JP5861855B1 - 光度計、および合成反応過程のモニタリング方法 - Google Patents

光度計、および合成反応過程のモニタリング方法 Download PDF

Info

Publication number
JP5861855B1
JP5861855B1 JP2015519114A JP2015519114A JP5861855B1 JP 5861855 B1 JP5861855 B1 JP 5861855B1 JP 2015519114 A JP2015519114 A JP 2015519114A JP 2015519114 A JP2015519114 A JP 2015519114A JP 5861855 B1 JP5861855 B1 JP 5861855B1
Authority
JP
Japan
Prior art keywords
light
probe
detection probe
optical path
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015519114A
Other languages
English (en)
Other versions
JPWO2015125192A1 (ja
Inventor
蛯沢 勝英
勝英 蛯沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2015519114A priority Critical patent/JP5861855B1/ja
Application granted granted Critical
Publication of JP5861855B1 publication Critical patent/JP5861855B1/ja
Publication of JPWO2015125192A1 publication Critical patent/JPWO2015125192A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

単一検出器タイプにおいて暗電流の補正を行うことのできる光度計を提供する。分光光度計1は、光検出プローブ10に向けて光源出射光ELを出射する光源2と、光検出プローブ10を通過した光検出プローブ出射光DLと、参照光RLと、を受光するとともに、光検出プローブ出射光DLを通過させる第1モードと、参照光RLを通過させる第2モードと、光検出プローブ出射光DL及び参照光RLの両者の通過を阻止する第3モードと、が選択的に切り替えられる光路切替器30と、選択的に切り替えられる第1モード、第2モード及び第3モードのいずれかに対応した電気信号を出力する光検出器と、を備える。

