WO2012169688A1 - 증발기/콘덴서 겸용 열교환기 - Google Patents

증발기/콘덴서 겸용 열교환기 Download PDF

Info

Publication number
WO2012169688A1
WO2012169688A1 PCT/KR2011/005048 KR2011005048W WO2012169688A1 WO 2012169688 A1 WO2012169688 A1 WO 2012169688A1 KR 2011005048 W KR2011005048 W KR 2011005048W WO 2012169688 A1 WO2012169688 A1 WO 2012169688A1
Authority
WO
WIPO (PCT)
Prior art keywords
header
flat tube
heat exchanger
heat exchange
refrigerant
Prior art date
Application number
PCT/KR2011/005048
Other languages
English (en)
French (fr)
Inventor
김현철
Original Assignee
주식회사 고산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 고산 filed Critical 주식회사 고산
Publication of WO2012169688A1 publication Critical patent/WO2012169688A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • F28F9/0212Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions the partitions being separate elements attached to header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0214Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
    • F28F9/0217Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions the partitions being separate elements attached to header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators

Definitions

  • the present invention relates to an evaporator / condenser combined heat exchanger, and more particularly, a relatively narrow width of the first flat tube and a relatively wide width of the second flat tube are connected in the width direction to form asymmetrically integrally so that the refrigerant flows.
  • the refrigerant is heat exchanged and converted into a liquid phase or gas phase, and the refrigerant flow path is selectively expanded or contracted to expand or compress at a time to smoothly transport the refrigerant, thereby improving the heat exchange efficiency of the refrigerant.
  • the present invention relates to an evaporator / condenser combined heat exchanger that can reduce the number of parts of a combined evaporator / condenser combined heat exchanger so as to simplify the manufacturing process.
  • the heat exchanger is applied to a device such as an air conditioner, a refrigerator, an automobile air conditioner, and the like to allow heat exchange between a refrigerant flowing inside the tube and air existing outside the tube.
  • Such a heat exchanger may be generally divided into a heat exchanger for an evaporator and a heat exchanger for a condenser.
  • the heat exchanger for an evaporator is a heat exchanger for converting a liquid phase into steam and exchanging heat.
  • the liquid phase is converted into steam through heat exchange or the steam is introduced into the liquid phase through heat exchange.
  • the number of heat exchange tubes is sequentially reduced and arranged along the length direction of the header.
  • FIG. 1 and 2 is a perspective configuration and longitudinal cross-sectional view showing a heat exchanger according to the prior art.
  • the heat exchanger 10 As shown in FIGS. 1 and 2, the heat exchanger 10 according to the prior art has a configuration including a header 12, a heat exchange tube 14, a heat exchange fin 16 and a baffle 18.
  • the header 12 is installed in the form of facing each other at intervals on the upper and lower sides or left and right sides, while the first header 12a and the second outlet 12b into which the refrigerant is introduced or discharged. Are respectively provided at both ends of the longitudinal direction, and both ends of the heat exchange tube 14 are connected at regular intervals on a surface where the headers 12 located on both sides face each other.
  • a heat exchange fin 16 in which the metal of the thin plate is arranged in a zigzag form is installed.
  • the above-mentioned components, such as the header 12, the heat exchange tube 14, and the heat exchange fin 16, are made of metals, such as aluminum or copper, which are excellent in thermal conductivity and are not easily corroded.
  • the heat exchanger 10 according to the prior art as described above is arranged so that the number of heat exchange tubes 14 in the longitudinal direction of the header 12 is ten, six, four, three rows.
  • the header 12 has the baffle 18 is arranged at a gradually shorter distance along the longitudinal direction, the baffle 18 is alternated among the baffles 18 arranged along the longitudinal direction of the header 12 A through hole 18a is formed in the center of the baffle 18 at the position to be.
  • the heat exchanger 10 according to the related art having the above configuration has a path in which the flow path of the refrigerant is sequentially transferred from the heat exchange tube 14 of ten rows to the heat exchange tube 14 of three rows.
  • the heat exchanger 10 is the space of the heat exchange tube 14 and the space separated by the baffle 18 in the longitudinal direction of the header 12 through the arrangement of the heat exchange tube 14 as described above.
  • the number is gradually reduced, and the conventional heat exchanger 10 described above can be used as a heat exchanger for a condenser when the refrigerant is transferred from the heat exchange tube 14 to the lesser side.
  • the heat transfer tube 14 transfers the refrigerant from the smaller side to the larger side, it can be used as an evaporator heat exchanger.
  • the heat exchanger according to the related art described above is arranged in such a manner that the number of heat exchange tubes is 10, 6, 4, or 3 rows, and thus the refrigerant flow path is converted into a liquid phase or a gas phase according to a complicated and multistage flow path.
  • expansion and compression may not be performed smoothly in response to the volume change of the refrigerant.
  • the transfer of the refrigerant is not smoothly performed because the expansion and compression is not smooth in response to the volume change of the refrigerant, and the heat exchange efficiency is inferior.
  • the heat exchanger according to the prior art has a problem in that the number of machining processes, such as joining, welding, etc. is increased due to the fact that a plurality of baffles are connected to the inner side of the header so that the separation distance is gradually shortened, and there is also a problem that the number of parts increases. .
  • the present invention provides a heat exchange tube having a relatively narrow width of the first flat tube and a relatively wide width of the second flat tube is asymmetrically integrally formed by connecting in the width direction of the refrigerant
  • the refrigerant exchanges heat with external air to correspond to the volume that is converted into the liquid phase or the gas phase when the phase changes.
  • the refrigerant flow path is enlarged or reduced, and thus the refrigerant can be smoothly transferred as it is expanded or compressed at once. Accordingly, an object of the present invention is to provide an evaporator / capacitor combined heat exchanger capable of significantly increasing heat exchange efficiency.
  • Another object of the technology according to the present invention is to provide a heat exchange tube having a relatively narrow width of the first flat tube and a relatively wide width of the second flat tube is asymmetrically integrally connected in the width direction to provide an evaporator / condenser combined heat exchange It is possible to reduce the number of parts of the machine, and to simplify the processing of the evaporator / condenser combined heat exchanger, unlike the conventional baffle coupling and welding required inside the header.
  • the technology according to the present invention is provided with a heat exchange tube that is relatively asymmetrically integrally formed by connecting a relatively narrow width of the first flat tube and a relatively wide width of the second flat tube in the width direction evaporator / condenser combined heat exchanger
  • the evaporator / condenser combined heat exchanger according to the present invention is provided with a plurality of heat exchange tubes arranged at regular intervals between a pair of headers facing each other, while thin heat exchange fins are zigzag at regular intervals between the heat exchange tubes.
  • the heat exchanger is installed in the heat exchanger is provided with a first entrance and a second entrance through which the refrigerant enters and exits at a predetermined interval on the outer surface of one header, the refrigerant enters and exits heat exchange with the outside air.
  • the refrigerant flowing through the second inlet exchanges heat with external air to correspond to a volume converted into a liquid phase or a gas phase when the phase changes, and thus the flow path is enlarged or reduced selectively so that the refrigerant can be expanded or compressed at once and transported.
  • the first narrow flat tube and the second wide flat tube are arranged in the width direction.
  • the header is asymmetrically integrally formed, and the header has a relatively narrow first header and a relatively wide second header corresponding to the first flat tube and the second flat tube, respectively, and are connected in parallel.
  • a partition wall separating an inner space is formed between the header and the second header, while the first entrance is provided on the outer side of the first header and the second entrance is provided on the outer side of the second header.
  • a barrier rib formed between the first header and the second header of the other header corresponding to the one header having the first entrance and the second entrance has a first communication which communicates internal spaces of the first header and the second header.
  • the ball is formed.
  • the second flat tube of the heat exchange tube is preferably formed to have an alternative wide width within the range of 1.5 to 3 times the width of the first flat tube.
  • the heat exchange tube is connected to an additional flat tube having a relatively wider width than the second flat tube on one side of the second flat tube, while the additional flat tube is gradually wider in the width direction and connected to at least one or more.
  • the header may have an additional header having a width corresponding to the additional flat tube in parallel to one side of the second header.
  • the header is formed between the second header and the additional header partition wall is formed, while the second header and the second communication hole for communicating the internal space with each other in the partition wall separating the internal space
  • the first entrance is provided on the outer side of the first header of the one header and the second entrance is provided on the outer side of the additional header of the other header.
  • the header is composed of an inner wall to which one end or the other end of the heat exchange tube is connected and an outer wall closely coupled to the inner wall, while the inner wall of one of the inner wall is partitioned to separate the inner space of the first header and the second header
  • One end is fixed integrally, the other end of the partition is preferably fixed to the coupling groove formed in the center of one surface of the outer wall.
  • a heat exchange tube having a relatively narrow width of the first flat tube and a relatively wide width of the second flat tube connected in the width direction is formed asymmetrically and integrally, thereby simplifying the flow path of the refrigerant, thereby allowing the refrigerant to
  • the flow path is expanded or reduced selectively to correspond to the volume converted into the liquid phase or the gas phase when the phase changes by heat exchange, so that the refrigerant can be smoothly transferred as it is expanded or compressed at a time, thereby significantly increasing the heat exchange efficiency.
  • a heat exchange tube having a relatively narrow width of the first flat tube and a relatively wide width of the second flat tube connected in the width direction to be integrally formed asymmetrically can reduce the number of components of the combined evaporator / condenser heat exchanger.
  • the process of the evaporator / condenser combined heat exchanger can be simplified as opposed to the conventional coupling and welding of the baffle inside the header.
  • a heat exchange tube having a relatively narrow width of the first flat tube and a relatively wide width of the second flat tube connected in the width direction is formed asymmetrically and integrally to simplify the processing of the evaporator / condenser combined heat exchanger.
  • Evaporator / condenser combined heat exchanger can be made easily.
  • FIG. 1 is a perspective configuration diagram showing a heat exchanger according to the prior art.
  • Figure 2 is a longitudinal cross-sectional view showing a heat exchanger according to the prior art.
  • Figure 3 is a separation configuration showing an evaporator / condenser combined heat exchanger according to the present invention.
  • Figure 4 is a combined configuration showing an evaporator / condenser combined heat exchanger according to the present invention.
  • Figure 5 is a longitudinal cross-sectional view showing an evaporator / capacitor combined heat exchanger according to the present invention.
  • Figure 6 is a cross-sectional view showing a heat exchange tube of the evaporator / capacitor combined heat exchanger according to the present invention.
  • FIG. 7 is an exemplary view showing a flow of a refrigerant in an evaporator / capacitor combined heat exchanger according to the present invention.
  • Figure 8 is a longitudinal cross-sectional view showing another embodiment of the evaporator / capacitor combined heat exchanger according to the present invention.
  • Second Communist 126 Baffle
  • refrigerant flow path 160 heat exchange fin
  • FIG. 3 is a separate configuration diagram showing an evaporator / condenser combined heat exchanger according to the present invention
  • Figure 4 is a combined configuration diagram showing a combined evaporator / condenser heat exchanger according to the present invention
  • Figure 5 is an evaporator / condenser combined heat exchange according to the present invention
  • 6 is a cross-sectional view showing a heat exchange tube of an evaporator / condenser combined heat exchanger according to the present invention
  • FIG. 7 shows an example of a refrigerant flow in an evaporator / condenser combined heat exchanger system according to the present invention. It is also.
  • the evaporator / capacitor combined heat exchanger 100 includes a pair of headers 120, a heat exchange tube 140, and a heat exchange fin 160. .
  • the header 120 includes an inner wall 123 to which one end and the other end of the heat exchange tube 140 are connected, and an outer wall 121 that is coupled to the inner wall 123 to form an inner space through which a refrigerant flows. It is preferable that it is configured.
  • the heat exchange tube 140 is arranged a plurality of the predetermined intervals between the pair of headers 120, between the heat exchange tubes 140, the heat exchange fins 160 at regular intervals in a zigzag form. Is arranged as an array.
  • an outer side surface of the one side header 120 that is, an outer side surface of the outer wall 121 of the one side header 120, has a predetermined distance in the longitudinal direction and has a first entrance 128 and a second side.
  • the entrance 129 is provided, and the refrigerant enters and exits the outside air through the first entrance 128 and the second entrance 129.
  • the first flat tube 141 having a relatively narrow width and the second flat tube 143 having a relatively wide width are connected in the width direction to be integrally formed asymmetrically.
  • the second flat tube 143 is preferably formed to have a wide width within the range of 1.5 to 3 times the width of the first flat tube 141.
  • first flat tube 141 and the second flat tube 143 are integrally connected with a plate on a plate, and a plurality of refrigerant passages 147 are disposed in the width direction to communicate with each other in the longitudinal direction. Is formed.
  • the pair of headers 120 connected to both ends of the heat exchange tube 140 as described above may have a relatively narrow width corresponding to the first flat tube 141 and the second flat tube 143, respectively.
  • the first header 120a and the relatively wide second header 120b are connected in parallel.
  • a partition wall 124 separating an inner space is formed between the first header 120a and the second header 120b, while the first entrance 128 is disposed at one side of the header 120.
  • the outer side of the first header 120a of the one side header 120 is provided, and the second entrance 129 is preferably provided on the outer side of the second header 120b of the one side header 120.
  • the one header 120 and the other header 120 have the same reference numerals, and in order to distinguish the headers disposed on one side and the other side as the headers are disposed on both sides at a predetermined distance, the one header 120 and The other header 120 will be named.
  • 124 is a plurality of first communication holes 125 are formed along the longitudinal direction to communicate the internal space of the first header (120a) and the second header (120b).
  • the liquid refrigerant flowing into the first entrance 128 passes through the first communication tube 125 through the first communication tube 141 and then through the second communication tube 125. It may be transferred to the (143) side, in which case it is applied to the heat exchanger for the evaporator.
  • the refrigerant in the gas flows into the second entrance 129, the refrigerant is transferred to the first flat tube 141 through the first communication hole 125 via the second flat tube 143.
  • the flow of the refrigerant when applied to the heat exchanger for the condenser.
  • the header 120 as described above is composed of an inner wall 123 to which one or the other end of the heat exchange tube 140 is connected and an outer wall 121 to be tightly coupled to the inner wall 123, wherein the inner wall ( One end of the partition wall 124 that separates the inner space of the first header 120a and the second header 120b is integrally fixed to one surface thereof, and the other end of the partition wall 124 is the outer wall 121. It is preferable that the coupling is fixed to the coupling groove 122 formed in the center of one side.
  • the partition wall 124 may be fixed by welding in the center of one surface of the inner wall 123, it may be tightly fixed through a separate fixing groove (not shown).
  • the header 120 is provided with baffles 126 at both ends in the longitudinal direction to seal an inner space, and the baffles 126 are formed at both ends of the inner wall 123 and the outer wall 121 of the header 120. It is preferable to fix the bond through the ball (unsigned).
  • the evaporator / condenser combined heat exchanger 100 exchanges heat with external air through the refrigerant flowing into the first inlet 128 or the second inlet 129 through the heat exchange tube 140.
  • the phase change corresponds to the volume converted into the liquid phase or gas phase
  • the flow path is selectively enlarged or reduced so that the phase-changing refrigerant can be expanded or compressed at a time to be smoothly transported. It is possible to significantly increase the heat exchange efficiency while selecting and converting as needed.
  • a liquid refrigerant flows through the first entrance 128 and gradually changes into a gas phase by contact with external air via the first flat tube 141.
  • the refrigerant reaches the end of the first flat tube 141, the refrigerant in the gas phase gradually changed in volume and in a state where the refrigerant passes through the second flat tube 143. Most of the phase changes into the gas phase and is discharged through the second entrance 129 via the header 120.
  • the refrigerant in a state where the volume is increased in the gas phase may be temporarily expanded and transported at a time as the second flat tube 143 has a refrigerant passage 147 wider than the first flat tube 141.
  • the evaporator / condenser combined heat exchanger 100 when the evaporator / condenser combined heat exchanger 100 according to the present invention is applied as a heat exchanger for an evaporator, the evaporator / capacitor combined heat exchanger 100 has a relatively small refrigerant flow path 147 of the narrow width corresponding to the volume change caused by the phase change of the refrigerant.
  • the refrigerant expands at a time through the second flat tube 143 having a plurality of coolant flow paths 147, thereby providing a simple refrigerant path. It can be smoothly transferred through, thereby significantly increasing the heat exchange efficiency.
  • the refrigerant in the gas flows through the second inlet 129 and gradually contacts with external air while passing through the second flat tube 143.
  • the liquid phase refrigerant phase-changed into the phase gradually changes through the first flat tube 141 in a state in which the volume of the liquid phase decreases, and the majority of the refrigerant phase-changes into the liquid phase by contact with external air. It is discharged through the first entrance 128 via the 120.
  • the refrigerant in a state where the volume is reduced to the liquid phase temporarily cools the phase change refrigerant as the first flat tube 141 has a narrower refrigerant passage 147 than the second flat tube 143. Can be transported.
  • the evaporator / capacitor combined heat exchanger 100 when the evaporator / capacitor combined heat exchanger 100 according to the present invention is applied as a heat exchanger for a condenser, the evaporator / capacitor combined heat exchanger 100 has a wider width than the first flat tube 141 in response to a volume change caused by a phase change of a refrigerant.
  • the first flat tube 141 having a narrow width from the second flat tube 143 having a plurality of coolant flow passages 147 and having a few coolant flow passages 147 compared to the second flat tube 143.
  • the evaporator / condenser combined heat exchanger 100 is a heat exchange tube 140, the first flat tube 141 and the second flat tube 143 are asymmetrically integrally formed integrally connected to the refrigerant While the flow path of the refrigerant can be simplified, the flow path of the refrigerant can be smoothly expanded or compressed at a time by selectively expanding or contracting to correspond to the volume converted into the liquid phase or the gas phase when the phase of the refrigerant changes. Accordingly, the heat exchanger for the evaporator and the heat exchanger for the condenser can be selected and converted as necessary to significantly increase the heat exchange efficiency.
  • the evaporator / condenser is provided by providing a heat exchange tube 140 in which a relatively narrow width of the first flat tube 141 and a relatively wide width of the second flat tube 143 are connected in the width direction and integrally formed asymmetrically. While the number of parts of the combined heat exchanger 100 can be reduced, the process of the evaporator / condenser combined heat exchanger can be simplified, unlike the conventional baffle coupling and welding required inside the header.
  • a relatively narrow width of the first flat tube 141 and a relatively wide width of the second flat tube 143 is connected to the width direction is provided with a heat exchange tube 140 asymmetrically integrally provided evaporator / condenser
  • Figure 8 is a longitudinal cross-sectional view showing another embodiment of the heat exchanger for an evaporator / capacitor combined according to the present invention.
  • the evaporator / condenser combined heat exchanger 100 ′ may include at least one additional flat tube through a flow path between the evaporator / condenser combined heat exchanger 100 and the refrigerant described with reference to FIGS. 3 to 7.
  • the apparatus further includes an additional header 145, and an additional header 120c corresponding to the additional flat tube 145 will be described below.
  • the heat exchange tube 140' has an additional flat tube 145 having a wider width than the second flat tube 143 on one side of the second flat tube 143. It is preferable that is connected and formed integrally.
  • the one header 120 'and the other header 120' use the same reference numerals, and in order to distinguish headers disposed on one side and the other side as headers are disposed on both sides at a predetermined distance, the header on one side will be described below. A description will be made of the header 120 'and the other header 120'.
  • An additional header 120c having a width corresponding to the additional flat tube 145 is connected to one side of the second header 120b in parallel with the one header 120 'and the other header 120'.
  • the one header 120 'and the other header 120' are formed with a partition wall 124 'separating the internal space between the additional header 120c and the second header 120b, and having a first entrance opening.
  • a second communication hole 125 ' is formed in the partition wall 124' through which the second header 120b of the one side header 120 'and the inner space are separated.
  • the other header 120 ' which is provided to be spaced apart from the one header 120' is provided with a partition wall 124 'separating the inner space of the second header 120b and the additional header 120c.
  • the partition wall 124 ′ is provided as a partition wall 124 ′ without the second communication hole 125 ′ to separate the inner space of the second header 120 b and the additional header 120 c.
  • a second entrance 129 ′ is provided on an outer surface of the additional header 120 c of the other header 120 ′.
  • the liquid refrigerant flows through the first inlet 128 provided on the outer surface of one side header 120 'and passes through the first flat tube 141 through the inner space of the header 120'. It is introduced into the other header 120 'spaced apart from the header 120'.
  • the refrigerant in the liquid phase is converted into the gas phase by heat exchange with the outside air, the refrigerant is converted into a partition wall separating the first header (120a) and the second header (120b) of the other header (120 ').
  • the second flat tube 143 passes through the inner space of the second header 120b through the first communication hole 125 formed at 124.
  • the refrigerant passing through the second flat tube 143 passes from the second flat tube 143 to the second header 120b through an inner space of the second header 120b of the one header 120 '.
  • the additional header 120c is introduced into the inner space of the additional header 120c through the second communication hole 125 'of the partition wall 124' provided between the additional headers 120c.
  • the refrigerant introduced into the inner space of the additional header 120c is transferred to the additional header 120c of the other header 120 'via the additional flat tube 145, and then the additional header of the other header 120'. 120c is discharged to the outside through the second entrance 129 ′ provided on the outer surface.
  • the evaporator / condenser combined heat exchanger 100 ′ according to the present invention may be used by being used as a heat exchanger for an evaporator according to the flow of the refrigerant as described above.
  • the evaporator / condenser combined heat exchanger 100 ' includes a heat exchange tube 140' integrally connected to at least one additional flat tube 145 in the width direction on one side of the second flat tube 143.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

본 발명은 증발기/콘덴서 겸용 열교환기에 관한 것으로서, 상대적으로 좁은 폭의 제1납작 튜브와 상대적으로 넓은 폭의 제2납작 튜브가 폭 방향으로 연결되어 비대칭으로 일체로 형성됨으로써 냉매의 흐름 경로를 단순화하여 냉매가 열교환하여 액체 상 또는 기체 상으로 변환되는 체적에 대응되어 선택적으로 냉매 유로가 확대 또는 축소되어 단번에 팽창 또는 압축됨에 따라 냉매의 이송이 원활하게 이루어져 냉매의 열교환 효율을 향상되는 한편, 증발기/콘덴서 겸용 열교환기의 부품 수를 줄여 가공공정을 간략화하여 제작이 용이하게 이루어질 수 있도록 함에 그 목적이 있다. 이를 위해 구성되는 본 발명에 따른 증발기/콘덴서 겸용 열교환기는 마주하는 한 쌍의 헤더 사이에 일정 간격을 두고 다수의 열교환 튜브가 배열 설치되는 한편 열교환 튜브들 사이에는 얇은 두께의 열교환 핀이 일정 간격을 두고 지그재그 형태로 배열 설치되되 일측 헤더의 외측면에는 일정 간격을 두고 냉매가 출입하는 제1출입구 및 제2출입구가 구비되어 냉매가 출입하여 외부 공기와 열교환되는 열교환기에 있어서, 상기 열교환 튜브는 상기 제1출입구 또는 제2출입구를 통하여 유입되는 냉매가 외부공기와 열교환하여 상 변화시 액체 상 또는 기체 상으로 변환되는 체적에 대응되어 선택적으로 유로가 확대 또는 축소되어 냉매가 단번에 팽창 또는 압축되어 이송될 수 있도록 상대적으로 좁은 폭의 제1납작 튜브와 상대적으로 넓은 폭의 제2납작 튜브가 폭 방향으로 연결되어 비대칭으로 일체로 형성되며, 상기 헤더는 상기 제1납작 튜브 및 제2납작 튜브와 각각 대응되는 상대적으로 좁은 폭의 제1헤더 및 상대적으로 넓은 제2헤더가 병렬로 연결되고, 상기 제1헤더 및 제2헤더 사이에 내부공간을 분리하는 격벽이 형성되는 한편, 상기 제1출입구는 상기 제1헤더의 외측면에 구비되고 상기 제2출입구는 상기 제2헤더의 외측면에 구비되며, 상기 제1출입구 및 제2출입구가 구비되는 일측 헤더와 대응되는 타측 헤더의 상기 제1헤더 및 제2헤더 사이에 형성되는 격벽은 상기 제1헤더 및 제2헤더의 내부공간을 상호 연통시키는 제1연통공이 형성되는 구성으로 이루어진다.

Description

증발기/콘덴서 겸용 열교환기
본 발명은 증발기/콘덴서 겸용 열교환기에 관한 것으로서, 더욱 상세하게는 상대적으로 좁은 폭의 제1납작 튜브와 상대적으로 넓은 폭의 제2납작 튜브가 폭 방향으로 연결되어 비대칭으로 일체로 형성됨으로써 냉매의 흐름 경로를 단순화하여 냉매가 열교환하여 액체 상 또는 기체 상으로 변환되는 체적에 대응되어 선택적으로 냉매 유로가 확대 또는 축소되어 단번에 팽창 또는 압축됨에 따라 냉매의 이송이 원활하게 이루어져 냉매의 열교환 효율을 향상되는 한편, 증발기/콘덴서 겸용 열교환기의 부품 수를 줄여 가공공정을 간략화하여 제작이 용이하게 이루어질 수 있도록 한 증발기/콘덴서 겸용 열교환기에 관한 것이다.
일반적으로 열교환기는 에어 컨디셔너, 냉장고, 자동차 냉방기 등의 장치에 적용되어 관의 내부를 흐르는 냉매와 관의 외부에 존재하는 공기 등과의 사이에서 열 교환이 이루어지도록 하는 것이다.
이러한 열교환기는 통상 증발기용 열교환기와 콘덴서용 열교환기로 나눌 수 있으며, 증발기용 열교환기는 액상을 증기로 변환하여 열교환 시키는 열교환기이며, 콘덴서용 열교환기는 증기를 액상으로 변환하여 열교환 하는 열교환기이다.
상기와 같은 종래의 증발기용 열교환기와 콘덴서용 열교환기는 별도로 제작하여 사용되고 있는 실정이다.
또한, 종래의 증발기용 열교환기나 콘덴서용 열교환기는 액상이 유입되어 열교환을 통하여 증기로 변환되거나 증기가 유입되어 열교환을 통하여 액상으로 변환되는 과정을 헤더 내측에 배플로 공간을 분리하여 분리된 공간에 상기 헤더의 길이방향을 따라 열교환 튜브의 개수를 순차적으로 축소 배열하여 사용되고 있다.
도 1 및 2는 종래기술에 따른 열교환기를 나타낸 사시 구성도 및 종단면 구성도이다.
도 1 및 2에서 보는 바와 같이, 종래기술에 따른 열교환기(10)는 헤더(12), 열교환 튜브(14), 열교환 핀(16) 및 배플(18)을 포함하는 구성으로 이루어진다.
여기서, 상기 헤더(12)는 상하 또는 좌우 양측에 간격을 두고 상호 마주하는 형태로 설치가 되는 한편 일측 헤더(12)에는 냉매가 유입 또는 배출되는 제1출입구(12a) 및 제2출입구(12b)가 길이방향 양단부에 각각 구비되며, 양쪽에 위치된 헤더(12)가 상호 마주하는 면 상에는 일정 간격을 두고 열교환 튜브(14)의 양 끝단이 각각 접속이 된다.
이때, 상기 열교환 튜브(14)와 열교환 튜브(14) 사이에는 박판의 금속이 지그재그 형태로 배열이 된 열교환 핀(16)이 설치된다. 전술한 헤더(12), 열교환 튜브(14) 및 열교환 핀(16) 등의 구성요소는 열전도율이 우수하며 쉽게 부식되지 않는 알루미늄이나 동 등의 금속으로 이루어진다.
한편, 상술한 바와 같은 종래기술에 따른 열교환기(10)는 상기 헤더(12)의 길이방향으로 열교환 튜브(14)의 개수가 10개, 6개, 4개, 3개의 열이 되도록 배열된다.
이때, 상기 헤더(12)는 길이방향을 따라 점차 짧은 거리를 두고 상기 배플(18)이 배열되며, 이러한 배플(18)은 상기 헤더(12)의 길이방향을 따라 배열된 배플(18) 중에서 교번되는 위치의 배플(18)에는 중앙에 통공(18a)이 형성된다.
상기와 같은 구성으로 이루어진 종래기술에 따른 열교환기(10)는 냉매의 흐름 경로가 10열의 열교환 튜브(14)로부터 3열의 열교환 튜브(14) 측으로 순차적으로 이송되는 경로를 가지게 된다.
즉, 종래기술에 따른 열교환기(10)는 상기와 같은 열교환 튜브(14)의 배열을 통하여, 상기 헤더(12)의 길이방향으로 배플(18)에 의해 분리되는 공간 및 열교환 튜브(14)의 개수가 점차 축소되며, 이때 상술한 종래의 열교환기(10)는 상기 열교환 튜브(14)가 많은 쪽에서 적은 쪽으로 냉매를 이송시키면 콘덴서용 열교환기로 사용할 수 있다. 아울러, 역방향으로 열교환 튜브(14)가 적은 쪽에서 많은 쪽으로 냉매를 이송시키면 증발기용 열교환기로 사용할 수 있다.
전술한 종래기술에 따른 열교환기는 열교환 튜브의 개수가 10개, 6개, 4개, 3개의 열이 되도록 배열되는 구조로써 냉매의 흐름 경로가 복잡하고 다단으로 이루어짐에 따라 액체 상 또는 기체 상으로 변환되는 냉매의 체적 변화에 대응되어 팽창 및 압축이 원활하게 이루어지지 못하는 문제가 있다. 이와 같이, 냉매의 체적 변화에 대응되어 팽창 및 압축이 원활하지 못함으로써 냉매의 이송이 원활하게 이루어 지지 못함은 물론이거니와, 열교환 효율이 떨어지는 문제점이 있었다.
또한, 헤더의 길이방향으로 배플에 의해 분리되는 영역에 따라 열교환 튜브를 그 개수가 점차 적게 배열하여 제작되는 것으로 제작이 용이하지 못하다는 문제점이 있었다.
더욱이, 종래기술에 따른 열교환기는 헤더 내측에 다수의 배플이 이격거리가 점차 짧아지도록 접속되어야 함에 따른 결합, 용접 등의 가공공정에 대한 수가 많아지는 문제가 있으며, 아울러 부품의 수가 많아진다는 문제가 있다.
상기와 같은 문제점을 해결하기 위하여, 본 발명은 상대적으로 좁은 폭의 제1납작 튜브와 상대적으로 넓은 폭의 제2납작 튜브가 폭 방향으로 연결되어 비대칭으로 일체로 형성되는 열교환 튜브가 구비됨으로써 냉매의 흐름 경로를 단순화하여 냉매가 외부공기와 열교환하여 상 변화시 액체 상 또는 기체 상으로 변환되는 체적에 대응되어 선택적으로 냉매 유로가 확대 또는 축소되어 단번에 팽창 또는 압축됨에 따라 냉매의 이송이 원활하게 이루어질 수 있으며, 이에 따라 열교환 효율을 현저히 증대시킬 수 있도록 한 증발기/콘덴서 겸용 열교환기를 제공하는 것을 목적으로 한다.
본 발명에 따른 기술의 다른 목적은 상대적으로 좁은 폭의 제1납작 튜브와 상대적으로 넓은 폭의 제2납작 튜브가 폭 방향으로 연결되어 비대칭으로 일체로 형성되는 열교환 튜브가 구비됨으로써 증발기/콘덴서 겸용 열교환기의 부품 수를 줄일 수 있는 한편, 종래의 헤더 내측에 배플의 결합, 용접이 요구되던 것과 달리 증발기/콘덴서 겸용 열교환기의 가공공정이 간략화될 수 있도록 함에 있다.
아울러, 본 발명에 따른 기술은 상대적으로 좁은 폭의 제1납작 튜브와 상대적으로 넓은 폭의 제2납작 튜브가 폭 방향으로 연결되어 비대칭으로 일체로 형성되는 열교환 튜브가 구비되어 증발기/콘덴서 겸용 열교환기의 가공공정을 간략화됨으로써 증발기/콘덴서 겸용 열교환기의 제작이 용이하게 이루어질 수 있도록 함에 있다.
전술한 목적을 달성하기 위한 본 발명은 다음과 같다. 즉, 본 발명에 따른 증발기/콘덴서 겸용 열교환기는 마주하는 한 쌍의 헤더 사이에 일정 간격을 두고 다수의 열교환 튜브가 배열 설치되는 한편 열교환 튜브들 사이에는 얇은 두께의 열교환 핀이 일정 간격을 두고 지그재그 형태로 배열 설치되되 일측 헤더의 외측면에는 일정 간격을 두고 냉매가 출입하는 제1출입구 및 제2출입구가 구비되어 냉매가 출입하여 외부 공기와 열교환되는 열교환기에 있어서, 상기 열교환 튜브는 상기 제1출입구 또는 제2출입구를 통하여 유입되는 냉매가 외부공기와 열교환하여 상 변화시 액체 상 또는 기체 상으로 변환되는 체적에 대응되어 선택적으로 유로가 확대 또는 축소되어 냉매가 단번에 팽창 또는 압축되어 이송될 수 있도록 상대적으로 좁은 폭의 제1납작 튜브와 상대적으로 넓은 폭의 제2납작 튜브가 폭 방향으로 연결되어 비대칭으로 일체로 형성되며, 상기 헤더는 상기 제1납작 튜브 및 제2납작 튜브와 각각 대응되는 상대적으로 좁은 폭의 제1헤더 및 상대적으로 넓은 제2헤더가 병렬로 연결되고, 상기 제1헤더 및 제2헤더 사이에 내부공간을 분리하는 격벽이 형성되는 한편, 상기 제1출입구는 상기 제1헤더의 외측면에 구비되고 상기 제2출입구는 상기 제2헤더의 외측면에 구비되며, 상기 제1출입구 및 제2출입구가 구비되는 일측 헤더와 대응되는 타측 헤더의 상기 제1헤더 및 제2헤더 사이에 형성되는 격벽은 상기 제1헤더 및 제2헤더의 내부공간을 상호 연통시키는 제1연통공이 형성되는 구성으로 이루어진다.
여기서, 상기 열교환 튜브의 제2납작 튜브는 상기 제1납작 튜브 폭의 1.5~3배의 범위 내에서 택일적으로 넓은 폭을 가지도록 형성됨이 바람직하다.
또한, 상기 열교환 튜브는 제2납작튜브 일측에 상기 제2납작 튜브보다 상대적으로 넓은 폭을 가지는 부가 납작 튜브가 연결되는 한편, 상기 부가 납작 튜브는 폭 방향으로 점진적으로 넓은 폭을 가지고 적어도 하나 이상 연결되어 일체로 형성되며, 상기 헤더는 상기 부가 납작 튜브와 대응되는 폭을 가지는 부가 헤더가 상기 제2헤더 일측에 병렬로 연결될 수 있다.
이때, 상기 헤더는 상기 제2헤더와 부가 헤더 사이에 내부공간을 분리하는 격벽이 형성되는 한편, 상기 타측 헤더의 제2헤더와 내부공간이 분리되는 격벽에 내부공간을 상호 연통시키는 제2연통공이 형성되며, 상기 제1출입구는 상기 일측 헤더의 제1헤더 외측면에 구비되고 상기 제2출입구는 상기 타측 헤더의 부가 헤더의 외측면에 구비됨이 바람직하다.
한편, 상기 헤더는 상기 열교환 튜브의 일단 또는 타단이 연결되는 내벽과 상기 내벽과 긴밀하게 결합되는 외벽으로 구성되는 한편, 상기 내벽 일면 중앙에는 상기 제1헤더와 제2헤더의 내부공간을 분리하는 격벽 일단이 일체로 고정되며, 상기 격벽의 타단은 상기 외벽의 일면 중앙에 형성된 결합홈에 결합 고정됨이 바람직하다.
본 발명에 따른 증발기/콘덴서 겸용 열교환기의 효과를 설명하면 다음과 같다.
첫째, 상대적으로 좁은 폭의 제1납작 튜브와 상대적으로 넓은 폭의 제2납작 튜브가 폭 방향으로 연결되어 비대칭으로 일체로 형성되는 열교환 튜브가 구비됨으로써 냉매의 흐름 경로를 단순화하여 냉매가 외부공기와 열교환하여 상 변화시 액체 상 또는 기체 상으로 변환되는 체적에 대응되어 선택적으로 유로가 확대 또는 축소되어 단번에 팽창 또는 압축됨에 따라 냉매의 이송이 원활하게 이루어질 수 있으며, 이에 따라 열교환 효율을 현저히 증대시킬 수 있다.
둘째, 상대적으로 좁은 폭의 제1납작 튜브와 상대적으로 넓은 폭의 제2납작 튜브가 폭 방향으로 연결되어 비대칭으로 일체로 형성되는 열교환 튜브가 구비됨으로써 증발기/콘덴서 겸용 열교환기의 부품 수를 줄일 수 있는 한편, 종래의 헤더 내측에 배플의 결합, 용접이 요구되던 것과 달리 증발기/콘덴서 겸용 열교환기의 가공공정이 간략화될 수 있다.
셋째, 상대적으로 좁은 폭의 제1납작 튜브와 상대적으로 넓은 폭의 제2납작 튜브가 폭 방향으로 연결되어 비대칭으로 일체로 형성되는 열교환 튜브가 구비되어 증발기/콘덴서 겸용 열교환기의 가공공정을 간략화됨으로써 증발기/콘덴서 겸용 열교환기의 제작이 용이하게 이루어질 수 있다.
도 1은 종래기술에 따른 열교환기를 나타낸 사시 구성도.
도 2는 종래기술에 따른 열교환기를 나타낸 종단면 구성도.
도 3은 본 발명에 따른 증발기/콘덴서 겸용 열교환기를 나타낸 분리 구성도.
도 4는 본 발명에 따른 증발기/콘덴서 겸용 열교환기를 나타낸 결합 구성도.
도 5는 본 발명에 따른 증발기/콘덴서 겸용 열교환기를 나타낸 종단면 구성도.
도 6은 본 발명에 따른 증발기/콘덴서 겸용 열교환기의 열교환 튜브를 나타낸 횡단면 구성도.
도 7은 본 발명에 따른 증발기/콘덴서 겸용 열교환기에서 냉매의 흐름을 나타낸 예시도.
도 8은 본 발명에 따른 증발기/콘덴서 겸용 열교환기의 다른 실시예를 나타낸 종단면 구성도.
<도면부호의 설명>
100: 열교환기 120, 120': 헤더
120a: 제1헤더 120b: 제2헤더
120c: 부가 헤더 121: 외벽
122: 결합홈 123: 내벽
124, 124': 격벽 125: 제1연통공
125': 제2연통공 126: 배플
128: 제1출입구 129, 129': 제2출입구
140, 140': 열교환 튜브 141: 제1납작 튜브
143: 제2납작 튜브 145: 부가 납작 튜브
147: 냉매유로 160: 열교환 핀
이하, 첨부된 도면을 참조하여 본 발명에 따른 증발기/콘덴서 겸용 열교환기의 바람직한 실시예를 상세히 설명한다.
도 3은 본 발명에 따른 증발기/콘덴서 겸용 열교환기를 나타낸 분리 구성도이고, 도 4는 본 발명에 따른 증발기/콘덴서 겸용 열교환기를 나타낸 결합 구성도이며, 도 5는 본 발명에 따른 증발기/콘덴서 겸용 열교환기를 나타낸 종단면 구성도이고, 도 6은 본 발명에 따른 증발기/콘덴서 겸용 열교환기의 열교환 튜브를 나타낸 횡단면 구성도이며, 도 7은 본 발명에 따른 증발기/콘덴서 겸용 열교환기 시스템에서 냉매 흐름을 나타낸 예시도이다.
도 3 내지 7에서 보는 바와 같이, 본 발명의 바람직한 실시예에 따른 증발기/콘덴서 겸용 열교환기(100)는 한 쌍의 헤더(120), 열교환 튜브(140) 및 열교환 핀(160)을 포함하여 이루어진다.
여기서, 상기 헤더(120)는 상기 열교환 튜브(140)의 일단 및 타단이 각각 연결되는 내벽(123) 및 상기 내벽(123)에 결합되어 냉매가 유동되는 내부공간을 형성하는 외벽(121)을 포함하여 구성됨이 바람직하다.
이때, 상기 열교환 튜브(140)는 상기 한 쌍의 헤더(120) 사이에 일정 간격을 두고 다수가 배열 설치되며, 상기 열교환 튜브들(140) 사이에는 열교환 핀(160)이 일정간격을 두고 지그재그 형태로 배열 설치된다.
또한, 상기 한 쌍의 헤더(120) 중에서 일측 헤더(120)의 외측면, 즉 일측 헤더(120)의 외벽(121) 외측면에는 길이방향으로 일정간격을 가지고 제1출입구(128) 및 제2출입구(129)가 구비되어, 상기 제1출입구(128) 및 제2출입구(129)를 통하여 냉매가 출입하여 외부공기와 열교환 된다.
한편, 상술한 바와 같은 열교환 튜브(140)는 상대적으로 좁은 폭의 제1납작 튜브(141)와 상대적으로 넓은 폭의 제2납작 튜브(143)가 폭 방향으로 연결되어 비대칭으로 일체로 형성된다.
여기서, 상기 제2납작 튜브(143)는 상기 제1납작 튜브(141) 폭의 1.5~3배의 범위 내에서 택일적으로 넓은 폭을 가지도록 형성됨이 바람직하다.
이때, 상기 제1납작 튜브(141)와 제2납작 튜브(143)는 판 상의 플레이트가 개재되어 일체로 연결 형성되는 한편, 각각 냉매 유로(147)가 폭 방향으로 다수가 배치되어 길이방향으로 연통 형성된다.
한편, 상술한 바와 같은 열교환 튜브(140)의 양단이 연결되는 한 쌍의 헤더(120)는 상기 제1납작 튜브(141) 및 제2납작 튜브(143)와 각각 대응되는 상대적으로 좁은 폭의 제1헤더(120a) 및 상대적으로 넓은 제2헤더(120b)가 병렬로 연결되는 구성으로 이루어진다.
여기서, 상기 제1헤더(120a) 및 제2헤더(120b) 사이에 내부공간을 분리하는 격벽(124)이 형성되는 한편, 상기 제1출입구(128)는 상기 헤더(120) 중 일측에 배치되는 일측 헤더(120)의 제1헤더(120a)의 외측면에 구비되고 상기 제2출입구(129)는 상기 일측 헤더(120)의 제2헤더(120b)의 외측면에 구비됨이 바람직하다.
상기 일측 헤더(120) 및 타측 헤더(120)는 동일부호를 사용하였으며, 헤더가 일정거리를 두고 양측에 배치됨에 따라 일측 및 타측에 배치된 헤더를 구분하기 위하여, 이하에서는 일측 헤더(120) 및 타측 헤더(120)로 명명하여 설명하기로 한다.
상기 제1출입구(128) 및 제2출입구(129)가 구비되는 일측 헤더(120)와 대응되는 타측 헤더(120)의 상기 제1헤더(120a) 및 제2헤더(120b) 사이에 형성되는 격벽(124)은 상기 제1헤더(120a) 및 제2헤더(120b)의 내부공간을 상호 연통시키는 제1연통공(125)이 길이 방향을 따라 다수 형성된다.
이러한 제1연통공(125)이 구비됨으로써 상기 제1출입구(128)로 유입된 액체 상의 냉매가 상기 제1납작 튜브(141)를 거쳐 상기 제1연통공(125)을 통하여 상기 제2납작 튜브(143) 측으로 이송될 수 있으며, 이러한 경우는 증발기용 열교환기로 적용될 경우이다.
반대로, 상기 제2출입구(129)로 기체 상의 냉매를 유입시키면, 상기 제2납작 튜브(143)를 경유하여 상기 제1연통공(125)을 통하여 상기 제1납작 튜브(141)로 냉매가 이송될 수 있으며, 이러한 경우에는 콘덴서용 열교환기로 적용될 경우의 냉매의 흐름이다.
한편, 전술한 바와 같은 헤더(120)는 상기 열교환 튜브(140)의 일단 또는 타단이 연결되는 내벽(123)과 상기 내벽(123)과 긴밀하게 결합되는 외벽(121)으로 구성되되, 상기 내벽(123) 일면 중앙에는 상기 제1헤더(120a)와 제2헤더(120b)의 내부공간을 분리하는 격벽(124)의 일단이 일체로 고정되며, 상기 격벽(124)의 타단은 상기 외벽(121)의 일면 중앙에 형성된 결합홈(122)에 결합 고정됨이 바람직하다.
물론, 상기 격벽(124)은 상기 내벽(123) 일면 중앙에 용접에 의해 고정될 수도 있으며, 별도의 고정홈(미도시)을 통하여 긴밀하게 밀착 고정될 수도 있다.
더욱이, 상기 헤더(120)는 내부공간이 밀폐되도록 길이방향 양단에 배플(126)이 구비되며, 상기 배플(126)은 상기 헤더(120)의 내벽(123)과 외벽(121) 양단에 형성된 결합공(미부호)을 통하여 결합고정됨이 바람직하다.
상술한 바와 같은 본 발명에 따른 증발기/콘덴서 겸용 열교환기(100)는 상기 열교환 튜브(140)를 통하여 상기 제1출입구(128) 또는 제2출입구(129)로 유입되는 냉매가 외부공기와 열교환하여 상 변화시 액체 상 또는 기체 상으로 변환되는 체적에 대응되어 선택적으로 유로가 확대 또는 축소되어 상 변화하는 냉매가 단번에 팽창 또는 압축되어 원활하게 이송될 수 있으며, 이에 따라 증발기용 열교환기와 콘덴서용 열교환기를 필요에 따라 선택하여 전환 사용하면서도 열교환 효율을 현저히 증대시킬 수 있다.
구체적으로, 증발기용 열교환기로 적용될 경우에는 상기 제1출입구(128)를 통하여 액상의 냉매가 유입되어 상기 제1납작 튜브(141)를 경유하면서 외부공기와 접촉에 의해 점진적으로 기체 상으로 상 변화되며, 상기 제1납작 튜브(141)의 말단에 이르게 되면 점진적으로 변화된 기체 상의 냉매는 체적이 늘어난 상태로 냉매가 상기 제2납작 튜브(143)를 거치면서 2차적으로 외부공기와 접촉에 의해 냉매의 대부분이 기체 상으로 상 변화하여 상기 헤더(120)를 거쳐 상기 제2출입구(129)를 통하여 배출된다.
이때, 기체 상으로 체적이 늘어난 상태의 냉매는 상기 제2납작 튜브(143)가 상기 제1납작 튜브(141)보다 넓은 냉매 유로(147)를 가짐에 따라 일시적으로 단번에 팽창하여 이송될 수 있다.
다시 말하면, 본 발명에 따른 증발기/콘덴서 겸용 열교환기(100)는 증발기용 열교환기로 적용될 경우, 냉매의 상 변화에 따른 체적 변화에 대응되어 상기 좁은 폭의 상대적으로 소수의 냉매 유로(147)를 가지는 상기 제1납작 튜브(141)로부터 넓은 폭의 상기 제1납작 튜브(141)에 비해 다수의 냉매 유로(147)를 갖는 상기 제2납작 튜브(143)를 통하여 냉매가 단번에 팽창하여 단순한 냉매 경로를 통하여 원활하게 이송될 수 있으며, 이에 따라 열교환 효율을 현저히 증대시킬 수 있다.
또한, 콘덴서용 열교환기로 적용될 경우에는 증발기로 적용될 경우와 달리, 제2출입구(129)를 통하여 기체 상의 냉매가 유입되어 상기 제2납작 튜브(143)를 경유하면서 외부공기와 접촉에 의해 점진적으로 액체 상으로 상 변화되며, 점진적으로 변화된 액체 상의 냉매는 체적이 줄어든 상태로 상기 제1납작 튜브(141)를 거치면서 2차적으로 외부공기와 접촉에 의해 냉매의 대부분이 액체 상으로 상 변화하여 상기 헤더(120)를 거쳐 상기 제1출입구(128)를 통하여 배출된다.
이때, 액체 상으로 체적이 줄어든 상태의 냉매는 상기 제1납작 튜브(141)가 상기 제2납작 튜브(143)보다 좁은 냉매 유로(147)를 가짐에 따라 상 변화하는 냉매가 일시적으로 단번에 압축되어 이송될 수 있다.
다시 말하면, 본 발명에 따른 증발기/콘덴서 겸용 열교환기(100)는 콘덴서용 열교환기로 적용될 경우, 냉매의 상 변화에 따른 체적 변화에 대응되어 상기 제1납작 튜브(141)에 비해 넓은 폭을 가지는 한편 다수의 냉매 유로(147)를 갖는 상기 제2납작 튜브(143)로부터 좁은 폭을 가지고 상기 제2납작 튜브(143)와 비교하여 소수의 냉매 유로(147)를 가지는 상기 제1납작 튜브(141)를 통하여 냉매가 단번에 압축되어 단순한 냉매 경로를 통하여 원활하게 이송될 수 있으며, 이에 따라 열교환 효율을 현저히 증대시킬 수 있다.
전술한 바와 같이, 본 발명에 따른 증발기/콘덴서 겸용 열교환기(100)는 상기 열교환 튜브(140)가 제1납작 튜브(141) 및 제2납작 튜브(143)가 비대칭으로 일체로 연결 형성됨으로써 냉매의 흐름 경로를 단순화할 수 있는 한편 냉매의 상 변화시 액체 상 또는 기체 상으로 변환되는 체적에 대응되어 선택적으로 유로가 확대 또는 축소되어 단번에 팽창 또는 압축됨에 따라 냉매의 이송이 원활하게 이루어질 수 있으며, 이에 따라 증발기용 열교환기와 콘덴서용 열교환기를 필요에 따라 선택하여 전환 사용하면서도 열교환 효율을 현저히 증대시킬 수 있다.
더욱이, 상대적으로 좁은 폭의 제1납작 튜브(141)와 상대적으로 넓은 폭의 제2납작 튜브(143)가 폭 방향으로 연결되어 비대칭으로 일체로 형성되는 열교환 튜브(140)가 구비됨으로써 증발기/콘덴서 겸용 열교환기(100)의 부품 수를 줄일 수 있는 한편, 종래의 헤더 내측에 배플의 결합, 용접이 요구되던 것과 달리 증발기/콘덴서 겸용 열교환기의 가공공정이 간략화될 수 있다.
아울러, 상대적으로 좁은 폭의 제1납작 튜브(141)와 상대적으로 넓은 폭의 제2납작 튜브(143)가 폭 방향으로 연결되어 비대칭으로 일체로 형성되는 열교환 튜브(140)가 구비되어 증발기/콘덴서 겸용 열교환기의 가공공정을 간략화됨으로써 증발기/콘덴서 겸용 열교환기의 제작이 용이하게 이루어질 수 있다.
도 8은 본 발명에 따른 증발기/콘덴서 겸용 열교환기의 다른 실시예를 나타낸 종단면 구성도이다.
도 8을 참조하면, 본 발명에 따른 증발기/콘덴서 겸용 열교환기(100')는 도 3 내지 7을 참조하여 설명한 증발기/콘덴서 겸용 열교환기(100)와 냉매의 흐름 경로를 적어도 하나 이상의 부가 납작 튜브(145)를 더 포함하며, 상기 부가 납작 튜브(145)와 대응되는 부가 헤더(120c)가 더 구비되는 것으로, 이하에서는 차이가 있는 부분에 대하여서만 설명하기로 한다.
본 발명에 따른 증발기/콘덴서 겸용 열교환기(100')에서 열교환 튜브(140')는 제2납작 튜브(143) 일측에 상기 제2납작 튜브(143)보다 넓은 폭을 가지는 부가 납작 튜브(145)가 연결되어 일체로 형성됨이 바람직하다.
이와 같은 열교환 튜브(140')는 일정거리를 두고 배치되는 한 쌍의 헤더(120')에 각각 양단이 접속되며, 이때 상기 한 쌍의 헤더(120')는 일측 및 타측에 일정거리를 두고 배치되는 일측 헤더(120') 및 타측 헤더(120')로 구분된다.
여기서, 상기 일측 헤더(120') 및 타측 헤더(120')는 동일부호를 사용하였으며, 헤더가 일정거리를 두고 양측에 배치됨에 따라 일측 및 타측에 배치된 헤더를 구분하기 위하여, 이하에서는 일측 헤더(120') 및 타측 헤더(120')로 구분하여 설명하기로 한다.
상기 일측 헤더(120') 및 타측 헤더(120')는 각각 상기 부가 납작 튜브(145)와 대응되는 폭을 가지는 부가 헤더(120c)가 제2헤더(120b) 일측에 병렬로 연결된다.
또한, 상기 일측 헤더(120') 및 타측 헤더(120')는 상기 부가 헤더(120c)와 제2헤더(120b) 사이에 내부공간을 분리하는 격벽(124')이 형성되며, 제1출입구(128)가 구비되는 상기 일측 헤더(120')의 제2헤더(120b)와 내부공간이 분리되는 격벽(124')에는 내부공간을 상호 연통시키는 제2연통공(125')이 형성된다.
그리고 상기 일측 헤더(120')와 일정거리 이격 구비되는 타측 헤더(120')는 제2헤더(120b)와 부가 헤더(120c)의 내부공간을 분리하는 격벽(124')이 구비되는 한편, 상기 격벽(124')은 상기 제2연통공(125')이 없는 격벽(124')으로 구비되어 상기 제2헤더(120b)와 부가 헤더(120c)의 내부공간을 분리시킨다.
이때, 상기 타측 헤더(120')의 부가 헤더(120c) 외측면에는 제2출입구(129')가 구비된다.
상술한 바와 같은 구성으로 이루어진 증발기/콘덴서 겸용 열교환기(100')에서 증발기용 열교환기로 적용될 경우를 기준으로 냉매의 흐름을 살펴보면, 다음과 같다.
먼저, 일측 헤더(120')의 외측면에 구비된 제1출입구(128)를 통하여 액체 상의 냉매가 유입되어 상기 헤더(120') 내부공간을 거쳐 제1납작 튜브(141)를 경유하여 상기 일측 헤더(120')와 일정거리 이격된 타측 헤더(120')로 유입된다.
이때, 액체 상의 냉매는 외부공기와 열교환되어 기체 상으로 변환되며, 이와 같이 변환된 기체 상의 냉매는 상기 타측 헤더(120')의 제1헤더(120a)와 제2헤더(120b)를 분리하는 격벽(124)에 형성된 제1연통공(125)을 통하여 상기 제2헤더(120b) 내부공간을 거쳐 제2납작 튜브(143)를 지난다.
이후, 상기 제2납작 튜브(143)를 지나는 냉매는 상기 제2납작 튜브(143)로부터 상기 일측 헤더(120')의 제2헤더(120b)의 내부공간을 거쳐 상기 제2헤더(120b)와 부가 헤더(120c) 사이에 구비된 격벽(124')의 제2연통공(125')을 통하여 상기 부가 헤더(120c) 내부공간으로 유입된다.
상기 부가 헤더(120c) 내부공간으로 유입된 냉매는 부가 납작 튜브(145)를 경유하여 상기 타측 헤더(120')의 부가 헤더(120c)로 이송된 후, 상기 타측 헤더(120')의 부가 헤더(120c) 외측면에 구비된 제2출입구(129')를 통하여 외부로 배출된다.
본 발명에 따른 증발기/콘덴서 겸용 열교환기(100')는 전술한 바와 같은 흐름으로 냉매가 이송되며, 이러한 냉매의 흐름에 따라 증발기용 열교환기로 적용되어 사용할 수 있다.
물론, 콘덴서용 열교환기로 적용시켜 사용할 경우에는 앞서 설명한 증발기용 열교환기로 적용시 냉매의 흐름 방향과 반대로 적용하여 사용할 수 있는 것으로, 이에 대한 상세한 설명은 생략하기로 한다.
전술한 바와 같은 본 발명에 따른 증발기/콘덴서 겸용 열교환기(100')는 제2납작 튜브(143) 일측에 폭 방향으로 적어도 하나 이상의 부가 납작 튜브(145)를 일체로 연결되는 열교환 튜브(140')가 구비됨으로써 냉매의 팽창 또는 압축 이송에 대한 흐름 사이클을 다수 번 반복하여 열교환 효율을 더욱 향상시킬 수 있다.
이상에서 본 발명의 구체적인 실시예를 상세히 설명하였으나, 본 발명은 이에 한정되는 것은 아니며, 본 발명은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형의 실시가 가능하며, 이러한 변형은 본 발명의 범위에 포함된다.

Claims (5)

  1. 마주하는 한 쌍의 헤더 사이에 일정 간격을 두고 다수의 열교환 튜브가 배열 설치되는 한편 열교환 튜브들 사이에는 얇은 두께의 열교환 핀이 일정 간격을 두고 지그재그 형태로 배열 설치되되 일측 헤더의 외측면에는 일정 간격을 두고 냉매가 출입하는 제1출입구 및 제2출입구가 구비되어 냉매가 출입하여 외부 공기와 열교환되는 열교환기에 있어서,
    상기 열교환 튜브는 상기 제1출입구 또는 제2출입구를 통하여 유입되는 냉매가 외부공기와 열교환하여 상 변화시 액체 상 또는 기체 상으로 변환되는 체적에 대응되어 선택적으로 유로가 확대 또는 축소되어 냉매가 단번에 팽창 또는 압축되어 이송될 수 있도록 상대적으로 좁은 폭의 제1납작 튜브와 상대적으로 넓은 폭의 제2납작 튜브가 폭 방향으로 연결되어 비대칭으로 일체로 형성되며,
    상기 헤더는 상기 제1납작 튜브 및 제2납작 튜브와 각각 대응되는 상대적으로 좁은 폭의 제1헤더 및 상대적으로 넓은 제2헤더가 병렬로 연결되고, 상기 제1헤더 및 제2헤더 사이에 내부공간을 분리하는 격벽이 형성되는 한편, 상기 제1출입구는 상기 제1헤더의 외측면에 구비되고 상기 제2출입구는 상기 제2헤더의 외측면에 구비되며, 상기 제1출입구 및 제2출입구가 구비되는 일측 헤더와 대응되는 타측 헤더의 상기 제1헤더 및 제2헤더 사이에 형성되는 격벽은 상기 제1헤더 및 제2헤더의 내부공간을 상호 연통시키는 제1연통공이 형성됨을 특징으로 하는 증발기/콘덴서 겸용 열교환기.
  2. 제1항에 있어서,
    상기 열교환 튜브의 제2납작 튜브는 상기 제1납작 튜브 폭의 1.5~3배의 범위 내에서 택일적으로 넓은 폭을 가지도록 형성됨을 특징으로 하는 증발기/콘덴서 겸용 열교환기.
  3. 제1항에 있어서,
    상기 열교환 튜브는 제2납작튜브 일측에 상기 제2납작 튜브보다 상대적으로 넓은 폭을 가지는 부가 납작 튜브가 연결되는 한편, 상기 부가 납작 튜브는 폭 방향으로 점진적으로 넓은 폭을 가지고 적어도 하나 이상 연결되어 일체로 형성되며,
    상기 헤더는 상기 부가 납작 튜브와 대응되는 폭을 가지는 부가 헤더가 상기 제2헤더 일측에 병렬로 연결됨을 특징으로 하는 증발기/콘덴서 겸용 열교환기.
  4. 제3항에 있어서,
    상기 헤더는 상기 제2헤더와 부가 헤더 사이에 내부공간을 분리하는 격벽이 형성되는 한편, 상기 타측 헤더의 제2헤더와 내부공간이 분리되는 격벽에 내부공간을 상호 연통시키는 제2연통공이 형성되며, 상기 제1출입구는 상기 일측 헤더의 제1헤더 외측면에 구비되고 상기 제2출입구는 상기 타측 헤더의 부가 헤더의 외측면에 구비됨을 특징으로 하는 증발기/콘덴서 겸용 열교환기.
  5. 제1항 또는 제2항에 있어서,
    상기 헤더는 상기 열교환 튜브의 일단 또는 타단이 연결되는 내벽과 상기 내벽과 긴밀하게 결합되는 외벽으로 구성되는 한편, 상기 내벽 일면 중앙에는 상기 제1헤더와 제2헤더의 내부공간을 분리하는 격벽 일단이 일체로 고정되며, 상기 격벽의 타단은 상기 외벽의 일면 중앙에 형성된 결합홈에 결합 고정됨을 특징으로 하는 증발기/콘덴서 겸용 열교환기.
PCT/KR2011/005048 2011-06-07 2011-07-11 증발기/콘덴서 겸용 열교환기 WO2012169688A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0054717 2011-06-07
KR1020110054717A KR20120135800A (ko) 2011-06-07 2011-06-07 증발기/콘덴서 겸용 열교환기

Publications (1)

Publication Number Publication Date
WO2012169688A1 true WO2012169688A1 (ko) 2012-12-13

Family

ID=47296229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005048 WO2012169688A1 (ko) 2011-06-07 2011-07-11 증발기/콘덴서 겸용 열교환기

Country Status (2)

Country Link
KR (1) KR20120135800A (ko)
WO (1) WO2012169688A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105097632A (zh) * 2015-06-23 2015-11-25 京东方科技集团股份有限公司 一种支撑基板的支撑件和支撑装置
CN107144046A (zh) * 2016-03-01 2017-09-08 青岛海尔新能源电器有限公司 太阳能热泵热水器的蒸发器及太阳能热泵热水器
EP3388774A4 (en) * 2015-12-10 2019-07-24 Danfoss Micro Channel Heat Exchanger (Jiaxing) Co., Ltd. COLLECTOR PIPE FOR HEAT EXCHANGER, AND HEAT EXCHANGER
WO2021169532A1 (zh) * 2020-02-27 2021-09-02 浙江盾安人工环境股份有限公司 换热器
EP4050292A1 (en) * 2021-02-24 2022-08-31 Valeo Systemes Thermiques A heat exchanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6946105B2 (ja) * 2017-08-02 2021-10-06 三菱重工サーマルシステムズ株式会社 熱交換器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060075848A (ko) * 2004-12-29 2006-07-04 한라공조주식회사 열교환기
KR20070115094A (ko) * 2006-05-30 2007-12-05 한라공조주식회사 열교환기
KR20080103290A (ko) * 2007-05-23 2008-11-27 한국델파이주식회사 3피스 타입 헤더파이프 어셈블리 및 이의 제작방법과 그를이용한 열교환기
KR20100007014A (ko) * 2008-07-11 2010-01-22 한라공조주식회사 열교환기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060075848A (ko) * 2004-12-29 2006-07-04 한라공조주식회사 열교환기
KR20070115094A (ko) * 2006-05-30 2007-12-05 한라공조주식회사 열교환기
KR20080103290A (ko) * 2007-05-23 2008-11-27 한국델파이주식회사 3피스 타입 헤더파이프 어셈블리 및 이의 제작방법과 그를이용한 열교환기
KR20100007014A (ko) * 2008-07-11 2010-01-22 한라공조주식회사 열교환기

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105097632A (zh) * 2015-06-23 2015-11-25 京东方科技集团股份有限公司 一种支撑基板的支撑件和支撑装置
CN105097632B (zh) * 2015-06-23 2018-07-17 京东方科技集团股份有限公司 一种支撑基板的支撑件和支撑装置
EP3388774A4 (en) * 2015-12-10 2019-07-24 Danfoss Micro Channel Heat Exchanger (Jiaxing) Co., Ltd. COLLECTOR PIPE FOR HEAT EXCHANGER, AND HEAT EXCHANGER
CN107144046A (zh) * 2016-03-01 2017-09-08 青岛海尔新能源电器有限公司 太阳能热泵热水器的蒸发器及太阳能热泵热水器
WO2021169532A1 (zh) * 2020-02-27 2021-09-02 浙江盾安人工环境股份有限公司 换热器
EP4050292A1 (en) * 2021-02-24 2022-08-31 Valeo Systemes Thermiques A heat exchanger

Also Published As

Publication number Publication date
KR20120135800A (ko) 2012-12-17

Similar Documents

Publication Publication Date Title
WO2012169688A1 (ko) 증발기/콘덴서 겸용 열교환기
WO2015009028A1 (en) Heat exchanger
WO2013162222A1 (en) Heat exchanger
US6286590B1 (en) Heat exchanger with flat tubes of two columns
WO2020022738A1 (en) Integrated liquid air cooled condenser and low temperature radiator
WO2017200362A1 (en) Double tube for heat-exchange
WO2012002698A2 (ko) 열교환기
WO2013176392A1 (ko) 증발기
WO2015002451A1 (en) Shell tube heat exchanger and method of manufacturing the same
WO2022255769A1 (ko) 통합 쿨링 모듈
WO2020166885A1 (en) Reverse header design for thermal cycle
WO2018038344A1 (ko) 일체형 라디에이터 및 이의 조립 방법
WO2016148508A1 (ko) 자동차용 열교환기
WO2020004884A1 (ko) 응축기
WO2011105662A1 (ko) 칠러
WO2015046660A1 (ko) 열교환기 및 그 제조방법과 그 제어방법
WO2018139863A1 (ko) 냉장고의 열교환기
WO2020013506A1 (ko) 특히 전기 자동차용 콤팩트 열 교환기 유닛 및 공기 조화 모듈
WO2015105261A1 (ko) 모듈형 열교환기 및 그 열교환기를 이용한 열교환 방법
WO2016200042A1 (ko) 열교환기
WO2019146930A1 (ko) 열교환기
WO2021112524A1 (en) Heat exchanger with integrated drier and plate for a plate heat exchanger
WO2014112814A1 (en) Heat exchanger and method for manufacturing the same
WO2024136093A1 (ko) 열교환기
WO2010131877A2 (ko) 공기조화기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867529

Country of ref document: EP

Kind code of ref document: A1