

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15028553

Country of ref document: US

Ref document number: 1120140046809

Country of ref document: DE

Ref document number: 112014004680

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14853118

Country of ref document: EP

Kind code of ref document: A1