Description

本発明は、測定対象である試料の定性、定量分析を行う光度計に関し、分析結果に対する暗電流の影響を抑えることができる光度計に関する。
物質の性質や量などを調べるために、多くの分析機器では、電磁波である赤外線、可視光線、紫外線などの光を用いて、試料の分析が行われている。この光分析は、試料に照射した電磁波が反射、透過、吸収する際に生ずる、波の変化を利用している。
光分析の一例である分光分析に用いられる分光光度計として、分光器で分光した単色光を測定光と参照光に分岐させる二光路(又はダブルビーム)方式が知られている。ダブルビーム方式は、測定光を測定対象の吸収測定に用い、参照光を装置に起因するドリフトの補正に用いるので、長時間の測定においてもドリフトの少ない安定した測定が可能である。
ドリフトの要因の一つとして、暗電流が知られている(例えば、特許文献1〜特許文献3)。暗電流は、フォトダイオードなどの光検出器が受光していないにも関わらず流れる微小な漏れ電流である。
ここで、二光路方式は、測定光を受光する光検出器と参照光を受光する光検出器を各々備える二検出器タイプのものと、測定光と参照光の両者を受光する一つの光検出器を備える単一検出器タイプのものとがある。二検出器タイプは、同じ特性を有する二つの検出器を用いることを前提とするが、現実には特性に誤差があるために、例えば検出器に達する光の減衰が大きい測定対象の検出精度が低い。一方で、単一検出器タイプは、特性に誤差が生ずることがないので本質的な検出精度は高いものの、暗電流の影響が無視できなくなる。
特開平6−160274号公報 特許第5181650号公報(特開2009−145182号公報) 特開2012−2712号公報
以上の通りであり、単一検出器タイプにおける暗電流による影響を補正により払拭できれば、減衰の大きい測定対象の検出精度を向上することができる。
特許文献1及び特許文献2は、暗電流の補正に関して提案を行っているが、いずれも二検出器タイプの光度計に関するものであり、単一検出器タイプにおける暗電流の補正を行うことはできない。
本発明は、このような技術的課題に基づいてなされたもので、単一検出器タイプにおける暗電流の補正を行うことのできる光度計を提供することを目的とする。
本発明の光度計は、光源とビームスプリッタと光ファイバと光検出プローブと光路切替器と光検出器とを備え、光源は、光源出射光(EL)を出射し、光源出射光(EL)から ビームスプリッタにより分岐された光検出プローブ入射光(IL)検出プローブに入射される。
本発明における光ファイバは、光源出射光(EL)を光検出プローブ入射光(IL)と して光検出プローブに導き、光検出プローブを通過した光検出プローブ出射光(DL)を 光路切替器まで導く第1光路OP1と、光源出射光(EL)からビームスプリッタにより 分岐された参照光(RL)を光路切替器まで導く第2光路OP2とを確立する。
本発明における光路切替器は、光検出プローブ出射光(DL)と、参照光(RL)とを受光するとともに、光検出プローブ出射光(DL)を通過させる測定光モードと、参照光 (RL)を通過させる参照光モードと、光検出プローブ出射光(DL)及び参照光(RL の両者の通過を阻止する暗電流モードと、を選択的に切り替える。
また、光検出器は、選択的に切り替えられる測定光モード、参照光モード及び暗電流モードのいずれかに対応した電気信号を出力する。測定光モード、参照光モード及び暗電流 モードのいずれにおいても、電気信号の出力が単一の光検出器により行われるとともに、 少なくとも光路切替器及び光検出器は、±3℃の範囲内の温度制御環境下に置かれることを特徴とする。
本発明の光度計によると、測定光モード、参照光モード及び暗電流モードが選択的に切り替えられる光路切替え器を備えることで、単一の光検出器、つまり単一検出器タイプにおいても暗電流の補正を行うことができる。
本発明の光度計において、測定光モード、参照光モード及び暗電流モードの切り替えを自動的に制御する制御部を備えることが、長時間にわたる連続的な測定を行う上で好ましい。
本発明の光度計において、光検出プローブとして、ATR型のプローブを適用することができる。
このATR型のプローブとしては、軸対称な立体からなり、周方向に連なる反射面を有するプローブ本体と、プローブ本体に光検出プローブ入射光(IL)を入射させる入射部と、入射部から入射され、プローブ本体の反射面で反射される光検出プローブ入射光(I L)が外部に出射される出射部と、を備え、入射部から入射した光検出プローブ入射光 IL)が、反射面で反射を繰り返しながら、螺旋状の通過経路を辿り、出射部から光路切替器に向けて出射されるものであることが好ましい。
このプローブによると、周方向に連なる側面を反射面とする光検出プローブを用い、当該反射面に対して測定光(光検出プローブ入射光)を連続的に反射させることにより、これまでには得られない回数の反射を実現する。その結果、近赤外領域の測定光を用い、かつ、当該測定光に対する吸収係数の小さい物質であっても、物質の状態を正確に測定できる。
本発明の光度計において、少なくとも光路切替器及び光検出器は、±1℃の範囲内の温度制御環境下に置かれることが好ましい。後述する実施例に示されるように、温度制御を行うことで、検出結果の精度向上に資する。
本発明の光度計によれば、単一検出器タイプにおける暗電流の補正を行うことができるので、減衰の大きい測定対象の検出精度を向上できる。
本実施形態に係る分光光度計の概略構成を示す図である。 図1の分光光度計の動作を示す図である。 実施例1(暗電流補正及び温度制御)の結果を示すグラフである。 実施例2(暗電流補正)の結果を示すグラフである。 比較例1(暗電流の補正なし及び温度制御なし)の結果を示すグラフである。 従来例の結果を示すグラフである。 本実施形態におけるプローブを示す三面図であり、(a)は平面図、(b)は側面図、(c)は底面図であり、(d)は(b)に対応する変形例を示す。 本実施形態の条件Aを説明する図である。 本実施形態の条件Bを説明する図である。 図7のプローブにおける測定光の通過経路を模式的に示す図であり、(a),(b),(c)は、図7の(a),(b),(c)に対応する図である。 本実施形態における円筒状のプローブを示す三面図であり、(a)は平面図、(b)は側面図、(c)は底面図である。 実施例3の結果を示すグラフである。
以下、添付図面に示す実施形態に基づいてこの発明を詳細に説明する。
本実施形態に係る赤外分光光度計(以下、単に分光光度計)1は、図1に示すように、光源2と、光源2から出射された光(光源出射光EL)が光検出プローブ10を通過して光路切替器30まで導かれる導光体3と、導光体3から分岐される導光体4と、導光体4の分岐部分に設けられる光分離器(図示の黒丸)と、導光体3上に設けられる光検出プローブ10と、を備えている。
また、分光光度計1は、導光体3の末端及び導光体4の末端が接続される光路切替器30と、導光体7を介して光路切替器30と接続される光検出器6と、光路切替器30と光検出器6の間に設けられる分光器5と、光路切替器30、光検出器6及び分光器5を覆い外部から遮光する暗箱8と、を備えている。
また、分光光度計1は、光検出器6から取得した電気信号を処理するとともに、処理の結果を表示する制御装置40を備えている。
分光光度計1は、二光路方式であってかつ単一検出器タイプの光度計でありながら、特徴的な光路切替器30を用いることにより、暗電流の補正を実現する。
以下、分光光度計1の各要素について順に説明する。
[光源2]
光源2は、光源出射光ELを生成し、かつ、導光体3を介して光検出プローブ10に向けて出射する。光源2としては、特に限定されるものではなく、ハロゲンタングステンランプ、その他の公知の光源を用いることができる。
[導光体3]
導光体3は、先端が光源2に接続され、また、末端が光路切替器30に接続される光ファイバにより構成されており、光源2から出射された光源出射光ELを光分離器まで、光分離器を通過した光検出プローブ入射光ILを光検出プローブ10まで、光検出プローブ10を通過した光検出プローブ出射光DLを光路切替器30まで導く。
[光検出プローブ10]
光検出プローブ10は、導光体3を導かれてきた光検出プローブ入射光ILが入射されてから出射されるまでの通過過程で反射と屈折を繰り返す。光検出プローブ10を通過した光検出プローブ出射光DLは、導光体3を通って、光路切替器30に入射される。なお、本実施形態による光検出プローブ10は、液状の測定対象に浸漬して使用されるものであるが、より具体的な構成例は後述する。
[導光体4]
導光体4は、光源2から出射された光源出射光ELの一部が光分離器により分離された参照光RLを光路切替器30まで導く。導光体4も光ファイバにより構成される。光分離器には、入射光を透過と反射の二つの分離した光に分けるビームスプリッタを用いることができる。
[光路切替器30]
光路切替器30は、光検出プローブ出射光DLを光検出器6に向けて通過させる測定光モード(第1モード)M1と、参照光RLを光検出器6に向けて通過させる参照光モード(第2モード)M2と、光検出プローブ出射光DL及び参照光RLのいずれの通過を阻止する暗電流モード(第3モード)M3とを、選択的に切り替える機能を実現する。なお、この三つのモードM1〜M3を、光路切替器30の動作モードと総称することがある。
光路切替器30は、この機能を実現するために、以下の構成を備える。ただし、以下の構成はあくまで一例であり、本発明において、上述した機能を有する限り、構成は問われない。
光路切替器30は、導光体3の末端が接続され、光検出プローブ出射光DLを受光する測定光ポート31と、導光体4の末端が接続され、参照光RLを受光する参照光ポート32と、暗電流測定ポート33と、を備える。
光路切替器30は、出力ポート37を備える(図2参照)。測定光モードM1が選択されると、光検出プローブ出射光DLが出力ポート37から光検出器6に向けて出射され、参照光モードM2が選択されると、参照光RLが出力ポート37から光検出器6に向けて出射される。暗電流モードM3が選択されると、出力ポート37から光検出器6に向けて光は出射されない。
光路切替器30は、選択スイッチ35を備える。選択スイッチ35は、測定光ポート31、参照光ポート32及び暗電流測定ポート33と出力ポート37との間に設けられ、測定光ポート31、参照光ポート32及び暗電流測定ポート33のいずれか一つのポートと出力ポート37とを選択的に繋ぐ。光路切替器30において、図2に示すように、測定光ポート31と出力ポート37が繋がれると測定光モードM1が選択され、参照光ポート32と出力ポート37が繋がれると参照光モードM2が選択され、暗電流測定ポート33と出力ポート37が繋がれると暗電流測定モードM3が選択される。
分光光度計1は、測定光モードM1が選択されると、導光体3、測定光ポート31及び選択スイッチ35からなる第1光路OP1が確立され、参照光モードM2が選択されると、導光体4、参照光ポート32及び選択スイッチ35からなる第2光路OP2が確立され、暗電流測定モードM3が選択されると、暗電流測定ポート33及び選択スイッチ35からなる第3光路OP3が確立される。
実際の光路切替器30では、クロストーク(例えば、測定光ポート31を選択している時に、参照光ポート32から漏れる光が混入するような現象)がノイズになる恐れがある。したがって、選択されていない測定光ポート31又は参照光ポート32からの光が、選択スイッチ35の選択により確立される他の光路(第1光路OP1〜第3光路OP3)に混入しないように、光路切替器30を構成することが必要である。
[分光器5]
分光器5は、出力ポート37から出射される光を受光するとともに、波長別に分けて所望の波長λを有する光を取り出す。この光は、光検出器6に向けて出射される。
分光器5は、特に限定されるものではなく、回折格子分光器、FTIR分光器、その他の公知の分光器を用いることができる。
[光検出器6]
光検出器6は、分光器5で分光された光を受光して光電変換する。光電変換して得られる電気的な信号(出力強度信号)は、制御装置40に向けて出力される。
光検出器6は、特に限定されるものではなく、フォトダイオード、アバランシェ・フォトダイオード、光電子倍増管、その他の公知の光検出器を用いることができる。
[暗箱8]
暗箱8は、内部を外部光から遮蔽するとともに、内部の温度を制御できるように構成されている。温度制御の手段は任意であり、例えば公知慣用のペルチェ素子、通風ファン、内部温度計とで構成し、PID(Proportional-Integral - Differential)方式により温度を制御することができる。
温度制御の具体的な範囲としては、±1℃、好ましくは±0.5℃、特に好ましくは±0.1℃とする。このように温度制御することにより、検出精度を向上することができる。
[制御装置40]
