WO2015051966A1 - INJEKTORVORRICHTUNG ZUM AUFBLASEN ODER EINBLASEN VON SAUERSTOFFREICHEN GASEN IN EINEM METALLURGISCHEN AGGREGAT ODER SCHMELZGEFÄß UND ELEKTROLICHTBOGENOFEN - Google Patents

INJEKTORVORRICHTUNG ZUM AUFBLASEN ODER EINBLASEN VON SAUERSTOFFREICHEN GASEN IN EINEM METALLURGISCHEN AGGREGAT ODER SCHMELZGEFÄß UND ELEKTROLICHTBOGENOFEN Download PDF

Info

Publication number
WO2015051966A1
WO2015051966A1 PCT/EP2014/069306 EP2014069306W WO2015051966A1 WO 2015051966 A1 WO2015051966 A1 WO 2015051966A1 EP 2014069306 W EP2014069306 W EP 2014069306W WO 2015051966 A1 WO2015051966 A1 WO 2015051966A1
Authority
WO
WIPO (PCT)
Prior art keywords
injector
injector device
head part
nozzle head
nozzle
Prior art date
Application number
PCT/EP2014/069306
Other languages
English (en)
French (fr)
Inventor
Stefan Buess
Original Assignee
Sms Siemag Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sms Siemag Ag filed Critical Sms Siemag Ag
Priority to KR1020167007356A priority Critical patent/KR101803762B1/ko
Priority to ES14766951.9T priority patent/ES2659283T3/es
Priority to RU2016116941A priority patent/RU2633130C1/ru
Priority to US15/026,320 priority patent/US9453680B2/en
Priority to CN201480055823.2A priority patent/CN105612262B/zh
Priority to EP14766951.9A priority patent/EP3055435B1/de
Publication of WO2015051966A1 publication Critical patent/WO2015051966A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5211Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
    • C21C5/5217Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace equipped with burners or devices for injecting gas, i.e. oxygen, or pulverulent materials into the furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/08Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces heated electrically, with or without any other source of heat
    • F27B3/085Arc furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/22Arrangements of air or gas supply devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/22Arrangements of air or gas supply devices
    • F27B3/225Oxygen blowing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/18Charging particulate material using a fluid carrier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/16Tuyéres
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • F27D2003/162Introducing a fluid jet or current into the charge the fluid being an oxidant or a fuel
    • F27D2003/163Introducing a fluid jet or current into the charge the fluid being an oxidant or a fuel the fluid being an oxidant
    • F27D2003/164Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • F27D2003/162Introducing a fluid jet or current into the charge the fluid being an oxidant or a fuel
    • F27D2003/165Introducing a fluid jet or current into the charge the fluid being an oxidant or a fuel the fluid being a fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • F27D2003/168Introducing a fluid jet or current into the charge through a lance
    • F27D2003/169Construction of the lance, e.g. lances for injecting particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system
    • F27D2099/0021Arc heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • F27D2099/0043Impulse burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • F27D2099/0053Burner fed with preheated gases
    • F27D2099/0055Fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • F27D2099/0053Burner fed with preheated gases
    • F27D2099/0056Oxidant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • Injector device for inflating or injecting oxygen-rich gases in a metallurgical aggregate or crucible and electric arc furnace
  • the invention relates to an injector for pyrometallurgical treatment of metals, molten metals and / or slags in a metallurgical unit or melting vessel, in particular an electric arc furnace, with an injector for generating a high velocity gas jet from an oxygen gas jet and an ignited fuel gas-air mixture jet, wherein the injector a Laval nozzle element arranged in a nozzle head part for generating the oxygen gas jet, and in which the fuel gas-air mixture is mixable by means of a mixing element for mixing fuel gas and air.
  • the invention also relates to an electric arc furnace.
  • WO 2012/089754 A2 describes a process for the pyrometallurgical treatment of metals, molten metals and / or slags in a metallurgical aggregate or melting vessel and a corresponding injector device for carrying out the process.
  • the injector device is characterized in particular by an oxygen injector, on which a hot gas nozzle is flanged with an ignition device obliquely to its central axis.
  • the ignition device is seated with a mixer for mixing natural gas and air at an end of the hot gas nozzle facing away from the oxygen injector.
  • the mixer also carries the spark plugs to ignite the natural gas-air mixture.
  • the ignited natural gas-air mixture is introduced by means of the H exertgasstutzens side into the oxygen injector, wherein the ignited natural gas-air mixture through the accelerated from a Lavaldüse the oxygen injector oxygen gas jet is accelerated.
  • this injector device is so large and expensive that it involves disadvantages in production and maintenance.
  • the individual components are also still welded together.
  • known injector devices are massive and therefore costly to produce.
  • the invention has for its object to further develop generic injector devices, so that at least the above-mentioned disadvantages can be overcome.
  • the object of the invention is achieved by an injector device for the pyrometallurgical treatment of metals, molten metals and / or slags in a metallurgical aggregate or melting vessel with an injector device for producing a high-velocity gas jet from an oxygen gas jet and an ignited fuel gas-air mixture jet, in which the injector device In a nozzle head part arranged Laval nozzle element for generating the oxygen gas jet comprises, and wherein the fuel gas and air mixture is mixable by means of a mixer element for mixing fuel gas and air, according to the invention, the Laval nozzle element and the mixer element are arranged together along the central longitudinal axis of the injector from each other detachably one behind the other ,
  • the Laval nozzle element and the mixer element are detachable from each other and successively on the central longitudinal axis of the injector arranged in the metallurgical unit or crucible injector, whereby in particular the Laval nozzle element is quickly exchanged.
  • This is advantageous because the Laval nozzle element a Wear part is.
  • the injector can be easily adapted to different processes, as will be explained below.
  • the present injector device is extremely compact and small, which can be achieved in total significant savings in terms of the installed material.
  • the Laval nozzle element along a longitudinal axis of an oxygen injector and the mixer element along another longitudinal axis of an ignition device were arranged, these two longitudinal axes are arranged at an angle to each other, whereby the initially cited, known from the prior art injector generally builds very large.
  • the ignition element comprising the mixer element is flanged there laterally by means of a hot gas stub at the housing of the injector device, whereby the injector device disadvantageously has a relatively large installation dimension.
  • the Laval nozzle element and the mixer element in the present case are no longer spaced from each other by at least the hot gas nozzle, whereby an injector so far builds very large overall, but the Laval nozzle element and the mixer element are directly behind each other and are in this case directly connected.
  • the present injector device can be provided even more advantageously if the Laval nozzle element and the mixer element are made by machining turned components, which are directly connected to each other in a positive and / or positive fit.
  • an injector device which can be assembled and dismantled quickly can be realized.
  • the structure of the present injector device can be further simplified if the Laval nozzle element and the mixer element within and / or arranged on the nozzle head part, that between the nozzle head part and the Laval nozzle element, an annular gap is formed, in which a fuel gas channel and an air channel of the mixer element open. This can be dispensed with a separately flanged laterally on the injector laterally hot gas nozzle.
  • a first supply channel of the mixer element is arranged in the mixer element in such a way that it opens axially into the annular gap with respect to the central longitudinal axis.
  • a second supply channel of the mixer element is preferably arranged in the mixer element such that it opens radially into the annular gap with respect to the central longitudinal axis.
  • the mixer element has a collar-like flange at its end facing away from the Laval nozzle element, by means of which the mixer element can be fastened to the nozzle head part.
  • the annular gap is adjustable as a function of an axial distance between the Laval nozzle element and the mixer element.
  • the cross section of the annular gap can be influenced at least in regions as a function of the axial distance Laval nozzle element / mixer element, the injector device for different processes of a metallurgical unit or a melting vessel can be additionally easily adjusted.
  • this axial distance can be changed when the axial distance between the Laval nozzle element and the mixer element by means different spacers is adjustable.
  • these spacer discs can be pushed onto a shoulder of the Laval nozzle element and supported against a shoulder of the Laval nozzle element.
  • the mixing element can then be arranged or fastened to the Laval nozzle element only with a mounting path which is reduced by the thickness of the pushed spacer washer.
  • a plurality of spacer discs may be provided.
  • the Laval nozzle element can be easily replaced in particular by the simple construction of the injector. This is particularly advantageous because the Laval nozzle element is a consumable part of the injector.
  • the Laval nozzle element and the mixer element can be connected to each other in different ways, for example by a positive connection or the like.
  • the Laval nozzle element has an external thread by means of which the Laval nozzle element can be screwed into an internal thread of the mixer element. In this way, the Laval nozzle element can be fastened in a unique manner to the mixer element, whereby in particular assembly errors can be prevented.
  • the external thread and the internal thread corresponding therewith can each be a known pipe thread, whereby the production can be further simplified.
  • the structure of the injector device can be further simplified if the Laval nozzle element and the mixer element are arranged concentrically within and / or on the nozzle head part.
  • the Laval nozzle element is arranged centered by means of the mixer element about the central longitudinal axis.
  • the injector device comprises the nozzle head part.
  • the present injector device can be structurally further simplified if the nozzle head part, in which at least the Laval nozzle element is arranged for forming the annular gap, an injector holding device, which is preferably designed as at least partially made of copper Injektorbox assigned.
  • Injector holding device for holding the injector inside the metallurgical unit or melting vessel, wherein the Injektorhalte vibration comprises the nozzle head part.
  • the injector device in particular the Laval nozzle element, can be exchanged particularly simply at the injector device.
  • the present injector device can be further simplified and made more compact if the nozzle head part comprises means for arranging at least one ignition means, wherein the at least one ignition means is arranged on the nozzle head part, that the at least one ignition means into a through the Laval nozzle element and the Düsenkopfteil formed annular gap protrudes.
  • the nozzle head part comprises means for arranging at least one ignition means, wherein the at least one ignition means is arranged on the nozzle head part, that the at least one ignition means into a through the Laval nozzle element and the Düsenkopfteil formed annular gap protrudes.
  • the at least one ignition means is arranged perpendicular to the central longitudinal axis of the injector device on the nozzle head part, it can be structurally simply arranged on the injector device. In particular, this makes it possible to dispense with the use of an additional ignition lance element or the like, which is mounted from the rear side of the injector device into the injector device.
  • a further advantageous embodiment variant the features of which further develop generic injector devices without the other features of the invention, provides that the nozzle head part has a multiplicity of oxygen channels with oxygen outlet holes in order to supply air or oxygen from outside to one to be able to conduct from the ignited fuel gas-air mixture generated hot gas jet.
  • oxygen channels having the oxygen outlet holes By means of these oxygen channels having the oxygen outlet holes, an additional envelope of air or oxygen can be generated around the hot gas jet generated from the ignited fuel gas-air mixture, whereby the combustion process of the fuel gas-air mixture can be further improved. Already sufficient for this in the air from oxygen. If desired, however, pure oxygen can also be supplied cumulatively or alternatively.
  • These oxygen channels extend within the nozzle head part, preferably diagonally to the hot gas jet emerging from the nozzle head part, so that the air jets flowing out of it hit the hot gas jet within the nozzle head part and thus also inside the injector holding device or its injector box.
  • At least ambient air can be provided in a structurally particularly simple manner if corresponding oxygen inlet holes of the oxygen channels are arranged on the circumference of the nozzle head part.
  • the oxygen channels within the nozzle head part are arranged concentrically and angularly around the central longitudinal axis of the injector device.
  • the oxygen channels and the central longitudinal axis each include an angle.
  • the hot gas jet can be stabilized particularly well by the air emerging from the oxygen outlet holes in the sense of an air jet jacket.
  • the air or the pure oxygen can advantageously be pulled through the oxygen channels only by the suction effect of the hot gas jet.
  • it can be advantageously prevented that the additional oxygen outlet holes become clogged with slag or the like.
  • it is not necessary to provide additional control lines in the valve.
  • an additional Freihaltemedium since free ambient air can be used.
  • the mixer element such as with its collar-like flange, can be attached to the nozzle head part in different ways. For example, by means of a screwed flange connection.
  • the nozzle head part comprises a quick-action clamping device for the positive clamping of the Laval nozzle element and / or of the mixer element.
  • a faster replacement of the Laval nozzle element succeeds thereby.
  • the injector device can be disassembled from the injector holding device in an exceptionally simple manner, but can also be mounted very easily and quickly on this injector holding device, so that the injector device as a whole is ready for use faster again.
  • An assembly or disassembly of the injector can be carried out extremely low, when the quick-release device nozzle head part is configured on one side facing away from an outlet end of the nozzle head part such that three or more clamping means of the quick-clamping device are arranged concentrically around the central longitudinal axis of the injector.
  • the quick-release device comprises at least two or three clamping means distributed on the circumference of the nozzle head part, whereby the injector device can be reliably fixed to the nozzle head part.
  • An always tight mounting seat can be ensured if the quick-clamping device mixer element on the side comprises a compressible ring element, in particular a Viton® O-ring.
  • a liquid-based cooling device is provided on the injector device, it is possible to dispense with additional hose coupling elements to be loosened if a correspondingly configured compressible ring element, in particular a Viton® O-ring, is present.
  • a corresponding change can be made by a person without additional lifting device or the like.
  • an injector holding device for holding the injector device comprises a joint unit, by means of which the nozzle head part is arranged in an articulated manner on the injector holding device.
  • the angle of the injector device were adjustable with respect to a steel bath and / or with respect to the gate electrodes of an electric arc furnace. This can be achieved with the present joint unit.
  • the joint unit has a joint socket part and a joint head part, wherein the joint head part comprises the nozzle head part, the joint unit can be integrated into the injector device with little effort.
  • the condyle part can be fixed exchangeably on the socket part by means of a retaining ring element, the nozzle head part can be easily exchanged on the injector holder or its injector box.
  • the angle of the injector device or the nozzle head part can be changed by means of the joint unit in a Winkelverstell Scheme of at least +/- 6 °.
  • a heat regulation can take place in particular on the condyle part via a contact surface formed with the socket part.
  • the thermal conductivity can be further improved by a corresponding thermal paste.
  • the nozzle head part can be arranged inseparably on an injector holding device for holding the injector device.
  • the nozzle head part is permanently integrated in the injector holding device.
  • the nozzle head part is integrally connected to the injector holding device.
  • the injector device comprises a conductively operating cooling device, in which the nozzle head part is a metallic one Cooling contact surface comprises, which is directly in operative contact with a metallic cooling contact surface of the Injektorhalte arthritis.
  • the nozzle head part comprises a metallic cooling contact surface, which is conductively in operative contact with a corresponding metallic cooling contact surface of the injector holding device, so that heat transfer can ideally be achieved exclusively from the nozzle head part to the injector holding device by conduction.
  • the nozzle head part can at least partially configure wall regions of a coolant channel of a coolant device of an injector holding device for holding the injector device, whereby cooling can be additionally assisted by convection or can take place entirely.
  • a metallic contact surface can be used for cooling the injector device, which is part of a water-cooled injector box of the injector holding device.
  • the injector device itself has no cooling water channels, whereby the risk of leakage of water can be reduced.
  • the injector device can be cooled by its own media, such as compressed air, oxygen and / or natural gas.
  • the injector is equipped with cooling fins, whereby a heat transfer to the environment can be further improved.
  • combustion in the pilot mode no longer heats the entire injector device but only the Laval nozzle element. This heat can However, well in the rear part, in which a suitably designed Rulezutaxlite votes is derived. All other areas of the injector device will ideally remain cooler.
  • a generic injector device can advantageously be developed further, so that relevant features without the other features of the invention are advantageous.
  • the structural design, in particular of the present injector device can be further improved if the injector device has a media supply device which is flanged to the mixer element, wherein the media supply device comprises at least an outer tube, a central tube and an inner tube, the inner tube at least partially being arranged in the central tube in that a fuel gas loop is arranged between the inner tube and the central tube, wherein the central tube is at least partially arranged in the outer tube such that an air or fuel gas loop is arranged between the central tube and the outer tube, and wherein the outer tube, the central tube and the inner tube are arranged concentrically around the central longitudinal axis of the injector device.
  • the fuel gas loop and the air or fuel gas loop are arranged concentrically around the central longitudinal axis of the injector.
  • the injector device can essentially be assembled and produced from a large number of turned parts, thereby simplifying the manufacture of the injector device as a whole. In particular, eliminates a frequently required cumbersome alignment of individual components on a boring mill or the like. Moreover, in the present case, there are substantially fewer welds steel / copper, which also allows the design effort to be significantly reduced.
  • a further preferred embodiment provides that a carbon lance element is arranged inside the inner tube and extends through the mixer element into the Laval nozzle element.
  • a carbon injector is arranged as close as possible to the injector device. This can be achieved very easily if a carbon lance element is arranged inside the inner tube.
  • a carbon injector integrated in the present injector device has the additional advantage that no additional holding device for an external carbon injector has to be provided.
  • the oxygen gas jet emerging from a ring-shaped Laval nozzle element outlet produces a suction effect at the outlet of the carbon lance element, whereby the carbon is practically sucked into, for example, an electric arc furnace. As a result, clogged pipes or the like are unlikely.
  • the exit of the carbon lance element is automatically kept free of slag or the like. In this respect, an additional free agent is not required.
  • the carbon lance element comprises a ceramic tube.
  • a ceramic tube is not self-consuming in use on the present Injektorvorraum and it must therefore not be postponed, whereby the injector device is designed to be maintenance friendly.
  • the features associated with the carbon lance element further favorably advance a conventional injector device, so that these features are advantageous even without the other features of the invention.
  • the object of the invention is also achieved by an electric arc furnace which is equipped with at least one injector device according to one of the features described here. The operational readiness of an electric arc furnace can be ensured more reliable when the electric arc furnace is equipped with the present Injektorvorraum.
  • Figure 1 schematically a partially sectioned view of a
  • FIG. 2 schematically shows an exploded view of that shown in FIG
  • FIG. 3 is a schematic detail view of a nozzle head part of the injector device with a Laval nozzle element and mixer element arranged on the central longitudinal axis;
  • FIG. 4 schematically shows a further detailed view of the nozzle head part from FIG. 3 with the Laval nozzle element and mixer element fastened to the nozzle head part 41;
  • FIG. 5 schematically shows a view of a joint unit integrated in the injector holding device for the articulated bearing of the injector device on the injector holding device;
  • FIG. 6 schematically shows a view of the injector device in one
  • FIG. 7 shows a schematic view of the injector device
  • FIG. 8 schematically shows a view of the injector device
  • FIG. 10 schematically shows a view of the alternatives shown in FIG.
  • Figure 1 schematically an exploded view of the alternative injector shown in Figures 9 and 10.
  • the injector device 1 shown by way of example partially in FIGS. 1 to 11 can be equipped with differently configured injector devices 2 (see FIGS. 1 to 8) and 3 (compare FIGS. 9 to 11) be.
  • the injector device 1 is used in this embodiment for inflating or blowing oxygen-rich gases and / or carbon in a per se known and therefore not further shown and described here electric arc furnace 4th
  • the respective injector device 2 or 3 serves to generate a high-speed gas jet 5 (see FIGS. 6, 7, 8 and 10), for example from an oxygen gas jet 6 and an ignited fuel gas / air mixture jet 7.
  • the injector device 2 is structurally simply composed essentially of a Laval nozzle element 8, a mixer element 9, an inner tube part 10, a middle tube part 11 and an outer tube part 12.
  • the Lavaldüsenelement 8 and the mixer element 9 are arranged together along the central longitudinal axis 13 of the injector 2 directly behind one another such that in the assembled state of the injector 2, the mixer element 9 is attached directly to the Laval nozzle element 8, as can be seen in particular according to the illustration of Figure 1 ,
  • the mixer element 9 is screwed onto the Laval nozzle element 8.
  • the Laval nozzle element 8 with an external thread 14 and the mixer element 9 are equipped with a corresponding internal thread 15.
  • the mixer element 9 has a collar-like flange 21, in which a groove 22 for receiving a compressible ring element 23, in particular a Viton® O-ring 24, is placed.
  • a media supply device 26 is flanged, which consists essentially of the inner tube part 10, the middle tube part 1 1 and the outer tube part 12.
  • an oxygen attachment part 28 Attached to the rear end 27 of the inner tube part 10 is an oxygen attachment part 28, through which oxygen 29 (see FIGS. 7 and 8) can be introduced into the inner tube part 10, into the mixer element 9 and finally into the Laval nozzle element 8.
  • the oxygen 29 thus introduced into the Laval nozzle element 8 is accelerated in a manner known per se by the Laval nozzle element 8 and emerges from the outlet opening 30 of the Laval nozzle element 8 as an oxygen gas jet 6 (see FIGS.
  • a fuel gas connection part 31 is provided laterally on the middle tube part 11, by means of which fuel gas 32, as a rule natural gas, can be supplied to the injector device 2 (see FIGS. 6 and 7).
  • the middle tube part 1 1 and the inner tube part 10 are arranged to each other such that between them a fuel gas loop 33 is formed.
  • the fuel gas 32 reaches into a substantially axially within the mixer element 9 extending fuel gas channel 34 of the mixer element.
  • an air or fuel gas connection part 35 by means of which the injector device 2 has air 36 (compare FIGS. 6 and 8) or alternatively also fuel gas 32, as a rule natural gas (see FIG. can be supplied, depending on the mode in which the injector 2 is located, as will be explained later.
  • the middle tube part 1 1 and the outer tube part 12 are arranged to each other such that an air or fuel gas ring line 37 is formed between them. Through this air or fuel gas ring line 37, the air 36 or the fuel gas 32 reaches into a substantially axially within the mixer element 9 extending air channel 38 of the mixer element.
  • the so compact and very small built injector 2 can be structurally easily mounted on an injector holder 40 within the electric arc furnace 4 by the screwed to the mixer element 9 Laval nozzle element 8 inserted into one of the Injektorhalte Rhein 40 associated nozzle head portion 41 and by means of the collar-like flange 21 of the mixer element. 9 is fixed to the nozzle head portion 41 (see Figures 5 to 8, 10 and 1 1).
  • the Laval nozzle element 8 and partly also the attached mixer element 9 can be inserted through a mounting opening 42 such that between the nozzle head part 41 and in particular the Laval nozzle element 8, an annular gap 43 is created in which the fuel gas passage 34 and an air duct
  • the cross-section of the annular gap 43 can be adjusted at least in regions by placing spacers 44 of different thickness between the stop 17 of the Laval nozzle element 8 and the mixer element 9, as a result of which the distance between the Laval nozzle element 8 and the mixer element 9 can be selected differently.
  • the injector device 2 For faster fixing of the injector device 2 to the nozzle head part 41, the latter has a quick-action clamping device 45 for the positive clamping of the Laval nozzle element 8 and / or the mixer element 9 on the nozzle head part 41.
  • the nozzle head part 41 comprises a device 50 for arranging at least one ignition means 51 in the form of a commercially available spark plug 52.
  • the at least one ignition means 51 is in this case arranged on the nozzle head part 41 in such a way that it is formed by the Laval nozzle element 8 and the nozzle head part 41 Annular gap 43 projects into it to ignite the fuel gas-air mixture 7 located there.
  • a plurality of oxygen channels 53 (numbered here only by way of example) with oxygen outlet holes 54 are provided on the nozzle head part 41 in order to supply air 36 from outside to a hot gas jet generated from the ignited fuel gas-air mixture 7 55 (see Figures 6 to 8 and 10), which flows from an outlet opening 56 of the nozzle head portion 41 to be able to conduct.
  • corresponding oxygen inlet holes 58 are arranged on the lateral surface 57 of the nozzle head part 41.
  • a firm connection between the nozzle head part 41 and the injector device 40 can be achieved if the nozzle head part 41 is firmly bonded, for example by welding, and thus permanently fixed to the injector 40 (see Figures 6 to 8 and 10).
  • the nozzle head portion 41 may also be hinged to the injector retainer 40, as exemplarily shown in FIG. 5.
  • the injector holding device 40 comprises a hinge unit 60, by means of which the nozzle head part 41 can be arranged in an articulated manner on the injector holding device 40.
  • a socket portion 61 is configured, while the nozzle head portion 41 is configured as a joint head portion 62 which is movably embedded in the socket portion 61.
  • the condyle 62 can be fixed with respect to the acetabular cup 61 by means of a retainer ring member 63 which can be screwed into the acetabulum portion 61 as soon as a desired angle of the injector device 2 is maintained.
  • the cooling of the injector device 2 can be sufficiently ensured if the injector device 1 comprises a conductively operating cooling device, in which the nozzle head part 41 comprises a metallic cooling contact surface 65 (here only exemplarily numbered), which is in operative contact with a metallic cooling contact surface 66 of the injector holder 40 ,
  • the nozzle head part 41 at least partially designed wall regions 67 (here only exemplarily numbered) of a coolant channel 68 of a coolant device of the injector holding device 40.
  • the injector device 2 itself has no coolant channels, as a result of which an assembly and disassembly of the injector device 2 on the injector holding device 40 can be carried out particularly easily.
  • the injector device 2 is in a pilot mode, in which the hot gas jet 55 consists only of a fuel gas flame 71 of fuel gas 32 surrounded by an air-oxygen jacket 70 in order to prevent slagging of the injector device 2.
  • the injector device 2 is supplied with air 36 through the air or fuel gas connection part 35 and fuel gas 32 in the form of natural gas through the fuel gas connection part 31.
  • the injector device 2 is located in a burner mode in which the hot gas jet 55 consists of the oxygen gas jet 6, of a fuel gas jet 72 of fuel gas 32 and of the atmospheric oxygen jacket 70, in order to melt the scrap introduced into the electric arc furnace 4 more quickly can.
  • the injector device 2 is supplied with fuel gas 32 in the form of natural gas through the air or fuel gas connection part 35 and oxygen 29 through the oxygen connection part 28.
  • the injector device 2 is in a lance mode, in which the hot gas jet 55 consists of the oxygen gas jet 6, the fuel gas-air mixture jet 7 and the air-oxygen jacket 70, in particular to oxygen in a in the electric arc furnace 4 located To bring in melt.
  • the injector device 2 is supplied with air 36 through the air or fuel gas connection part 35, with fuel gas 32 in the form of natural gas through the fuel gas connection part 31, and oxygen 29 through the oxygen connection part 28.
  • the hot gas jet 55 is present here in the form of the high-velocity gas jet 5.
  • FIG. 9 to 1 An alternative injector device 3 is shown in Figures 9 to 1 1, wherein in the following only the features will be explained, by which this second embodiment differs from the first embodiment.
  • the alternative injector device 3 has essentially the same structure as the injector device 2 explained above.
  • the alternative injector device 3 is still characterized by a carbon lance element 75 arranged inside the inner tube 10, which extends through the mixer element 9 into the Laval nozzle element 8 additionally carbon 76 can be introduced into the electric light open 4.
  • this can be dispensed with an additional Kohlenstoffinjektor observed.
  • the carbon lance element 75 is made particularly resistant because it comprises a ceramic tube 77.
  • the alternative injector device 3 is in a combined oxygen-carbon mode, in which the hot gas jet 55 from the carbon 76, from the annular oxygen gas jet 6, from the fuel gas-air mixture jet 7 and from the air-oxygen jacket 70th exists, in particular, to be able to bring in oxygen and carbon in a present in the electric arc furnace 4 melt.
  • the alternative injector device 3 is supplied with air 36 through the air or fuel gas connection part 35, fuel gas 32 in the form of natural gas through the fuel gas connection part 31 and oxygen 29 through the oxygen connection part 28.
  • carbon is still supplied to the alternative injector device 3 through the carbon lance element 75.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Furnace Details (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Nozzles (AREA)

Abstract

Die Erfindung betrifft eine Injektorvorrichtung (1) zur pyrometallurgischen Behandlung von Metallen, Metallschmelzen und/oder Schlacken in einem metallurgischen Aggregat oder Schmelzgefäß mit einer Injektoreinrichtung (2, 3) zum Erzeugen eines Hochgeschwindigkeitsgasstrahls (5) aus einem Sauerstoffgasstrahl (6) und einem entzündeten Brenngas-Luft-Gemischstrahl (7), bei welcher die Injektoreinrichtung (2, 3) ein in einem Düsenkopfteil (41) angeordnetes Lavaldüsenelement (8) zum Erzeugen des Sauerstoffgasstrahls (6) umfasst, und bei welcher das Brenngas-Luft-Gemisch (7) mittels eines Mischerelements (9) zum Mischen von Brenngas (32) und Luft (36) mischbar ist, wobei das Lavaldüsenelement (8) und das Mischerelement (9) gemeinsam entlang der Mittellängsachse (13) der Injektoreinrichtung (2, 3) voneinander lösbar hintereinander angeordnet sind.

Description

Injektorvorrichtung zum Aufblasen oder Einblasen von sauerstoffreichen Gasen in einem metallurgischen Aggregat oder Schmelzgefäß und Elektrolichtbogenofen
Die Erfindung betrifft eine Injektorvorrichtung zur pyrometallurgischen Behandlung von Metallen, Metallschmelzen und/oder Schlacken in einem metallurgischen Aggregat oder Schmelzgefäß, insbesondere einem Lichtbogenofen, mit einer Injektoreinrichtung zum Erzeugen eines Hochgeschwindigkeitsgasstrahls aus einem Sauerstoffgasstrahl und einem entzündeten Brenngas-Luft-Gemischstrahl, bei welcher die Injektoreinrichtung ein in einem Düsenkopfteil angeordnetes Lavaldüsenelement zum Erzeugen des Sauerstoffgasstrahls umfasst, und bei welcher das Brenngas-Luft-Gemisch mittels eines Mischerelements zum Mischen von Brenngas und Luft mischbar ist. Die Erfindung betrifft darüber hinaus einen Elektrolichtbogenofen.
Gattungsgemäße Injektorvorrichtungen und Elektrolichtbogenofen sind aus dem Stand der Technik gut bekannt. Beispielweise ist in der internationalen Anmeldung WO 2012/089754 A2 ein Verfahren zur pyrometallurgischen Behandlung von Metallen, Metallschmelzen und/oder Schlacken in einem metallurgischen Aggregat oder Schmelzgefäß und eine entsprechende Injektorvorrichtung zum Durchführen des Verfahrens beschrieben. Die Injektorvorrichtung zeichnet sich insbesondere durch einen Sauerstoff-Injektor aus, an welchem schräg zu seiner Mittelachse ein Heißgasstutzen mit einer Zündeinrichtung angeflanscht ist. Die Zündeinrichtung sitzt mit einem Mischer zum Mischen von Erdgas und Luft an einem dem Sauerstoff-Injektor abgewandten Ende des Heißgasstutzens. Der Mischer trägt dabei auch die Zündkerzen zum Zünden des Erdgas-Luft-Gemischs. Das entzündete Erdgas-Luft-Gemisch wird mittels des Heißgasstutzens seitlich in den Sauerstoff-Injektor eingeleitet, wobei das entzündete Erdgas-Luft-Gemisch durch den aus einer Lavaldüse des Sauerstoff-Injektors ausströmenden Sauerstoffgasstrahls beschleunigt wird. Zwar kann das Verfahren zur pyrometallurgischen Behandlung mit dieser Injektorvorrichtung gut durchgeführt werden, jedoch baut diese Injektorvorrichtung derart groß und aufwendig, dass sie in der Herstellung und Wartung Nachteile mit sich bringt. In der Regel sind die einzelnen Bauteile zudem noch miteinander verschweißt. Mit anderen Worten, bekannte Injektorvorrichtungen sind massiv und damit auch kostenintensiv herzustellen. Der Erfindung liegt die Aufgabe zugrunde, gattungsgemäße Injektorvorrichtungen weiterzuentwickeln, so dass zumindest die vorstehend genannten Nachteile überwunden werden können.
Die Aufgabe der Erfindung wird gelöst von einer Injektorvorrichtung zur pyrometallurgischen Behandlung von Metallen, Metallschmelzen und/oder Schlacken in einem metallurgischen Aggregat oder Schmelzgefäß mit einer Injektoreinrichtung zum Erzeugen eines Hochgeschwindigkeitsgasstrahls aus einem Sauerstoffgasstrahl und einem entzündeten Brenngas-Luft-Gemischstrahl, bei welcher die Injektoreinrichtung ein in einem Düsenkopfteil angeordnetes Lavaldüsenelement zum Erzeugen des Sauerstoffgasstrahls umfasst, und bei welcher das Brenngas-Luft-Gemisch mittels eines Mischerelements zum Mischen von Brenngas und Luft mischbar ist, wobei erfindungsgemäß das Lavaldüsenelement und das Mischerelement gemeinsam entlang der Mittellängsachse der Injektoreinrichtung voneinander lösbar hintereinander angeordnet sind.
Erfindungsgemäß liegen das Lavaldüsenelement und das Mischerelement voneinander lösbar und hintereinander auf der Mittellängsachse der Injektoreinrichtung der in dem metallurgischen Aggregat oder Schmelzgefäß angeordneten Injektorvorrichtung, wodurch insbesondere das Lavaldüsenelement schnell austauschbar ist. Dies ist vorteilhaft, da das Lavaldüsenelement ein Verschleißteil ist. Darüber hinaus kann die Injektoreinrichtung problemlos an unterschiedliche Prozesse angepasst werden, wie nachstehend noch erläutert wird. Zumal baut die vorliegende Injektoreinrichtung außergewöhnlich kompakt und klein, wodurch insgesamt signifikante Einsparungen hinsichtlich des verbauten Materials erzielt werden können.
Bisher waren das Lavaldüsenelement entlang einer Längsachse eines Sauerstoffinjektors und das Mischerelement entlang einer anderen Längsachse einer Zündeinrichtung angeordnet, wobei diese beiden Längsachsen in einem Winkel zueinander angeordnet sind, wodurch die eingangs zitierte, aus dem Stand der Technik bekannte Injektorvorrichtung insgesamt sehr groß baut. Insbesondere die das Mischerelement umfassende Zündeinrichtung ist dort mittels eines Heißgasstutzens seitlich an dem Gehäuse der Injektoreinrichtung angeflanscht, wodurch die Injektorvorrichtung nachteilig ein relativ großes Einbaumaß aufweist.
Vorteilhafterweise sind das Lavaldüsenelement und das Mischerelement vorliegend nicht mehr durch mindestens den Heißgasstutzen voneinander beabstandet, wodurch eine Injektorvorrichtung bisher insgesamt sehr groß baut, sondern das Lavaldüsenelement und das Mischerelement liegen unmittelbar hintereinander und sind hierbei direkt miteinander verbunden.
Die vorliegende Injektoreinrichtung kann noch vorteilhafter bereitgestellt werden, wenn das Lavaldüsenelement und das Mischerelement durch Zerspannung gefertigte Drehbauteile sind, welche kraft- und/oder formschlüssig unmittelbar miteinander verbunden sind. Durch die als Drehbauteile ausgeführte Lavaldüsenelement und Mischerelement kann eine schnell zu montierende und demontierende Injektoreinrichtung realisiert werden. Der Aufbau der vorliegenden Injektorvorrichtung kann weiter vereinfacht werden, wenn das Lavaldüsenelement und das Mischerelement derart innerhalb und/oder an dem Düsenkopfteil angeordnet sind, dass zwischen dem Düsenkopfteil und dem Laval-düsenelement ein Ringspalt entsteht, in welchen ein Brenngaskanal und ein Luftkanal des Mischerelements münden. Hierdurch kann auf einen separat an die Injektoreinrichtung seitlich angeflanschten Heißgasstutzen verzichtet werden.
Zweckmäßigerweise ist ein erster Zufuhrkanal des Mischerelements derart in dem in dem Mischerelement angeordnet, dass dieser in Bezug auf die Mittellängsachse axial in den Ringspalt hinein mündet. Ein zweiter Zufuhrkanal des Mischerelements ist vorzugsweise hingegen derart in dem Mischerelement angeordnet, dass dieser in Bezug auf die Mittellängsachse radial in den Ringspalt hinein mündet. Hierdurch können die Zufuhrkanäle zum Zuführen eines Brenngases und Luft innerhalb eines Mischerelementgrundkörpers vorteilhaft zueinander geführt werden, wodurch das Mischerelement sehr kompakt und klein gebaut werden kann.
Um das Mischerelement im Sinne der Erfindung konstruktiv einfach an dem Düsenkopfteil festlegen zu können, ist es vorteilhaft, wenn das Mischerelement an seinem dem Lavaldüsenelement abgewandten Ende einen kragenartigen Flansch aufweist, mittels welchem das Mischerelement an dem Düsenkopfteil befestigt werden kann.
Besonders zweckmäßig ist es, wenn der Ringspalt in Abhängigkeit von einem axialen Abstand zwischen dem Lavaldüsenelement und dem Mischerelement einstellbar ist. Insbesondere wenn der Querschnitt des Ringspalts zumindest bereichsweise in Abhängigkeit von dem Axialabstand Lavaldüsenelement/Mischerelement beeinflusst werden kann, kann die Injektorvorrichtung für unterschiedliche Prozesse eines metallurgischen Aggregats oder eines Schmelzgefäßes zusätzlich einfach eingestellt werden. Konstruktiv einfach kann dieser Axialabstand verändert werden, wenn der axiale Abstand zwischen dem Lavaldüsenelement und dem Mischerelement mittels unterschiedlicher Distanzringscheiben einstellbar ist. Beispielsweise können diese Distanzringscheiben auf einem Absatz des Lavaldüsenelements aufgeschoben werden und sich gegen eine Schulter des Lavaldüsenelements abstützen. Hierdurch kann das Mischerelement dann nur noch mit einem durch die Dicke der aufgeschoben Distanzringscheibe verringerten Montageweg an dem Lavaldüsenelement angeordnet bzw. befestigt werden. Gegebenenfalls können auch mehrere Distanzringscheiben vorgesehen werden.
Darüber hinaus kann durch die einfache Konstruktion der Injektoreinrichtung insbesondere das Lavaldüsenelement einfach ausgetauscht werden. Dies ist insbesondere deshalb vorteilhaft, da das Lavaldüsenelement ein Verschleißteil der Injektoreinrichtung ist.
Ferner ist es wichtig, das Lavaldüsenelement einfach auswechseln zu können, um mit geringem Montageaufwand verschiedene Sauerstoffmengen an der Injektorvorrichtung fahren zu können. Bislang musste hierzu die komplette Injektoreinrichtung ausgetauscht werden. Vorliegend können unterschiedliche Lavaldüsenelemente einzeln ausgewechselt werden. Es versteht sich, dass das Lavaldüsenelement und das Mischerelement in unterschiedlicher Weise miteinander verbunden werden können, beispielsweise durch eine Formschlussverbindung oder dergleichen. Zweckmäßigerweise weist das Lavaldüsenelement ein Außengewinde auf, mittels welchem das Lavaldüsenelement in ein Innengewinde des Mischerelements einschraubbar ist. Hierdurch kann das Lavaldüsenelement in eindeutiger Weise an dem Mischerelement befestigt werden, wodurch insbesondere Montagefehler verhindert werden können.
Bei dem Außengewinde und dem hiermit korrespondierenden Innengewinde kann es sich jeweils um ein bekanntes Rohrgewinde handeln, wodurch die Herstellung weiter vereinfacht werden kann. Der Aufbau der Injektorvorrichtung kann weiter vereinfacht werden, wenn das Lavaldüsenelement und das Mischerelement konzentrisch innerhalb und/oder an dem Düsenkopfteil angeordnet sind.
Deshalb ist es ebenfalls vorteilhaft, wenn das Lavaldüsenelement mittels des Mischerelements um die Mittellängsachse zentriert angeordnet ist.
Damit der von der Injektoreinrichtung erzeugte Hochgeschwindigkeitsstrahl definiert aus der Injektorvorrichtung ausgetragen werden kann, umfasst die Injektorvorrichtung das Düsenkopfteil. Nun kann die vorliegende Injektorvorrichtung baulich weiter vereinfacht werden, wenn das Düsenkopfteil, in welchem zumindest das Lavaldüsenelement zum Ausgestalten des Ringspalts angeordnet ist, einer Injektorhalteeinrichtung, welche vorzugsweise als zumindest teilweise aus Kupfer bestehende Injektorbox ausgebildet ist, zugeordnet ist.
Insofern ist es vorteilhaft, wenn die Injektorvorrichtung eine
Injektorhalteeinrichtung zum Haltern der Injektoreinrichtung im Inneren des metallurgischen Aggregats oder Schmelzgefäßes aufweist, wobei die Injektorhalteeinrichtung das Düsenkopfteil umfasst.
Ist das Düsenkopfteil ein baulicher Bestandteil der Injektorhalteeinrichtung, kann die Injektoreinrichtung, insbesondere das Lavaldüsenelement, besonders einfach an der Injektorvorrichtung ausgetauscht werden.
Besonders vorteilhaft ist es, dass hierdurch das Düsenkopfteil an der Injektoreinrichtung komplett entfällt, da dieser in der Injektorhalteeinrichtung bzw. in dessen Injektorbox integriert ist. Allein durch die Merkmale im Zusammenhang mit der das Düsenkopfteil umfassenden Injektorhalteeinrichtung kann eine gattungsgemäße Injektorvornchtung vorteilhaft weiterentwickelt werden, so dass diesbezügliche Merkmale ohne die übrigen Merkmale der Erfindung vorteilhaft sind.
Darüber hinaus kann die vorliegende Injektoreinrichtung weiter vereinfacht und kompakter gebaut werden, wenn das Düsenkopfteil eine Einrichtung zum Anordnen wenigstens eines Zündmittels umfasst, wobei das wenigstens eine Zündmittel derart an dem Düsenkopfteil angeordnet ist, dass das wenigstens eine Zündmittel bis in einen durch das Lavaldüsenelement und das Düsenkopfteil gebildeten Ringspalt hineinkragt. Hierdurch können handelsübliche Zündkerzen zum Zünden des Brenngas-Luft-Gemischs verwendet werden.
Ist das wenigstens eine Zündmittel senkrecht zu der Mittellängsachse der Injektoreinrichtung an dem Düsenkopfteil angeordnet, kann es konstruktiv einfach an der Injektorvorrichtung angeordnet werden. Insbesondere kann hierdurch auf einen Einsatz eines zusätzlichen Zündlanzenelements oder dergleichen, welches von der Rückseite der Injektorvorrichtung in die Injektoreinrichtung montiert wird, verzichtet werden.
Insgesamt können in Bezug auf die Zündung zuverlässigere Bauteile verwendet werden, wodurch die vorliegende Injektorvorrichtung insgesamt wartungsärmer ausgestaltet ist.
Auch die im Zusammenhang mit den Zündmitteln genannten Merkmale sind ohne die übrigen Merkmale der vorliegenden Erfindung vorteilhaft, da allein durch diese Merkmale gattungsgemäße Injektorvorrichtungen vorteilhaft weiterentwickelt werden können.
Eine weitere vorteilhafte Ausführungsvariante, deren Merkmale gattungsgemäße Injektorvorrichtungen auch ohne die übrigen Merkmale der Erfindung fortbilden, sieht vor, dass das Düsenkopfteil eine Vielzahl an Sauerstoffkanälen mit Sauerstoffauslasslöchern aufweist, um Luft bzw. Sauerstoff von außen auf einen aus dem gezündeten Brenngas-Luftgemisch erzeugten Heißgasstrahl leiten zu können.
Mithilfe dieser die Sauerstoffauslasslöcher aufweisenden Sauerstoffkanäle kann eine zusätzliche Umhüllende aus Luft bzw. Sauerstoff um den aus dem gezündeten Brenngas-Luftgemisch erzeugten Heißgasstrahl erzeugt werden, wodurch der Verbrennungsprozess des Brenngas-Luftgemischs nochmals verbessert werden kann. Hierzu reicht bereits der in der Luft vorhandene Sauerstoff aus. Bedarfsweise kann jedoch auch reiner Sauerstoff kumulativ oder alternativ zugeführt werden.
Diese Sauerstoffkanäle verlaufen innerhalb des Düsenkopfteils vorzugweise diagonal zu dem aus dem Düsenkopfteil austretenden Heißgasstrahl, so dass die hieraus ausströmenden Luftstrahlen noch innerhalb des Düsenkopfteils und damit auch innerhalb der Injektorhalteeinrichtung bzw. dessen Injektorbox auf den Heißgasstrahl treffen.
Zumindest Umgebungsluft kann hierfür baulich besonders einfach bereitgestellt werden, wenn entsprechende Sauerstoffeinlasslöcher der Sauerstoffkanäle am Umfang des Düsenkopfteils angeordnet sind.
Deshalb ist es vorteilhaft, wenn die Sauerstoffkanäle innerhalb des Düsenkopfteils konzentrisch und winkelig um die Mittellängsachse der Injektoreinrichtung herum angeordnet sind. Mit anderen Worten, die Sauerstoffkanäle und die Mittellängsachse schließen jeweils einen Winkel ein.
Sind die Sauerstoffauslasslöcher innerhalb einer Austrittsöffnung des Düsenkopfteils angeordnet, kann der Heißgasstrahl durch die aus den Sauerstoffauslasslöchern austretende Luft im Sinne eines Luftstrahlmantels besonders gut stabilisiert werden. Die Luft bzw. der reine Sauerstoff kann vorteilhafterweise allein durch die Sogwirkung des Heißgasstrahls durch die Sauerstoffkanäle hindurch gezogen werden. Hierdurch kann vorteilhaft unterbunden werden, dass sich die zusätzlichen Sauerstoffauslasslöcher mit Schlacke oder dergleichen zusetzen. Darüber hinaus ist es hierbei nicht erforderlich, zusätzliche Regellinien im Ventilstand vorzusehen. Auch kann auf ein zusätzliches Freihaltemedium verzichtet werden, da auf kostenlose Umgebungsluft zurückgegriffen werden kann. Es versteht sich, dass insbesondere das Mischerelement, etwa mit seinem kragenartigen Flansch, auf unterschiedliche Art an dem Düsenkopfteil befestigt werden kann. Beispielsweise mittels einer geschraubten Flanschverbindung.
Vorteilhafter ist es, wenn das Düsenkopfteil eine Schnellspanneinrichtung zum formschlüssigen Verspannen des Lavaldüsenelements und/oder des Mischerelements umfasst. Hierdurch gelingt insbesondere ein schnellerer Austausch des Lavaldüsenelements.
Ist das Mischerelement derart an dem Düsenkopfteil formschlüssig verspannbar, dass das Lavaldüsenelement mittels des Mischerelements an dem Düsenkopfteil lösbar festgelegt ist, kann die Injektoreinrichtung außergewöhnlich einfach von der Injektorhalteeinrichtung demontiert, aber auch sehr einfach und schnell an diese Injektorhalteeinrichtung montiert werden, so dass die Injektorvorrichtung insgesamt wieder schneller einsatzbereit ist.
Eine Montage bzw. Demontage der Injektoreinrichtung kann extrem günstig durchgeführt werden, wenn die Schnellspanneinrichtung Düsenkopfteil seitig an einem einer Austrittsöffnung abgewandten Ende des Düsenkopfteils derart ausgestaltet ist, dass drei oder mehr Spannmittel der Schnellspanneinrichtung konzentrisch um die Mittellängsachse der Injektoreinrichtung angeordnet sind. Vorzugsweise umfasst die Schnellspanneinrichtung mindestens zwei oder drei am Umfang des Düsenkopfteils verteilte Spannmittel, wodurch die Injektoreinrichtung betriebssicher an dem Düsenkopfteil festgelegt werden kann. Ein stets dichter Montagesitz kann gewährleistet werden, wenn die Schnellspanneinrichtung Mischerelement seitig ein komprimierbares Ringelement, insbesondere einen Viton®-O-Ring, umfasst.
Insbesondere, wenn eine flüssigkeitsbasierende Kühleinrichtung an der Injektorvorrichtung vorgesehen ist, kann auf zusätzlich zu lösende Schlauchkupplungselemente verzichtet werden, wenn ein entsprechend ausgestaltetes komprimierbares Ringelement, insbesondere ein Viton®-O-Ring, vorhanden ist.
Ein entsprechender Wechsel kann durch eine Person ohne zusätzliche Hebevorrichtung oder dergleichen durchgeführt werden.
An dieser Stelle sei noch angemerkt, dass ebenfalls die im Zusammenhang mit der Schnellspanneinrichtung genannten Merkmale ohne die übrigen Merkmale der vorliegenden Erfindung vorteilhaft sind, da bereits allein durch diese Merkmale gattungsgemäße Injektorvorrichtungen vorteilhaft weiterentwickelt werden können.
Eine bevorzugte Ausführungsvariante sieht vor, dass eine Injektorhalteeinrichtung zum Haltern der Injektoreinrichtung eine Gelenkeinheit umfasst, mittels welcher das Düsenkopfteil gelenkig an der Injektorhalteeinrichtung angeordnet ist. Oftmals ist es in der Metallurgie wünschenswert, wenn der Winkel der Injektoreinrichtung in Bezug auf ein Stahlbad und/oder in Bezug auf Graftitelektroden eines Elektrolichtbogenofens einstellbar wäre. Dies kann mit der vorliegenden Gelenkeinheit erzielt werden. Weist die Gelenkeinheit ein Gelenkpfannenteil und ein Gelenkkopfteil auf, wobei das Gelenkkopfteil das Düsenkopfteil umfasst, kann die Gelenkeinheit mit wenig Aufwand in die Injektorvorrichtung integriert werden. Ist das Gelenkkopfteil mittels eines Halteringelements austauschbar an dem Gelenkpfannenteil festlegbar, kann das Düsenkopfteil an der Injektorhalteeinrichtung bzw. deren Injektorbox problemlos ausgetauscht werden.
Vorzugsweise kann der Winkel der Injektoreinrichtung bzw. des Dusenkopfteils mithilfe der Gelenkeinheit in einem Winkelverstellbereich von mindestens +/- 6° verändert werden.
Vorteilhafterweise kann eine Wärmeregulierung insbesondere an dem Gelenkkopfteil über eine mit dem Gelenkpfannenteil ausgebildete Kontaktfläche erfolgen. Die Wärmeleitfähigkeit kann hierbei durch eine entsprechende Wärmeleitpaste noch verbessert werden.
Durch die Merkmale der Gelenkeinheit kann eine gattungsgemäße Injektorvorrichtung vorteilhaft weiterentwickelt werden, so dass diesbezügliche Merkmale auch ohne die übrigen Merkmale der Erfindung vorteilhaft sind.
Alternativ kann das Düsenkopfteil unlösbar an einer Injektorhalteeinrichtung zum Haltern der Injektoreinrichtung angeordnet sein. Hierdurch ist das Düsenkopfteil in der Injektorhalteeinrichtung unlösbar integriert.
In diesem Zusammenhang ist es vorteilhaft, wenn das Düsenkopfteil mit der Injektorhalteeinrichtung stoffschlüssig verbunden ist.
Ferner ist es vorteilhaft, wenn die Injektorvorrichtung eine konduktiv arbeitende Kühleinrichtung umfasst, bei welcher das Düsenkopfteil eine metallische Kühlkontaktfläche umfasst, welche unmittelbar mit einer metallischen Kühlkontaktfläche der Injektorhalteeinrichtung in Wirkkontakt steht.
Insofern ist es vorteilhaft, wenn das Düsenkopfteil eine metallische Kühlkontaktfläche umfasst, welche konduktiv mit einer korrespondierenden metallischen Kühlkontaktfläche der Injektorhalteeinrichtung in Wirkkontakt steht, so dass eine Wärmeübertragung idealerweise von dem Düsenkopfteil zu der Injektorhalteeinrichtung ausschließlich durch Konduktion erzielt werden kann. Kumulativ oder alternativ kann das Düsenkopfteil zumindest teilweise Wandbereiche eines Kühlmittelkanals einer Kühlmitteleinrichtung einer Injektorhalteeinrichtung zum Haltern der Injektoreinrichtung ausgestalten, wodurch eine Kühlung zusätzlich durch Konvektion unterstützt werden oder gänzlich erfolgen kann.
Somit kann zur Kühlung der Injektoreinrichtung eine metallische Kontaktfläche verwendet werden, welche Bestandteil einer wassergekühlten Injektorbox der Injektorhalteeinrichtung ist.
Vorteilhafterweise besitzt die Injektoreinrichtung selbst keine Kühlwasserkanäle, wodurch die Gefahr eines Wasseraustritts verringert werden kann.
Des Weiteren ist es vorteilhaft, wenn die Injektoreinrichtung durch Eigenmedien, wie etwa Druckluft, Sauerstoff und/oder Erdgas, gekühlt werden kann. Vorzugsweise ist die Injektoreinrichtung mit Kühlrippen ausgerüstet, wodurch eine Wärmeabgabe an die Umgebung weiter verbessert werden kann. Gleichzeitig kommt es hierbei zu einer Verbrennungsluft-Vorerwärmung, welche den Wirkungsgrad des Pilotmodus verbessern kann. Zudem erwärmt die Verbrennung im Pilotmodus nicht mehr die gesamte Injektoreinrichtung sondern nur noch das Lavaldüsenelement. Diese Wärme kann jedoch gut in den hinteren Teil, in welchem sich eine entsprechend ausgestaltete Medienzuführeinrichtung befindet, abgeleitet werden. Alle weiteren Bereiche der Injektoreinrichtung bleiben idealerweise kühler. Allein durch die Merkmale im Zusammenhang mit der Kühlung der Injektorhalteeinrichtung kann eine gattungsgemäße Injektorvorrichtung vorteilhaft weiterentwickelt werden, so dass diesbezügliche Merkmale ohne die übrigen Merkmale der Erfindung vorteilhaft sind. Der konstruktive Aufbau insbesondere der vorliegenden Injektoreinrichtung kann nochmals verbessert werden, wenn die Injektorvorrichtung eine Medienzuführeinrichtung aufweist, welche an dem Mischerelement angeflanscht ist, wobei die Medienzuführeinrichtung wenigstens ein Außenrohr, ein Mittelrohr und ein Innenrohr umfasst, wobei das Innenrohr zumindest teilweise derart in dem Mittelrohr angeordnet ist, dass zwischen dem Innenrohr und dem Mittelrohr eine Brenngas-Ringleitung angeordnet ist, wobei das Mittelrohr zumindest teilweise derart in dem Außenrohr angeordnet ist, dass zwischen dem Mittelrohr und dem Außenrohr eine Luft- oder Brenngas-Ringleitung angeordnet ist, und wobei das Außenrohr, das Mittelrohr und das Innenrohr konzentrisch um die Mittellängsachse der Injektoreinrichtung angeordnet sind.
Darüber hinaus ist es vorteilhaft, wenn die Brenngas-Ringleitung und die Luftoder Brenngas-Ringleitung konzentrisch um die Mittellängsachse der Injektoreinrichtung angeordnet sind.
Durch diesen Aufbau der Medienzuführeinrichtung kann die Injektoreinrichtung im Wesentlichen aus einer Vielzahl an Drehteilen zusammen gesetzt und hergestellt werden, wodurch sich die Herstellung der Injektorvorrichtung insgesamt vereinfacht. Insbesondere entfällt ein häufig erforderliches umständliches Ausrichten einzelner Bauteile auf einem Bohrwerk oder dergleichen. Zudem existieren vorliegend wesentlich weniger Schweißstellen Stahl/Kupfer, wodurch sich der konstruktive Aufwand ebenfalls signifikant reduzieren lässt.
Eine weitere bevorzugte Ausführungsvariante sieht vor, dass innerhalb des Innenrohrs ein Kohlenstofflanzenelement angeordnet ist, welches durch das Mischerelement bis in das Lavaldüsenelement hinein reicht.
Insbesondere für das Erzeugen einer Schaumschlackeschicht ist es vorteilhaft, wenn ein Kohlenstoffinjektor möglichst nahe an der Injektoreinrichtung angeordnet ist. Dies kann sehr einfach erzielt werden, wenn innerhalb des Innenrohrs ein Kohlenstofflanzenelement angeordnet ist.
Ein derart in die vorliegende Injektoreinrichtung integrierter Kohlenstoffinjektor hat zudem den Vorteil, dass keine zusätzliche Halteinrichtung für einen externen Kohlenstoffinjektor vorgesehen werden muss.
Der aus einem ringförmig ausgebildeten Lavaldüsenelementausgang austretende Sauerstoffgasstrahl erzeugt am Ausgang des Kohlenstofflanzenelements eine Sogwirkung, wodurch der Kohlenstoff praktisch beispielsweise in einen Elektrolichtbogenofen hinein gesaugt wird. Hierdurch werden auch verstopfte Leitungsrohre oder dergleichen unwahrscheinlicher.
Ferner wird der Ausgang des Kohlenstofflanzenelements im Pilotmodus der Injektoreinrichtung automatisch von Schlacke oder dergleichen freigehalten. Insofern ist ein zusätzliches Freihaltemittel nicht erforderlich.
Außerdem ist es vorteilhaft, wenn das Kohlenstofflanzenelement ein Keramikrohr umfasst. Ein Keramikrohr ist im Einsatz an der vorliegenden Injektorvorrichtung nicht selbstverzehrend und es muss deshalb auch nicht nachgesetzt werden, wodurch die Injektorvorrichtung wartungsfreundlicher gestaltet ist. Die Merkmale im Zusammenhang mit dem Kohlenstofflanzenelement entwickeln eine herkömmliche Injektorvorrichtung bereits für sich günstig weiter, so dass diese Merkmale auch ohne die übrigen Merkmale der Erfindung vorteilhaft sind. Die Aufgabe der Erfindung wird auch von einem Elektrolichtbogenofen gelöst, welcher mit wenigstens einer Injektorvorrichtung nach einem der hier beschriebenen Merkmale ausgerüstet ist. Die Einsatzbereitschaft eines Elektrolichtbogenofen kann betriebssicherer gewährleistet werden, wenn der Elektrolichtbogenofen mit der vorliegenden Injektorvorrichtung ausgerüstet ist.
Weitere Vorteile, Ziele und Eigenschaften vorliegender Erfindung werden anhand anliegender Zeichnung und nachfolgender Beschreibung erläutert, in welchen beispielhaft eine Injektorvorrichtung mit einem entlang einer Mittellängsachse einer Injektoreinrichtung unmittelbar hinter einem Lavaldüsenelement angeordneten Mischerelement dargestellt und beschrieben ist.
Komponenten, welche in den einzelnen Figuren wenigstens im Wesentlichen hinsichtlich ihrer Funktion übereinstimmen, können hierbei mit gleichen Bezugszeichen gekennzeichnet sein, wobei die Komponenten nicht in allen Figuren beziffert und erläutert sein müssen.
In der Zeichnung zeigen:
Figur 1 schematisch eine teilweise geschnittene Ansicht einer
Injektoreinrichtung einer Injektorvorrichtung mit entlang einer
Mittellängsachse einer Injektoreinrichtung hintereinander angeordnetem Lavaldüsenelement und Mischerelement;
Figur 2 schematisch eine Explosionsansicht der in der Figur 1 gezeigten
Injektoreinrichtung; Figur 3 schematisch eine Detailansicht eines Düsenkopfteils der Injektorvorrichtung mit auf der Mittel längsachse angeordnetem Lavaldüsenelement und Mischer-element;
Figur 4 schematisch eine einer weitere Detailansicht des Düsenkopfteils aus der Figur 3 mit an dem Düsenkopfteil 41 befestigtem Lavaldüsenelement und Mischer-element;
Figur 5 schematisch eine Ansicht einer in der Injektorhalteeinrichtung integrierten Gelenkeinheit zum gelenkigen Lagern der Injektoreinrichtung an der Injektorhalteeinrichtung;
Figur 6 schematisch eine Ansicht der Injektorvorrichtung in einem
Pilotmodus;
Figur 7 schematisch eine Ansicht der Injektorvorrichtung
Brennermodus;
Figur 8 schematisch eine Ansicht der Injektorvorrichtung
Lanzenmodus;
Figur 9 schematisch eine alternative Injektoreinrichtung mit einem
Kohlenstofflanzenelement;
Figur 10 schematisch eine Ansicht der in der Figur 9 gezeigten alternativen
Injektoreinrichtung in einem kombinierten Sauerstoff-Kohlenstoff- Modus; und
Figur 1 1 schematisch eine Explosionsansicht der in den Figuren 9 und 10 gezeigten alternativen Injektoreinrichtung.
Die in den Figuren 1 bis 1 1 exemplarisch teilweise gezeigte Injektorvorrichtung 1 (siehe speziell Figuren 6 bis 8 und 10) kann mit unterschiedlich ausgestalteten Injektoreinrichtungen 2 (vgl. Figuren 1 bis 8) bzw. 3 (vgl. Figuren 9 bis 1 1 ) ausgerüstet sein.
Die Injektorvorrichtung 1 dient in diesem Ausführungsbeispiel zum Aufblasen oder Einblasen von sauerstoffreichen Gasen und/oder von Kohlenstoff in einen an sich bekannten und deshalb hier nicht weiter gezeigten und beschriebenen Elektrolichtbogenofen 4.
Die jeweilige Injektoreinrichtung 2 bzw. 3 dient zum Erzeugen eines Hochgeschwindigkeitsgasstrahls 5 (siehe Figuren 6, 7, 8 und 10) beispielsweise aus einem Sauerstoffgasstrahl 6 und einem entzündeten Brenngas-Luft- Gemischstrahl 7.
Wie insbesondere auch gemäß der Darstellung der Figur 2 gut erkennbar ist, setzt sich die Injektoreinrichtung 2 baulich einfach im Wesentlichen aus einem Lavaldüsenelement 8, einem Mischerelement 9, einem Innenrohrteil 10, einem Mittelrohrteil 1 1 und einem Außenrohrteil 12 zusammen.
Bemerkenswert ist es, dass alle vorgenannten Bauteile 8 bis 12 gemeinsam entlang einer Mittellängsachse 13 und koaxial zu der Mittellängsachse 13 der Injektoreinrichtung 2 angeordnet sind.
Insbesondere das Lavaldüsenelement 8 und das Mischerelement 9 sind gemeinsam entlang der Mittellängsachse 13 der Injektoreinrichtung 2 unmittelbar derart hintereinander angeordnet, dass im Montagezustand der Injektoreinrichtung 2 das Mischerelement 9 direkt an dem Lavaldüsenelement 8 befestigt ist, wie insbesondere gemäß der Darstellung der Figur 1 zu erkennen ist.
In diesem Ausführungsbeispiel ist das Mischerelement 9 auf das Lavaldüsenelement 8 aufgeschraubt. Hierzu sind das Lavaldüsenelement 8 mit einem Außengewinde 14 und das Mischerelement 9 mit einem entsprechenden Innengewinde 15 ausgestattet.
Darüber hinaus ist zwischen dem Außengewinde 14 und einem durch eine Schulter 16 des Lavaldüsenelements 8 ausgebildeten Anschlag 17 für das Mischerelement 9 noch eine Umfangsnut 18 zur Aufnahme eines O-Rings 19 vorgesehen, mittels welchem der Schnittstellenbereich 20 zwischen dem Lavaldüsenelement 8 und dem Mischerelement 9 sicher abgedichtet ist.
Das Mischerelement 9 weist einen kragenartigen Flansch 21 auf, in welchem eine Nut 22 zur Aufnahme eines komprimierbaren Ringelements 23, insbesondere eines Viton®-O-Rings 24, platziert ist.
An der Rückseite 25 dieses kragenartigen Flanschs 21 ist eine Medienzuführeinrichtung 26 angeflanscht, welche im Wesentlichen aus dem Innenrohrteil 10, dem Mittelrohrteil 1 1 und dem Außenrohrteil 12 besteht.
Am hinteren Ende 27 des Innerohrteils 10 ist ein Sauerstoffanschlussteil 28 befestigt, durch welches hindurch Sauerstoff 29 (vgl. Figuren 7 und 8) in das Innenrohrteil 10, in das Mischerelement 9 und schließlich bis in das Lavaldüsenelement 8 eingeleitet werden kann. Der derart bis in das Lavaldüsenelement 8 eingeleitete Sauerstoff 29 wird durch das Lavaldüsenelement 8 in an sich bekannter Weise beschleunigt und tritt als Sauerstoffgasstrahl 6 (vgl. Figuren 7 und 8) aus der Austrittsöffnung 30 des Lavaldüsenelements 8 aus.
Seitlich an dem Mittelrohrteil 1 1 ist ein Brenngasanschlussteil 31 vorgesehen, mittels welchem der Injektoreinrichtung 2 Brenngas 32, in der Regel Erdgas, (vgl. Figuren 6 und 7) zugeführt werden kann. Hierzu sind das Mittelrohrteil 1 1 und das Innenrohrteil 10 derart zueinander angeordnet, dass zwischen ihnen eine Brenngas-Ringleitung 33 ausgebildet ist. Durch diese Brenngas-Ringleitung 33 gelangt das Brenngas 32 bis in einen im Wesentlichen axial innerhalb des Mischerelements 9 verlaufenden Brenngaskanal 34 des Mischerelements 9.
Ebenfalls seitlich an dem Außenrohrteil 12 ist ein Luft- oder Brenngasanschlussteil 35 vorgesehen, mittels welchem der Injektoreinrichtung 2 Luft 36 (vgl. Figuren 6 und 8) oder alternativ auch Brenngas 32, in der Regel Erdgas, (vgl. Figur 7) zugeführt werden kann, je nachdem in welchem Modus sich die Injektoreinrichtung 2 befindet, wie später noch erläutert ist. Hierzu sind das Mittelrohrteil 1 1 und das Außenrohrteil 12 derart zueinander angeordnet, dass zwischen ihnen eine Luftoder Brenngas-Ringleitung 37 ausgebildet ist. Durch diese Luft- oder Brenngas- Ringleitung 37 gelangt die Luft 36 oder das Brenngas 32 bis in einen im Wesentlichen axial innerhalb des Mischerelements 9 verlaufenden Luftkanal 38 des Mischerelements 9.
An der Medienzuführeinrichtung 26 sind an der Außenseite des Mittelrohrteils 1 1 darüber hinaus noch Kühlrippen 39 angeordnet, über welche Wärme von der Injektoreinrichtung 2 an das sich gerade in dem Luft- oder Brenngas-Ringleitung
37 befindlichen Medium (Luft 36 oder Brenngas 32) abgegeben werden kann, wodurch dieses Medium entsprechend vorgewärmt zur Verfügung gestellt werden kann.
Die derart kompakt und sehr klein gebaute Injektoreinrichtung 2 kann konstruktiv einfach an einer Injektorhalteeinrichtung 40 innerhalb des Elektrolichtbogenofens 4 gehaltert werden, indem das an dem Mischerelement 9 angeschraubte Lavaldüsenelement 8 in ein der Injektorhalteeinrichtung 40 zugeordnetes Düsenkopfteil 41 eingesteckt und mittels des kragenartigen Flanschs 21 des Mischerelements 9 an dem Düsenkopfteil 41 festgelegt wird (siehe Figuren 5 bis 8, 10 und 1 1 ).
In das insbesondere in den Figuren 3 und 4 näher gezeigte Düsenkopfteil 41 können das Lavaldüsenelement 8 und teilweise auch das daran befestigte Mischerelement 9 durch eine Montageöffnung 42 derart eingesteckt werden, dass zwischen dem Düsenkopfteil 41 und insbesondere dem Lavaldüsenelement 8 ein Ringspalt 43 geschaffen ist, in welchem der Brenngaskanal 34 und ein Luftkanal
38 des Mischerelements 9 münden. Der Querschnitt des Ringspalts 43 kann zumindest bereichsweise eingestellt werden, indem zwischen dem Anschlag 17 des Lavaldüsenelements 8 und dem Mischerelement 9 gegebenenfalls unterschiedlich dicke Distanzringscheiben 44 platziert werden, wodurch der Abstand zwischen dem Lavaldüsenelement 8 und dem Mischerelement 9 unterschiedlich gewählt werden kann.
Zum schnelleren Festlegen der Injektoreinrichtung 2 an dem Düsenkopfteil 41 weist letzterer eine Schnellspanneinrichtung 45 zum formschlüssigen Verspannen des Lavaldüsenelements 8 und/oder des Mischerelements 9 an dem Düsenkopfteil 41 auf.
Darüber hinaus umfasst das Düsenkopfteil 41 eine Einrichtung 50 zum Anordnen wenigstens eines Zündmittels 51 in Gestalt einer handelsüblichen Zündkerze 52. Das wenigstens eine Zündmittel 51 ist hierbei derart an dem Düsenkopfteil 41 angeordnet, dass es bis in den durch das Lavaldüsenelement 8 und das Düsenkopfteil 41 gebildeten Ringspalt 43 hineinkragt, um dort das befindliche Brenngas-Luft-Gemisch 7 zu entzünden.
Um die Verbrennung des Brenngas-Luft-Gemischstrahls 7 zu verbessern, sind an dem Düsenkopfteil 41 eine Vielzahl an Sauerstoffkanälen 53 (hier nur exemplarisch beziffert) mit Sauerstoffauslasslöchern 54 vorgesehen, um Luft 36 von außen auf einen aus dem gezündeten Brenngas-Luftgemisch 7 erzeugten Heißgasstrahl 55 (vgl. Figuren 6 bis 8 und 10), welcher aus einer Austrittsöffnung 56 des Düsenkopfteils 41 strömt, leiten zu können. Um insbesondere Umgebungsluft durch die Sauerstoffkanäle 53 ansaugen zu können, sind an der Mantelfläche 57 des Düsenkopfteils 41 entsprechende Sauerstoffeinlasslöcher 58 angeordnet.
Eine feste Verbindung zwischen dem Düsenkopfteil 41 und der Injektoreinrichtung 40 kann erzielt werden, wenn das Düsenkopfteil 41 stoffschlüssig, beispielsweise durch Verschweißung, und somit unlösbar an der Injektoreinrichtung 40 festgelegt ist (vgl. Figuren 6 bis 8 und 10).
Alternativ kann das Düsenkopfteil 41 auch gelenkig an der Injektorhalteeinrichtung 40 befestigt sein, wie beispielhaft gemäß der Darstellung der Figur 5 gezeigt ist. Hierbei umfasst die Injektorhalteeinrichtung 40 eine Gelenkeinheit 60, mittels welcher das Düsenkopfteil 41 gelenkig an der Injektorhalteeinrichtung 40 anordenbar ist. An der Injektorhalteeinrichtung 40 ist ein Gelenkpfannenteil 61 ausgestaltet, während das Düsenkopfteil 41 als ein Gelenkkopfteil 62 ausgestaltet ist, welches beweglich in dem Gelenkpfannenteil 61 eingebettet ist. Das Gelenkkopfteil 62 kann mithilfe eines in das Gelenkpfannenteil 61 einschraubbaren Halteringelements 63 gegenüber dem Gelenkpfannenteil 61 festgelegt werden, sobald ein gewünschter Winkel der Injektoreinrichtung 2 eingestellt bleibt.
Die Kühlung der Injektoreinrichtung 2 kann ausreichend sichergestellt werden, wenn die Injektorvorrichtung 1 eine konduktiv arbeitende Kühleinrichtung umfasst, bei welcher das Düsenkopfteil 41 eine metallische Kühlkontaktfläche 65 (hier nur exemplarisch beziffert) umfasst, welche unmittelbar mit einer metallischen Kühlkontaktfläche 66 der Injektorhalteeinrichtung 40 in Wirkkontakt steht.
Bei dem hier gezeigten Ausführungsbeispiel gestaltet das Düsenkopfteil 41 zumindest teilweise Wandbereiche 67 (hier nur exemplarisch beziffert) eines Kühlmittelkanals 68 einer Kühlmitteleinrichtung der Injektorhalteeinrichtung 40 aus.
Vorteilhafterweise besitzt die Injektoreinrichtung 2 selbst keine Kühlmittelkanäle, wodurch sich eine Montage und eine Demontage der Injektoreinrichtung 2 an der Injektorhalteeinrichtung 40 besonders einfach durchführen lassen. Gemäß der Darstellung der Figur 6 befindet sich die Injektoreinrichtung 2 in einem Pilotmodus, in welchem der Heißgasstrahl 55 lediglich aus einer von einem Luftsauerstoffmantel 70 umgebenen Brenngasflamme 71 aus Brenngas 32 besteht, um eine Verschlackung der Injektoreinrichtung 2 zu verhindern. Hierbei wird der Injektoreinrichtung 2 durch das Luft- oder Brenngasanschlussteil 35 Luft 36 und durch das Brenngasanschlussteil 31 Brenngas 32 in Form von Erdgas zugeführt.
Gemäß der Darstellung der Figur 7 befindet sich die Injektoreinrichtung 2 in einem Brennermodus, in welchem der Heißgasstrahl 55 aus dem Sauerstoffgasstrahl 6, aus einem Brenngasstrahl 72 aus Brenngas 32 und aus dem Luftsauerstoffmantel 70 besteht, um insbesondere in den Elektrolichtbogenofen 4 eingefüllten Schrott schneller schmelzen zu können. Hierbei wird der Injektoreinrichtung 2 durch das Luft- oder Brenngasanschlussteil 35 Brenngas 32 in Form von Erdgas und durch das Sauerstoffanschlussteil 28 Sauerstoff 29 zugeführt.
Gemäß der Darstellung der Figur 8 befindet sich die Injektoreinrichtung 2 in einem Lanzenmodus, in welchem der Heißgasstrahl 55 aus dem Sauerstoffgasstrahl 6, aus dem Brenngas-Luft-Gemischstrahl 7 und aus dem Luftsauerstoffmantel 70 besteht, um insbesondere Sauerstoff in eine in dem Elektrolichtbogenofen 4 befindliche Schmelze einbringen zu können. Hierbei wird der Injektoreinrichtung 2 durch das Luft- oder Brenngasanschlussteil 35 Luft 36, durch das Brenngasanschlussteil 31 Brenngas 32 in Form von Erdgas und durch das Sauerstoffanschlussteil 28 Sauerstoff 29 zugeführt. Der Heißgasstrahl 55 liegt hierbei in Form des Hochgeschwindigkeitsgasstrahls 5 vor.
Eine alternative Injektoreinrichtung 3 ist in den Figuren 9 bis 1 1 dargestellt, wobei im folgenden nur die Merkmale erläutert werden, durch welche sich dieses zweite Ausführungsbeispiel von dem ersten Ausführungsbeispiel unterscheidet. Die alternative Injektoreinrichtung 3 besitzt im Wesentlichen den gleichen Aufbau wie die zuvor erläuterte Injektoreinrichtung 2. Die alternative Injektoreinrichtung 3 zeichnet sich jedoch noch durch ein innerhalb des Innenrohrs 10 angeordnetes Kohlenstofflanzenelement 75 aus, welches durch das Mischerelement 9 bis in das Lavaldüsenelement 8 hinein reicht, um zusätzlich noch Kohlenstoff 76 in den Elektrolichtoffen 4 einbringen zu können. Vorteilhafterweise kann hierdurch auf eine zusätzliche Kohlenstoffinjektoreinrichtung verzichtet werden. Das Kohlenstofflanzenelement 75 ist besonders widerstandsfähig ausgeführt, da es ein Keramikrohr 77 umfasst.
Gemäß der Darstellung der Figur 10 befindet sich die alternative Injektoreinrichtung 3 in einem kombinierten Sauerstoff-Kohlenstoff-Modus, in welchem der Heißgasstrahl 55 aus dem Kohlenstoff 76, aus dem ringförmigen Sauerstoffgasstrahl 6, aus dem Brenngas-Luft-Gemischstrahl 7 und aus dem Luftsauerstoffmantel 70 besteht, um insbesondere Sauerstoff und Kohlenstoff in eine in dem Elektrolichtbogenofen 4 befindliche Schmelze einbringen zu können. Hierbei wird der alternativen Injektoreinrichtung 3 durch das Luft- oder Brenngasanschlussteil 35 Luft 36, durch das Brenngasanschlussteil 31 Brenngas 32 in Form von Erdgas und durch das Sauerstoffanschlussteil 28 Sauerstoff 29 zugeführt. Zusätzlich wird der alternativen Injektoreinrichtung 3 durch das Kohlenstofflanzenelement 75 noch Kohlenstoff 76 zugeführt.
An dieser Stelle sei explizit darauf hingewiesen, dass die Merkmale der vorstehend bzw. in den Ansprüchen und/oder Figuren beschriebenen Lösungen gegebenenfalls auch kombiniert werden können, um die erläuterten Merkmale, Effekte und Vorteile entsprechend kumuliert umsetzen bzw. erzielen zu können.
Es versteht sich, dass es sich bei den vorstehend erläuterten Ausführungsbeispielen lediglich um erste Ausgestaltungen der erfindungsgemäßen Injektorvorrichtung handelt. Insofern beschränkt sich die Ausgestaltung der Erfindung nicht auf diese Ausführungsbeispiele. Sämtliche in den Anmeldungsunterlagen offenbarten Merkmale werden als erfindungswesentlich beansprucht, sofern sie einzeln oder in Kombination gegenüber dem Stand der Technik neu sind.
Bezugszeichenliste:
I Injektorvorrichtung
2 Injektoreinrichtung
3 alternative Injektoreinrichtung
4 Elektrolichtbogenofen
5 Hochgeschwindigkeitsgasstrahl
6 Sauerstoffgasstrahl
7 Brenngas-Luft-Gemischstrahl bzw. Brenngas-Luft-Gemisch
8 Lavaldüsenelement
9 Mischerelement
10 Innenrohrteil
I I Mittelrohrteil
12 Außenrohrteil
13 Mittellängsachse
14 Außengewinde
15 Innengewinde
16 Schulter
17 Anschlag
18 Umfangsnut
19 O-Ring
20 Schnittstellenbereich
21 kragenartiger Flansch
22 Nut
23 komprimierbares Ringelement
24 Viton®-O-Ring
25 Rückseite
26 Medienzuführeinrichtung
27 hinteres Ende
28 Sauerstoffanschlussteil Sauerstoff
Austrittsöffnung
Brenngasanschlussteil
Brenngas
Brenngas-Ringleitung
Brenngaskanal
Luft- oder Brenngasanschlussteil
Luft
Luft- oder Brenngas-Ringleitung
Luftkanal
Kühlrippen
Injektorhalteeinrichtung
Düsen kopfteil
Montageöffnung
Ringspalt
Distanzringscheiben
Schnellspanneinrichtung
Einrichtung zum Anordnen
Zündmittel
Zündkerze
Sauerstoffkanäle
Sauerstoffauslasslöcher
Heißgasstrahl
Austrittsöffnung
Mantelfläche
Sauerstoffeinlasslöcher
Gelenkeinheit
Gelenkpfannenteil
Gelenkkopfteil
Halteringelement
metallische Kühlkontaktfläche metallische Kühlkontaktfläche Wandbereiche
Kühlmittelkanal
Luftsauerstoffmantel
Brenngasflamme
Brenngasstrahl
Kohlenstofflanzenelement Kohlenstoff
Keramikrohr

Claims

Patentansprüche:
1 . Injektorvorrichtung (1 ) zur pyrometallurgischen Behandlung von Metallen, Metallschmelzen und/oder Schlacken in einem metallurgischen Aggregat oder Schmelzgefäß mit einer Injektoreinrichtung (2, 3) zum Erzeugen eines Hochgeschwindigkeitsgasstrahls (5) aus einem Sauerstoffgasstrahl (6) und einem entzündeten Brenngas-Luft-Gemischstrahl (7), bei welcher die Injektoreinrichtung (2, 3) ein in einem Düsenkopfteil (41 ) angeordnetes Lavahdüsenelement (8) zum Erzeugen des Sauerstoffgasstrahls (6) umfasst, und bei welcher das Brenngas-Luft-Gemisch (7) mittels eines Mischerelements (9) zum Mischen von Brenngas (32) und Luft (36) mischbar ist, dadurch gekennzeichnet, dass das Lavaldüsenelement (8) und das Mischerelement (9) gemeinsam entlang der Mittellängsachse (13) der Injektoreinrichtung (2, 3) voneinander lösbar hintereinander angeordnet sind.
2. Injektorvorrichtung (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass das Laval-düsenelement (8) und das Mischerelement (9) durch Zerspannung gefertigte Drehbauteile sind, welche kraft- und/oder formschlüssig unmittelbar miteinander verbunden sind.
3. Injektorvorrichtung (1 ) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Lavaldüsenelement (8) und das Mischerelement (9) derart innerhalb und/oder an dem Düsenkopfteil (41 ) angeordnet sind, dass zwischen dem Düsenkopfteil (41 ) und dem Lavaldüsenelement (8) ein Ringspalt (43) entsteht, in welchen ein Brenngaskanal (34) und ein Luftkanal (38) des Mischerelements (9) münden.
4. Injektorvornchtung (1 ) nach Anspruch 3, dadurch gekennzeichnet, dass die Größe des Ringspalts (43) in Abhängigkeit von einem axialen Abstand zwischen dem Lavaldüsenelement (8) und dem Mischerelement (9) einstellbar ist.
5. Injektorvorrichtung (1 ) nach Anspruch 4, dadurch gekennzeichnet, dass der axiale Abstand zwischen dem Lavaldüsenelement (8) und dem Mischerelement (9) mittels unterschiedlicher Distanzringscheiben (44) einstellbar ist.
6. Injektorvorrichtung (1 ) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Lavaldüsenelement (8) ein Außengewinde (14) aufweist, mittels welchem das Lavaldüsenelement (8) in ein Innengewinde (15) des Mischerelements (9) einschraubbar ist.
7. Injektorvorrichtung (1 ) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Lavaldüsenelement (8) und das Mischerelement (9) konzentrisch innerhalb und/oder an dem Düsenkopfteil (41 ) angeordnet sind.
8. Injektorvorrichtung (1 ) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Lavaldüsenelement (8) mittels des Mischerelements (9) um die Mittellängsachse (13) der Injektoreinrichtung (2, 3) zentriert angeordnet ist.
9. Injektorvorrichtung (1 ) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Injektorvorrichtung (1 ) eine Injektorhalteeinrichtung (40) zum Halten der Injektoreinrichtung (2, 3) im Inneren des metallurgischen Aggregats oder Schmelzgefäßes aufweist, wobei die Injektorhalteeinrichtung (40) das Düsenkopfteil (41 ) umfasst.
10. Injektorvornchtung (1 ) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Düsenkopfteil (41 ) eine Einrichtung (50) zum Anordnen wenigstens eines Zündmittels (51 ) umfasst, wobei das wenigstens eine Zündmittel (51 ) derart an dem Düsenkopfteil (41 ) angeordnet ist, dass das wenigstens eine Zündmittel (51 ) bis in einen durch das Lavaldüsenelement (8) und das Düsenkopfteil (41 ) gebildeten Ringspalt (43) hineinkragt.
1 1 . Injektorvorrichtung (1 ) nach Anspruch 10, dadurch gekennzeichnet, dass das wenigstens eine Zündmittel (51 ) senkrecht zu der Mittellängsachse (13) der Injektoreinrichtung (2, 3) an dem Düsenkopfteil (41 ) angeordnet ist.
12. Injektorvorrichtung (1 ) nach einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass das Düsenkopfteil (41 ) eine Vielzahl an Sauerstoffkanälen (53) mit Sauerstoffauslasslöchern (54) aufweist, um Luft (36) bzw. Sauerstoff von außen auf einen aus dem gezündeten Brenngas- Luftgemisch (7) erzeugten Heißgasstrahl (55) leiten zu können.
13. Injektorvorrichtung (1 ) nach Anspruch 12, dadurch gekennzeichnet, dass die Sauerstoffkanäle (53) innerhalb des Düsenkopfteils (41 ) konzentrisch und winkelig um die Mittellängsachse (13) der Injektoreinrichtung (2, 3) herum angeordnet sind.
14. Injektorvorrichtung (1 ) nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass die Sauerstoffauslasslöcher (54) innerhalb einer Austrittsöffnung (56) des Düsenkopfteils (41 ) angeordnet sind.
15. Injektorvorrichtung (1 ) nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass das Düsenkopfteil (41 ) eine Schnellspanneinrichtung (45) zum formschlüssigen Verspannen des Lavaldüsenelements (8) und/oder des Mischerelements (9) umfasst.
16. Injektorvorrichtung (1 ) nach Anspruch 15, dadurch gekennzeichnet, dass das Mischerelement (9) derart an dem Düsenkopfteil (41 ) formschlüssig verspannbar ist, dass das Lavaldüsenelement (8) mittels des Mischerelements (9) an dem Düsenkopfteil (41 ) lösbar festgelegt ist.
17. Injektorvorrichtung (1 ) nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass die Schnellspanneinrichtung (45) Düsenkopfteil (41 ) seitig an einem einer Austrittsöffnung (56) abgewandten Ende des Düsenkopfteils (41 ) derart ausgestaltet ist, dass drei oder mehr Spannmittel der Schnellspanneinrichtung (45) konzentrisch um die Mittellängsachse (13) der Injektoreinrichtung (2, 3) angeordnet sind.
18. Injektorvorrichtung (1 ) nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, dass die Schnellspanneinrichtung (45) Mischerelement (9) seitig ein komprimierbares Ringelement (23), insbesondere einen Viton®- O-Ring (24), umfasst.
19. Injektorvorrichtung (1 ) nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass eine Injektorhalteeinrichtung (40) zum Haltern der Injektoreinrichtung (2, 3) eine Gelenkeinheit (60) umfasst, mittels welcher das Düsenkopfteil (41 ) gelenkig an der Injektorhalteeinrichtung (40) angeordnet ist.
20. Injektorvorrichtung (1 ) nach Anspruch 19, dadurch gekennzeichnet, dass die Gelenkeinheit (60) ein Gelenkpfannenteil (61 ) und ein Gelenkkopfteil (62) aufweist, wobei das Gelenkkopfteil (62) das Düsenkopfteil (41 ) umfasst.
21 . Injektorvorrichtung (1 ) nach Anspruch 19 oder 20, dadurch gekennzeichnet, dass das Gelenkkopfteil (62) mittels eines Halteringelements (63) austauschbar an dem Gelenkpfannenteil (61 ) festleg bar ist.
22. Injektorvorrichtung (1 ) nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass das Düsenkopfteil (41 ) unlösbar an einer Injektorhalteeinrichtung (40) zum Haltern der Injektoreinrichtung (2, 3) angeordnet ist.
23. Injektorvorrichtung (1 ) nach Anspruch 22, dadurch gekennzeichnet, dass das Düsenkopfteil (41 ) mit der Injektorhalteeinrichtung (40) stoffschlüssig verbunden ist.
24. Injektorvorrichtung (1 ) nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass die Injektorvorrichtung (1 ) eine konduktiv arbeitende Kühleinrichtung umfasst, bei welcher das Düsenkopfteil (41 ) eine metallische Kühlkontaktfläche (65) umfasst, welche unmittelbar mit einer metallischen Kühlkontaktfläche (66) einer Injektorhalteeinrichtung (40) zum Haltern der Injektoreinrichtung (2, 3) in Wirkkontakt steht.
25. Injektorvorrichtung (1 ) nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, dass das Düsenkopfteil (41 ) zumindest teilweise Wandbereiche (67) eines Kühlmittelkanals (68) einer Kühlmitteleinrichtung der Injektorhalteeinrichtung (40) ausgestaltet.
26. Injektorvorrichtung (1 ) nach einem der Ansprüche 1 bis 25, dadurch gekennzeichnet, dass die Injektorvorrichtung (1 ) eine Medienzuführeinrichtung (26) aufweist, welche an dem Mischerelement (9) angeflanscht ist, wobei die Medienzuführeinrichtung (26) wenigstens ein Außenrohr (12), ein Mittelrohr (1 1 ) und ein Innenrohr (10) umfasst, wobei das Innenrohr (10) zumindest teilweise derart in dem Mittelrohr (1 1 ) angeordnet ist, dass zwischen dem Innenrohr (10) und dem Mittelrohr (1 1 ) eine Brenngas-Ringleitung (33) angeordnet ist, wobei das Mittelrohr (1 1 ) zumindest teilweise derart in dem Außenrohr (12) angeordnet ist, dass zwischen dem Mittelrohr (1 1 ) und dem Außenrohr (12) eine Luft- oder
Brenngas-Ringleitung (37) angeordnet ist, und wobei das Außenrohr (12), das Mittelrohr (1 1 ) und das Innenrohr (10) konzentrisch um die Mittellängsachse (13) der Injektoreinrichtung (2, 3) angeordnet sind.
27. Injektorvorrichtung (1 ) nach Anspruch 26, dadurch gekennzeichnet, dass die Brenngas-Ringleitung (33) und die Luft- oder Brenngas-Ringleitung (37) konzentrisch um die Mittellängsachse (13) der Injektoreinrichtung (2, 3) angeordnet sind.
28. Injektorvorrichtung (1 ) nach Anspruch 26 oder 27, dadurch gekennzeichnet, dass innerhalb des Innenrohrs (10) ein Kohlenstofflanzenelement (75) angeordnet ist, welches durch das Mischerelement (9) bis in das Lavaldüsenelement (8) hinein reicht.
29. Injektorvorrichtung (1 ) nach Anspruch 28, dadurch gekennzeichnet, dass das Kohlenstofflanzenelement (75) ein Keramikrohr (77) umfasst.
30.Elektrolichtbogenofen (4), gekennzeichnet durch wenigstens eine Injektorvorrichtung (1 ) nach einem der vorstehenden Ansprüche.
PCT/EP2014/069306 2013-10-08 2014-09-10 INJEKTORVORRICHTUNG ZUM AUFBLASEN ODER EINBLASEN VON SAUERSTOFFREICHEN GASEN IN EINEM METALLURGISCHEN AGGREGAT ODER SCHMELZGEFÄß UND ELEKTROLICHTBOGENOFEN WO2015051966A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020167007356A KR101803762B1 (ko) 2013-10-08 2014-09-10 야금 유닛 또는 용융 용기 및 전기 아크로에서 산소 농후 가스를 상취 또는 취입하기 위한 인젝터 장치
ES14766951.9T ES2659283T3 (es) 2013-10-08 2014-09-10 Dispositivo inyector para soplar gases ricos en oxígeno hacia o al interior de una unidad metalúrgica o aparato de fusión y horno de arco eléctrico
RU2016116941A RU2633130C1 (ru) 2013-10-08 2014-09-10 Инжекторное устройство для продувания или вдувания обогащеных кислородом газов в металлургический агрегат или плавильный сосуд и дуговая электропечь
US15/026,320 US9453680B2 (en) 2013-10-08 2014-09-10 Injector device for blowing oxygen-rich gases on or in, in a metallurgical unit or melting vessel, and electric arc furnace
CN201480055823.2A CN105612262B (zh) 2013-10-08 2014-09-10 用于在冶金单元或熔釜中吹送或吹入富氧气体的喷射设备和电弧炉
EP14766951.9A EP3055435B1 (de) 2013-10-08 2014-09-10 Injektorvorrichtung zum aufblasen oder einblasen von sauerstoffreichen gasen in einem metallurgischen aggregat oder schmelzgefäss und elektrolichtbogenofen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013220228.8A DE102013220228A1 (de) 2013-10-08 2013-10-08 Injektorvorrichtung zum Aufblasen oder Einblasen von sauerstoffreichen Gasen in einem metallurgischen Aggregat oder Schmelzgefäß und Elektrolichtbogenofen
DE102013220228.8 2013-10-08

Publications (1)

Publication Number Publication Date
WO2015051966A1 true WO2015051966A1 (de) 2015-04-16

Family

ID=51570483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/069306 WO2015051966A1 (de) 2013-10-08 2014-09-10 INJEKTORVORRICHTUNG ZUM AUFBLASEN ODER EINBLASEN VON SAUERSTOFFREICHEN GASEN IN EINEM METALLURGISCHEN AGGREGAT ODER SCHMELZGEFÄß UND ELEKTROLICHTBOGENOFEN

Country Status (8)

Country Link
US (1) US9453680B2 (de)
EP (1) EP3055435B1 (de)
KR (1) KR101803762B1 (de)
CN (1) CN105612262B (de)
DE (1) DE102013220228A1 (de)
ES (1) ES2659283T3 (de)
RU (1) RU2633130C1 (de)
WO (1) WO2015051966A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9803554B2 (en) * 2013-08-12 2017-10-31 Unison Industries, Llc Fuel igniter assembly having heat-dissipating element and methods of using same
WO2018138133A1 (de) * 2017-01-24 2018-08-02 Primetals Technologies Germany Gmbh Brenner-lanzeneinsatz für einen lichtbogenofen
CN107460273A (zh) * 2017-07-21 2017-12-12 本钢板材股份有限公司 安装在电弧炉下料口内的密封装置
CN109210936B (zh) * 2018-10-18 2019-09-20 江苏新春兴再生资源有限责任公司 一种熔炼炉用的侧吹喷枪及使用方法
DE102018220217A1 (de) * 2018-11-26 2020-05-28 Sms Group Gmbh Injektorvorrichtung zum Einblasen von Feststoffen in ein metallurgisches Aggregat
CN112029956B (zh) * 2020-03-24 2022-02-25 江苏省沙钢钢铁研究院有限公司 一种电弧炉炼钢的供氧方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU538402B3 (en) * 1984-01-10 1984-08-30 Aberfoyle Services Pty. Ltd. Injection of fine solid material against a pressure head
US4653730A (en) * 1984-11-27 1987-03-31 Empco (Canada) Ltd. Multi-purpose pyrometallurgical process enhancing device
WO2012089754A2 (de) 2010-12-29 2012-07-05 Sms Siemag Ag Verfahren zur pyrometallurgischen behandlung von metallen, metallschmelzen und/ oder schlacken

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU994561A2 (ru) * 1981-02-20 1983-02-07 Донецкий Ордена Трудового Красного Знамени Политехнический Институт Питатель дл подачи угольной пыли
US5599375A (en) 1994-08-29 1997-02-04 American Combustion, Inc. Method for electric steelmaking
AT402963B (de) 1995-09-07 1997-10-27 Voest Alpine Ind Anlagen Verfahren zum verbrennen von brennstoff
CN2331936Y (zh) * 1998-03-19 1999-08-04 李勇敏 电炉炼钢用多功能喷枪
ATE302288T1 (de) 1998-08-28 2005-09-15 Voest Alpine Ind Anlagen Verfahren zun herstellen einer metallschmelze mittels einer multifunktionslanze
GB0128878D0 (en) * 2001-12-03 2002-01-23 Boc Group Plc Metallurgical lance and apparatus
GB0209364D0 (en) 2002-04-24 2002-06-05 Boc Group Plc Injection of particulate material into liquid
GB0209365D0 (en) * 2002-04-24 2002-06-05 Boc Group Plc Injection of solids into liquids
ITMI20021526A1 (it) 2002-07-11 2004-01-12 Danieli Off Mecc Iniettore per forni di fusione di materiale metallico
RU2245373C1 (ru) * 2003-04-17 2005-01-27 Открытое акционерное общество "Северсталь" Дутьевая фурма доменной печи
WO2006105578A1 (en) 2004-10-18 2006-10-12 Technological Resources Pty Limited Apparatus for injecting solid particulate material into a vessel
ITMI20050241A1 (it) * 2005-02-18 2006-08-19 Techint Spa Iniettore multifunzione e relativo procedimento di combustione per trattamento metallurgico in un forno ad arco elettrico
CN101382387B (zh) * 2008-10-22 2011-11-30 中国恩菲工程技术有限公司 有色金属熔炼侧吹炉喷枪
JP2010236019A (ja) * 2009-03-31 2010-10-21 Jfe Steel Corp 精錬用浸漬ランス装置
DE102010047969A1 (de) * 2010-03-31 2011-10-06 Sms Siemag Aktiengesellschaft Vorrichtung zur Einblasung von Gas in ein metallurgisches Gefäß

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU538402B3 (en) * 1984-01-10 1984-08-30 Aberfoyle Services Pty. Ltd. Injection of fine solid material against a pressure head
US4653730A (en) * 1984-11-27 1987-03-31 Empco (Canada) Ltd. Multi-purpose pyrometallurgical process enhancing device
WO2012089754A2 (de) 2010-12-29 2012-07-05 Sms Siemag Ag Verfahren zur pyrometallurgischen behandlung von metallen, metallschmelzen und/ oder schlacken

Also Published As

Publication number Publication date
DE102013220228A1 (de) 2015-04-09
KR101803762B1 (ko) 2017-12-01
EP3055435B1 (de) 2017-11-15
KR20160045823A (ko) 2016-04-27
US20160238320A1 (en) 2016-08-18
ES2659283T3 (es) 2018-03-14
US9453680B2 (en) 2016-09-27
EP3055435A1 (de) 2016-08-17
CN105612262A (zh) 2016-05-25
RU2633130C1 (ru) 2017-10-11
CN105612262B (zh) 2017-07-14

Similar Documents

Publication Publication Date Title
EP3055435B1 (de) Injektorvorrichtung zum aufblasen oder einblasen von sauerstoffreichen gasen in einem metallurgischen aggregat oder schmelzgefäss und elektrolichtbogenofen
EP2383361A1 (de) Vorrichtung zur Beschichtung von Substraten mittels Hochgeschwindigkeitsflammspritzen
AT509982B1 (de) Befestigungssystem eines brennerkörpers eines wig-schweissbrenners, brennerkörper und wig-schweissbrenner
DE10307492B4 (de) Düsenanordnung für ein thermisches HVOF-Spritzsystem
DE3241476C2 (de)
DE3316167A1 (de) Periskop fuer hochtemperatur-reaktoren
EP0761345A2 (de) Warmkammer-Druckgiessmaschine
DE2802640A1 (de) Rekuperativer brenner fuer stroemende brennstoffe
DE4407913A1 (de) Plasmabrenner und Verfahren zur Durchführung, insbesondere für das Aushöhlen von Werkstücken
DE102004037620B4 (de) Brennstoff-Sauerstoff-Brenner mit variabler Flammenlänge
DE69921950T2 (de) Einspritzdüse für Brenner und entsprechendes Einspritzsystem
EP3177743B1 (de) Brenner-lanzen-einheit
DE3135626A1 (de) Wassergekuehlter schutzgasschweissbrenner fuer automatische schweissanlagen mit von innen ausblasbarer gasduese
DE1546810A1 (de) Vorrichtung zum Ausstoss von pulverfoermigem Material mittels eines ionisierten Gasstrahles
EP0801721A1 (de) Austauschbare düse für feuerfest ausgekleidete hochtemperaturreaktoren
DE19637246A1 (de) Schmelzofen insbesondere für Metalle mit zumindest einer in seinen Ofenraum einragenden Lanze, Lanze dafür sowie Verfahren zu deren Steuerung
DE3936205C2 (de)
DE2516772C3 (de) ölbrenner
DE3833506C2 (de)
DE10202600B4 (de) Gasbrenner
DE4410203A1 (de) Sauerstoffschneidbrenner mit einem flüssigen Sauerstoffstrahl
DE102008013135B4 (de) Schutzgasschweißbrenner
DE212015000264U1 (de) Fluidverteilungsvorrichtung
EP0513426A1 (de) Düsenblock zum Anschluss eines Brenners oder einer Brennerlanze an eine Ofenanlage
AT407022B (de) Plasma - schweissbrenner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14766951

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014766951

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014766951

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167007356

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15026320

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201603023

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2016116941

Country of ref document: RU

Kind code of ref document: A