WO2015046660A1 - 열교환기 및 그 제조방법과 그 제어방법 - Google Patents

열교환기 및 그 제조방법과 그 제어방법 Download PDF

Info

Publication number
WO2015046660A1
WO2015046660A1 PCT/KR2013/009076 KR2013009076W WO2015046660A1 WO 2015046660 A1 WO2015046660 A1 WO 2015046660A1 KR 2013009076 W KR2013009076 W KR 2013009076W WO 2015046660 A1 WO2015046660 A1 WO 2015046660A1
Authority
WO
WIPO (PCT)
Prior art keywords
header tank
refrigerant
water
microchannel
inlet
Prior art date
Application number
PCT/KR2013/009076
Other languages
English (en)
French (fr)
Inventor
전창덕
Original Assignee
한국교통대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국교통대학교 산학협력단 filed Critical 한국교통대학교 산학협력단
Publication of WO2015046660A1 publication Critical patent/WO2015046660A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/0287Other particular headers or end plates having passages for different heat exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/16Safety or protection arrangements; Arrangements for preventing malfunction for preventing leakage

Definitions

  • the present invention can improve heat transfer performance by alternately stacking microchannel tubes in which water and refrigerant flow, and detecting a leak of water to ensure stable operation, and a manufacturing method thereof and a control method thereof. It is about.
  • a water-cooled heat exchanger used in a refrigeration air conditioning system refers to a device that cools or heats a refrigerant by exchanging water with a high or low temperature refrigerant.
  • the performance of such a water cooled heat exchanger depends on how effectively it can absorb or supply heat from the refrigerant.
  • FIG. 1 is a schematic configuration diagram of a plate heat exchanger commonly used in the prior art.
  • a plate heat exchanger 10 of FIG. 1 a plurality of heat transfer plates 13 are stacked between the front plate 11 and the rear plate 12, and the refrigerant introduced through the refrigerant inlet 14a is transferred into the heat transfer plate 13.
  • the present invention has been made in order to solve the conventional problems as described above, it is possible to improve the heat transfer performance by alternately stacking the micro-channel tube flowing water and refrigerant flow, and to detect this when the water leaks stable operation
  • the object of the present invention is to provide a user with a heat exchanger, a method of manufacturing the same, and a method of controlling the same.
  • an object of the present invention is to provide a user with a heat exchanger that can significantly improve heat transfer performance by performing heat exchange with counter flow between water and refrigerant.
  • the present invention can be made of aluminum material to significantly reduce the weight, it is an object of the present invention to provide a heat exchanger that can significantly reduce the production cost is not necessary to manufacture a separate mold using a microchannel tube. .
  • an object of the present invention is to provide a user with a heat exchanger capable of securing stability and reliability by stopping a system operation by providing a sensor capable of detecting water leakage.
  • the heat exchanger according to an example of the present invention for solving the above problems is an inlet refrigerant header tank 130 having a refrigerant inlet 131 through which refrigerant is introduced, and one end thereof with the inlet refrigerant header tank 130.
  • a refrigerant connected to the long microchannel tube 114 and the other end of the long microchannel tube 114 in which the plurality of coolant microchannels 113 are arranged side by side, and the coolant flows out to the outside.
  • An outlet side refrigerant header tank 135 having an outlet 136, an inlet side water header tank 125 having a water inlet 126 through which water is introduced, and the other end connected to the inlet side water header tank 125.
  • the plurality of water microchannels 111 through which the water flows are arranged side by side, and have a shorter shape than that of the long microchannel tube 114 and the short microchannel tube 112 and the short microchannel tube 112.
  • an outlet side water header tank 120 having a water outlet 121 through which water flows out, wherein the single microchannel tube 112 and the long microchannel tube 114 are plural, and Each of the plurality of single microchannel tubes 112 and the plurality of long microchannel tubes 114 may be alternately stacked to form the microchannel tube module 110.
  • the refrigerant flows from one end of the microchannel tube module 110 to the other end of the microchannel tube module 110 through the plurality of long microchannel tubes 114, and the water flows in the plurality of stage microchannels. It may flow from one end of the microchannel tube module 110 from the other end of the microchannel tube module 110 through the channel tube 112.
  • microchannel tube module 110 may be stacked in a shape in which both ends of each of the plurality of long microchannel tubes 114 protrude outwards from both ends of each of the plurality of end microchannel tubes 112. .
  • outlet water header tank 120 and the inlet refrigerant header tank 130 are disposed on one side of the microchannel tube module 110, and the outlet water header tank 120 is the microchannel. It is connected to one end of each of the plurality of stage microchannel tube 112 of the tube module 110, the inlet refrigerant header tank 130, the plurality of protruding to the outside of the microchannel tube module 110 One end of each of the long microchannel tubes 114 may be connected.
  • a first partition plate 122 is formed on one surface of the outlet water header tank 120 and divides the outlet water header tank 120 and the inlet refrigerant header tank 130. Can be.
  • the apparatus may further include a first separator 132 formed inside the refrigerant header tank 130 of the inlet side, wherein the water and the first separator 132 and the first divider 122 may be separated from each other.
  • a first space may be formed in which the inflow of the refrigerant is blocked.
  • the inlet water header tank 125 and the outlet refrigerant header tank 135 are disposed at the other side of the microchannel tube module 110, and the inlet water header tank 125 is the microchannel. It is connected to the other end of each of the plurality of stage microchannel tube 112 of the tube module 110, the outlet refrigerant header tank 135, the plurality of protruding to the outside of the microchannel tube module 110 It may be connected to the other end of each of the long microchannel tube (114).
  • a second partition plate 127 is formed on one surface of the inlet side water header tank 125 and divides the inlet side water header tank 125 and the outlet side refrigerant header tank 135. Can be.
  • the apparatus may further include a second separator 137 formed inside the outlet refrigerant header tank 135, wherein the water and the second separator 137 and the second divider 127 may be separated from each other.
  • a second space may be formed in which the inflow of the refrigerant is blocked.
  • the apparatus may further include an energization sensor 140 installed in the first space or the second space and detecting whether at least one of the water and the refrigerant flows into the first space or the second space. have.
  • the energization sensor 140 may further include a controller 143 for stopping the operation of the heat exchanger when detecting the inflow of at least one of the water and the refrigerant.
  • the inlet refrigerant header tank 130, the long microchannel tube 114, the outlet refrigerant header tank 135, the inlet water header tank 125, the stage microchannel tube 112 and At least one of the outlet side water header tank 120 may be made of aluminum.
  • the manufacturing method of the heat exchanger for realizing the above-described problem, the step of manufacturing a plurality of stage microchannel tube 112 and a plurality of long microchannel tube 114, the plurality of stages Alternately stacking each of the microchannel tubes 112 and each of the plurality of long microchannel tubes 114 to manufacture the microchannel tube module 110, and the outlet side water header tank 120 is connected to the microchannel tube module.
  • One end of each of the plurality of stage microchannel tubes 112 and the outlet water header tank 120 are coupled to one side of the 110, and the inlet side water header tank 125 is connected to the microchannel tube module 110.
  • each of the inlet water header tank 125 and the plurality of stage microchannel tubes 112 Coupling the other end of each of the inlet water header tank 125 and the plurality of stage microchannel tubes 112 and coupling the inlet refrigerant header tank 130 to the microchannel tube module 110.
  • It is coupled to one side to connect one end of each of the inlet refrigerant header tank 130 and the plurality of long microchannel tube 114, the other end of the outlet refrigerant header tank 135 of the microchannel tube module 110 Coupling to the outlet end refrigerant header tank 135 and the other end of each of the plurality of long microchannel tubes 114, wherein each of the plurality of stage microchannel tubes 112 is connected to the water;
  • the plurality of water microchannels 111 are arranged side by side, and have a shorter shape than the long microchannel tube 114, wherein each of the plurality of long microchannel tubes 114 is a plurality of refrigerants through which the refrigerant flows.
  • the refrigerant flows into the inlet refrigerant header tank 130 through the refrigerant inlet 131, the water inlet 126 (2) flowing into the inlet water header tank (125), the refrigerant flowing through the plurality of long microchannel tubes (114), and the water flowing through the plurality of single microchannel tubes (112), Heat exchange occurs between the refrigerant and the water, the refrigerant flows into the outlet refrigerant header tank 135, the water flows into the outlet water header tank 120, and the refrigerant exits the refrigerant.
  • each of the plurality of long microchannel tubes 114 is connected to the outlet refrigerant header tank 135, and one end of each of the plurality of end microchannel tubes 112 is connected to the outlet water header tank ( 120, the other end of each of the plurality of stage microchannel tubes 112 is connected to the inlet side water header tank 125, and each of the plurality of stage microchannel tubes 112 is a plurality of flows through which the water flows.
  • the water microchannels 111 are arranged side by side, and have a shape shorter than that of the long microchannel tube 114, and each of the plurality of long microchannel tubes 114 includes a plurality of coolant microparticles through which the coolant flows.
  • the channels 113 are arranged side by side, and each of the plurality of single microchannel tubes 112 and each of the plurality of long microchannel tubes 114 may be alternately stacked.
  • the present invention can improve heat transfer performance by alternately stacking microchannel tubes in which water and refrigerant flow, and detecting a leak of water to ensure stable operation, and a manufacturing method thereof and a control method thereof. Can be provided to the user.
  • the present invention may provide a user with a heat exchanger capable of greatly improving heat transfer performance by performing heat exchange with counter flow between water and a refrigerant.
  • the present invention can be made of aluminum material to significantly reduce the weight, by using a microchannel tube can provide a user with a heat exchanger that can significantly reduce the production cost is not necessary to manufacture a separate mold.
  • the present invention can provide a user with a heat exchanger that can ensure the stability and reliability by stopping the operation of the system having a sensor that can detect when the water leaks.
  • FIG. 1 is a schematic configuration diagram of a plate heat exchanger commonly used in the prior art.
  • FIGS. 2 and 3 show a perspective view and a plan view of a heat exchanger that can be implemented according to one embodiment of the invention.
  • Figure 4 is a perspective view showing the configuration of a microchannel tube module that can be applied to the heat exchanger of the present invention.
  • Figure 5 is a perspective view showing the configuration of the outlet side water header tank that can be applied to the heat exchanger of the present invention.
  • 6 and 7 are a front perspective view and a rear perspective view showing the configuration of the inlet refrigerant header tank that can be applied to the heat exchanger of the present invention.
  • FIG 8 and 9 are a side cross-sectional view and a plan view showing the flow of water and refrigerant according to an embodiment of the heat exchanger of the present invention.
  • Heat exchanger 100 of the present invention is a microchannel tube module 110, outlet water header tank 120, inlet water header tank 125, inlet refrigerant header tank 130, outlet refrigerant header tank ( 135), the energization sensor 140 may be included.
  • the microchannel tube module 110 includes a single microchannel tube 112 and a long microchannel tube 114, wherein the microchannel tube 112 includes a plurality of water microchannels 111 through which water can flow.
  • the long microchannel tube 114 is configured such that the plurality of refrigerant microchannels 113 through which the refrigerant can flow are arranged side by side.
  • the microchannel tube module 110 is formed by alternately stacking the plurality of single microchannel tubes 112 and the plurality of long microchannel tubes 114. However, the microchannel tube 112 is formed in a shorter shape than the long microchannel tube 114.
  • both ends of each of the plurality of long microchannel tubes 114 protrude outwards. Both ends of each of the microchannel tubes 112 may have a shape drawn into the inside.
  • the outlet water header tank 120 is installed at one end of the microchannel tube module 110 and connected to one end of the plurality of stage microchannel tubes 112, and the inlet water header tank 125 is a microchannel tube module ( It is installed on the other end of the 110 is connected to the other end of the plurality of stage microchannel tube (112).
  • the inlet refrigerant header tank 130 is installed at one end of the microchannel tube module 110 to be connected to one end of the plurality of long microchannel tubes 114, and the outlet refrigerant header tank 135 is connected to the microchannel tube module ( It is installed on the other end of the 110 is connected to the other end of the plurality of long microchannel tube 114.
  • the energization sensor 140 may be provided, and the energization sensor 140 may detect the water or the refrigerant flowing therein to stop the operation of the heat exchanger 100 of the present invention.
  • a plate heat exchanger that stacks a plurality of heat transfer plates and forms a structure in which water and a refrigerant are alternately supplied and absorbs heat is widely used.
  • the heat exchange performance is poor, there was a burden in terms of price and production cost, and there was a problem that stable operation is difficult.
  • the present invention proposes a heat exchanger, a method of manufacturing the same, and a method of controlling the same, which are excellent in terms of cost and weight as well as heat exchange performance.
  • the heat exchanger 100 of the present invention includes a microchannel tube module 110, an outlet water header tank 120, an inlet water header tank 125, and an inlet refrigerant header.
  • the tank 130 may include an outlet refrigerant header tank 135 and an energization sensor 140.
  • a heat exchanger 100 having more or fewer components may be implemented. Hereinafter, the components will be described in turn.
  • the microchannel tube module 110 comprises a short microchannel tube 112 and a long microchannel tube 114.
  • the microchannel tube 112 serves as a passage through which water flows
  • the long microchannel tube 114 serves as a passage through which refrigerant flows.
  • the microchannel tube module 110 is formed by alternately stacking the plurality of single microchannel tubes 112 and the plurality of long microchannel tubes 114.
  • FIG. Figure 4 is a perspective view showing the configuration of a microchannel tube module that can be applied to the heat exchanger of the present invention.
  • the stage microchannel tube 112 of the microchannel tube module 110 includes a plurality of water microchannels 111 through which water can flow.
  • the long microchannel tube 114 is configured by arranging a plurality of refrigerant microchannels 113 through which refrigerant can flow.
  • the microchannel tube module 110 is provided with a plurality of such short microchannel tubes 112 and long microchannel tubes 114, except that the microchannel tubes 112 have a shorter shape than the long microchannel tubes 114. do.
  • both ends of each of the plurality of long microchannel tubes 114 protrude outwards. Both ends of each of the microchannel tubes 112 may have a shape drawn into the inside.
  • the microchannel tube module 110 may be configured by stacking the center of the short microchannel tube 112 and the center of the long microchannel tube 114 to coincide with each other.
  • the outlet water header tank 120 is installed at one end of the microchannel tube module 110, and the inlet water header tank 125 is the microchannel tube module 110. It is installed on the other end of the.
  • the inlet water header tank 125 forms a water inlet 126 on one side to allow water to flow into the heat exchanger 100 of the present invention, and the outlet water header tank 120 is a heat exchanger ( 100)
  • the water outlet 121 is formed so that the water in the interior to the outside.
  • one end of the plurality of stage microchannel tubes 112 is connected to the outlet water header tank 120, and one end of the plurality of stage microchannel tubes 112 is connected to the inlet water header tank 125. have. Since the configuration of the outlet water header tank 120 and the inlet water header tank 125 has a considerably simple structure as compared with the related art, the welding work is reduced and the production is easy.
  • Figure 5 is a perspective view showing the configuration of the outlet side water header tank that can be applied to the heat exchanger of the present invention.
  • a first partition plate 122 is formed on one surface of the outlet water header tank 120, and the first partition plate 122 is formed of an outlet water header tank 120 and an inlet.
  • the side refrigerant header tank 130 may be divided to prevent water or refrigerant from leaking to each other.
  • a plurality of first slots 123 are formed in the first partition plate 122, and the plurality of first slots 123 are formed of a plurality of long micro-tubes protruding out of the microchannel tube module 110.
  • a portion of one end of the channel tube 114 is formed to be insertable.
  • the inlet side water header tank 125 has a second partition plate 127 formed on one surface thereof, such that the inlet side water header tank 125 and the outlet side refrigerant header are provided.
  • the tank 135 can be divided.
  • a plurality of second slots 128 are formed in the second partition plate 127, and the plurality of second slots 128 protrude out of the microchannel tube module 110.
  • a portion of the other end of the channel tube 114 is formed to be insertable.
  • the inlet refrigerant header tank 130 is installed at one end of the microchannel tube module 110, and the outlet refrigerant header tank 135 is the microchannel tube module 110. It is installed on the other end of the.
  • the inlet refrigerant header tank 130 forms a refrigerant inlet 131 to allow the refrigerant to flow into the heat exchanger 100 of the present invention, and the outlet refrigerant header tank 135 is formed inside the heat exchanger 100.
  • a refrigerant outlet 136 is formed to allow the refrigerant to flow out.
  • one end of the plurality of long microchannel tubes 114 is connected to the inlet refrigerant header tank 130, and the other end of the plurality of long microchannel tubes 114 is connected to the outlet refrigerant header tank 135. have.
  • 6 and 7 will be described first to look at a specific configuration of the inlet refrigerant header tank 130.
  • 6 and 7 are a front perspective view and a rear perspective view showing the configuration of the inlet refrigerant header tank that can be applied to the heat exchanger of the present invention.
  • a first separator 132 is formed inside the inlet refrigerant header tank 130, and the first separator 132 has an outlet water header tank 120. Together with the first partition plate 122 on one side of the) to form a first space for blocking the water and the refrigerant.
  • a plurality of third slots 133 are formed in the first separation plate 132, and a plurality of long microchannel tubes 114 inserted into the first slots 123 are provided in the plurality of third slots 133. One end is inserted.
  • an energization sensor 140 may be further formed in the first space between the first separator 132 and the first divider 122.
  • the outlet refrigerant header tank 135 also has a second separator 137 formed on one surface thereof. Together with the second partition plate 127 on one surface, a second space for blocking water and the refrigerant is formed.
  • a plurality of fourth slots 138 are formed in the second separator 137, and a plurality of long microchannel tubes 114 inserted into the second slots 128 are provided in the plurality of fourth slots 138. The other end of) is inserted.
  • an energization sensor 140 may be further formed in the second space between the second separator 137 and the second divider 127.
  • the energization sensor 140 may be formed in the first space or the second space.
  • the conduction sensor 140 formed in the first space should be formed at a suitable position so as not to overlap with the positions of the first slot 123 and the third slot 133, and the conduction sensor 140 formed in the second space may have a second position. It should be formed in a proper position so as not to overlap with the positions of the slot 128 and the fourth slot 138.
  • the energization sensor 140 may detect when water or refrigerant flows into the first space or the second space and stop the operation of the heat exchanger 100 of the present invention.
  • the short microchannel tube 112, the long microchannel tube 114, the outlet water header tank 120, the inlet water header tank 125, the inlet refrigerant header tank 130, and the outlet refrigerant header tank At least some of the 135 may be formed of aluminum. When formed of aluminum, it is possible to reduce the weight of the heat exchanger 100 because it is much lighter than the conventional stainless steel material.
  • 8 and 9 are a side cross-sectional view and a plan view showing the flow of water and refrigerant according to an embodiment of the heat exchanger of the present invention.
  • the refrigerant flows into the inlet refrigerant header tank 130 through the refrigerant inlet 131.
  • One end of the plurality of long microchannel tubes 114 is connected to the inlet refrigerant header tank 130, and the other end is connected to the outlet refrigerant header tank 135, the inside of the inlet refrigerant header tank 130
  • the coolant flows through the coolant microchannel 113 of the plurality of long microchannel tubes 114 to the outlet coolant header tank 135.
  • the refrigerant entering the outlet refrigerant header tank 135 flows out through the refrigerant outlet 136.
  • water is introduced into the inlet water header tank 125 through the water inlet 126.
  • One end of the plurality of stage microchannel tubes 112 is connected to the outlet water header tank 120, and the other end is connected to the inlet water header tank 125.
  • Water flows through the water microchannel 111 of the plurality of stage microchannel tubes 112 to the outlet water header tank 120. Water entering the outlet water header tank 120 flows out through the water outlet 121.
  • the refrigerant flows from one end of the microchannel tube module 110 to the other end of the microchannel tube module 110 through the plurality of long microchannel tubes 114, and the water is plural.
  • One end of the microchannel tube module 110 flows from the other end of the microchannel tube module 110 through the end of the microchannel tube 112.
  • the flow of water and the flow of the coolant form a counter flow with a correction factor of 1, and the correction coefficient has a numerical value between 0.5 and 1 as shown in Equation 1 below. It may have a superior heat exchange capacity as compared to cross flow.
  • Equation 1 Is the heat transfer amount, Is the correction factor, Is the total heat transfer coefficient, Is the heat transfer area, Is the logarithmic mean temperature difference.
  • Figures 10 and 11 show the operation of the energization sensor according to an embodiment of the heat exchanger of the present invention. 10 and 11, a first space between the first partition plate 122 and the first separator plate 132 or a second space between the second partition plate 127 and the second separator plate 137.
  • the energization sensor 140 installed in the is connected to the controller 143 by the signal line 141. When there is no water or refrigerant in the first space or the second space, the heat exchanger 100 of the present invention may operate normally.
  • FIGS. 12 and 13 illustrate a state in which the outlet water header tank and the inlet refrigerant header tank are respectively coupled to the microchannel tube module according to an example of the present invention.
  • a plurality of single microchannel tubes 112 having a plurality of water microchannels 111 through which water flows are arranged side by side, and a plurality of refrigerant micros through which a refrigerant flows.
  • a plurality of long microchannel tubes 114 having channels 113 arranged side by side must be manufactured. This microchannel structure can be used as it is widely used in the heat exchanger of the prior art as it is not necessary to manufacture a separate mold and can significantly reduce the production cost.
  • each of the plurality of single microchannel tubes 112 and each of the plurality of long microchannel tubes 114 are alternately stacked to form a microchannel tube module 110 as shown in FIG. 4.
  • the specific stacking form of the microchannel tube module 110 is as described above.
  • the outlet water header tank 120 is coupled to one end of the microchannel tube module 110.
  • a portion of one end of the plurality of long microchannel tubes 114 is inserted into the plurality of first slots 123 formed in the first partition plate 122 of the outlet water header tank 120.
  • the inlet side water header tank 125 couples to the other end side of the microchannel tube module 110.
  • a part of the other end of the plurality of long microchannel tubes 114 is inserted into the plurality of second slots 128 formed in the second partition plate 127 of the inlet side water header tank 125.
  • the inlet refrigerant header tank 130 is coupled to one end of the microchannel tube module 110.
  • a plurality of third slots 133 formed in the first separator 132 of the inlet-side refrigerant header tank 130 may be provided with one end of a plurality of long microchannel tubes 114 inserted into the first slot 123. Some are inserted.
  • the outlet refrigerant header tank 135 is coupled to the other end of the microchannel tube module 110.
  • the present invention can also be embodied as computer readable codes on a computer readable recording medium.
  • Computer-readable recording media include all kinds of recording devices that store data that can be read by a computer system. Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage, and the like, and may also be implemented in the form of a carrier wave (for example, transmission over the Internet). Include.
  • the computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
  • functional programs, codes, and code segments for implementing the present invention can be easily inferred by programmers in the art to which the present invention belongs.
  • the above-described apparatus and method may not be limitedly applied to the configuration and method of the above-described embodiments, but the embodiments may be selectively combined in whole or in part in each of the embodiments so that various modifications may be made. It may be configured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

본 발명은, 냉매가 유입되는 입구측 냉매 헤더 탱크(130), 일단이 상기 입구측 냉매 헤더 탱크(130)와 연결되고 상기 냉매가 흐르는 장 마이크로채널 튜브(114), 상기 장 마이크로채널 튜브(114)의 타단과 연결되고 상기 냉매가 유출되는 출구측 냉매 헤더 탱크(135), 물이 유입되는 입구측 물 헤더 탱크(125), 타단이 상기 입구측 물 헤더 탱크(125)와 연결되고 상기 물이 흐르는 단 마이크로채널 튜브(112) 및 상기 단 마이크로채널 튜브(112)의 일단과 연결되고 상기 물이 유출되는 출구측 물 헤더 탱크(120)를 포함하며, 상기 단 마이크로채널 튜브(112)과 장 마이크로채널 튜브(114)는 각각 교대로 적층되어 열전달 성능을 향상시킬 수 있으며, 나아가 물 등의 누출을 감지하여 안정성이 향상된 열교환기에 관한 것입니다.

Description

열교환기 및 그 제조방법과 그 제어방법
본 발명은 물과 냉매가 흐르는 마이크로채널 튜브를 교대로 적층 배열하여 열전달 성능을 향상시킬 수 있으며, 물이 누출되는 경우 이를 감지하여 안정적인 동작을 보장할 수 있는 열교환기 및 그 제조방법과 그 제어방법에 관한 것이다.
일반적으로 냉동 공조 시스템에서 사용되는 수냉식 열교환기라 함은 물과 고온 또는 저온의 냉매를 서로 열교환 시켜 냉매를 냉각시키거나 가열하는 장치를 말한다. 이와 같은 수냉식 열교환기는 냉매로부터 열을 얼마나 효과적으로 흡수하거나, 또는 공급할 수 있는 가에 따라 열교환기의 성능이 좌우된다.
도 1은 종래 일반적으로 사용되는 판형 열교환기에 대한 개략적인 구성도이다. 도 1의 판형 열교환기(10)는 전방판(11)과 후방판(12) 사이에 다수의 전열판(13)이 적층되고, 전열판(13) 내에는 냉매 입구(14a)를 통해 유입된 냉매가 냉매 출구(14b)를 통하여 유출되고, 물 입구(15a)를 통해 인입된 물이 물 출구(15b)를 통하여 유출되며, 상기 냉매와 물의 유동 통로가 상호 교대하는 구조로 형성된다.
그러나, 이러한 종래의 일반적인 판형 열교환기(10)는 열교환 성능이 좋지 못하여 시스템 효율성이 충분히 발휘되지 못한다는 문제점이 있었다. 또한, 종래의 판형 열교환기(10)는 보통 스테인리스 강 재질을 사용하여 제조되므로 중량이 무거운 편이면 가격 측면에서도 부담이 크다는 문제점이 있었다. 이러한 종래 판형 열교환기(10)의 문제점으로 인하여 그 활용에 제약이 크다는 약점이 존재하였다.
이에 따라, 향상된 연전달 성능을 가지면서도 저렴한 비용으로 생산 가능하고, 중량이 가벼우며, 안정적인 동작이 가능한 열교환기의 개발이 요구되고 있는 실정이다.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 안출된 것으로서, 물과 냉매가 흐르는 마이크로채널 튜브를 교대로 적층 배열하여 열전달 성능을 향상시킬 수 있으며, 물이 누출되는 경우 이를 감지하여 안정적인 동작을 보장할 수 있는 열교환기 및 그 제조방법과 그 제어방법을 사용자에게 제공하는 데 그 목적이 있다.
구체적으로, 본 발명은 물과 냉매가 대향류(counter flow)를 이루며 열교환이 이루어짐으로써 열전달 성능을 크게 향상시킬 수 있는 열교환기를 사용자에게 제공하는 데 그 목적이 있다.
또한, 본 발명은 알루미늄 재질로 제조하여 중량을 대폭 감소시킬 수 있으며, 마이크로채널 튜브를 사용하여 별도의 금형 제조가 불필요하여 생산비용을 크게 절감시킬 수 있는 열교환기를 사용자에게 제공하는 데 그 목적이 있다.
또한, 본 발명은 물이 누출되는 경우 이를 감지할 수 있는 센서를 구비하여 시스템 작동을 정지시킴으로써 안정성과 신뢰성을 확보할 수 있는 열교환기를 사용자에게 제공하는 데 그 목적이 있다.
한편, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위한 본 발명의 일례와 관련된 열교환기는, 냉매가 내부로 유입되는 냉매입구(131)가 형성된 입구측 냉매 헤더 탱크(130), 일단이 상기 입구측 냉매 헤더 탱크(130)와 연결되고, 상기 냉매가 흐르는 복수의 냉매 마이크로채널(113)이 나란하게 배열된 장 마이크로채널 튜브(114), 상기 장 마이크로채널 튜브(114)의 타단과 연결되고, 상기 냉매가 외부로 유출되는 냉매출구(136)가 형성된 출구측 냉매 헤더 탱크(135), 물이 내부로 유입되는 물입구(126)가 형성된 입구측 물 헤더 탱크(125), 타단이 상기 입구측 물 헤더 탱크(125)와 연결되고, 상기 물이 흐르는 복수의 물 마이크로채널(111)이 나란하게 배열되며, 상기 장 마이크로채널 튜브(114)보다 짧은 형상으로 이루어진 단 마이크로채널 튜브(112) 및 상기 단 마이크로채널 튜브(112)의 일단과 연결되고, 상기 물이 외부로 유출되는 물출구(121)가 형성된 출구측 물 헤더 탱크(120)를 포함하되, 상기 단 마이크로채널 튜브(112)와 상기 장 마이크로채널 튜브(114)는 복수이고, 상기 복수의 단 마이크로채널 튜브(112) 각각과 상기 복수의 장 마이크로채널 튜브(114) 각각을 교대로 적층하여 마이크로채널 튜브 모듈(110)을 이룰 수 있다.
또한, 상기 냉매는 상기 복수의 장 마이크로채널 튜브(114)를 통하여 상기 마이크로채널 튜브 모듈(110)의 일단으로부터 상기 마이크로채널 튜브 모듈(110)의 타단 방향으로 흐르고, 상기 물은 상기 복수의 단 마이크로채널 튜브(112)를 통하여 상기 마이크로채널 튜브 모듈(110)의 타단으로부터 상기 마이크로채널 튜브 모듈(110)의 일단 방향으로 흐를 수 있다.
또한, 상기 마이크로채널 튜브 모듈(110)은, 상기 복수의 장 마이크로채널 튜브(114) 각각의 양단이 상기 복수의 단 마이크로채널 튜브(112) 각각의 양단보다 외부로 돌출된 형상으로 적층될 수 있다.
또한, 상기 출구측 물 헤더 탱크(120)와 상기 입구측 냉매 헤더 탱크(130)는 상기 마이크로채널 튜브 모듈(110)의 일측에 배치되고, 상기 출구측 물 헤더 탱크(120)는, 상기 마이크로채널 튜브 모듈(110)의 복수의 단 마이크로채널 튜브(112) 각각의 일단과 연결되며, 상기 입구측 냉매 헤더 탱크(130)는, 상기 마이크로채널 튜브 모듈(110)의 외부로 돌출되어 있는 상기 복수의 장 마이크로채널 튜브(114) 각각의 일단과 연결될 수 있다.
또한, 상기 출구측 물 헤더 탱크(120)의 일면에 형성되고, 상기 출구측 물 헤더 탱크(120)와 상기 입구측 냉매 헤더 탱크(130)를 분할하는 제 1 분할판(122)을 더 포함할 수 있다.
또한, 상기 입구측 냉매 헤더 탱크(130)의 내측에 형성되는 제 1 분리판(132)을 더 포함하되, 상기 제 1 분리판(132)과 상기 제 1 분할판(122) 사이에 상기 물 및 상기 냉매의 유입이 차단되는 제 1 공간이 형성될 수 있다.
또한, 상기 입구측 물 헤더 탱크(125)와 상기 출구측 냉매 헤더 탱크(135)는 상기 마이크로채널 튜브 모듈(110)의 타측에 배치되고, 상기 입구측 물 헤더 탱크(125)는, 상기 마이크로채널 튜브 모듈(110)의 복수의 단 마이크로채널 튜브(112) 각각의 타단과 연결되며, 상기 출구측 냉매 헤더 탱크(135)는, 상기 마이크로채널 튜브 모듈(110)의 외부로 돌출되어 있는 상기 복수의 장 마이크로채널 튜브(114) 각각의 타단과 연결될 수 있다.
또한, 상기 입구측 물 헤더 탱크(125)의 일면에 형성되고, 상기 입구측 물 헤더 탱크(125)와 상기 출구측 냉매 헤더 탱크(135)를 분할하는 제 2 분할판(127)을 더 포함할 수 있다.
또한, 상기 출구측 냉매 헤더 탱크(135)의 내측에 형성되는 제 2 분리판(137)을 더 포함하되, 상기 제 2 분리판(137)과 상기 제 2 분할판(127) 사이에 상기 물 및 상기 냉매의 유입이 차단되는 제 2 공간이 형성될 수 있다.
또한, 상기 제 1 공간 또는 상기 제 2 공간에 설치되고, 상기 제 1 공간 또는 상기 제 2 공간에 상기 물 및 상기 냉매 중 적어도 하나가 유입되는지 여부를 감지하는 통전센서(140)를 더 포함할 수 있다.
또한, 상기 통전센서(140)가 상기 물 및 상기 냉매 중 적어도 하나의 유입을 감지하는 경우, 상기 열교환기의 동작을 정지시키는 컨트롤러(143)를 더 포함할 수 있다.
또한, 상기 입구측 냉매 헤더 탱크(130), 상기 장 마이크로채널 튜브(114), 상기 출구측 냉매 헤더 탱크(135), 상기 입구측 물 헤더 탱크(125), 상기 단 마이크로채널 튜브(112) 및 상기 출구측 물 헤더 탱크(120) 중 적어도 하나는 알루미늄 재질로 이루어질 수 있다.
한편, 상술한 과제를 실현하기 위한 본 발명의 일례와 관련된 열교환기의 제조방법은, 복수의 단 마이크로채널 튜브(112)와 복수의 장 마이크로채널 튜브(114)를 제조하는 단계, 상기 복수의 단 마이크로채널 튜브(112) 각각과 상기 복수의 장 마이크로채널 튜브(114) 각각을 교대로 적층하여 마이크로채널 튜브 모듈(110)을 제조하는 단계, 출구측 물 헤더 탱크(120)를 상기 마이크로채널 튜브 모듈(110)의 일측에 결합하여 출구측 물 헤더 탱크(120)와 상기 복수의 단 마이크로채널 튜브(112) 각각의 일단을 연결하고, 입구측 물 헤더 탱크(125)를 상기 마이크로채널 튜브 모듈(110)의 타측에 결합하여 상기 입구측 물 헤더 탱크(125)와 상기 복수의 단 마이크로채널 튜브(112) 각각의 타단을 연결하는 단계 및 입구측 냉매 헤더 탱크(130)를 상기 마이크로채널 튜브 모듈(110)의 일측에 결합하여 상기 입구측 냉매 헤더 탱크(130)와 상기 복수의 장 마이크로채널 튜브(114) 각각의 일단을 연결하고, 출구측 냉매 헤더 탱크(135)를 상기 마이크로채널 튜브 모듈(110)의 타단에 결합하여 상기 출구측 냉매 헤더 탱크(135)와 상기 복수의 장 마이크로채널 튜브(114) 각각의 타단을 연결하는 단계를 포함하되, 상기 복수의 단 마이크로채널 튜브(112) 각각은 상기 물이 흐르는 복수의 물 마이크로채널(111)이 나란하게 배열되어 이루어지고, 상기 장 마이크로채널 튜브(114)보다 짧은 형상으로 이루어지며, 상기 복수의 장 마이크로채널 튜브(114) 각각은 상기 냉매가 흐르는 복수의 냉매 마이크로채널(113)이 나란하게 배열되어 이루어질 수 있다.
한편, 상술한 과제를 실현하기 위한 본 발명의 일례와 관련된 열교환기의 제어방법은, 냉매가 냉매입구(131)를 통하여 입구측 냉매 헤더 탱크(130) 내부로 유입되고, 물이 물입구(126)를 통하여 입구측 물 헤더 탱크(125) 내부로 유입되는 단계, 상기 냉매가 복수의 장 마이크로채널 튜브(114)를 통하여 흐르고, 상기 물이 복수의 단 마이크로채널 튜브(112)를 통하여 흐르는 단계, 상기 냉매와 상기 물 사이에 열 교환이 발생하는 단계, 상기 냉매가 출구측 냉매 헤더 탱크(135) 내부로 흐르고, 상기 물이 출구측 물 헤더 탱크(120) 내부로 흐르는 단계 및 상기 냉매가 냉매출구(136)를 통하여 외부로 유출되고, 상기 물이 물출구(121)를 통하여 외부로 유출되는 단계를 포함하되, 상기 복수의 장 마이크로채널 튜브(114) 각각의 일단은 상기 입구측 냉매 헤더 탱크(130)와 연결되고, 상기 복수의 장 마이크로채널 튜브(114) 각각의 타단은 상기 출구측 냉매 헤더 탱크(135)와 연결되며, 상기 복수의 단 마이크로채널 튜브(112) 각각의 일단은 상기 출구측 물 헤더 탱크(120)와 연결되고, 상기 복수의 단 마이크로채널 튜브(112) 각각의 타단은 상기 입구측 물 헤더 탱크(125)와 연결되며, 상기 복수의 단 마이크로채널 튜브(112) 각각은 상기 물이 흐르는 복수의 물 마이크로채널(111)이 나란하게 배열되어 이루어지고, 상기 장 마이크로채널 튜브(114)보다 짧은 형상으로 이루어지며, 상기 복수의 장 마이크로채널 튜브(114) 각각은 상기 냉매가 흐르는 복수의 냉매 마이크로채널(113)이 나란하게 배열되어 이루어지고, 상기 복수의 단 마이크로채널 튜브(112) 각각과 상기 복수의 장 마이크로채널 튜브(114) 각각은 교대로 적층될 수 있다.
본 발명은 물과 냉매가 흐르는 마이크로채널 튜브를 교대로 적층 배열하여 열전달 성능을 향상시킬 수 있으며, 물이 누출되는 경우 이를 감지하여 안정적인 동작을 보장할 수 있는 열교환기 및 그 제조방법과 그 제어방법을 사용자에게 제공할 수 있다.
구체적으로, 본 발명은 물과 냉매가 대향류(counter flow)를 이루며 열교환이 이루어짐으로써 열전달 성능을 크게 향상시킬 수 있는 열교환기를 사용자에게 제공할 수 있다.
또한, 본 발명은 알루미늄 재질로 제조하여 중량을 대폭 감소시킬 수 있으며, 마이크로채널 튜브를 사용함으로써 별도의 금형 제조가 불필요하여 생산비용을 크게 절감시킬 수 있는 열교환기를 사용자에게 제공할 수 있다.
또한, 본 발명은 물이 누출되는 경우 이를 감지할 수 있는 센서를 구비하여 시스템 작동을 정지시킴으로써 안정성과 신뢰성을 확보할 수 있는 열교환기를 사용자에게 제공할 수 있다.
한편, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 일 실시례를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술적 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 종래 일반적으로 사용되는 판형 열교환기에 대한 개략적인 구성도이다.
도 2 및 도 3은 본 발명의 일 실시례에 따라 구현될 수 있는 열교환기의 사시도 및 평면도를 나타낸다.
도 4는 본 발명의 열교환기에 적용될 수 있는 마이크로채널 튜브 모듈의 구성을 나타내는 사시도이다.
도 5는 본 발명의 열교환기에 적용될 수 있는 출구측 물 헤더 탱크의 구성을 나타내는 사시도이다.
도 6 및 도 7은 본 발명의 열교환기에 적용될 수 있는 입구측 냉매 헤더 탱크의 구성을 나타내는 전면 사시도 및 후면 사시도이다.
도 8 및 도 9는 본 발명의 열교환기의 일 실시례에 따른 물과 냉매의 흐름을 나타내는 측면단면도 및 평면도이다.
도 10 및 도 11은 본 발명의 열교환기의 일 실시례에 따른 통전센서의 동작을 나타낸다.
도 12 및 도 13은 본 발명의 일례에 따라 마이크로채널 튜브 모듈에 출구측 물 헤더 탱크와 입구측 냉매 헤더 탱크를 각각 결합한 상태를 나타낸다.
<부호의 설명>
100: 열교환기
110: 마이크로채널 튜브 모듈
112: 단 마이크로채널 튜브
114: 장 마이크로채널 튜브
120: 출구측 물 헤더 탱크
121: 물출구
122: 제 1 분할판
125: 입구측 물 헤더 탱크
126: 물입구
127: 제 2 분할판
130: 입구측 냉매 헤더 탱크
131: 냉매입구
132: 제 1 분리판
135: 출구측 냉매 헤더 탱크
136: 냉매출구
137: 제 2 분리판
140: 통전센서
본 발명의 열교환기(100)는 마이크로채널 튜브 모듈(110), 출구측 물 헤더 탱크(120), 입구측 물 헤더 탱크(125), 입구측 냉매 헤더 탱크(130), 출구측 냉매 헤더 탱크(135), 통전센서(140) 등을 포함할 수 있다.
마이크로채널 튜브 모듈(110)은 단 마이크로채널 튜브(112)와 장 마이크로채널 튜브(114)를 포함하여 이루어지며, 단 마이크로채널 튜브(112)는 물이 흐를 수 있는 복수의 물 마이크로채널(111)이 나란하게 배열되어 구성되고, 장 마이크로채널 튜브(114)는 냉매가 흐를 수 있는 복수의 냉매 마이크로채널(113)이 나란하게 배열되어 구성된다. 마이크로채널 튜브 모듈(110)은 이러한 복수의 단 마이크로채널 튜브(112)와 복수의 장 마이크로채널 튜브(114)가 교대로 적층되어 이루어진다. 단 마이크로채널 튜브(112)는 장 마이크로채널 튜브(114)보다 짧은 형상으로 형성된다. 따라서, 단 마이크로채널 튜브(112)와 장 마이크로채널 튜브(114)가 적층된 마이크로채널 튜브 모듈(110)은 복수의 장 마이크로채널 튜브(114) 각각의 양단은 외부로 돌출되고, 상기 복수의 단 마이크로채널 튜브(112) 각각의 양단은 내부로 인입된 형상을 이룰 수 있다.
출구측 물 헤더 탱크(120)는 마이크로채널 튜브 모듈(110)의 일단 쪽에 설치되어 복수의 단 마이크로채널 튜브(112)의 일단과 연결되며, 입구측 물 헤더 탱크(125)는 마이크로채널 튜브 모듈(110)의 타단 쪽에 설치되어 복수의 단 마이크로채널 튜브(112)의 타단과 연결된다. 입구측 냉매 헤더 탱크(130)는 마이크로채널 튜브 모듈(110)의 일단 쪽에 설치되어 복수의 장 마이크로채널 튜브(114)의 일단과 연결되며, 출구측 냉매 헤더 탱크(135)는 마이크로채널 튜브 모듈(110)의 타단 쪽에 설치되어 복수의 장 마이크로채널 튜브(114)의 타단과 연결된다.
또한, 통전센서(140)를 구비할 수 있으며, 통전센서(140)는 물이나 냉매가 유입되는 경우, 이를 감지하여 본 발명의 열교환기(100)의 작동을 중단시킬 수 있다.
이하, 도면을 참조하여 본 발명의 바람직한 일 실시례에 대해서 설명한다. 또한, 이하에 설명하는 일 실시례는 특허청구범위에 기재된 본 발명의 내용을 부당하게 한정하지 않으며, 본 실시 형태에서 설명되는 구성 전체가 본 발명의 해결 수단으로서 필수적이라고는 할 수 없다.
종래에는 다수의 전열판을 적층하고 물과 냉매를 교대하는 구조로 형성하여 상호 열을 공급·흡수하는 판형 열교환기가 널리 사용되었다. 그러나, 종래의 일반적인 판형 열교환기의 경우, 열교환 성능이 떨어지고, 가격과 생산비용 측면에서도 부담이 있었으며, 안정적인 운용이 어렵다는 문제점이 있었다.
본 발명은 열교환 성능뿐만 아니라 비용과 중량 면에서도 우수하며, 안정적인 사용이 가능한 열교환기 및 그 제조방법과 그 제어방법을 제안하고자 한다.
<열교환기의 구성>
이하에서는, 본 발명이 제안하는 열교환기의 구성을 구체적으로 설명한다. 먼저, 도 2 및 도 3을 참조하여 본 발명의 열교환기(100)의 전체적인 구성을 살펴본다. 도 2 및 도 3은 본 발명의 일 실시례에 따라 구현될 수 있는 열교환기의 사시도 및 평면도를 나타낸다.
도 2 및 도 3에 도시된 바와 같이, 본 발명의 열교환기(100)는 마이크로채널 튜브 모듈(110), 출구측 물 헤더 탱크(120), 입구측 물 헤더 탱크(125), 입구측 냉매 헤더 탱크(130), 출구측 냉매 헤더 탱크(135), 통전센서(140) 등을 포함할 수 있다. 단, 도 2 및 도 3에 도시된 구성요소들이 필수적인 것은 아니어서, 그보다 많은 구성요소들을 갖거나 그보다 적은 구성요소들을 갖는 열교환기(100)가 구현될 수도 있다. 이하 상기 구성요소들에 대해 차례로 살펴본다.
마이크로채널 튜브 모듈(110)은 단 마이크로채널 튜브(112)와 장 마이크로채널 튜브(114)를 포함하여 이루어진다. 단 마이크로채널 튜브(112)는 물이 유동되는 통로 역할을 하며, 장 마이크로채널 튜브(114)는 냉매가 유동되는 통로 역할을 한다. 마이크로채널 튜브 모듈(110)은 이러한 복수의 단 마이크로채널 튜브(112)와 복수의 장 마이크로채널 튜브(114)가 교대로 적층되어 이루어진다.
마이크로채널 튜브 모듈(110)에 대한 구체적인 구성을 살펴보기 위하여 도 4를 먼저 살펴본다. 도 4는 본 발명의 열교환기에 적용될 수 있는 마이크로채널 튜브 모듈의 구성을 나타내는 사시도이다. 도 4에 도시된 바와 같이, 마이크로채널 튜브 모듈(110)의 단 마이크로채널 튜브(112)는 물이 흐를 수 있는 복수의 물 마이크로채널(111)이 나란하게 배열되어 구성된다. 마찬가지로, 장 마이크로채널 튜브(114)는 냉매가 흐를 수 있는 복수의 냉매 마이크로채널(113)이 나란하게 배열되어 구성된다. 마이크로채널 튜브 모듈(110)은 이러한 단 마이크로채널 튜브(112)와 장 마이크로채널 튜브(114)를 복수로 구비하며, 단 마이크로채널 튜브(112)는 장 마이크로채널 튜브(114)보다 짧은 형상으로 형성된다. 따라서, 단 마이크로채널 튜브(112)와 장 마이크로채널 튜브(114)가 적층된 마이크로채널 튜브 모듈(110)은 복수의 장 마이크로채널 튜브(114) 각각의 양단은 외부로 돌출되고, 상기 복수의 단 마이크로채널 튜브(112) 각각의 양단은 내부로 인입된 형상을 이룰 수 있다. 바람직하게는, 도 4에 도시된 바와 같이 단 마이크로채널 튜브(112)의 중심과 장 마이크로채널 튜브(114)의 중심이 일치하도록 적층하여 마이크로채널 튜브 모듈(110)을 구성할 수 있다.
한편, 다시 도 2 및 도 3을 참조하면, 출구측 물 헤더 탱크(120)는 마이크로채널 튜브 모듈(110)의 일단 쪽에 설치되고, 입구측 물 헤더 탱크(125)는 마이크로채널 튜브 모듈(110)의 타단 쪽에 설치된다. 입구측 물 헤더 탱크(125)는 본 발명의 열교환기(100) 내부에 물이 유입될 수 있도록 한 측면에 물입구(126)를 형성하고 있으며, 출구측 물 헤더 탱크(120)는 열교환기(100) 내부의 물을 외부로 유출할 수 있도록 물출구(121)를 형성하고 있다. 또한, 출구측 물 헤더 탱크(120)에는 복수의 단 마이크로채널 튜브(112)의 일단이 연결되어 있으며, 입구측 물 헤더 탱크(125)에는 복수의 단 마이크로채널 튜브(112)의 일단이 연결되어 있다. 이러한 출구측 물 헤더 탱크(120)와 입구측 물 헤더 탱크(125)의 구성은 종래에 비하여 상당히 간단한 구조를 갖기 때문에 제조 시 용접작업이 줄어들며 용이하게 생산이 가능하다.
출구측 물 헤더 탱크(120)에 대한 구체적인 구성을 살펴보기 위하여 도 5를 먼저 살펴본다. 도 5는 본 발명의 열교환기에 적용될 수 있는 출구측 물 헤더 탱크의 구성을 나타내는 사시도이다. 도 5에 도시된 바와 같이, 출구측 물 헤더 탱크(120)의 일면에는 제 1 분할판(122)이 형성되어 있으며, 상기 제 1 분할판(122)은 출구측 물 헤더 탱크(120)와 입구측 냉매 헤더 탱크(130)를 분할하여 물이나 냉매가 상호 누출되는 것을 차단할 수 있다. 또한, 제 1 분할판(122)에는 복수의 제 1 슬롯(123)이 형성되어 있으며, 상기 복수의 제 1 슬롯(123)은 마이크로채널 튜브 모듈(110)의 외부로 돌출되어 있는 복수의 장 마이크로채널 튜브(114) 일단의 일부가 삽입 가능하도록 형성된다.
입구측 물 헤더 탱크(125)도 도 5에 도시된 출구측 물 헤더 탱크(120)와 마찬가지로 일면에는 제 2 분할판(127)이 형성되어 있어 입구측 물 헤더 탱크(125)와 출구측 냉매 헤더 탱크(135)를 분할할 수 있다. 또한, 제 2 분할판(127)에는 복수의 제 2 슬롯(128)이 형성되어 있으며, 상기 복수의 제 2 슬롯(128)은 마이크로채널 튜브 모듈(110)의 외부로 돌출되어 있는 복수의 장 마이크로채널 튜브(114) 타단의 일부가 삽입 가능하도록 형성된다.
한편, 다시 도 2 및 도 3을 참조하면, 입구측 냉매 헤더 탱크(130)는 마이크로채널 튜브 모듈(110)의 일단 쪽에 설치되고, 출구측 냉매 헤더 탱크(135)는 마이크로채널 튜브 모듈(110)의 타단 쪽에 설치된다. 입구측 냉매 헤더 탱크(130)는 본 발명의 열교환기(100)에 냉매가 유입될 수 있도록 냉매입구(131)를 형성하고 있으며, 출구측 냉매 헤더 탱크(135)는 열교환기(100) 내부의 냉매를 외부로 유출할 수 있도록 냉매출구(136)를 형성하고 있다. 또한, 입구측 냉매 헤더 탱크(130)에는 복수의 장 마이크로채널 튜브(114)의 일단이 연결되어 있으며, 출구측 냉매 헤더 탱크(135)에는 복수의 장 마이크로채널 튜브(114)의 타단이 연결되어 있다.
입구측 냉매 헤더 탱크(130)에 대한 구체적인 구성을 살펴보기 위하여 도 6 및 도 7을 먼저 살펴본다. 도 6 및 도 7은 본 발명의 열교환기에 적용될 수 있는 입구측 냉매 헤더 탱크의 구성을 나타내는 전면 사시도 및 후면 사시도이다. 도 6 및 도 7에 도시된 바와 같이, 입구측 냉매 헤더 탱크(130)의 내측에는 제 1 분리판(132)이 형성되어 있으며, 상기 제 1 분리판(132)은 출구측 물 헤더 탱크(120)의 일면의 제 1 분할판(122)과 함께 물과 냉매를 차단하는 제 1 공간을 형성하게 된다. 또한, 제 1 분리판(132)에는 복수의 제 3 슬롯(133)이 형성되어 있으며, 상기 복수의 제 3 슬롯(133)에는 제 1 슬롯(123)에 삽입된 복수의 장 마이크로채널 튜브(114)의 일단이 삽입된다. 또한, 제 1 분리판(132)과 제 1 분할판(122) 사이의 제 1 공간에는 통전센서(140)가 더 형성될 수 있다.
출구측 냉매 헤더 탱크(135)도 도 6 및 도 7에 도시된 입구측 물 헤더 탱크(130)와 마찬가지로 일면에는 제 2 분리판(137)이 형성되어 있으며, 입구측 물 헤더 탱크(125)의 일면의 제 2 분할판(127)과 함께 물과 냉매를 차단하는 제 2 공간을 형성하게 된다. 또한, 제 2 분리판(137)에는 복수의 제 4 슬롯(138)이 형성되어 있으며, 상기 복수의 제 4 슬롯(138)에는 제 2 슬롯(128)에 삽입된 복수의 장 마이크로채널 튜브(114)의 타단이 삽입된다. 또한, 제 2 분리판(137)과 제 2 분할판(127) 사이의 제 2 공간에는 통전센서(140)가 더 형성될 수 있다.
한편, 다시 도 2 및 도 3을 참조하면, 통전센서(140)는 상기 제 1 공간이나 제 2 공간에 형성될 수 있다. 제 1 공간에 형성된 통전센서(140)는 제 1 슬롯(123)과 제 3 슬롯(133)의 위치와 겹쳐지지 않도록 적당한 위치에 형성되어야 하며, 제 2 공간에 형성된 통전센서(140)는 제 2 슬롯(128)과 제 4 슬롯(138)의 위치와 겹쳐지지 않도록 적당한 위치에 형성되어야 한다. 통전센서(140)는 상기 제 1 공간이나 제 2 공간에 물이나 냉매가 유입되는 경우, 이를 감지하여 본 발명의 열교환기(100)의 작동을 중단시킬 수 있다.
상기 단 마이크로채널 튜브(112), 장 마이크로채널 튜브(114), 출구측 물 헤더 탱크(120), 입구측 물 헤더 탱크(125), 입구측 냉매 헤더 탱크(130), 상기 출구측 냉매 헤더 탱크(135) 중 적어도 일부는 알루미늄 재질로 형성될 수 있다. 알루미늄 재질로 형성되는 경우, 종래의 스테인리스 강 재질에 비하여 훨씬 가볍기 때문에 열교환기(100)의 경량화가 가능해질 수 있다.
<열교환기의 동작>
이하에서는, 본 발명이 제안하는 열교환기의 동작을 구체적으로 설명한다.
도 8 및 도 9는 본 발명의 열교환기의 일 실시례에 따른 물과 냉매의 흐름을 나타내는 측면단면도 및 평면도이다. 도 8 및 도 9를 참조하면, 냉매는 냉매입구(131)를 통하여 입구측 냉매 헤더 탱크(130) 내부로 유입된다. 복수의 장 마이크로채널 튜브(114)의 일단은 입구측 냉매 헤더 탱크(130)와 연결되어 있고, 타단은 출구측 냉매 헤더 탱크(135)와 연결되어 있으므로, 입구측 냉매 헤더 탱크(130) 내부의 냉매는 복수의 장 마이크로채널 튜브(114)의 냉매 마이크로채널(113)을 통하여 출구측 냉매 헤더 탱크(135)로 흐른다. 출구측 냉매 헤더 탱크(135)로 들어온 냉매는 냉매출구(136)를 통하여 외부로 유출된다.
마찬가지로, 물은 물입구(126)를 통하여 입구측 물 헤더 탱크(125) 내부로 유입된다. 복수의 단 마이크로채널 튜브(112)의 일단은 출구측 물 헤더 탱크(120)와 연결되어 있고, 타단은 입구측 물 헤더 탱크(125)와 연결되어 있으므로, 출구측 물 헤더 탱크(120) 내부의 물는 복수의 단 마이크로채널 튜브(112)의 물 마이크로채널(111)을 통하여 출구측 물 헤더 탱크(120)로 흐른다. 출구측 물 헤더 탱크(120)로 들어온 물은 물출구(121)를 통하여 외부로 유출된다.
도 8 및 도 9에 도시된 바와 같이, 냉매는 복수의 장 마이크로채널 튜브(114)를 통하여 마이크로채널 튜브 모듈(110)의 일단으로부터 마이크로채널 튜브 모듈(110)의 타단 방향으로 흐르며, 물은 복수의 단 마이크로채널 튜브(112)를 통하여 마이크로채널 튜브 모듈(110)의 타단으로부터 마이크로채널 튜브 모듈(110)의 일단 방향으로 흐른다. 이렇게, 물의 흐름과 냉매의 흐름은 수정계수(correction factor)가 1인 대향류(counter flow)를 형성하며, 하기의 수학식 1에서 볼 수 있는 것과 같이 수정계수가 0.5 ~ 1 사이의 수치를 가지는 직교류(cross flow)에 비하여 월등한 열교환 능력을 가질 수 있다.
수학식 1
Figure PCTKR2013009076-appb-M000001
상기 수학식 1에서
Figure PCTKR2013009076-appb-I000001
는 열전달량이고,
Figure PCTKR2013009076-appb-I000002
는 수정계수이며,
Figure PCTKR2013009076-appb-I000003
는 총합열전달계수이고,
Figure PCTKR2013009076-appb-I000004
는 전열면적이며,
Figure PCTKR2013009076-appb-I000005
은 대수평균온도차이다.
한편, 도 10 및 도 11은 본 발명의 열교환기의 일 실시례에 따른 통전센서의 동작을 나타낸다. 도 10 및 도 11을 참조하면, 제 1 분할판(122)과 제 1 분리판(132) 사이의 제 1 공간이나 제 2 분할판(127)과 제 2 분리판(137) 사이의 제 2 공간에 설치되는 통전센서(140)는 신호선(141)에 의하여 컨트롤러(143)에 연결되어 있다. 제 1 공간이나 제 2 공간에 물이나 냉매가 없는 경우에는 본 발명의 열교환기(100)는 정상적으로 작동할 수 있다. 그러나, 장 마이크로채널 튜브(114)의 일단과 제 1 슬롯(123) 또는 제 3 슬롯(133)의 용접이 불량이거나 용접강도가 낮은 경우나 장 마이크로채널 튜브(114)의 타단과 제 2 슬롯(128) 또는 제 4 슬롯(138)의 용접이 불량이거나 용접강도가 낮은 경우에는 제 1 공간이나 제 2 공간으로 물이나 냉매가 누출될 수 있다. 도 11에 도시된 바와 같이 제 1 공간이나 제 2 공간에 물이나 냉매가 누출되어 통전센서(140)가 설치된 높이까지 채워지게 되면 통전센서(140)에 의하여 통전이 되며, 컨트롤러(143)는 통전신호를 전달받고 열교환기(100)의 동작을 중단시킬 수 있다.
<열교환기의 제조방법>
이하에서는, 본 발명이 제안하는 열교환기의 제조방법을 도 12 및 도 13을 참조하여 구체적으로 설명한다. 도 12 및 도 13은 본 발명의 일례에 따라 마이크로채널 튜브 모듈에 출구측 물 헤더 탱크와 입구측 냉매 헤더 탱크를 각각 결합한 상태를 나타낸다.
본 발명의 열교환기(100)를 제조하기 위해서는 우선 물이 흐를 수 있는 복수의 물 마이크로채널(111)이 나란하게 배열된 복수의 단 마이크로채널 튜브(112)과 냉매가 흐를 수 있는 복수의 냉매 마이크로채널(113)이 나란하게 배열된 복수의 장 마이크로채널 튜브(114)을 제조하여야 한다. 이러한 마이크로채널 구조는 종래에 자동차의 열교환기에 널리 사용되는 구성을 그대로 사용할 수 있으므로 별도의 금형 제작이 불필요하며 생산비용을 크게 절감시킬 수 있다.
다음으로, 복수의 단 마이크로채널 튜브(112) 각각과 복수의 장 마이크로채널 튜브(114) 각각을 교대로 적층하여 도 4에 도시한 것과 같은 마이크로채널 튜브 모듈(110)을 형성한다. 마이크로채널 튜브 모듈(110)의 구체적인 적층 형태는 상술한 바와 같다.
다음으로, 도 12에 도시한 바와 같이, 출구측 물 헤더 탱크(120)를 상기 마이크로채널 튜브 모듈(110)의 일단 측에 결합한다. 출구측 물 헤더 탱크(120)의 제 1 분할판(122)에 형성되어 있는 복수의 제 1 슬롯(123)에는 복수의 장 마이크로채널 튜브(114) 일단의 일부가 삽입된다.
마찬가지로, 입구측 물 헤더 탱크(125)는 상기 마이크로채널 튜브 모듈(110)의 타단 측에 결합한다. 입구측 물 헤더 탱크(125)의 제 2 분할판(127)에 형성되어 있는 복수의 제 2 슬롯(128)에는 복수의 장 마이크로채널 튜브(114) 타단의 일부가 삽입된다.
다음으로, 도 13에 도시한 바와 같이, 입구측 냉매 헤더 탱크(130)를 상기 마이크로채널 튜브 모듈(110)의 일단에 결합한다. 입구측 냉매 헤더 탱크(130)의 제 1 분리판(132)에 형성되어 있는 복수의 제 3 슬롯(133)에는 상기 제 1 슬롯(123)에 삽입된 복수의 장 마이크로채널 튜브(114) 일단의 일부가 삽입된다.
마찬가지로, 출구측 냉매 헤더 탱크(135)는 상기 마이크로채널 튜브 모듈(110)의 타단에 결합한다. 출구측 냉매 헤더 탱크(135)의 제 2 분리판(137)에 형성되어 있는 복수의 제 4 슬롯(138)에는 상기 제 2 슬롯(128)에 삽입된 복수의 장 마이크로채널 튜브(114)의 타단이 삽입된다.
한편, 본 발명은 또한 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의해 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광데이터 저장장치 등이 있으며, 또한 캐리어 웨이브(예를 들어 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한, 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행할 수 있다. 그리고, 본 발명을 구현하기 위한 기능적인(functional) 프로그램, 코드 및 코드 세그먼트들은 본 발명이 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.
또한, 상기와 같이 설명된 장치 및 방법은 상기 설명된 실시례들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시례들은 다양한 변형이 이루어질 수 있도록 각 실시례들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.

Claims (14)

  1. 냉매가 내부로 유입되는 냉매입구(131)가 형성된 입구측 냉매 헤더 탱크(130);
    일단이 상기 입구측 냉매 헤더 탱크(130)와 연결되고, 상기 냉매가 흐르는 복수의 냉매 마이크로채널(113)이 나란하게 배열된 장 마이크로채널 튜브(114);
    상기 장 마이크로채널 튜브(114)의 타단과 연결되고, 상기 냉매가 외부로 유출되는 냉매출구(136)가 형성된 출구측 냉매 헤더 탱크(135);
    물이 내부로 유입되는 물입구(126)가 형성된 입구측 물 헤더 탱크(125);
    타단이 상기 입구측 물 헤더 탱크(125)와 연결되고, 상기 물이 흐르는 복수의 물 마이크로채널(111)이 나란하게 배열되며, 상기 장 마이크로채널 튜브(114)보다 짧은 형상으로 이루어진 단 마이크로채널 튜브(112); 및
    상기 단 마이크로채널 튜브(112)의 일단과 연결되고, 상기 물이 외부로 유출되는 물출구(121)가 형성된 출구측 물 헤더 탱크(120);를 포함하되,
    상기 단 마이크로채널 튜브(112)와 상기 장 마이크로채널 튜브(114)는 복수이고,
    상기 복수의 단 마이크로채널 튜브(112) 각각과 상기 복수의 장 마이크로채널 튜브(114) 각각을 교대로 적층하여 마이크로채널 튜브 모듈(110)을 이루는 것을 특징으로 하는 열교환기.
  2. 제 1항에 있어서,
    상기 냉매는 상기 복수의 장 마이크로채널 튜브(114)를 통하여 상기 마이크로채널 튜브 모듈(110)의 일단으로부터 상기 마이크로채널 튜브 모듈(110)의 타단 방향으로 흐르고,
    상기 물은 상기 복수의 단 마이크로채널 튜브(112)를 통하여 상기 마이크로채널 튜브 모듈(110)의 타단으로부터 상기 마이크로채널 튜브 모듈(110)의 일단 방향으로 흐르는 것을 특징으로 하는 열교환기.
  3. 제 1항에 있어서,
    상기 마이크로채널 튜브 모듈(110)은,
    상기 복수의 장 마이크로채널 튜브(114) 각각의 양단이 상기 복수의 단 마이크로채널 튜브(112) 각각의 양단보다 외부로 돌출된 형상으로 적층되는 것을 특징으로 하는 열교환기.
  4. 제 3항에 있어서,
    상기 출구측 물 헤더 탱크(120)와 상기 입구측 냉매 헤더 탱크(130)는 상기 마이크로채널 튜브 모듈(110)의 일측에 배치되고,
    상기 출구측 물 헤더 탱크(120)는, 상기 마이크로채널 튜브 모듈(110)의 복수의 단 마이크로채널 튜브(112) 각각의 일단과 연결되며,
    상기 입구측 냉매 헤더 탱크(130)는, 상기 마이크로채널 튜브 모듈(110)의 외부로 돌출되어 있는 상기 복수의 장 마이크로채널 튜브(114) 각각의 일단과 연결되는 것을 특징으로 하는 열교환기.
  5. 제 4항에 있어서,
    상기 출구측 물 헤더 탱크(120)의 일면에 형성되고, 상기 출구측 물 헤더 탱크(120)와 상기 입구측 냉매 헤더 탱크(130)를 분할하는 제 1 분할판(122);을 더 포함하는 것을 특징으로 하는 열교환기.
  6. 제 5항에 있어서,
    상기 입구측 냉매 헤더 탱크(130)의 내측에 형성되는 제 1 분리판(132);을 더 포함하되,
    상기 제 1 분리판(132)과 상기 제 1 분할판(122) 사이에 상기 물 및 상기 냉매의 유입이 차단되는 제 1 공간이 형성되는 것을 특징으로 하는 열교환기.
  7. 제 3항에 있어서,
    상기 입구측 물 헤더 탱크(125)와 상기 출구측 냉매 헤더 탱크(135)는 상기 마이크로채널 튜브 모듈(110)의 타측에 배치되고,
    상기 입구측 물 헤더 탱크(125)는, 상기 마이크로채널 튜브 모듈(110)의 복수의 단 마이크로채널 튜브(112) 각각의 타단과 연결되며,
    상기 출구측 냉매 헤더 탱크(135)는, 상기 마이크로채널 튜브 모듈(110)의 외부로 돌출되어 있는 상기 복수의 장 마이크로채널 튜브(114) 각각의 타단과 연결되는 것을 특징으로 하는 열교환기.
  8. 제 7항에 있어서,
    상기 입구측 물 헤더 탱크(125)의 일면에 형성되고, 상기 입구측 물 헤더 탱크(125)와 상기 출구측 냉매 헤더 탱크(135)를 분할하는 제 2 분할판(127);을 더 포함하는 것을 특징으로 하는 열교환기.
  9. 제 8항에 있어서,
    상기 출구측 냉매 헤더 탱크(135)의 내측에 형성되는 제 2 분리판(137);을 더 포함하되,
    상기 제 2 분리판(137)과 상기 제 2 분할판(127) 사이에 상기 물 및 상기 냉매의 유입이 차단되는 제 2 공간이 형성되는 것을 특징으로 하는 열교환기.
  10. 제 6항 또는 제 9항에 있어서,
    상기 제 1 공간 또는 상기 제 2 공간에 설치되고, 상기 제 1 공간 또는 상기 제 2 공간에 상기 물 및 상기 냉매 중 적어도 하나가 유입되는지 여부를 감지하는 통전센서(140);를 더 포함하는 것을 특징으로 하는 열교환기.
  11. 제 10항에 있어서,
    상기 통전센서(140)가 상기 물 및 상기 냉매 중 적어도 하나의 유입을 감지하는 경우, 상기 열교환기의 동작을 정지시키는 컨트롤러(143);를 더 포함하는 것을 특징으로 하는 열교환기.
  12. 제 1항에 있어서,
    상기 입구측 냉매 헤더 탱크(130), 상기 장 마이크로채널 튜브(114), 상기 출구측 냉매 헤더 탱크(135), 상기 입구측 물 헤더 탱크(125), 상기 단 마이크로채널 튜브(112) 및 상기 출구측 물 헤더 탱크(120) 중 적어도 하나는 알루미늄 재질로 이루어진 것을 특징으로 하는 열교환기.
  13. 복수의 단 마이크로채널 튜브(112)와 복수의 장 마이크로채널 튜브(114)를 제조하는 단계;
    상기 복수의 단 마이크로채널 튜브(112) 각각과 상기 복수의 장 마이크로채널 튜브(114) 각각을 교대로 적층하여 마이크로채널 튜브 모듈(110)을 제조하는 단계;
    출구측 물 헤더 탱크(120)를 상기 마이크로채널 튜브 모듈(110)의 일측에 결합하여 출구측 물 헤더 탱크(120)와 상기 복수의 단 마이크로채널 튜브(112) 각각의 일단을 연결하고, 입구측 물 헤더 탱크(125)를 상기 마이크로채널 튜브 모듈(110)의 타측에 결합하여 상기 입구측 물 헤더 탱크(125)와 상기 복수의 단 마이크로채널 튜브(112) 각각의 타단을 연결하는 단계; 및
    입구측 냉매 헤더 탱크(130)를 상기 마이크로채널 튜브 모듈(110)의 일측에 결합하여 상기 입구측 냉매 헤더 탱크(130)와 상기 복수의 장 마이크로채널 튜브(114) 각각의 일단을 연결하고, 출구측 냉매 헤더 탱크(135)를 상기 마이크로채널 튜브 모듈(110)의 타단에 결합하여 상기 출구측 냉매 헤더 탱크(135)와 상기 복수의 장 마이크로채널 튜브(114) 각각의 타단을 연결하는 단계;를 포함하되,
    상기 복수의 단 마이크로채널 튜브(112) 각각은 상기 물이 흐르는 복수의 물 마이크로채널(111)이 나란하게 배열되어 이루어지고, 상기 장 마이크로채널 튜브(114)보다 짧은 형상으로 이루어지며,
    상기 복수의 장 마이크로채널 튜브(114) 각각은 상기 냉매가 흐르는 복수의 냉매 마이크로채널(113)이 나란하게 배열되어 이루어지는 것을 특징으로 하는 열교환기의 제조방법.
  14. 냉매가 냉매입구(131)를 통하여 입구측 냉매 헤더 탱크(130) 내부로 유입되고, 물이 물입구(126)를 통하여 입구측 물 헤더 탱크(125) 내부로 유입되는 단계;
    상기 냉매가 복수의 장 마이크로채널 튜브(114)를 통하여 흐르고, 상기 물이 복수의 단 마이크로채널 튜브(112)를 통하여 흐르는 단계;
    상기 냉매와 상기 물 사이에 열 교환이 발생하는 단계;
    상기 냉매가 출구측 냉매 헤더 탱크(135) 내부로 흐르고, 상기 물이 출구측 물 헤더 탱크(120) 내부로 흐르는 단계; 및
    상기 냉매가 냉매출구(136)를 통하여 외부로 유출되고, 상기 물이 물출구(121)를 통하여 외부로 유출되는 단계;를 포함하되,
    상기 복수의 장 마이크로채널 튜브(114) 각각의 일단은 상기 입구측 냉매 헤더 탱크(130)와 연결되고, 상기 복수의 장 마이크로채널 튜브(114) 각각의 타단은 상기 출구측 냉매 헤더 탱크(135)와 연결되며,
    상기 복수의 단 마이크로채널 튜브(112) 각각의 일단은 상기 출구측 물 헤더 탱크(120)와 연결되고, 상기 복수의 단 마이크로채널 튜브(112) 각각의 타단은 상기 입구측 물 헤더 탱크(125)와 연결되며,
    상기 복수의 단 마이크로채널 튜브(112) 각각은 상기 물이 흐르는 복수의 물 마이크로채널(111)이 나란하게 배열되어 이루어지고, 상기 장 마이크로채널 튜브(114)보다 짧은 형상으로 이루어지며,
    상기 복수의 장 마이크로채널 튜브(114) 각각은 상기 냉매가 흐르는 복수의 냉매 마이크로채널(113)이 나란하게 배열되어 이루어지고,
    상기 복수의 단 마이크로채널 튜브(112) 각각과 상기 복수의 장 마이크로채널 튜브(114) 각각은 교대로 적층되는 것을 특징으로 하는 열교환기의 제어방법.
PCT/KR2013/009076 2013-09-25 2013-10-11 열교환기 및 그 제조방법과 그 제어방법 WO2015046660A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130113815A KR101464889B1 (ko) 2013-09-25 2013-09-25 열교환기 및 그 제조방법과 그 제어방법
KR10-2013-0113815 2013-09-25

Publications (1)

Publication Number Publication Date
WO2015046660A1 true WO2015046660A1 (ko) 2015-04-02

Family

ID=52291486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009076 WO2015046660A1 (ko) 2013-09-25 2013-10-11 열교환기 및 그 제조방법과 그 제어방법

Country Status (2)

Country Link
KR (1) KR101464889B1 (ko)
WO (1) WO2015046660A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020108513A1 (zh) * 2018-11-30 2020-06-04 浙江三花汽车零部件有限公司 一种换热装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160195336A1 (en) * 2015-01-07 2016-07-07 Hamilton Sundstrand Corporation Honeycomb heat exchanger
KR101693101B1 (ko) 2015-03-31 2017-01-04 한국교통대학교산학협력단 리턴캡을 이용한 열교환기 및 그 열교환기를 이용한 열교환방법
WO2018231194A1 (en) * 2017-06-12 2018-12-20 General Electric Company Counter-flow heat exchanger
CN111076271B (zh) * 2019-12-11 2024-10-01 珠海格力电器股份有限公司 一种水箱内机一体换热器和热水供暖一体化换热设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326068A (ja) * 2004-05-13 2005-11-24 Daikin Ind Ltd 熱交換器用プレート及び熱交換器
KR100726370B1 (ko) * 2006-07-11 2007-06-11 주식회사 두원공조 수냉매 열교환기
US20080264620A1 (en) * 2004-08-10 2008-10-30 Showa Denko K.K. Flat Tube, Platelike Body for Making the Flat Tube and Heat Exchanger
JP2009079781A (ja) * 2007-09-25 2009-04-16 Mitsubishi Electric Corp 熱交換器及びこの熱交換器を用いたヒートポンプ給湯機またはヒートポンプ空気調和機
KR20130052109A (ko) * 2011-11-11 2013-05-22 한국과학기술원 적층형태의 연통형 마이크로 채널 열교환기

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811062A (en) * 1994-07-29 1998-09-22 Battelle Memorial Institute Microcomponent chemical process sheet architecture
KR200286535Y1 (ko) * 2002-05-15 2002-08-21 주식회사 유니온금속 리본형 냉매응축튜브와 이를 이용한 증발식 열교환기 및증발식응축기
JP2008267772A (ja) * 2007-04-19 2008-11-06 Best-Thermal Co Ltd 熱交換装置及び熱交換システム
KR20120105790A (ko) * 2011-03-16 2012-09-26 엘지전자 주식회사 열교환기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326068A (ja) * 2004-05-13 2005-11-24 Daikin Ind Ltd 熱交換器用プレート及び熱交換器
US20080264620A1 (en) * 2004-08-10 2008-10-30 Showa Denko K.K. Flat Tube, Platelike Body for Making the Flat Tube and Heat Exchanger
KR100726370B1 (ko) * 2006-07-11 2007-06-11 주식회사 두원공조 수냉매 열교환기
JP2009079781A (ja) * 2007-09-25 2009-04-16 Mitsubishi Electric Corp 熱交換器及びこの熱交換器を用いたヒートポンプ給湯機またはヒートポンプ空気調和機
KR20130052109A (ko) * 2011-11-11 2013-05-22 한국과학기술원 적층형태의 연통형 마이크로 채널 열교환기

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020108513A1 (zh) * 2018-11-30 2020-06-04 浙江三花汽车零部件有限公司 一种换热装置
EP3889537A4 (en) * 2018-11-30 2022-08-10 Zhejiang Sanhua Automotive Components Co., Ltd. HEAT EXCHANGE DEVICE
US11713930B2 (en) 2018-11-30 2023-08-01 Zhejiang Sanhua Automotive Components Co., Ltd. Flat tube heat exchanger with a separator

Also Published As

Publication number Publication date
KR101464889B1 (ko) 2014-11-24

Similar Documents

Publication Publication Date Title
WO2015046660A1 (ko) 열교환기 및 그 제조방법과 그 제어방법
WO2015009028A1 (en) Heat exchanger
WO2017116128A1 (ko) 전기소자 냉각용 열교환기
WO2018225919A1 (ko) 배터리 팩
WO2016200144A1 (en) Battery pack thermal management system for electric vehicle
CN105932365A (zh) 具有热交换装置的电池系统
WO2012002698A2 (ko) 열교환기
WO2017200362A1 (en) Double tube for heat-exchange
WO2016047939A1 (ko) 열교환기 및 이를 구비하는 원전
WO2012169688A1 (ko) 증발기/콘덴서 겸용 열교환기
WO2011105662A1 (ko) 칠러
WO2020141686A1 (ko) 배터리 냉각용 열교환기
WO2020004884A1 (ko) 응축기
WO2019146930A1 (ko) 열교환기
WO2019017573A1 (ko) 배터리 냉각용 열교환기
CN218827450U (zh) 电池装置、电池包以及车辆
WO2021040274A1 (ko) 수랭식 응축기
US20040035567A1 (en) Double sided heat exchanger core
WO2021235748A1 (ko) 방열판
WO2019004681A1 (ko) 열교환장치
WO2022177240A1 (ko) 열교환기
EP2515063A1 (en) Separated counterflow air heat exchange device with vertical structure
WO2017166967A1 (zh) 投影设备及其液冷散热系统
WO2023068452A1 (ko) 열교환기
WO2023048519A1 (ko) 칠러

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13894129

Country of ref document: EP

Kind code of ref document: A1