制御装置40は、第1機能41と第2機能45の少なくとも二つの機能を備えている。ここでは、第1機能41は、選択スイッチ35の動作を制御することで光路切替器30の動作モードを切り替える。例えば、制御装置40は、測定光ポート31と出力ポート37を繋ぐ測定光モードM1を時間tだけ継続し、次いで、参照光ポート32と出力ポート37を繋ぐ参照光モードM2を時間tだけ継続し、次いで、暗電流測定ポート33と出力ポート37を繋ぐ暗電流測定モードM3を時間tだけ継続する。制御装置40は、下記のように、この手順を測定の期間に亘って繰り返す。
M1×t → M2×t→ M3×t → M1×t→ M2×t→ M3×t → M1×t …
第2機能45は、光検出器6から取得する出力強度信号に基づいて、透過率、吸収率及び吸光度の少なくとも一つを算出する。算出に当たり、出力強度信号は、図示を省略するA/D変換器によりデジタル電圧値に変換される。
出力強度信号は、測定光モードM1に対応する測定信号S1と、参照光モードM2に対応する参照信号S2、及び、暗電流測定モードM3に対応する暗電流信号S3に区分される。第2機能45は、測定信号S1、参照信号S2、及び、暗電流信号S3を用い、以下の式に基づいて、透過率、吸収率及び吸光度を算出する。なお、式(1)〜(3)を参照すれば判るように、透過率、吸収率及び吸光度は、等価な評価指標といえる。
透過率=(測定信号S1−暗電流信号S3)÷(参照信号S2−暗電流信号S3) …(1)
吸収率=1−{(測定信号S1−暗電流信号S3)÷(参照信号S2−暗電流信号S3)) …(2)
吸光度=−log{(測定信号S1−暗電流信号S3)÷(参照信号S2−暗電流信号S3))…(3)
上記式(1)〜(3)に適用される測定信号S1、参照信号S2及び暗電流信号S3は、n回の測定で得られた測定値の平均値とすることができる。測定誤差を排除するためである。
例えば、測定信号S1、参照信号S2及び暗電流信号S3について、最初(1回目)に測定された値をS11、S21及びS31とし、次(2回目)に測定された値をS12、S22及びS32とし、以後、N回目に測定された値をS1N、S2N及びS3Nとし、n=5とする。そうすると、n=5における測定信号S1、参照信号S2及び暗電流信号S3は、以下の式(4)〜(6)の通りである。n=6以降についても同様である。
S1=(S11+S12+S13+S14+S15)/5 …(4)
S2=(S21+S22+S23+S24+S25)/5 …(5)
S3=(S31+S32+S33+S34+S35)/5 …(6)
第2機能45は、以上のようにして得られた透過率等を画像情報として逐次表示する。制御装置40は、この画像情報を表示する表示装置(図示を省略)を備える。
制御装置40は、特に限定されるものではなく、第1機能41と第2機能45(演算に関わる部分)については、パーソナルコンピュータ(PC)を用いることができ、また、第2機能45(画像表示に関わる部分)については、PCに付随する液晶表示装置などのディスプレイを用いることができる。
[用途の例示]
本実施形態の分光光度計1は、例えば、合成樹脂の反応基の濃度変化を測定するのに用いることができる。
ポリウレタン、ポリエステルなどの合成樹脂を作製する過程で、反応の進行程度を把握するために、測定対象である反応液が含む反応基(例えば、−NCO,−OH,−COOH)の濃度の変化をインラインで正確に測定することが求められる。この濃度変化の測定に、分光光度計1は有効である。
この場合、光検出プローブ10は、液浸プローブとして位置付けられる。ここで、物質を分析・測定する手法の一つとして、ATR法(全反射減衰法:Attenuated Total Reflection)があり、このATR法を適用した液浸プローブも知られている。本実施形態は、ATR法を適用した液浸プローブとして好適な光検出プローブ10を提案する。この光検出プローブ10は、光ファイバによる導光が容易である近赤外領域の光検出プローブ出射光DL(光源出射光EL)を用い、かつ、当該光検出プローブ出射光DLに対する吸収係数の小さい物質であっても、物質の状態を正確に特定できる。
なお、ATR法による分析の要旨は、概略以下の通りである。屈折率の大きいATR素子(典型的には結晶)に測定対象を密着させ、測定光の入射角を臨界角よりも大きくとり、測定対象とATR物質の間で全反射が起きるように設定する。全反射が生じるとき、測定対象とATR素子の界面で光は測定対象の側に少しだけもぐりこんでから反射されてくる。この反射光はエバネッセント(evanescent)光と称される。測定対象において測定光を吸収する領域では、吸収の強さに応じて測定対象固有の波長における反射光のエネルギーが減少する。この反射光のスペクトルを測定することにより物質の分析・測定をすることができる。
ATR法において、吸収係数の小さい物質を測定対象とする場合には、反射回数をできるだけ多くすることにより、測定光がプローブに入射してから出射されるまでの間に測定対象に吸収される合計の光量を増やすことが望まれる。そこで、光検出プローブ10は、これまでに比べて格段に多い反射回数を得るために、周方向に連なる側面を反射面とし、当該反射面に測定光を連続的に反射させる。
[光検出プローブ10]
光検出プローブ10は、図7に示すように、プローブ本体11と、プローブ本体11に一体的に設けられる入射面19及び出射面21とを備えている。なお、図7(b)は、入射面19が設けられる側と出射面21が設けられる側を組み合わせている。
[プローブ本体11]
プローブ本体11は、軸対称の一形態である円柱状をなしており、外周面13と、対称軸yの方向に対向する一方の端面(第1端面)15及び他方の端面(第2端面)17を備えている。ここで、外周面13は、プローブ本体11をその周囲と区画する面であるが、光検出プローブ10においては、プローブ本体11の内部を進む光をその内側で反射する面として機能する。したがって、光の反射に係る事項については、外周面13を反射面13と称することがある。
プローブ本体11は、高い屈折率を有し、光を照射することにより全反射が生じうる素材を広く適用することができる。例えば、石英ガラス、サファイア、立方晶ジルコニア(cubic-ZrO)、セレン化亜鉛(ZnSe)、硫化亜鉛(ZnS)、ダイアモンドなどが該当する。この中では、コストをも考慮すると、屈折率が高く、被検体に対して不活性であることから、立方晶ジルコニア又はサファイアが好ましい。
[入射面19]
入射面19は、プローブ本体11の第1端面15に設けられており、光検出プローブ10を備える液浸プローブにより、測定対象に測定光として赤外光を照射する際に、光検出プローブ入射光ILをプローブ本体11に入射させる面である。
入射面19は、その法線Nが反射面13に対して以下の2つの条件A,Bを満たすように形成されている。この2つの条件A,Bは、光検出プローブ10に入射した測定光が、反射面13で複数回の反射を繰り返すことで、第2端面17に向けて、螺旋状の通過経路を辿るために必要である。入射面19の法線Nは、測定光の光軸を代替している。
なお、実際の光検出プローブ入射光ILは、例えば光ファイバなどにより導入される、一定の強度分布を有する光束であり、エバネッセント光の存在下で、この光束が光検出プローブ10の反射面13により螺旋状の通過経路を辿ることになるが、以下の説明においては、簡単のため、光の入射・反射などは単純なモデルで説明する。
条件Aは、入射面19の法線Nが、図8(a)に示すように、対称軸yに直交する基準断面xの半径rの80%以上、100%未満の領域に存在することを規定する。この条件Aは、反射面13において、光検出プローブ入射光ILがより多く反射するために要求される。つまり、図8(b)と図8(c)を比較すると判るように、光検出プローブ入射光ILがより外周面(反射面)13の近くに入射される方が、反射面13により反射される回数が多くなる。
本実施形態の入射面19は、条件Aに従って、第1端面15の外周面13に連なって設けられている。このように、入射面19をプローブ本体11の最外周に設けることで、反射面13で反射される回数を増やすことができる。
次に、条件Bは、入射面19の法線Nが、基準断面xとなす角度θNSが45度以下であることを規定する。この条件Bは、光検出プローブ入射光ILが螺旋状の通過経路を辿るために要求される。
つまり、図9(a)に示すように、法線Nが基準断面xと平行、つまり角度θNSが0度だとすれば、光検出プローブ入射光ILは反射面13で向きが反対の反射光となるので、理論上は、光検出プローブ入射光ILは同一の基準断面xの範囲内で反射を繰り返すことになる。
図9(a)の状態を脱して光検出プローブ入射光ILが螺旋状の通過経路を辿るためには、角度θNSが0度を超えればよい。ただし、この角度θNSが図9(b)に示すように大きすぎると、通過経路における螺旋のピッチが大きくなるので、反射の回数を増やす上で不利である。そこで、図9(c)に示すように、角度θNSを45度以下にすることが好ましい。反射の回数は、角度θNSが小さいほど多くなるので、角度θNSは30度以下がより好ましく、15度以下がさらに好ましい。
次に、入射面19は、第1端面15に窪み20を形成することで設けられる。つまり、もともとは平坦な第1端面15の一部を切削することで、窪み20を形成し、窪み20の形成に伴って形成される壁面を入射面19とする。なお、この壁面(入射面19)は平面状に形成されている。また、入射光の干渉を低減できる範囲であれば、入射光の強度を確保する点から、この窪み20を第1端面15に平面視同一回転方向の複数個所に設けても構わない。
接合面における反射や屈折による光検出プローブ入射光ILの損失を低減する観点からは、突出部分を含めてプローブ本体11は一体的に形成されていることが好ましいが、上記の切削加工によれば、簡便に一体的に形成することができるので好適である。
入射面19は、図7(d)に示すように、平坦な第1端面15の一部を突出させて形成することもできる。この場合は、プローブ本体11の製作にあたって、突出部分とプローブ本体11の要部とを個別に作製しておいて接合する方法が考えられるが、この場合においても、接合面における反射や屈折による光検出プローブ入射光ILの損失を低減する観点からは、突出部分を含めてプローブ本体11は一体的に形成されていることが好ましい。
この一体的構造を実現するにあたっては、突出部分を考慮した寸法にプローブ本体11を形成した後に突出部分以外の部分を切削により除去すればよい。
このように、1つの入射面19を形成する場合には、窪み20を切削加工するほうが(図7(b)参照)、突出部分以外の部分を切削加工するよりも(図7(d)参照)、工数や材料費の観点から好適であるが、複数個の入射面を形成する場合には、工数や材料費の観点からは、いずれの方法も採用することができる。このことは、出射面21についても同様である。
[出射面21]
出射面21は、入射面19から入射した後の光検出プローブ入射光ILが、反射面13で複数回の反射を繰り返して螺旋状の通過経路を辿った後に、外部に取り出すために設けられている。したがって、出射面21は、通過経路に対応する位置に設けられることになる。出射面21も、入射面19と同様に、窪み22に設けられている。
本実施形態の出射面21は、第2端面17であって、対称軸yを挟んで、反対側に設けられている。したがって、出射面21は、入射面19と同様に、前述した条件A、条件Bを備えている。ただし、これは好ましい形態であって、基本的には、螺旋状の通過経路に対応する位置であれば機能する。
これは、上述したように、光検出プローブ入射光ILは一定の強度分布を有する光束であることから、この光束が螺旋状の経路を通過することにより、必ず出射面21から出射されることになるからである。
したがって、図7(b)における第1端面15の入射面19に対して、同図の第2端面17の位置に出射面21を設けてもよいし、図7(d)における第1端面15の入射面19に対して、同図の第2端面17の位置に出射面21を設けてもよい。
また、出射面21は入射面19の場合と同様に複数個所に設けることもでき、出射光の強度を確保する観点からは、複数個所設けることも好ましい。
[反射形態]
さて、以上説明した光検出プローブ10は、図10に示すように、光検出プローブ入射光ILが入射面19からプローブ本体11の内部に入射されると、反射面13で全反射を繰り返しながら、第1端面15の側から第2端面17の側に向けて、螺旋状の通過経路Pを辿り、出射面21から外部に向けて出射される。なお、光検出プローブ10の反射面13は、その一部が測定対象に接していれば良いが、螺旋状の通過経路Pの全てを有効活用する観点からは、光検出プローブ10を測定対象内に浸漬させて、反射面13の全周に亘り測定対象に接していることが好ましい。
[素子本体の形状変更例]
以上説明したように、光検出プローブ10によれば、光検出プローブ入射光ILが周方向に連なる反射面13を連続的に反射され、かつ、その反射が軸方向にも連続するので、光検出プローブ入射光ILの反射回数を著しく多くすることができる。
光検出プローブ10は、円柱のプローブ本体11を用いているが、その横断面は多角形、例えば、六角形であってもよい。
また、プローブ本体11は、径が軸方向yに亘って一定である必要はなく、例えば、第1端面15から第2端面17に向けて径を縮小してもよい。さらに、径が縮小し、また径が拡大するというパターンを連続的に繰り返すこともできる。
さらに、以上説明したプローブ本体11は、中実な円柱からなるが、図11に示すように、中空を有する円筒からプローブ本体311を構成することができる。円筒状のプローブ本体311は、図11に示すように、外周面113だけでなく、内周面213も反射面になり得るので、外周面13だけが反射面になるプローブ本体11に比べて、反射回数を倍増させることもできる。
光検出プローブ10の中において、光検出プローブ入射光ILは、反射面13で反射する回数が多いために、測定対象に対する固有の波長が吸収される程度が顕著となる。加えて光検出プローブ10は、光検出プローブ10の外周面13に接する測定対象を測定するものであるから、周囲に気泡が発生したとしても測定誤差が生ずるおそれが小さい。したがって、光検出プローブ10を用いる分光光度計1は、高い精度の測定が可能になる。
[実施例]
以下、実施例を用いて本発明をより具体的に説明する。
(実施例1)
分光光度計1の効果を確認する実験(ドリフトテスト)を行った。分光光度計1の各要素には、以下の機器を用いた。
光源2:ハロゲンタングステンランプ Ocean Optics社 「HL−2000」
光検出器6:APD検出器 AUREA社 「SPD−A−M1」
分光器5:回折格子分光器 HORIBA社「microHR」,600線/mm
光検出プローブ10:シングルパス透過プローブ Ocean Optics社
光路切替器30: mol 1×4 LEONI社
温度制御環境:18±0.05℃
実験の条件としては、分光器5の出力波長を任意位置(1400nm)に固定し、光検出プローブ10は大気に露出させたままで、連続100時間にわたり、測定信号S1 (C.P.S: Counts Per Second)、参照信号S2(C.P.S)及び暗電流信号S3(C.P.S)の各出力を測定し、透過率を上述した式(1)により算出した。その結果を図3(a)に示すとともに、温度制御の履歴を図3(b)に示す。
(実施例2)
測定の温度環境を25±3℃とした以外は、実施例1と同じ条件で、透過率を上述した式(1)により算出した。その結果を図4に示す。
(比較例1)
暗電流測定モードM3を採用せずに、測定光モードM1と参照光モードM2を交互に切替える以外は、実施例2と同じ条件で、透過率を算出した。その結果を図5に示す。
(従来例)
市販されているA社製、B社製及びC社製の分光光度計(FTNIR)を用いて透過率を連続的に測定するドリフトテストを行った。各社の分光光度計はいずれも二光路方式のものであるが、A社、B社は単一検出器タイプであるのに対して、C社は二検出器タイプである。
実験の条件としては、温度制御を伴わない室温環境下において、分光器の出力波長を1200nmとし、実施例1,2と同じく光検出プローブは大気中に露出させた状態とし、測定時間を最長で連続48時間とした。また、いずれのプローブも、10mmのギャップを有する透過式のものを用いた。
結果を図6に示す。
実施例1,2、比較例1を対比することにより、暗電流の補正を行う本実施形態によると、短周期変動、長周期変動が小さく、透過率等の検出精度を格段に向上できることがわかる。これは、実施例1,2と従来例との比較においても同様である。
また、実施例1と実施例2を比較すれば、狭い幅で温度制御を行うことにより、検出精度を向上できることがわかる。
(実施例3)
図7に示した光検出プローブ10を用いて実験を行った(窪み20、22は各1つ)。光検出プローブ10の製作条件は以下の通りである。また、測定条件は、実施例1の分光光度計1を用い、分光器5の選択波長を1nm刻みで1100nmから1700nmの範囲に亘って変更させた。ただし、測定光モードM1だけを用いた。結果を図12に示す。
また、分光光度計を構成した条件は以下の通りである。
[光検出プローブ10(図7)の制作条件]
材質:サファイア
形状:円柱(直径20mm、測定対象に浸漬する有効長60mm)
角度θNS:2.5度(推定螺旋ピッチ1.75mm)
測定光入射半径位置:0.915r(反射経路は推定12角形状)
推定反射回数:411回
図12に示される吸光度スペクトルには、約1160nmにメチル基、及び約1680nmにベンゼン環と、それぞれに由来すると推定されるピークが存在する。図示は省略するが、本スペクトルを繰り返し測定した時の再現性は高いことから、実施例3に関わる分光光度計を用いてベンゼン環やメチル基を有する種々の物質スペクトルの考察を深めることで、将来的にはこれらのピークから、本実施形態による光検出プローブ10の周囲にトルエンが存在することを断定できるようになることが予測される。
以上、本発明の好適な実施形態を説明したが、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
例えば、本実施形態は分光器5を用いた分光光度計1について説明したが、光源が単一波長の光源出射光ELを出射するものであれば、分光器を用いるのを省くことができる。
また、分光光度計1の測定対象は任意であるが、反応基(例えば、−NCO,−OH,−COOH)を含む、合成樹脂の製造過程の反応液を測定対象にすると、反応の進行程度を正確に把握することができる。したがって、有機・無機を問わず、合成樹脂製品、液晶製品、顔料製品など、製造過程で合成反応を有するものであれば、その合成反応過程をモニタリングすることにより、所望とされる最終製品の製造を好適に行うことができ、化学品、医薬品、粉体工業品、食品等、各分野の製造に係わるプロセス管理のみならず、業種別では、化学、ポリウレタン、ポリエステル、エポキシ、反応性ホットメルトに代表される各種樹脂並びにプラスチック、試験・分析・測定、医薬品・バイオ、教育・研究機関等の幅広い利用が可能である。
1 分光光度計
2 光源
3,4,7 導光体
5 分光器
6 光検出器
8 暗箱
10 光検出プローブ
11,311 プローブ本体
13,113 外周面
15 第1端面
17 第2端面
19 入射面
21 出射面
20,22 窪み
30 光路切替器
31 測定光ポート
32 参照光ポート
33 暗電流測定ポート
35 選択スイッチ
37 出力ポート
40 制御装置(制御部)
41 第1機能
45 第2機能
OP1 第1光路
OP2 第2光路
OP3 第3光路

Claims (18)

  1. 光源とビームスプリッタと光ファイバと光検出プローブと光路切替器と光検出器とを備え、
    前記光源は、光源出射光(EL)を出射し、
    前記光源出射光(EL)から前記ビームスプリッタにより分岐された光検出プローブ入射光(IL)が前記光検出プローブに入射される、光度計であって、
    前記光ファイバは、前記光源出射光(EL)を前記光検出プローブ入射光(IL)として前記光検出プローブに導き、前記光検出プローブを通過した光検出プローブ出射光(DL)を前記光路切替器まで導く第1光路OP1と、
    前記光源出射光(EL)から前記ビームスプリッタにより分岐された参照光(RL)を前記光路切替器まで導く第2光路OP2とを確立し、
    前記光路切替器は、
    前記光検出プローブ出射光(DL)と、前記参照光(RL)と、を受光するとともに、
    前記光検出プローブ出射光(DL)を通過させる測定光モードと、
    前記参照光(RL)を通過させる参照光モードと、
    前記光検出プローブ出射光(DL)及び前記参照光(RL)の両者の通過を阻止する暗電流モードと、を選択的に切り替え、
    前記光検出器は、
    選択的に切り替えられる前記測定光モード、前記参照光モード及び前記暗電流モードのいずれかに対応した電気信号を出力するとともに、
    前記測定光モード、前記参照光モード及び前記暗電流モードのいずれにおいても、前記電気信号の出力が単一の前記光検出器により行われるとともに、
    少なくとも前記光路切替器及び前記光検出器は、±3℃の範囲内の温度制御環境下に置 かれる、
    ことを特徴とする光度計。
  2. 前記測定光モード、前記参照光モード及び前記暗電流モードの切り替えを自動的に制御する制御部を備える、
    請求項1に記載の光度計。
  3. 前記光検出プローブは、ATR型のプローブである、
    請求項1又は請求項2に記載の光度計。
  4. 前記光検出プローブは、
    軸対称な立体からなり、周方向に連なる反射面を有するプローブ本体と、
    前記プローブ本体に前記光検出プローブ入射光(IL)を入射させる入射部と、
    前記入射部から入射され、前記プローブ本体の前記反射面で反射される前記光検出プローブ入射光(IL)が外部に出射される出射部と、を備え、
    前記入射部から入射した前記光検出プローブ入射光(IL)が、前記反射面で反射を繰り返しながら、螺旋状の通過経路を辿り、前記出射部から前記光路切替器に向けて出射される、
    請求項に記載の光度計。
  5. 前記入射部は、
    前記プローブ本体の対称軸に直交する基準断面(x)において、前記対称軸から前記基 準断面の外周までの距離の80%以上、100%未満の位置にあり、
    前記入射部の法線が前記基準断面となす角度が、0度を超え、45度以下である、
    請求項4に記載の光度計。
  6. 少なくとも前記光路切替器及び前記光検出器は、±1℃の範囲内の温度制御環境下に置かれる、
    請求項1〜請求項5のいずれか一項に記載の光度計。
  7. 前記光度計は制御部をさらに備え、
    前記制御部は、前記光検出器から取得した前記電気信号を処理するとともに、前記処理の結果を表示させる、
    請求項1〜請求項6のいずれか一項に記載の光度計。
  8. 前記光度計は、前記光路切替器の出力ポートと前記光検出器との間に設けられる分光器をさらに備える、
    請求項7に記載の光度計。
  9. 前記光検出器は、前記分光器で分光された光を受光して光電変換し、前記光電変換して得られる前記電気信号を、前記制御部に出力する、
    請求項8に記載の光度計。
  10. 前記光検出プローブは液浸プローブである、
    請求項4または5に記載の光度計。
  11. 前記光路切替器は、前記測定光モードと、前記参照光モードと、前記暗電流モードとを選択的に切り替える選択スイッチを備える、
    請求項1〜請求項10のいずれか一項に記載の光度計。
  12. 前記光路切替器は、
    出力ポートと、
    前記光検出プローブ出射光(DL)を受光して前記光ファイバ(3)とともに前記第1光路OP1を確立する測定光ポートと、
    前記参照光(RL)を受光して前記光ファイバ(4)とともに前記第2光路OP2を確立する参照光ポートと、
    前記光ファイバ(3,4)が非接続であり、前記光検出プローブ出射光(DL)及び前記参照光(RL)の両者を受光しない暗電流測定ポートと、
    を備え、
    前記選択スイッチは、前記測定光ポート、前記参照光ポート、前記暗電流測定ポートのいずれか一つのポートと前記出力ポートとを選択的に繋ぐ、
    請求項11に記載の光度計。
  13. 前記プローブ本体は、円柱状の形態を有している、
    請求項5に記載の光度計。
  14. 前記プローブ本体は、サファイアからなる、
    請求項5または13に記載の光度計
  15. 前記液浸プローブは、反応基の濃度変化を測定する、
    請求項10に記載の光度計。
  16. 前記光度計は、赤外分光光度計であり、
    前記光検出プローブ出射光(DL)は、近赤外領域の光である、
    請求項1〜請求項15のいずれか一項に記載の光度計。
  17. 前記光度計は暗箱をさらに備え、
    前記暗箱が、少なくとも前記光路切替器と前記光検出器とを覆い外部から遮光する、
    請求項1又は請求項6に記載の光度計。
  18. 請求項1〜請求項17のいずれか一項に記載の前記光度計を用いて、前記光度計の測定 対象の合成反応過程をモニタリングする方法。
JP2015519114A 2014-02-20 2014-11-12 光度計、および合成反応過程のモニタリング方法 Expired - Fee Related JP5861855B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015519114A JP5861855B1 (ja) 2014-02-20 2014-11-12 光度計、および合成反応過程のモニタリング方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014030274 2014-02-20
JP2014030274 2014-02-20
JP2015519114A JP5861855B1 (ja) 2014-02-20 2014-11-12 光度計、および合成反応過程のモニタリング方法
PCT/JP2014/005685 WO2015125192A1 (ja) 2014-02-20 2014-11-12 光度計

Publications (2)

Publication Number Publication Date
JP5861855B1 true JP5861855B1 (ja) 2016-02-16
JPWO2015125192A1 JPWO2015125192A1 (ja) 2017-03-30

Family

ID=53877733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015519114A Expired - Fee Related JP5861855B1 (ja) 2014-02-20 2014-11-12 光度計、および合成反応過程のモニタリング方法

Country Status (2)

Country Link
JP (1) JP5861855B1 (ja)
WO (1) WO2015125192A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139036A (ja) * 1982-02-15 1983-08-18 Japan Spectroscopic Co 分光光度計
JPS622138A (ja) * 1985-06-25 1987-01-08 ザ ダウ ケミカル カンパニ− 流体媒質の光吸収を測定する方法と装置
JPH07174696A (ja) * 1993-12-17 1995-07-14 Chubu Electric Power Co Inc 塩分検知装置
JPH08145879A (ja) * 1994-11-25 1996-06-07 Kdk Corp 過酸化水素の定量方法及びその装置
JP2000330042A (ja) * 1999-05-18 2000-11-30 Shuukou Denki Kk 光路切替装置
JP2001116687A (ja) * 1999-10-18 2001-04-27 Rikogaku Shinkokai 化学変化モニター方法および装置
JP2006105796A (ja) * 2004-10-06 2006-04-20 Yamaguchi Prefecture 光分岐回路及びセンサ
JP2009063538A (ja) * 2007-09-10 2009-03-26 Univ Soka 界面活性剤濃度測定装置及び界面活性剤濃度測定方法
JP2009243886A (ja) * 2008-03-28 2009-10-22 Horiba Ltd 光分析装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318921A (ja) * 1997-05-15 1998-12-04 Dainippon Screen Mfg Co Ltd 流体濃度測定装置
JP2001264165A (ja) * 2000-03-17 2001-09-26 Hitachi Ltd 分光光度計および測定方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139036A (ja) * 1982-02-15 1983-08-18 Japan Spectroscopic Co 分光光度計
JPS622138A (ja) * 1985-06-25 1987-01-08 ザ ダウ ケミカル カンパニ− 流体媒質の光吸収を測定する方法と装置
JPH07174696A (ja) * 1993-12-17 1995-07-14 Chubu Electric Power Co Inc 塩分検知装置
JPH08145879A (ja) * 1994-11-25 1996-06-07 Kdk Corp 過酸化水素の定量方法及びその装置
JP2000330042A (ja) * 1999-05-18 2000-11-30 Shuukou Denki Kk 光路切替装置
JP2001116687A (ja) * 1999-10-18 2001-04-27 Rikogaku Shinkokai 化学変化モニター方法および装置
JP2006105796A (ja) * 2004-10-06 2006-04-20 Yamaguchi Prefecture 光分岐回路及びセンサ
JP2009063538A (ja) * 2007-09-10 2009-03-26 Univ Soka 界面活性剤濃度測定装置及び界面活性剤濃度測定方法
JP2009243886A (ja) * 2008-03-28 2009-10-22 Horiba Ltd 光分析装置

Also Published As

Publication number Publication date
JPWO2015125192A1 (ja) 2017-03-30
WO2015125192A1 (ja) 2015-08-27

Similar Documents

Publication Publication Date Title
CA2866106C (en) Methods for optically determining a characteristic of a substance
AU2013252833B2 (en) Methods for optically determining a characteristic of a substance
AU2013252841B2 (en) Methods for optically determining a characteristic of a substance
AU2013252816B2 (en) Methods for optically determining a characteristic of a substance
CA2865927C (en) Devices for optically determining a characteristic of a substance
CA2865065C (en) Methods and devices for optically determining a characteristic of a substance
CA2868841C (en) Imaging systems for optical computing devices
US20130286398A1 (en) Imaging Systems for Optical Computing Devices
US8760640B2 (en) Optical system
JP5839641B2 (ja) Atr素子、液浸プローブ、及び、分光光度計
CN111103247A (zh) 一种紫外可见分光光度计
KR100970244B1 (ko) 적분구 탑재형 분광 광도계
US20230400405A1 (en) Compact high resolution monochromatic light source for fluid sample concentration measurement
JP5861855B1 (ja) 光度計、および合成反応過程のモニタリング方法
US9976950B2 (en) Optical detector module, measurement system and method of detecting presence of a substance in a test material
US7158240B2 (en) Measurement device and method
JP6010009B2 (ja) Atr素子、及び、液浸プローブ
CN110132414B (zh) 双通道宽波段棱镜式连续光谱测量仪及其测量方法
Liu Fiber-Optic Probes
CN111366533A (zh) 一种全光谱微型光纤光谱仪
Saito et al. Fast-response gas analyzer by the use of an infrared hollow fibre
HU227140B1 (en) Method and apparatus for determining the absorbtion of weakly absorbing and/or scattering samples
JP2012026748A (ja) 分光用計測プローブ及び分光計測システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150415

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150514

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20150513

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151208

R151 Written notification of patent or utility model registration

Ref document number: 5861855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees