JPWO2015052893A1 - Atr素子、液浸プローブ、及び、分光光度計 - Google Patents
Atr素子、液浸プローブ、及び、分光光度計 Download PDFInfo
- Publication number
- JPWO2015052893A1 JPWO2015052893A1 JP2015514263A JP2015514263A JPWO2015052893A1 JP WO2015052893 A1 JPWO2015052893 A1 JP WO2015052893A1 JP 2015514263 A JP2015514263 A JP 2015514263A JP 2015514263 A JP2015514263 A JP 2015514263A JP WO2015052893 A1 JPWO2015052893 A1 JP WO2015052893A1
- Authority
- JP
- Japan
- Prior art keywords
- incident
- measurement light
- atr
- light
- element body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000523 sample Substances 0.000 title claims description 43
- 238000007654 immersion Methods 0.000 title claims description 30
- 238000005259 measurement Methods 0.000 claims abstract description 119
- 239000007787 solid Substances 0.000 claims description 6
- 239000000126 substance Substances 0.000 abstract description 21
- 238000010521 absorption reaction Methods 0.000 abstract description 10
- 239000013307 optical fiber Substances 0.000 description 19
- 238000006243 chemical reaction Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 230000002093 peripheral effect Effects 0.000 description 13
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 7
- 229920003002 synthetic resin Polymers 0.000 description 7
- 239000000057 synthetic resin Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- 238000000862 absorption spectrum Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000012295 chemical reaction liquid Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 239000012943 hotmelt Substances 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- 239000005083 Zinc sulfide Substances 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000010987 cubic zirconia Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000005102 attenuated total reflection Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000037237 body shape Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3577—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/359—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
- G01N21/552—Attenuated total reflection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
- G01N21/8507—Probe photometers, i.e. with optical measuring part dipped into fluid sample
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/061—Sources
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
反応基の濃度を正確に測定することを念頭に置くと、例えば2500nm以上の波長域の測定光を用いることが推奨されるが、この波長域の光は光ファイバにおける減衰が大きくなるために、実用化が困難である。一方、波長が1000〜2000nmの近赤外線領域の光は、光ファイバにおける減衰が小さく、光ファイバによる導光の問題はない。しかし、近赤外線領域の光は、反応基における吸収係数が極端に小さいために、反応基の濃度測定を正確に行なうことは困難である。
本発明は、以上の技術的課題に基づいてなされたもので、光ファイバによる導光が容易である近赤外領域の測定光を用い、かつ、当該測定光に対する吸収係数の小さい物質であっても、物質の状態を正確に特定できるATR素子を提供することを目的とする。
ATR法を適用したプローブは、反射回数が1回の単反射型のものに加えて、反射回数が複数回の多重反射型のものが知られている。ところが、これまで知られている台形状の多重反射型プローブのATR素子は、反射回数が20回程度であるために、本発明が志向する測定対象には未だ不十分である。
本発明のATR素子は、この知見に基づくものであり、軸対称な立体からなり、周方向に連なる反射面を有する素子本体と、素子本体に測定光を入射させる入射部と、入射部から入射され、素子本体の反射面で反射される測定光が外部に出射される出射部と、を備え、入射部から入射した測定光が、反射面で反射を繰り返しながら、螺旋状の通過経路を辿り、出射部から外部に向けて出射されることを特徴とする。
条件Aは、専ら、測定光が反射する回数を稼ぐために要求される。
条件Bは、専ら、測定光が螺旋状の通過経路を辿るために要求される。
円柱状の素子本体は、反射面が円弧面になり、この反射面は対称軸からの距離が一定である。
また、ATR素子が円筒状をなしていれば、外周面に加えて内周面を反射面とすることができるので、測定光の反射回数を増やすのに有効である。
入射部及び出射部を窪みに形成する方が、素子本体の端面を突出させて形成するよりも容易だからである。
つまり、この液浸プローブは、軸対称な立体からなり、周方向に連なる反射面を有する素子本体と、素子本体に測定光を入射させる入射部と、入射部から入射され、素子本体の反射面で反射される測定光が外部に出射される出射部と、を備えるATR素子と、光源から出射される測定光を入射部に導く第1導光手段と、出射部から出射される測定光を所定の部位まで導く第2導光手段と、を備え、ATR素子が以上説明した本発明のATR素子からなることを特徴とする。
本発明の液浸プローブは、用いるATR素子の反射面における測定光の反射回数を稼ぐことができ、しかもエバネッセント光をも有効的に活用することができるので、測定光に対する吸収係数の小さい物質であっても、物質の状態を正確に測定するのに寄与する。
つまり、この分光光度計は、測定光を出射する光源と、液浸プローブを経た測定光を分光して検出する光度計本体と、を備え、液浸プローブが以上説明した本発明の液浸プローブからなることを特徴とする。
本発明の分光光度計は、液浸プローブを構成するATR素子の反射面における測定光の反射回数を稼ぐことができるので、測定光に対する吸収係数の小さい物質であっても、物質の状態を正確に測定できる。
本実施形態にかかるATR素子10は、図1に示すように、素子本体11と、素子本体11に一体的に設けられる入射面19及び出射面21とを備えている。なお、図1(b)は、入射面19が設けられる側と出射面21が設けられる側を組み合わせている。
[素子本体11]
素子本体11は、軸対称の一形態である円柱状をなしており、外周面13と、対称軸yの方向に対向する一方の端面(第1端面)15及び他方の端面(第2端面)17を備えている。ここで、外周面13は、素子本体11をその周囲と区画する面であるが、ATR素子10においては、素子本体11の内部を進む光をその内側で反射する面として機能する。したがって、光の反射に係る事項については、外周面13を反射面13と称することがある。
入射面19は、素子本体11の第1端面15に設けられており、ATR素子10を備える液浸プローブにより、測定対象に測定光として赤外光を照射する際に、測定光を素子本体11に入射させる面である。
入射面19は、その法線Nが反射面13に対して以下の2つの条件A,Bを満たすように形成されている。この2つの条件A,Bは、ATR素子10に入射した測定光が、反射面13で複数回の反射を繰り返すことで、第2端面17に向けて、螺旋状の通過経路を辿るために必要である。入射面19の法線Nは、測定光の光軸を代替している。
なお、実際の測定光DLは、例えば光ファイバーなどにより導入される、一定の強度分布を有する光束であり、エバネッセント光の存在下で、この光束がATR素子10の反射面13により螺旋状の通過経路を辿ることになるが、以下の説明においては、簡単のため、光の入射・反射などは単純なモデルで説明する。
本実施形態の入射面19は、条件Aに従って、第1端面15の外周面13に連なって設けられている。このように、入射面19を素子本体11の最外周に設けることで、反射面13で反射される回数を増やすことができる。
つまり、図3(a)に示すように、法線Nが基準断面xと平行、つまり角度θNSが0度だとすれば、測定光DLは反射面13で向きが反対の反射光となるので、理論上は、測定光DLは同一の基準断面xの範囲内で反射を繰り返すことになる。
図3(a)の状態を脱して測定光DLが螺旋状の通過経路を辿るためには、角度θNSが0度を超えればよい。ただし、この角度θNSが図3(b)に示すように大きすぎると、通過経路における螺旋のピッチが大きくなるので、反射の回数を増やす上で不利である。そこで、図3(c)に示すように、角度θNSを45度以下にすることが好ましい。反射の回数は、角度θNSが小さいほど多くなるので、角度θNSは30度以下がより好ましく、15度以下がさらに好ましい。
接合面における反射や屈折による測定光DLの損失を低減する観点からは、突出部分を含めて素子本体11は一体的に形成されていることが好ましいが、上記の切削加工によれば、簡便に一体的に形成することができるので好適である。
入射面19は、図1(d)に示すように、平坦な第1端面15の一部を突出させて形成することもできる。この場合は、素子本体11の製作にあたって、突出部分と素子本体11の要部とを個別に作製しておいて接合する方法が考えられるが、この場合においても、接合面における反射や屈折による測定光DLの損失を低減する観点からは、突出部分を含めて素子本体11は一体的に形成されていることが好ましい。
この一体的構造を実現するにあたっては、突出部分を考慮した寸法に素子本体11を形成した後に突出部分以外の部分を切削により除去すればよい。
このように、1つの入射面19を形成する場合には、窪み20を切削加工するほうが(図1(b)参照)、突出部分以外の部分を切削加工するよりも(図1(d)参照)、工数や材料費の観点から好適であるが、複数個の入射面を形成する場合には、工数や材料費の観点からは、いずれの方法も採用することができる。このことは、出射面21についても同様である。
出射面21は、入射面19から入射した測定光DLが、反射面13で複数回の反射を繰り返して螺旋状の通過経路を辿った後に、外部に取り出すために設けられている。したがって、出射面21は、通過経路に対応する位置に設けられることになる。出射面21も、入射面19と同様に、窪み22に設けられている。
本実施形態の出射面21は、第2端面17であって、対称軸yを挟んで、反対側に設けられている。したがって、出射面21は、入射面19と同様に、前述した条件A、条件Bを備えている。ただし、これは好ましい形態であって、基本的には、螺旋状の通過経路に対応する位置であれば機能する。
これは、上述したように、測定光DLは一定の強度分布を有する光束であることから、この光束が螺旋状の経路を通過することにより、必ず出射面21から出射されることになるからである。
したがって、図1(b)における第1端面15の入射面19に対して、同図の第2端面17の位置に出射面21を設けてもよいし、図1(d)における第1端面15の入射面19に対して、同図の第2端面17の位置に出射面21を設けてもよい。さらに、図9における第1端面15の入射面19に対して、同図の第2端面17の位置に出射面21を設けてもよい。
また、出射面21は入射面19の場合と同様に複数個所に設けることもでき、出射光の強度を確保する観点からは、複数個所設けることも好ましい。
さて、以上説明したATR素子10は、図4に示すように、測定光DLが入射面19から素子本体11の内部に入射されると、反射面13で全反射を繰り返しながら、第1端面15の側から第2端面17の側に向けて、螺旋状の通過経路Pを辿り、出射面21から外部に向けて出射される。なお、ATR素子10の反射面13は、その一部が測定対象に接していれば良いが、螺旋状の通過経路Pの全てを有効活用する観点からは、ATR素子10を測定対象内に浸漬させて、反射面13の全周に亘り測定対象に接していることが好ましい。
以上説明したように、ATR素子10によれば、測定光DLが周方向に連なる反射面13を連続的に反射され、かつ、その反射が軸方向にも連続するので、測定光DLの反射回数を著しく多くすることができる。
また、以上説明した素子本体11は、径が軸方向yに亘って一定である必要はなく、図6に示すように、例えば、第1端面15から第2端面17に向けて径が縮小された素子本体211にしてもよい。さらに、径が縮小し、また径が拡大するというパターンを連続的に繰り返すこともできる。
さらに、以上説明した素子本体11は、中実な円柱からなるが、図7に示すように、中空を有する円筒から素子本体311を構成することができる。円筒状の素子本体311は、図7に示すように、外周面113だけでなく、内周面213も反射面になり得るので、外周面13だけが反射面になる素子本体11に比べて、反射回数を倍増させることもできる。
素子本体111,211,311についても、条件A,条件Bを備えることが好ましいが、横断面が六角形の素子本体111の場合、図2の半径rに対応するのは、図5に示すように、対称軸yから各辺の中点までの距離とすればよい。
この場合、六角形の一辺が素子本体111の反射面と考えることができ、この反射面で連続的に反射されて螺旋状の通過経路を辿ることになる。
なお、素子本体111、211、311についても、各形態の反射面(素子本体の側面)において、一定条件下で、エバネッセント光が存在することになる。
次に、ATR素子10を用いたFourier Transform Infrared Spectroscopy分光光度計1について、図8及び図9を参照して説明する。
分光光度計1は、図8に示すように、ATR素子10を備えるATRプローブ30と、光源3と、分光器5と、光検出器7と、データ処理・表示装置9と、を備えている。光源3とATRプローブ30の間、ATRプローブ30と分光器5の間、分光器5と光検出器7の間、光検出器7とデータ処理・表示装置9の間は、光ファイバにより接続されている。なお、図8では光ファイバの引き出し位置は簡略化して示しているが、実際は図9に示されている通りである。図10も同様である。
測定光DLを、ATR素子10の入射面19に入射させる前に、コリメートレンズ4を通過させることによって平行化することが、入射面19における拡散損失を低減するのに有効である。
また、測定光DLを入射面19に入射させる際には、入射面19に対して垂直にすることが、入射面19における反射損失を低減するのに有効である。
さらに、出射面21から出射される測定光DLが光ファイバ37に入射される前に、集光レンズ6を通過させることによって集光することが、信号光損失を低減するのに有効である。
光検出器7は、分光器5で分光された光を受光して検出する。光検出器7としては、特に限定されるものではなく、フォトダイオード、アバランシェ・フォトダイオード、光電子倍増管、その他の公知の光検出器を用いることができる。
データ処理・表示装置9は、光検出器7から受光した赤外光に基づいてスペクトル情報を生成するとともに、生成されたスペクトル情報を画像情報として表示する。データ処理・表示装置9については、特に限定されるものではなく、データ処理部分については、パーソナルコンピュータを用いることができ、また、表示部分については、パーソナルコンピュータに付随する表示装置を用いることができる。
第1ホルダ31は、第1端面15の側を保持するとともに、入射面19に照射する測定光DLを光源3から導く光ファイバ35を固定する。また、第2ホルダ33は、第2端面17の側を保持するとともに、出射面21から出射される測定光DLを受光するとともに、分光器5に導く光ファイバ37を固定する。
第1ホルダ31とATR素子10の間、及び、第2ホルダ31とATR素子10の間に、それぞれ、Oリング39を設けることにより外部から気密に封止して、保持部分の内部へ測定対象が侵入するのを防止する。
なお、図9に示すように、本発明は、プリズム23を用いて測定光DLを屈折させて入射面19に入射させること、また、出射面21から出射した測定光DLをプリズム23により屈折させることを許容する。プリズム23を用いることにより、光ファイバ35を対称軸yに平行に引き回すことができる。出射面21についても同様である。
この過程において、ATR素子10の中では、測定光DLは、反射面13で反射する回数が多いために、測定対象Sに対する固有の波長が吸収される程度が顕著となる。加えてATRプローブ30は、ATR素子10の外周面13に接する測定対象Sを測定するものであるから、気泡の存在による測定誤差が生ずるおそれが小さい。したがって、ATR素子10を用いる分光光度計1は、高い精度の測定が可能になる。
分光光度計1の測定対象Sは任意であるが、反応基(例えば、−NCO,−OH,−COOH)を含む、合成樹脂の製造過程の反応液を測定対象Sにすると、反応の進行程度を正確に把握することができる。
したがって、有機・無機を問わず、合成樹脂製品、液晶製品、顔料製品など、製造過程で合成反応を有するものであれば、その合成反応過程をモニタリングすることにより、所望とされる最終製品の製造を好適に行うことができ、化学品、医薬品、粉体工業品、食品等、各分野の製造に係わるプロセス管理のみならず、業種別では、化学、ポリウレタン、ポリエステル、エポキシ、反応性ホットメルトに代表される各種樹脂並びにプラスチック、試験・分析・測定、医薬品・バイオ、教育・研究機関等の幅広い利用が可能である。
以下、本発明を実施例を用いてより詳細に説明する。
(実施例1)
本実施形態に従うATR素子10の効果を確認する実験、特にATR素子10の周囲に意図的に気泡を生じさせる実験を行った。
実験に用いたATR素子(図1(a)、(b)、(c)参照、窪み20、22は各1つ)の製作条件は以下の通りである。
材質:サファイア
形状:円柱(直径20mm、測定対象Sに浸漬する有効長60mm)
角度θNS:2.5度(推定螺旋ピッチ1.75mm)
測定光入射半径位置:0.915r(反射経路は推定12角形状)
推定反射回数:411回
また、分光光度計を構成した条件は以下の通りである。
光源:ハロゲンタングステンランプ Ocean Optics社製「HL−2000」
分光器:回折格子分光器 HORIBA社製「microHR」,600線/mm
光検出器:APD検出器 AUREA社製 「SPD−A−M1」
実験は、測定を開始して所定の時間が経過してから気泡を吹き付ける、というものである(図10参照)。なお、測定対象Sはトルエンを用い、分光器5の分光波長は1400nmである。
(比較例1)
実施例1と同様にして、測定対象Sが充填される空隙部Tを有する透過型プローブ(Hellma社製の「IN237P10」)130についても行った。
結果を図11に示すが、比較例1は気泡の吹き付けを開始してから、測定結果が大きくぶれているのに対して、本実施形態に従う実施例1は、気泡の吹付の前後で測定結果に差異はないことが確認された。すなわち、本実施形態においては、気泡の有無により測定結果に影響がないことが分かる。
実施例1のATR素子10を測定対象Sであるトルエン中に浸漬させ、吸光度スペクトルを測定した(図10参照)。
測定条件は、実施例1の分光光度計を用い、分光器の選択波長を1nm刻みで1100nmから1700nmの範囲に亘って行った。
(比較例2)
Hellma社製のATR素子「661.820−NIR」を用いた点を除けば、実施例2と同様にして、吸光度スペクトルを測定した。
測定結果を図12に示す。
実施例2の吸光度スペクトルには、約1160nmにメチル基、及び約1680nmにベンゼン環と、それぞれに由来すると推定されるピークが存在する。図示は省略するが、本スペクトルを繰り返し測定した時の再現性は高いことから、本発明の分光光度計を用いてベンゼン環やメチル基を有する種々の物質スペクトルの考察を深めることで、将来的にはこれらのピークから、本実施形態によるATR素子10の周囲にトルエンが存在することを断定できるようになることが予測される。
これに対し、比較例2の吸光度スペクトルでは、何らのピークも認めることができず、ATR素子「661.820−NIR」の周囲にトルエンの存在を示す根拠を把握できなかった。
例えば、素子本体11は第1端面15及び第2端面17が対称軸yに対して直交するが、本発明はこれに限定されず、対称軸yに対して傾斜していてもよい。また、素子本体11は第1端面15と第2端面17が互いに平行をなしているが、本発明はこれに限定されず、例えば、互いに向きが逆に傾斜していてもよい。
3 光源
4 コリメートレンズ
5 分光器(光度計本体)
6 集光レンズ
7 光検出器(光度計本体)
9 データ処理・表示装置
10 ATR素子
11 素子本体
13 外周面,反射面
15 第1端面
17 第2端面
19 入射面
21 出射面
20,22 窪み
23 プリズム
30 ATRプローブ
31 第1ホルダ
33 第2ホルダ
35,37 光ファイバ
39 Oリング
111,211,311 素子本体
113 外周面,反射面
213 内周面
DL 測定光
N 法線
T 空隙部
P 通過経路
本発明のATR素子は、この知見に基づくものであり、軸対称な立体からなり、周方向に連なる反射面を有する素子本体と、素子本体に測定光を入射させる入射部と、入射部から入射され、素子本体の反射面で反射される測定光が外部に出射される出射部と、を備える。この素子本体は、円柱状の形態を有している。測定光は、波長が1000〜2000nmの近赤外線領域の光であり、入射部から入射した測定光が、反射面で反射を繰り返しながら、螺旋状の通過経路を辿り、出射部から外部に向けて出射される。なお、円柱状の素子本体は、反射面が円弧面になり、この反射面は対称軸からの距離が一定である。
本発明の液浸プローブは、用いるATR素子の反射面における測定光の反射回数を稼ぐことができ、しかもエバネッセント光をも有効的に活用することができるので、測定光に対する吸収係数の小さい物質であっても、物質の状態を正確に測定するのに寄与する。
Claims (9)
- 軸対称な立体からなり、周方向に連なる反射面を有する素子本体と、
前記素子本体に測定光を入射させる入射部と、
前記入射部から入射され、前記素子本体の前記反射面で反射される前記測定光が外部に出射される出射部と、を備え、
前記入射部から入射した前記測定光が、前記反射面で反射を繰り返しながら、螺旋状の通過経路を辿り、前記出射部から外部に向けて出射される、
ことを特徴とするATR素子。 - 前記入射部は、
前記素子本体の対称軸に直交する基準断面(x)において、前記対称軸から前記基準断面の外周までの距離の80%以上、100%未満の位置にあり、
前記入射部の法線が前記基準断面となす角度が、0度を超え、45度以下である、
請求項1に記載のATR素子。 - 前記素子本体は、
円柱状、または、円筒状の形態を有している、
請求項1又は請求項2に記載のATR素子。 - 前記素子本体は、軸方向に対向する第1端面と前記第1端面に対向する第2端面を備え、
前記入射部は、前記第1端面に窪みを形成することで設けられ、
前記出射部は、前記第2端面に窪みを形成することで設けられ、
請求項1〜請求項3のいずれか一項に記載のATR素子。 - 前記入射部は、前記第1端面の外周に連なって形成され、
前記出射部は、前記第2端面の外周に連なって形成される、
請求項4に記載のATR素子。 - 請求項1〜5のいずれか一項に記載のATR素子と、
光源から出射される前記測定光を前記入射部に導く第1導光手段と、
前記出射部から出射される前記測定光を所定の部位まで導く第2導光手段と、を備える
ことを特徴とする液浸プローブ。 - 請求項6に記載の液浸プローブと、
測定光を出射する光源と、前記液浸プローブを経た前記測定光を分光して検出する光度計本体と、を備える、
ことを特徴とする分光光度計。 - 軸対称な立体からなり、周方向に連なる反射面を有する素子本体と、
前記素子本体に測定光を入射させる入射部と、
前記入射部から入射され、前記素子本体の前記側面で反射される前記測定光が外部に出射される出射部と、を備え、
前記入射部は、
前記素子本体の対称軸に直交する基準断面において、前記対称軸から前記基準断面の外周までの距離の80%以上、100%未満の位置にあり、
前記入射部の法線が前記基準断面となす角度が、0度を超え、45度以下である、
ことを特徴とするATR素子。 - 前記測定光は、波長が1000〜2000nmの近赤外線領域の光である、請求項1又は請求項8に記載のATR素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015514263A JP5839641B2 (ja) | 2013-10-11 | 2014-09-30 | Atr素子、液浸プローブ、及び、分光光度計 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013213415 | 2013-10-11 | ||
JP2013213415 | 2013-10-11 | ||
PCT/JP2014/004989 WO2015052893A1 (ja) | 2013-10-11 | 2014-09-30 | Atr素子、液浸プローブ、及び、分光光度計 |
JP2015514263A JP5839641B2 (ja) | 2013-10-11 | 2014-09-30 | Atr素子、液浸プローブ、及び、分光光度計 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5839641B2 JP5839641B2 (ja) | 2016-01-06 |
JPWO2015052893A1 true JPWO2015052893A1 (ja) | 2017-03-09 |
Family
ID=52812729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015514263A Expired - Fee Related JP5839641B2 (ja) | 2013-10-11 | 2014-09-30 | Atr素子、液浸プローブ、及び、分光光度計 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20160299063A1 (ja) |
JP (1) | JP5839641B2 (ja) |
DE (1) | DE112014004680B4 (ja) |
WO (1) | WO2015052893A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6010009B2 (ja) * | 2013-10-11 | 2016-10-19 | Dic株式会社 | Atr素子、及び、液浸プローブ |
DE102015122995A1 (de) | 2015-12-30 | 2017-07-06 | Blue Ocean Nova AG | Vorrichtung zur Analyse von einem sich in einem Produktraum befindenden zu analysierenden Gut |
DE102016008886B4 (de) * | 2016-07-20 | 2020-09-17 | Spectrolytic GmbH | ATR-Spektrometer |
CN107132196B (zh) * | 2016-11-15 | 2020-11-10 | 惠州市长润发涂料有限公司 | 一种红外光谱法测定聚氨酯中-nco含量的方法 |
CN107463946B (zh) * | 2017-07-12 | 2020-06-23 | 浙江大学 | 一种结合模板匹配与深度学习的商品种类检测方法 |
WO2024011021A1 (en) * | 2022-07-08 | 2024-01-11 | Daylight Solutions, Inc. | Test cell assembly including attenuated total reflector |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS622138A (ja) * | 1985-06-25 | 1987-01-08 | ザ ダウ ケミカル カンパニ− | 流体媒質の光吸収を測定する方法と装置 |
JPH0337552A (ja) * | 1989-07-03 | 1991-02-18 | Kubota Corp | 多重内部反射式の成分分析法及びその装置 |
JPH07174696A (ja) * | 1993-12-17 | 1995-07-14 | Chubu Electric Power Co Inc | 塩分検知装置 |
JPH08145879A (ja) * | 1994-11-25 | 1996-06-07 | Kdk Corp | 過酸化水素の定量方法及びその装置 |
JPH1010040A (ja) * | 1996-06-21 | 1998-01-16 | Nippon Soken Inc | ガス分析装置用ガスセル |
JPH11118704A (ja) * | 1997-10-08 | 1999-04-30 | Nikon Corp | 耐久性検査装置及びパルス光照射装置 |
JP2001116687A (ja) * | 1999-10-18 | 2001-04-27 | Rikogaku Shinkokai | 化学変化モニター方法および装置 |
JP2006105796A (ja) * | 2004-10-06 | 2006-04-20 | Yamaguchi Prefecture | 光分岐回路及びセンサ |
JP2009063538A (ja) * | 2007-09-10 | 2009-03-26 | Univ Soka | 界面活性剤濃度測定装置及び界面活性剤濃度測定方法 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3669545A (en) * | 1971-05-06 | 1972-06-13 | Wilks Scientific Corp | Apparatus and method for analysis by attenuated total reflection |
US4988195A (en) * | 1989-02-17 | 1991-01-29 | Axiom Analytical, Inc. | Internal reflectance apparatus and method using cylindrical elements |
US5051551A (en) * | 1989-05-18 | 1991-09-24 | Axiom Analytical, Inc. | Immersion probe for infrared internal reflectance spectroscopy |
US5170056A (en) * | 1991-02-28 | 1992-12-08 | Galileo Electro-Optics Corporation | Optical fiber coupled devices for remote spectroscopy in the infrared |
GB9108974D0 (en) * | 1991-04-26 | 1991-06-12 | Nat Res Dev | Optical probe heads |
US5436454A (en) * | 1993-10-15 | 1995-07-25 | Nicolet Instrument Corporation | Optical probe for remote attenuated total reflectance measurements |
US5459316A (en) * | 1994-01-31 | 1995-10-17 | Axiom Analytical, Inc. | Immersion probe for infrared internal reflectance spectroscopy |
DE69525226T2 (de) * | 1994-11-25 | 2002-06-27 | Kyoto Daiichi Kagaku Co. Ltd., Kyoto | Vorrichtung und Verfahren zur Bestimmung von Wasserstoffperoxid |
US5739537A (en) * | 1995-12-21 | 1998-04-14 | Perstorp Analytical, Inc. | NIR absorbance measuring instrument with ATR probe |
US5838403A (en) * | 1996-02-14 | 1998-11-17 | Physical Optics Corporation | Liquid crystal display system with internally reflecting waveguide for backlighting and non-Lambertian diffusing |
US6496636B1 (en) * | 1997-06-13 | 2002-12-17 | Mark Stephen Braiman | Support planar and tapered quasi-planar germanium waveguides for infrared evanescent-wave sensing |
DE19856591C2 (de) * | 1998-12-08 | 2001-03-08 | Basf Ag | Vorrichtung zur spektroskopischen Analyse eines fluiden Mediums mittels abgeschwächter Reflexion |
AU1583300A (en) * | 1998-12-11 | 2000-07-03 | Abraham Katzir | Forming transparent crystalline elements by cold working and using them in infrared systems |
US7384581B2 (en) * | 1998-12-11 | 2008-06-10 | Abraham Katzir | Forming transparent crystalline elements by cold working |
DE60143254D1 (de) * | 2000-02-07 | 2010-11-25 | Panasonic Corp | Vorrichtung zur messung biologischer informationen mit einer sonde zur aufnahme biologischer informationen |
US6420708B2 (en) * | 2000-03-10 | 2002-07-16 | Wilks Enterprise, Inc. | Spectroscopy analyzer using a detector array |
ATE278181T1 (de) * | 2001-02-23 | 2004-10-15 | Ericsson Telefon Ab L M | Monochromatoranordnung |
JP2004530123A (ja) * | 2001-03-27 | 2004-09-30 | ユーロ−セルティーク,エス.エイ. | Atrクリスタル装置 |
AU2003244399A1 (en) * | 2002-02-01 | 2003-09-02 | Samuel W. Bross | Method and apparatus for cleaning with electromagnetic radiation |
EP1478913B1 (en) * | 2002-02-25 | 2016-12-07 | Waters Technologies Corporation | Light-guiding vessel or tube made of an amorphous fluoropolymer with a black dopant |
US7812312B2 (en) * | 2002-04-03 | 2010-10-12 | Johann Wolfgang Goethe-Universitaet | Infrared measuring device, especially for the spectrometry of aqueous systems, preferably multiple component systems |
FR2870598B1 (fr) * | 2004-05-18 | 2006-07-14 | Total France Sa | Sonde de mesure de la lumiere dans un liquide, sonde de detection du seuil de floculation d'un milieu colloidal, procede de detection associe et application a la determination de la floculation des asphaltenes |
US20050279354A1 (en) * | 2004-06-21 | 2005-12-22 | Harvey Deutsch | Structures and Methods for the Joint Delivery of Fluids and Light |
ATE494544T1 (de) * | 2007-06-13 | 2011-01-15 | Mettler Toledo Ag | Atr-sensor |
DE102010006161B3 (de) * | 2010-01-21 | 2011-01-13 | Technische Universität Dresden | Verfahren und Vorrichtung zur Bestimmung des Geschlechtes von befruchteten und nicht bebrüteten Vogeleiern |
WO2014138660A1 (en) * | 2013-03-08 | 2014-09-12 | Bruker Nano, Inc. | Method and apparatus of physical property measurement using a probe-based nano-localized light source |
-
2014
- 2014-09-30 WO PCT/JP2014/004989 patent/WO2015052893A1/ja active Application Filing
- 2014-09-30 DE DE112014004680.9T patent/DE112014004680B4/de active Active
- 2014-09-30 JP JP2015514263A patent/JP5839641B2/ja not_active Expired - Fee Related
- 2014-09-30 US US15/028,553 patent/US20160299063A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS622138A (ja) * | 1985-06-25 | 1987-01-08 | ザ ダウ ケミカル カンパニ− | 流体媒質の光吸収を測定する方法と装置 |
JPH0337552A (ja) * | 1989-07-03 | 1991-02-18 | Kubota Corp | 多重内部反射式の成分分析法及びその装置 |
JPH07174696A (ja) * | 1993-12-17 | 1995-07-14 | Chubu Electric Power Co Inc | 塩分検知装置 |
JPH08145879A (ja) * | 1994-11-25 | 1996-06-07 | Kdk Corp | 過酸化水素の定量方法及びその装置 |
JPH1010040A (ja) * | 1996-06-21 | 1998-01-16 | Nippon Soken Inc | ガス分析装置用ガスセル |
JPH11118704A (ja) * | 1997-10-08 | 1999-04-30 | Nikon Corp | 耐久性検査装置及びパルス光照射装置 |
JP2001116687A (ja) * | 1999-10-18 | 2001-04-27 | Rikogaku Shinkokai | 化学変化モニター方法および装置 |
JP2006105796A (ja) * | 2004-10-06 | 2006-04-20 | Yamaguchi Prefecture | 光分岐回路及びセンサ |
JP2009063538A (ja) * | 2007-09-10 | 2009-03-26 | Univ Soka | 界面活性剤濃度測定装置及び界面活性剤濃度測定方法 |
Also Published As
Publication number | Publication date |
---|---|
DE112014004680T5 (de) | 2016-06-30 |
US20160299063A1 (en) | 2016-10-13 |
WO2015052893A1 (ja) | 2015-04-16 |
DE112014004680B4 (de) | 2021-05-12 |
JP5839641B2 (ja) | 2016-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5839641B2 (ja) | Atr素子、液浸プローブ、及び、分光光度計 | |
US9194794B2 (en) | Optical absorption spectroscopy | |
US9784620B2 (en) | Spectroscopy systems and methods using quantum cascade laser arrays with lenses | |
US20100007876A1 (en) | Hollow-core waveguide-based raman systems and methods | |
US20100320363A1 (en) | Optical sensor for measuring emission light from an analyte | |
US20170328836A1 (en) | System and method for molecule sensing using evanescent light coupling approach | |
US8059273B2 (en) | Micro spectrometer for parallel light and method of use | |
US20100315635A1 (en) | Device and method for measuring static and dynamic scattered light in small volumes | |
JP6217674B2 (ja) | 透過プローブ、光学装置および液浸透過測定方法 | |
JP2008116314A (ja) | 微少量液体測定装置 | |
EP3492909B1 (en) | Chemical sensing device using fluorescent sensing material | |
US8592768B1 (en) | Angularly partitioned evanescent wave absorption sensor | |
US7459697B2 (en) | Fluorescence measuring equipment | |
JP6010009B2 (ja) | Atr素子、及び、液浸プローブ | |
JP2014238333A (ja) | 液浸プローブ及び赤外分光光度計 | |
Walsh et al. | Midinfrared fiber sensor for the in situ detection of chlorinated hydrocarbons | |
Korotcenkov et al. | Optical and fiber optic chemical sensors | |
JP5861855B1 (ja) | 光度計、および合成反応過程のモニタリング方法 | |
Thompson | Cavity‐Enhanced Spectroscopy in Condensed Phases: Recent Literature and Remaining Challenges | |
Ray et al. | Exciting fluorescence compounds on an optical fiber’s side surface with a liquid core waveguide | |
Kraft | Vibrational spectroscopic sensors fundamentals, instrumentation and applications | |
JP2014115268A (ja) | 分光分析装置 | |
JP6332790B2 (ja) | 光ファイバセンサ装置及びその製造方法 | |
Dakin et al. | Optical fibre chemical sensing using direct spectroscopy | |
TWI557408B (zh) | 玻璃毛細管結構及其加工方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151106 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5839641 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151117 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |