WO2015046316A1 - 重質炭化水素油の水素化処理触媒、及び重質炭化水素油の水素化処理方法 - Google Patents

重質炭化水素油の水素化処理触媒、及び重質炭化水素油の水素化処理方法 Download PDF

Info

Publication number
WO2015046316A1
WO2015046316A1 PCT/JP2014/075402 JP2014075402W WO2015046316A1 WO 2015046316 A1 WO2015046316 A1 WO 2015046316A1 JP 2014075402 W JP2014075402 W JP 2014075402W WO 2015046316 A1 WO2015046316 A1 WO 2015046316A1
Authority
WO
WIPO (PCT)
Prior art keywords
heavy hydrocarbon
hydrocarbon oil
oil
catalyst
zinc
Prior art date
Application number
PCT/JP2014/075402
Other languages
English (en)
French (fr)
Inventor
貴之 大崎
中嶋 伸昌
Original Assignee
コスモ石油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コスモ石油株式会社 filed Critical コスモ石油株式会社
Priority to CN201480052600.0A priority Critical patent/CN105579132B/zh
Priority to US15/022,463 priority patent/US10137436B2/en
Priority to KR1020167010379A priority patent/KR102229870B1/ko
Priority to EP14847966.0A priority patent/EP3050622B1/en
Priority to JP2015539306A priority patent/JP6476525B2/ja
Publication of WO2015046316A1 publication Critical patent/WO2015046316A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8873Zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes

Definitions

  • the present invention relates to a hydrotreating catalyst for heavy hydrocarbon oil and a method for hydrotreating heavy hydrocarbon oil using the hydrotreating catalyst.
  • a hydrotreating catalyst suitable for improving the storage stability of hydrotreated oil obtained by hydrotreating heavy hydrocarbon oil containing heavy metals such as sulfur, asphaltene, nickel and vanadium.
  • a hydrotreating method suitable for demetalizing heavy hydrocarbon oil in the upstream part of the catalyst bed using the hydrotreating catalyst.
  • a hydrotreating catalyst in which an active metal is supported on an inorganic oxide support containing alumina and zinc, thereby improving the average pore diameter of the catalyst without reducing the strength of the catalyst ( For example, see Patent Document 1.)
  • hydrotreated heavy hydrocarbon oil is heated and stored in order to maintain fluidity in consideration of workability at the time of shipment until it is shipped. Moreover, after being shipped as a product, it may be stored for a long time until it is used. For this reason, depending on the thermal history and the atmosphere at the time of storage, sediment may occur during storage, which may cause clogging of the filter, damage to the pump, and the like.
  • the present invention uses a hydrotreating catalyst capable of improving the storage stability of a hydrotreated heavy hydrocarbon oil without reducing desulfurization activity or demetalization activity, and the hydrotreating catalyst. It is an object of the present invention to provide a method for hydrotreating heavy hydrocarbon oil.
  • the inventors of the present invention as a result of hydrogenation treatment of heavy hydrocarbon oil, a hydrogenation active component on a zinc-containing alumina support containing a specific amount of zinc particles of a specific size.
  • the present inventors have found that a hydrotreated oil with a reduced amount of latent sediment can be obtained by using a hydrotreating catalyst that supports bismuth.
  • the present invention relates to the following heavy hydrocarbon oil hydrotreating catalyst and heavy hydrocarbon oil hydrotreating method.
  • At least one Group 6 metal of the periodic table is supported on a zinc-containing alumina support containing 1 to 15% by mass of zinc oxide particles having an average particle diameter of 2 to 12 ⁇ m based on the support.
  • the hydrotreating catalyst according to the present invention uses a zinc-containing alumina support containing a specific amount of zinc and has a large average pore diameter and specific surface area, and therefore has excellent desulfurization activity and demetalization activity.
  • the zinc-containing alumina support carries zinc oxide particles of a specific size, a heavy hydrocarbon oil that is difficult to generate sediment is obtained by hydrotreating using the hydrotreating catalyst. be able to.
  • zinc-containing alumina containing 1 to 15% by mass, preferably 2 to 12% by mass of zinc in terms of oxide based on the carrier is used as the carrier.
  • the strength of the carrier can be increased by adding zinc to the alumina carrier.
  • support basis, in terms of oxide means that the mass of all elements contained in the support is calculated as each oxide, and the ratio of the oxide mass to the total mass Means.
  • the oxide mass of zinc is determined in terms of zinc oxide.
  • the zinc-containing alumina support in the hydrotreating catalyst according to the present invention contains zinc oxide particles having an average particle size of 2 to 12 ⁇ m, preferably 4 to 10 ⁇ m, more preferably 5 to 9 ⁇ m. If the average particle diameter of the zinc oxide particles contained in the support is 12 ⁇ m or less, sufficient interaction with alumina is obtained, and a heavy hydrocarbon oil after hydrotreatment having sufficient storage stability can be obtained. On the other hand, when the average particle diameter of the zinc oxide particles contained in the carrier is 2 ⁇ m or more, zinc and alumina are easily mixed during the production of the phosphorus / zinc-containing alumina carrier.
  • the particle size of the zinc oxide particle was measured by the laser diffraction scattering method based on JISR1629, and the volume average of particle size distribution was made into the average particle diameter.
  • the zinc oxide particles to be contained in the zinc-containing alumina support preferably have a purity of 99% or more.
  • Group 6 metal In the hydrotreating catalyst according to the present invention, at least one Group 6 metal of the periodic table (hereinafter sometimes referred to as “Group 6 metal”) is supported on the zinc-containing alumina support.
  • the Group 6 metal include Mo (molybdenum) and W (tungsten). Mo is particularly preferable.
  • the Group 6 metal may be present in the form of a simple metal or in the form of a metal compound such as a metal sulfide. Group 6 metals may be used alone or in combination of two or more.
  • the hydrotreating catalyst according to the present invention may carry another hydrogenation active metal as the second metal component.
  • Other hydrogenation active metals as the second metal component include Group 8-10 metals of the periodic table such as Ni (nickel), Co (cobalt), Fe (iron) (hereinafter referred to as “Group 8-10 metals”). Is preferred).
  • the hydrogenation active metal supported as the second metal component may be used alone or in combination of two or more.
  • Specific combinations of metal components supported by the zinc-containing alumina support in the hydrotreating catalyst according to the present invention include various combinations such as Mo—Ni, Mo—Co, and W—Ni. The combination of is preferable.
  • “Group 6 metal of the periodic table” means a Group 6 metal in the long-period type periodic table
  • “Group 8-10 metal of the periodic table” means in the long-period type periodic table. Means a Group 8-10 metal.
  • the amount of the Group 6 metal supported on the zinc-containing alumina support is not particularly limited. However, when it is not used in combination with the second metal component (hereinafter referred to as “single use”), 2 to 15 mass in terms of support and oxide. %, Preferably 4 to 12% by mass. When used in combination with the second metal component (hereinafter referred to as combined use), 2 to 15% by mass, preferably 5 to 10% by mass in terms of oxide, based on the carrier. It is.
  • the amount of the other hydrogenation active metal supported as the second metal component may be appropriately selected. However, in the amount of the Group 6 metal supported, 0.001 to 5% by mass in terms of catalyst and oxide, preferably Is 1 to 4% by mass. Increasing the supported amount of the second metal component increases the hydrotreating activity, particularly the demetalization activity, but the catalyst life tends to be shortened. Tends to be difficult to obtain.
  • the average pore diameter of the hydrotreating catalyst according to the present invention is 18 to 35 nm, preferably 18 to 30 nm, more preferably 20 to 30 nm. If the average pore diameter is 18 nm or more, sufficient metal removal activity is obtained, and if it is 35 nm or less, sufficient hydrogenation activity is obtained.
  • the specific surface area of the hydrotreating catalyst according to the present invention is 70 to 150 m 2 / g, preferably 90 to 140 m 2 / g.
  • the specific surface area is 70 m 2 / g or more, sufficient hydrotreating activity is obtained, and when it is 150 m 2 / g or less, a preferable average pore diameter is obtained, and thus sufficient metal removal activity is obtained.
  • a method for preparing the hydrotreating catalyst according to the present invention a method comprising the following steps may be mentioned. First, an aqueous solution containing an alumina raw material is gelled, and the resulting gel is heated and aged, and then an alumina gel is obtained by performing an acidic aqueous solution treatment, washing and removing impurities, and adjusting water content. Next, zinc oxide particles are mixed with the alumina gel. Next, a zinc-containing alumina carrier is prepared by treating this mixture by a usual treatment method such as molding, drying, and firing. A hydrotreating catalyst is prepared by supporting a Group 6 metal on this zinc-containing alumina support and further supporting another active metal as required.
  • alumina raw material any material containing aluminum can be used, but aluminum salts such as aluminum sulfate and aluminum nitrate are preferred. These alumina raw materials are usually provided as an aqueous solution, and the concentration thereof is not particularly limited, but is preferably 2 to 50% by mass, more preferably 5 to 40% by mass.
  • an aqueous solution containing an alumina raw material is neutralized with a base such as ammonia, a neutralizing agent such as aluminate or sodium aluminate, or a precipitant such as hexamethylenetetramine or calcium carbonate.
  • a base such as ammonia
  • a neutralizing agent such as aluminate or sodium aluminate
  • a precipitant such as hexamethylenetetramine or calcium carbonate.
  • the amount of the neutralizing agent used is not particularly limited, but is preferably 30 to 70% by mass with respect to the total amount of the aqueous solution containing the alumina raw material and the neutralizing agent.
  • the amount of the precipitant used is not particularly limited, but is preferably 30 to 70% by mass with respect to the total amount of the aqueous solution containing the alumina raw material and the precipitant.
  • a hydrotreating catalyst having a desired average pore diameter pH, temperature, etc. when gelling with a neutralizing agent or a precipitating agent may be adjusted.
  • the average pore diameter of the hydrotreating catalyst is adjusted to a desired value within the range of the present invention by appropriately adjusting the pH in the range of 4 to 8 and the temperature in the range of 30 to 90 ° C. Can be.
  • a catalyst having a large average pore diameter can be obtained by increasing the pH to the alkali side during gel formation.
  • the average pore diameter can also be adjusted by heat aging of the alumina gel.
  • the aging time is preferably 5 hours or more. The longer the time, the larger the average pore diameter and the sharper the pore distribution.
  • the aging temperature is preferably 80 to 95 ° C. The higher the temperature, the shorter the aging time can be, but if the aging temperature is too high, the alumina gel may be altered.
  • the pH during aging is preferably 9-12. When the pH is 9 or more, ripening proceeds rapidly, and when the pH is 12 or less, there is little risk of alteration of alumina.
  • the alumina gel after heat aging is treated with an acidic aqueous solution as described above.
  • Nitric acid, hydrochloric acid, sulfuric acid and the like can be used as the acidic aqueous solution, and nitric acid is preferable.
  • the acidic aqueous solution has a pH of 1 to 5.5, preferably a pH of 2 to 4. If the pH is 1 or more, the crystal structure of alumina is not easily destroyed even by an acid, and if the pH is 5.5 or less, it does not take time to stop ripening.
  • a preferred embodiment of the acidic aqueous solution treatment is an embodiment in which a nitric acid aqueous solution is added to alumina gel, adjusted to pH 2 to 3, and sufficiently stirred at a temperature of 15 to 60 ° C. to complete ripening.
  • aqueous alkaline solution is added to the alumina gel that has been treated with an acidic aqueous solution to adjust the pH to 9 to 13, preferably 10 to 12.
  • an aqueous ammonia solution is preferable.
  • the pH-adjusted alumina gel is filtered or dried to adjust the water content.
  • the moisture adjustment is performed by adding water as well as filtration or drying.
  • the moisture adjustment is performed to facilitate the molding of the catalyst.
  • the water content after moisture adjustment is preferably 60 to 95% by mass.
  • the fine surface structure of alumina can be controlled by adjusting the temperature and method during drying for moisture adjustment.
  • the drying temperature for adjusting the moisture content of the alumina gel is preferably less than 100 ° C., and in particular, a method of preparing by drying by sufficient filtration without applying heat as much as possible is preferable. . Thereby, the metal removal performance can be increased.
  • the zinc oxide particles are mixed with the moisture-adjusted alumina gel so as to be 1 to 15% by mass in terms of zinc oxide based on the finished carrier. Thereafter, a mixture of the obtained alumina gel and zinc oxide particles is molded. Molding can be performed by various molding methods such as extrusion molding and pressure molding.
  • Molded zinc-containing alumina carrier is dried and fired.
  • the drying temperature at this time is preferably 15 to 150 ° C., particularly preferably 100 to 120 ° C., and the drying time is preferably 2 hours or more, particularly preferably 3 to 11 hours.
  • the firing temperature is preferably 600 ° C. or more, particularly preferably 700 to 900 ° C., and the firing time is preferably 30 minutes or more, particularly preferably 1 to 4 hours.
  • the method for supporting the group 6 metal or other hydrogenation active metal as the second metal component on the zinc-containing alumina support prepared as described above may be a known method such as an impregnation method or a coprecipitation method.
  • the zinc-containing alumina support contains a hydrogenation-active metal component as in the method of precipitating the hydrogenation-active metal component in a state where the zinc-containing alumina support is immersed in a solution containing these hydrogenation-active metal components. It is possible to employ a method in which a hydrogenation active metal is supported on a zinc-containing alumina support by contacting with the solution to be prepared. When a plurality of hydrogenation active metals are supported, the plurality of hydrogenation active metals may be supported at a time, or may be supported one after another regardless of the order.
  • the hydrotreating catalyst according to the present invention can be obtained by drying and calcining the zinc-containing alumina support carrying the hydrogenation-active metal.
  • the drying temperature and drying time at this time are preferably 15 to 150 ° C., particularly preferably 100 to 120 ° C., and the drying time is 2 like the drying temperature and drying time of the zinc-containing alumina carrier. More than the time is preferable, and 3 to 12 hours is particularly preferable.
  • the firing temperature is preferably 350 to 800 ° C., particularly preferably 400 to 700 ° C., and the firing time is preferably 1 hour or more, particularly preferably 3 to 12 hours.
  • the catalyst shape of the hydrotreating catalyst according to the present invention is not particularly limited, and can be various shapes used for ordinary catalyst shapes.
  • the shape of the hydrotreating catalyst according to the present invention is preferably a three-leaf type or a four-leaf type.
  • the catalyst diameter may be about 1.1 to 2.5 mm.
  • the hydrotreating catalyst according to the present invention may be used by mixing with a known catalyst or a known inorganic oxide support.
  • the hydrotreating catalyst according to the present invention is preferably presulfided before being used for hydrotreating heavy hydrocarbon oil.
  • the preliminary sulfidation method a method in which a hydrocarbon oil or gas phase sulfide containing 1% by mass or more of sulfur is passed over the catalyst under high temperature and high pressure is used. By performing this preliminary sulfidation, most of the hydrogenation active metal component becomes a sulfide. In addition, a part or all of the hydrogenation active metal component may become a sulfide also depending on the sulfur content of the heavy hydrocarbon oil during the hydrotreatment.
  • the hydrotreating catalyst according to the present invention described in detail above is a catalyst suitable for effectively removing heavy metals from heavy hydrocarbon oils containing heavy metals such as sulfur, asphaltene, nickel and vanadium. It is. That is, the hydrotreating catalyst according to the present invention is a catalyst suitable for producing a middle distillate or a low sulfur heavy oil as a product as it is from a heavy hydrocarbon oil. Therefore, the hydrotreating catalyst according to the present invention can be suitably used particularly as a demetallation catalyst, for example, in the front stage of the catalyst bed when heavy hydrocarbon oil is hydrotreated in multiple stages.
  • the heavy hydrocarbon oil hydrotreating method of the present invention is carried out using the hydrotreating catalyst according to the present invention.
  • a method for producing middle distillate or a low-sulfur heavy oil as a product from heavy hydrocarbon oil, or a demetallizing method for the front part of the catalyst bed in a multistage hydroprocessing method for heavy hydrocarbon oil is preferred.
  • Heavy hydrocarbon oils used in the hydrotreating method according to the present invention include atmospheric distillation residue oil obtained by distillation from crude oil, vacuum distillation residue oil, bisbreaking oil that is pyrolysis oil, other than petroleum Examples thereof include tar sand oil, shale oil, and the like, which are heavy hydrocarbon oils, and mixtures thereof.
  • Preferred are atmospheric distillation residue oil, vacuum distillation residue oil, and mixed oil thereof.
  • the heavy hydrocarbon oil is subjected to hydrotreatment process according to the present invention, density of 0.91 ⁇ 1.10g / cm 3, in particular 0.95 ⁇ 1.05g / cm 3, sulfur content 2 to 6% by mass, particularly 2 to 5% by mass, metal content of nickel, vanadium, etc. is 1 to 1500 ppm, particularly 20 to 400 ppm, and asphaltene content is 2 to 15% by mass, especially 3 to 10% by mass.
  • Some heavy hydrocarbon oils are preferred.
  • the hydrogenation treatment of heavy hydrocarbon oil in the present invention refers to treatment by contact of heavy hydrocarbon oil and hydrogen, hydrorefining with relatively low severity of reaction conditions, and slightly high degree of severity. This includes hydrorefining, hydroisomerization, hydrodealkylation, demetalization, and other heavy hydrocarbon oil reactions in the presence of hydrogen, especially for low-sulfur heavy oils such as middle distillates.
  • a demetallation reaction at the front stage of the catalyst bed in the production reaction and the heavy hydrocarbon oil multistage hydrotreating method is preferred. For example, it includes residual oil from atmospheric distillation, hydrodesulfurization, hydrodenitrogenation, hydrocracking of distillate and residual oil from vacuum distillation, and hydrorefining of wax and lubricating oil fractions.
  • the hydrotreating conditions in the hydrotreating method according to the present invention are a temperature of 300 to 420 ° C., preferably 350 to 410 ° C., and a pressure (hydrogen partial pressure) of 3 to 20 MPa, preferably 8 to 19 MPa.
  • LHSV liquid hourly space velocity
  • the catalytic activity particularly the demetalization activity is sufficiently exhibited. If temperature is 420 degrees C or less, since thermal decomposition of heavy hydrocarbon oil does not advance too much, catalyst deterioration is suppressed. If the hydrogen partial pressure is 3 MPa or more, the hydrogenation reaction is likely to proceed, and if it is 20 MPa or less, the demetalization activity is moderately improved and the catalyst life is prolonged. When the hydrogen / oil ratio is 400 m 3 / m 3 or more, the hydrogenation activity is improved, and when it is 3000 m 3 / m 3 or less, the economy is excellent. Liquid hourly space velocity is excellent in economical efficiency in 0.1 h -1 or more, catalytic activity is improved if 3h -1 or less.
  • the hydrotreating catalyst according to the present invention is used as a fixed bed, moving bed or fluidized bed in an appropriate reactor and treated in the reactor. Introduce heavy heavy hydrocarbon oil.
  • the hydrotreating catalyst according to the present invention is maintained as a fixed bed so that heavy hydrocarbon oil passes downward through the fixed bed.
  • the hydrotreating catalyst according to the present invention may be used in a single reactor or may be used in several consecutive reactors, and it is particularly preferable to use a multistage reactor.
  • the hydrotreating catalyst according to the present invention is suitable for pretreatment demetallization of heavy hydrocarbon oil as described above.
  • Table 1 shows the average particle diameter of the zinc oxide particles used in Examples and Comparative Examples.
  • the particle size of the zinc oxide particles was measured by a laser diffraction scattering method according to JIS R1629, and the volume average particle size distribution was defined as the average particle size.
  • Example 1 Preparation of hydrotreating catalyst A After heating 10 kg of 5 mass% aqueous sodium aluminate solution to 60 ° C, 2.8 kg of 25 mass% aqueous aluminum sulfate solution was slowly added, and finally the pH of the solution was adjusted. It was set to 7. At this time, the temperature of the solution was kept at 60 ° C. The alumina slurry produced
  • the aqueous dispersion of the gel was heated to 90 ° C. and aged for 40 hours while stirring and refluxing. Thereafter, a 5N aqueous nitric acid solution was added to the aqueous dispersion of the gel to adjust the pH to 2, followed by stirring for 15 minutes. Furthermore, 10 mass% ammonia aqueous solution was added and it adjusted to pH11. The obtained gel aqueous dispersion was filtered, and then water was adjusted at 25 ° C. so that the viscosity was easy to mold. The water content of the alumina gel after moisture adjustment was 70% by mass.
  • zinc oxide 1 as zinc oxide particles was added to the alumina gel so as to be 7.8% by mass based on the carrier, and mixed well with a kneader until sufficiently uniform.
  • the obtained zinc-containing alumina gel was extrusion molded, dried at 110 ° C. for 10 hours, and calcined at 800 ° C. for 2 hours.
  • 100 g of the calcined zinc-containing alumina support was impregnated with a solution prepared by dissolving ammonium paramolybdate and nickel nitrate in 100 g of water so that the amount of Mo was 9% by mass and that of Ni was 2% by mass in terms of oxides.
  • the impregnated zinc-containing alumina support was heated and dried at 110 ° C. for 4 hours and calcined at 550 ° C. for 3 hours to prepare a hydrotreating catalyst A.
  • the zinc content of the hydrotreating catalyst A was 7.8% by mass in terms of support and oxide, the hydrogenation active metal content was 9% by mass and Mo was 2% by mass in terms of catalyst and oxide. It was.
  • the shape of the hydrotreating catalyst A was a four-leaf type, and the diameter was 1.3 mm.
  • Example 2 Preparation of hydrotreating catalyst B A hydrotreating catalyst B was prepared in the same manner as in Example 1 except that zinc oxide 1 was replaced with zinc oxide 2.
  • hydrotreating catalyst b was prepared in the same manner as in Example 1 except that zinc oxide 1 was replaced with zinc oxide 4.
  • the average pore diameter is an average value of D calculated as a function of P.
  • the hydrotreating catalyst was charged into a high-pressure flow reactor to form a fixed bed catalyst layer, and pretreated under the following conditions.
  • a mixed fluid of the raw material oil heated to the reaction temperature and the hydrogen-containing gas is introduced from the upper part of the reaction apparatus, and a desulfurization reaction and a hydrogenation reaction that is a decomposition reaction proceed under the following conditions to generate A mixed fluid of oil and gas was allowed to flow out from the lower part of the reactor, and the produced oil was separated by a gas-liquid separator.
  • the measurement method is JIS K 2249-1 “Crude oil and petroleum products-Density test method and density / mass / capacity conversion table (vibration density test method)”, and the sulfur content is JIS K 2541-4 “Crude oil and Petroleum products-Sulfur content test method Part 4: Radiation-type excitation method ", latent sediment content conformed to JPI-5S-60-2000. Specifically, the potential sediment content was analyzed by the following method.
  • the contents of nickel and vanadium were in accordance with the Japan Petroleum Institute Standard JPI-5S-62-2000 “Petroleum Products Metal Analysis Test Method (ICP Luminescence Analysis Method)”.
  • the asphaltene content was filtered through a cellulose filter after toluene was added to the sample, and the toluene-insoluble content was recovered. This insoluble content was defined as asphaltene content.
  • Toluene was added to the sample, and the resin was filtered through a cellulose filter, and the toluene-soluble component as a filtrate was concentrated.
  • a heptane solution obtained by adding heptane to this concentrate was passed through an activated alumina packed column and separated into saturated, aromatic and resin components, and the resin component was recovered.
  • Catalyst pretreatment conditions The preliminary sulfidation of the catalyst was carried out with a vacuum gas oil at a hydrogen partial pressure of 10.3 MPa and 370 ° C. for 12 hours. Then, it switched to the raw material oil for activity evaluation.
  • Reaction conditions Reaction temperature: 385 ° C. Pressure (hydrogen partial pressure); 10.3 MPa, Liquid space velocity; 0.4 h ⁇ 1 , Hydrogen / oil ratio: 1690 m 3 / m 3 .
  • Raw oil properties Oil type: Vacuum distillation residue of Middle Eastern crude oil, Density (15 ° C.); 1.037 g / cm 3 ; Sulfur component; 4.27% by mass; Vanadium; 91 ppm, Nickel; 54 ppm, Asphaltene content: 7.8% by mass.
  • the catalytic activity was analyzed by the following method.
  • the reactor was operated at 385 ° C., and the product oil 20 days after the start of operation was collected and its properties (desulfurization rate (HDS) (%), desulfurization reaction rate constant (Ks), desulfurization specific activity (%), demetalization rate, (HDM)) was analyzed.
  • the results are shown in Table 3.
  • Desulfurization reaction rate constant (Ks) The desulfurization reaction rate constant (Ks) is a constant in the reaction rate equation for obtaining the second order reaction order with respect to the reduction amount of the sulfur content (Sp) of the product oil. It calculated by the following formula
  • Sf sulfur content (mass%) in the raw material oil
  • Sp Sulfur content (% by mass) in the product oil
  • LHSV Liquid space velocity (h -1 ).
  • the amount of resin is larger when the catalyst A or the catalyst B is used than when the catalyst a or the catalyst b is used. There were obviously few. That is, the product oil obtained by using the catalyst A or the catalyst B was less likely to generate sediment than the oil obtained by using the catalyst a or the catalyst b, and was excellent in storage stability. From these results, heavy hydrocarbons hydrotreated without reducing the desulfurization activity of the hydrotreating catalyst by using a hydrotreating catalyst using a support containing zinc oxide particles having specific physical properties. It is clear that the content of latent sediment in the oil can be lowered and the storage stability can be improved.
  • hydrotreating catalyst of the present invention According to the hydrotreating catalyst of the present invention and the heavy hydrocarbon oil using the hydrotreating catalyst, storage of the hydrotreated heavy hydrocarbon oil without reducing the desulfurization activity or the demetallization activity. Stability can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Nanotechnology (AREA)
  • Catalysts (AREA)

Abstract

 脱硫活性や脱金属活性を低下させることなく、水素化処理された重質炭化水素油の貯蔵安定性を向上させることができる水素化処理触媒、及び当該水素化処理触媒を用いて重質炭化水素油を水素化処理する方法を提供することを目的とし、平均粒子径が2~12μmの酸化亜鉛粒子を担体基準で1~15質量%含有する亜鉛含有アルミナ担体に、少なくとも1種の周期表第6族金属が担持されており、平均細孔径が18~35nmであり、比表面積が70~150m2/gであることを特徴とする重質炭化水素油の水素化処理触媒、並びに、前記水素化処理触媒の存在下、温度300~420℃、圧力3~20MPa、水素/油比400~3000m3/m3、及び液空間速度0.1~3h-1の条件で、重質炭化水素油の接触反応を行うことを特徴とする、重質炭化水素油の水素化処理方法を提供する。

Description

重質炭化水素油の水素化処理触媒、及び重質炭化水素油の水素化処理方法
 本発明は、重質炭化水素油の水素化処理触媒、及び当該水素化処理触媒を用いて重質炭化水素油を水素化処理する方法に関する。特に、硫黄分、アスファルテン分、ニッケルやバナジウム等の重金属分を含有する重質炭化水素油を水素化処理して得られる水素化処理油の貯蔵安定性を向上させるために適した水素化処理触媒と、当該水素化処理触媒を用い、重質炭化水素油を触媒床前段部分において脱金属処理するために適した水素化処理方法とに関する。
 本願は、2013年9月27日に、日本に出願された特願2013-201799号に基づき優先権を主張し、その内容をここに援用する。
 近年、酸性雨等の環境問題に対応するため、低硫黄重油の必要性はますます高まっている。一方、世界的な原油の重質化に伴い、硫黄分、アスファルテン分、重金属分等の含有量が多い原油を処理する傾向が大きくなり、常圧蒸留残渣油や減圧蒸留残渣油等の重質炭化水素油を水素化処理して低硫黄重油を得る条件は厳しくなっている。また、中間留分不足の需要構造が長期化することも背景にある。
 以上のようなことから、重質炭化水素油を水素化処理して低硫黄重油の増産を図ることを目的として、水素化処理触媒の高活性化、高寿命化に関する研究が盛んに行われている。例えば、アルミナおよび亜鉛を含有する無機酸化物担体に、活性金属を担持させることにより、触媒の強度を低下させることなく、触媒の平均細孔径を向上させた水素化処理触媒が開示されている(例えば、特許文献1参照。)。
 その一方で、重質炭化水素油については貯蔵安定性の向上が望まれている。水素化処理された重質炭化水素油は、出荷されるまでの間、出荷時の作業性を考慮して流動性を保持させるために加熱貯蔵されている。また、製品として出荷された後、使用されるまで、長期間貯蔵されることがある。このため、熱履歴や貯蔵時の雰囲気下によっては、貯蔵している間にセジメントが発生し、フィルターの閉塞、ポンプの破損などの原因となることがある。
 セジメントが発生する要因はいくつか挙げられるが、その一つとして、重質炭化水素油に含まれるアスファルテン分の安定性が挙げられる。アスファルテン分は、レジン分に囲まれることで、セジメント化することなく重質炭化水素油中に分散されている。しかし、水素化処理によりレジン分が脱離しアスファルテン分とレジン分とのバランスが崩れると、アスファルテン分はセジメントとして現れやすくなる。
特開2001-314770号公報
 本発明は、脱硫活性や脱金属活性を低下させることなく、水素化処理された重質炭化水素油の貯蔵安定性を向上させることができる水素化処理触媒、及び当該水素化処理触媒を用いて重質炭化水素油を水素化処理する方法を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討した結果、重質炭化水素油の水素化処理において、特定の大きさの亜鉛粒子を特定量含有する亜鉛含有アルミナ担体に水素化活性成分を担持させた水素化処理触媒を用いることにより、潜在セジメント量が低減された水素化処理油を得られることを見出し、本発明を完成した。
 すなわち、本発明は、下記の重質炭化水素油の水素化処理触媒及び重質炭化水素油の水素化処理方法に関するものである。
[1] 平均粒子径が2~12μmの酸化亜鉛粒子を担体基準で1~15質量%含有する亜鉛含有アルミナ担体に、少なくとも1種の周期表第6族金属が担持されており、平均細孔径が18~35nmであり、比表面積が70~150m2/gであることを特徴とする、重質炭化水素油の水素化処理触媒。
[2] 前記[1]の水素化処理触媒の存在下、温度300~420℃、圧力3~20MPa、水素/油比400~3000m3/m3、及び液空間速度0.1~3h-1の条件で、重質炭化水素油の接触反応を行うことを特徴とする、重質炭化水素油の水素化処理方法。
 本発明に係る水素化処理触媒は、亜鉛が特定量含有されている亜鉛含有アルミナ担体を用いており、かつ平均細孔径や比表面積が大きいため、優れた脱硫活性及び脱金属活性を有する。加えて、当該亜鉛含有アルミナ担体が特定の大きさの酸化亜鉛粒子を担持するため、当該水素化処理触媒を用いて水素化処理を行うことにより、セジメントが発生し難い重質炭化水素油を得ることができる。
 本発明に係る水素化処理触媒は、担体として、担体を基準とした酸化物換算で亜鉛を1~15質量%、好ましくは2~12質量%含有する亜鉛含有アルミナを用いる。一般に、触媒の平均細孔径を大きくすればするほど、触媒の強度は低下する傾向にあるが、アルミナ担体に亜鉛を含有させることにより、担体の強度を高めることができる。亜鉛含有アルミナ担体中の酸化亜鉛粒子の含有量を当該範囲内とすることにより、触媒強度を過度に低下させることなく、平均細孔径と比表面積の両方を充分に大きくすることができる。
 なお、本発明及び本願明細書において、「担体基準、酸化物換算で」とは、担体中に含まれる全ての元素の質量をそれぞれの酸化物として算出し、その合計質量に対する酸化物質量の割合を意味する。亜鉛の酸化物質量は酸化亜鉛に換算して求める。
 本発明に係る水素化処理触媒中の亜鉛含有アルミナ担体は、平均粒子径が2~12μm、好ましくは4~10μm、より好ましくは5~9μmの酸化亜鉛粒子を含有する。
 担体に含有させる酸化亜鉛粒子の平均粒子径が12μm以下であれば、アルミナとの相互作用が十分得られ、十分な貯蔵安定性がある水素化処理後の重質炭化水素油が得られる。一方で、担体に含有させる酸化亜鉛粒子の平均粒子径が2μm以上であると、リン・亜鉛含有アルミナ担体の製造時において亜鉛とアルミナが混合し易い。
 なお、本発明及び本願明細書において、酸化亜鉛粒子の粒径は、JIS R1629に準拠したレーザー回折散乱法により測定し、粒度分布の体積平均を平均粒子径とした。また、亜鉛含有アルミナ担体に含有させる酸化亜鉛粒子としては、純度が99%以上のものが好ましい。
 本発明に係る水素化処理触媒においては、前記亜鉛含有アルミナ担体に、少なくとも1種の周期表第6族金属(以下、「第6族金属」ということがある。)が担持されている。第6族金属としては、Mo(モリブデン)、W(タングステン)等が挙げられ、特にMoが好ましい。触媒中で当該第6族金属は、金属単体の形態で存在してもよく、金属硫化物等の金属化合物の形態で存在してもよい。第6族金属は、1種単独で使用してもよく、2種以上を組合せて使用してもよい。
 本発明に係る水素化処理触媒は、第2金属成分として他の水素化活性金属を担持してもよい。第2金属成分としての他の水素化活性金属としては、Ni(ニッケル)、Co(コバルト)、Fe(鉄)等の周期表第8~10族金属(以下、「第8~10族金属」ということがある。)が好ましい。第2金属成分として担持させる水素化活性金属は、1種単独で使用してもよく、2種以上を組合せて使用してもよい。本発明に係る水素化処理触媒中の亜鉛含有アルミナ担体が担持する金属成分の具体的な組合せとしては、Mo-Ni、Mo-Co、W-Ni等の種々の組合せがあるが、Mo-Niの組合せが好適である。
なお、本発明において、「周期表第6族金属」とは、長周期型周期表における第6族金属を意味し、「周期表第8~10族金属」とは、長周期型周期表における第8~10族金属を意味する。
 前記亜鉛含有アルミナ担体の第6族金属の担持量は、特に制限はないが、第2金属成分と併用しない場合(以下、単独使用の場合)は、担体基準、酸化物換算で2~15質量%、好ましくは4~12質量%であり、第2金属成分と併用する場合(以下、併用使用の場合)は、担体基準、酸化物換算で2~15質量%、好ましくは5~10質量%である。第2金属成分としての他の水素化活性金属の担持量は、適宜選定すればよいが、前記第6族金属の担持量において、触媒基準、酸化物換算で0.001~5質量%、好ましくは1~4質量%である。
 第二金属成分の担持量を増加させると、水素化処理活性、特に脱金属活性は増加するが、触媒寿命は短くなる傾向があり、減少させると、十分な水素化処理活性、特に脱金属活性が得られ難くなる傾向がある。
 本発明に係る水素化処理触媒の平均細孔径は、18~35nm、好ましくは18~30nm、より好ましくは20~30nmである。平均細孔径が18nm以上であれば、十分な脱金属活性が得られ、35nm以下であると、十分な水素化処理活性が得られる。
 本発明に係る水素化処理触媒の比表面積は、70~150m2/g、好ましくは90~140m2/gである。比表面積が70m2/g以上であると、十分な水素化処理活性が得られ、150m2/g以下であると、好ましい平均細孔径が得られ、このため十分な脱金属活性が得られる。
 本発明に係る水素化処理触媒の好適な調製法としては、次のような工程による方法が挙げられる。
 先ず、アルミナの原料を含む水溶液をゲル化し、生成したゲルを加熱熟成し、酸性水溶液処理、不純物の洗浄除去、水分調整を行うことによりアルミナゲルを得る。次いで、このアルミナゲルに酸化亜鉛粒子を混合する。次に、この混合物を、成型、乾燥、焼成等の通常の処理法で処理することにより、亜鉛含有アルミナ担体を調製する。この亜鉛含有アルミナ担体に、第6族金属を担持し、更に必要に応じて他の活性金属を担持することにより、水素化処理触媒を調製する。
 アルミナの原料は、アルミニウムを含む物質であればどのようなものでも使用できるが、硫酸アルミニウム、硝酸アルミニウム等のアルミニウム塩が好ましい。これらのアルミナ原料は、通常は水溶液として供され、その濃度は特に制限されないが、好ましくは2~50質量%、より好ましくは5~40質量%である。
 アルミナゲルの調製方法としては、アルミナ原料を含む水溶液を、アンモニア等の塩基、アルミン酸、アルミン酸ナトリウム等の中和剤で中和する方法、又は、ヘキサメチレンテトラミン、炭酸カルシウム等の沈殿剤と混合する方法が挙げられる。中和剤の使用量は、特に制限されないが、アルミナ原料を含む水溶液と中和剤との合計量に対して30~70質量%が好ましい。沈殿剤の使用量は、特に制限されないが、アルミナ原料を含む水溶液と沈殿剤との合計量に対して30~70質量%が好ましい。
 所望の平均細孔径を有する水素化処理触媒を得るには、中和剤又は沈澱剤によりゲル化させる時のpH、温度等を調整すればよい。具体的に言えば、pHは4~8、温度は30~90℃の範囲内で、それぞれ適宜調整することにより、前記水素化処理触媒の平均細孔径を、本発明の範囲内の所望値のものとすることができる。なお、ゲル生成時にアルカリ側にpHを高くすることにより、大きい平均細孔径を持つ触媒を得ることができる。
 また、アルミナゲルの加熱熟成によっても平均細孔径を調整することができる。熟成時間は、5時間以上が好ましく、時間が長い程、平均細孔径が大きくなり、細孔分布がシャープになる。熟成温度は、80~95℃が好ましく、高温になる程、熟成時間を短くできるが、熟成温度が高すぎるとアルミナゲルが変質するおそれがある。また、熟成時のpHは、9~12が好ましい。pH9以上であると熟成が迅速に進み、pH12以下であればアルミナが変質する恐れが少ない。
 熟成によるアルミナゲルの変質を抑制するために、前記の通り加熱熟成を行った後のアルミナゲルを、酸性水溶液処理する。当該酸性水溶液としては、硝酸、塩酸、硫酸等を用いることができ、好ましくは硝酸である。当該酸性水溶液は、pH1~5.5、好ましくはpH2~4である。pH1以上であれば、酸によってもアルミナの結晶構造が崩壊し難く、pH5.5以下であれば熟成を停止させるのに時間がかからない傾向にある。酸性水溶液処理の好ましい一態様としては、アルミナゲルに硝酸水溶液を加え、pH2~3に調整し、温度が15~60℃の状態で、充分攪拌させ、熟成を完了する態様が挙げられる。
 酸性水溶液処理を行ったアルミナゲルに、アルカリ水溶液を添加し、pH9~13、好ましくはpH10~12とする。当該アルカリ水溶液としては、アンモニア水溶液が好ましい。次いで、pH調整したアルミナゲルを、濾過又は乾燥して水分調整する。水分調整は、濾過又は乾燥の他、加水によっても行われる。水分調整は、触媒の成型を容易にするために行う。水分調整後の水含有量は、60~95質量%が好ましい。
 なお、水分調整のための乾燥の際の温度や方法を調整することにより、アルミナの微細表面構造を制御することができる。本発明に係る水素化処理触媒を得るには、アルミナゲルの水分調整のための乾燥温度を100℃未満にすることが好ましく、特に熱を極力加えず充分な濾過による乾燥によって調製する方法が好ましい。これにより、脱金属性能を増加させることができる。
 次に、水分調整されたアルミナゲルに、前記酸化亜鉛粒子を、出来上がった担体を基準として亜鉛の酸化物換算で1~15質量%となるように、混合する。その後、得られたアルミナゲルと酸化亜鉛粒子との混合物を成型する。成型は、押出成型、加圧成型等の種々の成型方法により行うことができる。
 成型した亜鉛含有アルミナ担体を、乾燥し、焼成する。このときの乾燥温度は、15~150℃が好ましく、特に好ましくは100~120℃であり、乾燥時間は、2時間以上が好ましく、特に好ましくは3~11時間である。焼成温度は、600℃以上が好ましく、特に好ましくは700~900℃であり、焼成時間は、30分間以上が好ましく、特に好ましくは1~4時間である。焼成温度を600℃以上とすることにより、添加した亜鉛とアルミナとの間で結合を生じ、粉末X線パターンにおいて2θ=55.5°に亜鉛アルミネートに由来する特徴的なピークが現れる。この特徴的なピークが現れることにより、触媒細孔径を大きくしても触媒強度の低下を抑制できると考えられる。なお、この亜鉛含有アルミナ担体におけるX線回折パターンは、当該担体に活性成分を担持した後であっても、すなわち本発明に係る水素化処理触媒となっても、そのまま維持される。
 前記のようにして調製した亜鉛含有アルミナ担体への第6族金属や第2金属成分としての他の水素化活性金属の担持方法は、含浸法、共沈法等の公知の方法でよい。例えば、亜鉛含有アルミナ担体をこれらの水素化活性金属成分を含有する溶液中に浸漬した状態で水素化活性金属成分を沈澱させる方法のように、亜鉛含有アルミナ担体を、水素化活性金属成分を含有する溶液と接触させて、水素化活性金属を亜鉛含有アルミナ担体上に担持させる方法が採用できる。なお、複数の水素化活性金属を担持させる場合は、これら複数の水素化活性金属を一度に担持させてもよく、順序にはこだわらず順々に担持させてもよい。
 このようにして水素化活性金属を担持した亜鉛含有アルミナ担体を乾燥し、焼成することにより、本発明に係る水素化処理触媒が得られる。このときの乾燥温度や乾燥時間は、前記の亜鉛含有アルミナ担体の乾燥温度や乾燥時間と同様に、乾燥温度は15~150℃が好ましく、特に好ましくは100~120℃であり、乾燥時間は2時間以上が好ましく、特に好ましくは3~12時間である。また、焼成温度は、350~800℃が好ましく、特に好ましくは400~700℃であり、焼成時間は、1時間以上が好ましく、特に好ましくは3~12時間である。
 本発明に係る水素化処理触媒の触媒形状は、特に限定されるものではなく、通常の触媒形状に用いられる種々の形状にすることができる。本発明に係る水素化処理触媒の形状としては、三葉型や四葉型が好ましい。触媒径は、1.1~2.5mm程度であればよい。
 本発明に係る水素化処理触媒を実際のプロセスに用いる際には、公知の触媒又は公知の無機質酸化物担体と混合して用いてもよい。
 また、本発明に係る水素化処理触媒は、重質炭化水素油の水素化処理に使用する前に予備硫化することが好ましい。予備硫化の方法は、1質量%又はそれ以上の硫黄を含有する炭化水素油や気相硫化物を高温、高圧下で触媒上に通じる方法等が採用される。この予備硫化を行うことにより、水素化活性金属成分は大部分が硫化物となる。なお、水素化処理中に重質炭化水素油の硫黄分によっても、水素化活性金属成分は、一部又は全部が硫化物となることもある。
 以上詳述した本発明に係る水素化処理触媒は、硫黄分、アスファルテン分、ニッケルやバナジウム等の重金属分を含有する重質炭化水素油から、重金属分を効果的に除去するために適した触媒である。すなわち、本発明に係る水素化処理触媒は、重質炭化水素油から、中間留分やそのまま製品となる低硫黄重油を生成するために適した触媒である。従って、本発明に係る水素化処理触媒は、例えば、重質炭化水素油を多段で水素化処理する場合の、触媒床前段部において、特に脱金属触媒として好適に使用することができる。
 本発明の重質炭化水素油の水素化処理方法は、本発明に係る水素化処理触媒を使用して行われる。特に、重質炭化水素油から、中間留分やそのまま製品となる低硫黄重油を生成する方法、または重質炭化水素油の多段水素化処理方法における触媒床前段部の脱金属処理方法として行うことが好ましい。
 本発明に係る水素化処理方法に供される重質炭化水素油としては、原油から蒸留により得られる常圧蒸留残渣油、減圧蒸留残渣油、熱分解油であるビスブレーキング油、石油以外の重質炭化水素油であるタールサンド油、シェールオイル等、又はこれらの混合物等が挙げられ、好ましくは、常圧蒸留残渣油、減圧蒸留残渣油、又はこれらの混合油である。
 常圧蒸留残渣油と減圧蒸留残渣油とを混合する場合は、その性状にもよるが、混合割合としては、減圧蒸留残渣油が1~60容量%程度となるように混合することが多い。
 本発明に係る水素化処理方法に供される重質炭化水素油としては、密度が0.91~1.10g/cm3、特に0.95~1.05g/cm3であり、硫黄分が2~6質量%、特に2~5質量%であり、ニッケル、バナジウム等の金属分が1~1500ppm、特に20~400ppmであり、アスファルテン分が2~15質量%、特に3~10質量%である重質炭化水素油が好ましい。
 本発明における重質炭化水素油の水素化処理とは、重質炭化水素油と水素との接触による処理を言い、比較的反応条件の過酷度の低い水素化精製、比較的過酷度の高い若干の分解反応を伴う水素化精製、水添異性化、水素化脱アルキル、脱金属、その他の水素存在下における重質炭化水素油の反応を包含し、特に中間留分等としての低硫黄重油の生成反応、重質炭化水素油の多段水素化処理方法における触媒床前段部での脱金属反応が好ましい。例えば、常圧蒸留の残渣油、減圧蒸留の留出液や残渣油の水素化脱硫、水素化脱窒素、水素化分解、及びワックスや潤滑油留分の水素化精製等を含む。
 本発明に係る水素化処理方法における水素化処理条件は、温度が300~420℃、好ましくは350~410℃であり、圧力(水素分圧)が3~20MPa、好ましくは8~19MPaであり、水素/油比が400~3000m3/m3、好ましくは500~1800m3/m3であり、LHSV(液空間速度)が0.1~3h-1、好ましくは0.15~2h-1であり、要求される反応程度等により、これらの範囲内から適宜選定すればよい。
 温度が300℃以上ならば、触媒活性、特に脱金属活性が十分に発揮される。温度が420℃以下ならば、重質炭化水素油の熱分解が進行しすぎないため、触媒劣化が抑制される。
 水素分圧が3MPa以上ならば、水素化反応が進行し易く、20MPa以下ならば適度に脱金属活性が向上し触媒寿命が長くなる。
 水素/油比が400m3/m3以上では水素化活性が改善され、3000m3/m3以下であれば、経済性に優れる。
 液空間速度が0.1h-1以上では経済性に優れ、3h-1以下ならば触媒活性が改善される。
 本発明に係る水素化処理方法を商業規模で実施する場合には、本発明に係る水素化処理触媒を適当な反応器において固定床、移動床又は流動床として使用し、当該反応器に処理すべき重質炭化水素油を導入して行う。一般的には、本発明に係る水素化処理触媒を固定床として維持し、重質炭化水素油が該固定床を下方に通過するようにする。本発明に係る水素化処理触媒は、単独の反応器で使用してもよく、連続した幾つかの反応器で使用することもでき、特に多段反応器を使用することが極めて好ましい。なお、本発明に係る水素化処理触媒は、前記のように、重質炭化水素油の前処理的な脱金属処理に適したものであり、このように単独反応器、連続複数反応器、又は多段反応器を使用する場合にあっても、これらの反応器が重質炭化水素油の多段水素化処理における触媒床前段部に位置するように使用することが好ましい。
 次に、本発明の実施態様及びその効果を実施例等によりさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
 実施例及び比較例に用いた酸化亜鉛粒子の平均粒子径を表1に示す。なお、酸化亜鉛粒子の粒径は、JIS R1629に準拠したレーザー回折散乱法により測定し、粒度分布の体積平均を平均粒子径とした。
Figure JPOXMLDOC01-appb-T000001
[実施例1]水素化処理触媒Aの調製
 5質量%のアルミン酸ナトリウム水溶液10kgを60℃に加熱した後、25質量%の硫酸アルミニウム水溶液2.8kgをゆっくり加え、最終的に溶液のpHを7とした。この時、当該溶液の温度は60℃を保持した。以上の操作により生成したアルミナスラリーを濾過し、濾別されたアルミナゲルを0.3質量%のアンモニア水溶液で繰り返し洗浄した。
 次いで、洗浄後のアルミナゲルに水5kgを加え、更に10質量%のアンモニア水溶液を加えて、当該ゲルの水分散液をpH11に調整した。次に、当該ゲルの水分散液を90℃に加熱し、撹拌、還流しながら40時間熟成した。
 その後、当該ゲルの水分散液に5Nの硝酸水溶液を加えてpH2に調整し、15分間撹拌した。更に、10質量%のアンモニア水溶液を加えてpH11に調整した。得られたゲルの水分散液を濾過した後、25℃で加水して成型し易い粘度になるように水分調整を行った。水分調整後のアルミナゲルの水含有量は、70質量%であった。
 続いて、当該アルミナゲルに、酸化亜鉛粒子として酸化亜鉛1を、担体基準で7.8質量%になるように加え、ニーダーで充分均一になるまでよく混合した。得られた亜鉛含有アルミナゲルを押出成型し、110℃で10時間乾燥し、800℃で2時間焼成した。
 焼成された亜鉛含有アルミナ担体100gを、パラモリブデン酸アンモニウムと硝酸ニッケルとを各々酸化物換算でMo9質量%、Ni2質量%となるように100gの水に溶解させた液に、含浸した。含浸後の亜鉛含有アルミナ担体を110℃で4時間加熱乾燥し、550℃で3時間焼成して、水素化処理触媒Aを調製した。
 水素化処理触媒Aの亜鉛含有量は担体基準、酸化物換算で7.8質量%、水素化活性金属含有量は触媒基準、酸化物換算でMoが9質量%、Niが2質量%であった。水素化処理触媒Aの形状は、四葉型であり、径は1.3mmであった。
[実施例2]水素化処理触媒Bの調製
 酸化亜鉛1を酸化亜鉛2に置き換えた以外は実施例1と同様にして、水素化処理触媒Bを調製した。
[比較例1]水素化処理触媒aの調製
 酸化亜鉛1を酸化亜鉛3に置き換えた以外は実施例1と同様にして、水素化処理触媒aを調製した。
[比較例2]水素化処理触媒bの調製
 酸化亜鉛1を酸化亜鉛4に置き換えた以外は実施例1と同様にして、水素化処理触媒bを調製した。
<触媒の物理性状及び化学性状>
 実施例1、2及び比較例1、2で調製した水素化処理触媒A、B、a、及びbの性状[Mo及びNiの担持量(触媒基準、酸化物換算)、亜鉛の担持量(担体基準、酸化物換算)、平均細孔径、及び比表面積]を表2に示す。表2中、「活性金属 活性金属量(質量%)」欄中の「Ni/Mo(上段) 2/9(下段)」は、当該触媒が触媒基準、酸化物換算で、Niを2質量%、Moを9質量%含有していることを意味する。なお、触媒の物理性状及び化学性状は、次の要領で測定した。
〔1〕物理性状の分析(比表面積、及び平均細孔径)
a)測定方法及び使用機器:
・比表面積は、窒素吸着によるBET法により測定した。窒素吸着装置は、日本ベル(株)製の表面積測定装置(ベルソープMini)を使用した。
・平均細孔径は、水銀圧入法により測定した。水銀圧入装置は、ポロシメーター(MICROMERITICS AUTO-PORE 9200:島津製作所製)を使用した。
b)測定原理:
・水銀圧入法は、毛細管現象の法則に基づく。水銀と円筒細孔の場合には、この法則は次式で表される。式中、Dは細孔径、Pは掛けた圧力、γは表面張力、θは接触角である。掛けた圧力Pの関数としての細孔への進入水銀体積を測定する。なお、触媒の細孔水銀の表面張力は484dyne/cmとし、接触角は130度とした。
式: D=-(1/P)4γcosθ
・平均細孔径は、Pの関数として算出されたDの平均値である。
c)測定手順:
1)真空加熱脱気装置の電源を入れ、温度400℃、真空度5×10-2Torr以下になることを確認した。
2)サンプルビュレットを空のまま真空加熱脱気装置に掛けた。
3)真空度が5×10-2Torr以下となったら、当該サンプルビュレットを、そのコックを閉じて真空加熱脱気装置から取り外し、冷却後、重量を測定した。
4)当該サンプルビュレットに試料(触媒)を入れた。
5)試料入りサンプルビュレットを真空加熱脱気装置に掛け、真空度が5×10-2Torr以下になってから1時間以上保持した。
6)試料入りサンプルビュレットを真空加熱脱気装置から取り外し、冷却後、重量を測定し、試料重量を求めた。
7)AUTO-PORE 9200用セルに試料を入れた。
8)AUTO-PORE 9200により測定した。
〔2〕化学組成の分析
a)分析方法及び使用機器:
・触媒中の金属分析は、誘導結合プラズマ発光分析(ICPS-2000:島津製作所製)を用いて行った。
・金属の定量は、絶対検量線法にて行った。
b)測定手順:
1)ユニシールに、触媒0.05g、塩酸(50質量%)1mL、フッ酸一滴、及び純水1mLを投入し、加熱して溶解させた。
2)溶解後、得られた溶液をポリプロピレン製メスフラスコ(50mL容)に移し換え、純水を加えて、50mLに秤量した。
3)当該溶液をICPS-2000により測定した。
Figure JPOXMLDOC01-appb-T000002
<重質炭化水素油の水素化処理反応>
 以下の要領にて、下記性状の減圧蒸留残渣油(VR)の水素化処理を行った。水素化処理触媒として、実施例1、2、比較例1、2で製造した触媒A、B、a、及びbをそれぞれ用いた。
 先ず、水素化処理触媒を高圧流通式反応装置に充填して固定床式触媒層を形成し、下記の条件で前処理した。次に、反応温度に加熱した原料油と水素含有ガスとの混合流体を、当該反応装置の上部より導入して、下記の条件で脱硫反応と分解反応である水素化反応とを進行させ、生成油とガスとの混合流体を、当該反応装置の下部より流出させ、気液分離器で生成油を分離した。
 測定方法は、密度は、JIS K 2249-1「原油及び石油製品-密度試験方法及び密度・質量・容量換算表(振動式密度試験方法)」、硫黄分は、JIS K 2541-4「原油及び石油製品-硫黄分試験方法 第4部:放射線式励起法」、潜在セジメント分は、JPI-5S-60-2000に準拠した。具体的には、潜在セジメント含量は、以下の方法で分析した。
<潜在セジメント含量の測定手順>
1)60℃に加温した試料を三角フラスコに25g採取し、エアーコンデンサーを取り付けて100℃の油浴に挿入し、24時間保持した。
2)当該試料を充分に振とうした後、10.5gをガラスビーカーにサンプリングした。
3)試料の入ったガラスビーカーを、100℃で10分間加温した。
4)乾燥したガラス繊維濾紙(直径47mm、気孔径1.6μm)を3枚重ねでセットし、減圧ポンプで80kPaまで減圧した減圧濾過器に、前記試料を投入し、30秒後に40kPaまで減圧した。
5)濾過が完了し、濾紙表面が乾いた後に、さらに5分間減圧を続けた。
6)減圧ポンプ停止後、濾過器をアスピレータで引きながら25mLの洗浄溶剤(ヘプタン85mL+トルエン15mL)で漏斗とフィルター全域を洗浄した。
7)さらに20mLヘプタンで当該濾紙を洗浄した後、最上部の濾紙(上から1枚目)を取り外して、下部の濾紙を20mLヘプタンで洗浄した。
8)上から1枚目及び2枚目の濾紙を、110℃で20分乾燥後、30分放冷した。
9)濾過前に対する濾過後の1枚目及び2枚目濾紙の各重量増加分を測定し、1枚目濾紙の増加重量から2枚目濾紙の増加重量を差し引いた重量を、試料採取重量に対する百分率としたものを、潜在セジメント(質量%)とした。
 なお、濾過が25分間で終了しない場合はサンプル量を5gあるいは2gとして再測定した。
 ニッケル及びバナジウムの含有量は、石油学会規格 JPI-5S-62-2000「石油製品金属分析試験法(ICP発光分析法)」に準拠した。
 アスファルテン分は、試料にトルエンを加えた後、セルロースフィルターで濾過し、トルエン不溶解分を回収した。この不溶性分をアスファルテン分とした。
 レジン分は、試料にトルエンを加えた後、セルロースフィルターで濾過し、濾液であるトルエン溶解分を濃縮した。この濃縮物にヘプタンを加えたヘプタン溶液を活性アルミナ充填カラムに流通させ、飽和、芳香族、レジン分に分離し、レジン分を回収した。
触媒の前処理条件:
 触媒の予備硫化は、減圧軽油により、水素分圧10.3MPa、370℃において12時間行った。その後、活性評価用の原料油に切り替えた。
反応条件: 
反応温度;385℃、
圧力(水素分圧);10.3MPa、
液空間速度 ;0.4h-1
水素/油比 ;1690m3/m3
原料油の性状:
油種;中東系原油の減圧蒸留残渣油、
密度(15℃);1.037g/cm3
硫黄成分;4.27質量%、
バナジウム;91ppm、
ニッケル;54ppm、
アスファルテン分;7.8質量%。
 触媒活性について、以下の方法で解析した。385℃で反応装置を運転し、運転開始20日後の生成油を採取し、その性状(脱硫率(HDS)(%)、脱硫反応速度定数(Ks)、脱硫比活性(%)、脱金属率(HDM))を分析した。結果を表3に示す。
〔1〕脱硫率(HDS)(%):原料油中の硫黄分を脱硫反応によって硫化水素に転換することにより、原料油から消失した硫黄分の割合を脱硫率と定義し、原料油及び生成油の硫黄分析値から以下の式(1)により算出した。
〔2〕脱硫反応速度定数(Ks):生成油の硫黄分(Sp)の減少量に対して、2次の反応次数を得る反応速度式の定数を脱硫反応速度定数(Ks)とする。以下の式(2)により算出した。なお、反応速度定数が高い程、触媒活性が優れていることを示している。
〔3〕脱硫比活性(%):触媒Aの脱硫反応速度定数を100としたときの相対値で示した。以下の式(3)により算出した。
〔4〕脱金属率(HDM)(%):原料油から消失した金属分(ニッケルとバナジウムの合計)の割合を脱金属率と定義し、原料油及び生成油の金属分析値から以下の式(4)により算出した。
脱硫率(%)=〔(Sf-Sp)/Sf〕×100 ………(1)
脱硫反応速度定数=〔1/Sp-1/Sf〕×(LHSV) ………(2)
式中、Sf:原料油中の硫黄分(質量%)、
Sp:生成油中の硫黄分(質量%)、
LHSV:液空間速度(h-1)。
脱硫比活性(%)=(各触媒の脱硫反応速度定数/触媒Aの脱硫反応速度定数)×100………(3)
脱金属率(%)=〔(Mf-Mp)/Mf〕×100 ………(4)
式中、Mf:原料油中のニッケルとバナジウムの合計(質量ppm)、
Mp:生成油中のニッケルとバナジウムの合計(質量ppm)。
〔生成油の分析〕
 前記の水素化処理反応で得た運転日数20日目の生成油から求めた脱硫比活性、脱金属率、レジン分、アスファルテン分、レジン分に対するアスファルテン分の含量比(質量比、[アスファルテン分(質量%)]/[レジン分(質量%)])、及び潜在セジメント含量の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 この結果、いずれの触媒も、脱硫比活性と脱金属率とはほぼ同程度であった。一方で、生成油中のレジン分と潜在セジメント量とについては、触媒A又は触媒Bを用いた場合の方が、触媒a又は触媒bを用いた場合よりも、レジン分が多く、潜在セジメント量が明らかに少なかった。つまり、触媒A又は触媒Bを用いて得た生成油の方が、触媒a又は触媒bを用いて得たものよりも、セジメントが発生し難く、貯蔵安定性に優れていた。
 これらの結果から、特定の物性を有する酸化亜鉛粒子を含有する担体を用いた水素化処理触媒を用いることにより、水素化処理触媒の脱硫活性を低下させることなく、水素化処理した重質炭化水素油中の潜在セジメントの含有量を低くでき、貯蔵安定性を高められることが明らかである。
 本発明の水素化処理触媒およびそれを用いた重質炭化水素油を水素化処理方法によれば、脱硫活性や脱金属活性を低下させることなく、水素化処理された重質炭化水素油の貯蔵安定性を向上させることができる。

Claims (2)

  1.  平均粒子径が2~12μmの酸化亜鉛粒子を担体基準で1~15質量%含有する亜鉛含有アルミナ担体に、少なくとも1種の周期表第6族金属が担持されており、平均細孔径が18~35nmであり、比表面積が70~150m2/gであることを特徴とする、重質炭化水素油の水素化処理触媒。
  2.  請求項1記載の水素化処理触媒の存在下、温度300~420℃、圧力3~20MPa、水素/油比400~3000m3/m3、及び液空間速度0.1~3h-1の条件で、重質炭化水素油の接触反応を行うことを特徴とする重質炭化水素油の水素化処理方法。
PCT/JP2014/075402 2013-09-27 2014-09-25 重質炭化水素油の水素化処理触媒、及び重質炭化水素油の水素化処理方法 WO2015046316A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480052600.0A CN105579132B (zh) 2013-09-27 2014-09-25 重质烃油的加氢处理催化剂以及重质烃油的加氢处理方法
US15/022,463 US10137436B2 (en) 2013-09-27 2014-09-25 Hydrogenation catalyst for heavy hydrocarbon oil and hydrogenation method for heavy hydrocarbon oil
KR1020167010379A KR102229870B1 (ko) 2013-09-27 2014-09-25 중질 탄화수소유의 수소화 처리 촉매 및 중질 탄화수소유의 수소화 처리 방법
EP14847966.0A EP3050622B1 (en) 2013-09-27 2014-09-25 Hydrogenation catalyst for heavy hydrocarbon oil and hydrogenation method for heavy hydrocarbon oil
JP2015539306A JP6476525B2 (ja) 2013-09-27 2014-09-25 重質炭化水素油の水素化処理触媒、及び重質炭化水素油の水素化処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-201799 2013-09-27
JP2013201799 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015046316A1 true WO2015046316A1 (ja) 2015-04-02

Family

ID=52743450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075402 WO2015046316A1 (ja) 2013-09-27 2014-09-25 重質炭化水素油の水素化処理触媒、及び重質炭化水素油の水素化処理方法

Country Status (6)

Country Link
US (1) US10137436B2 (ja)
EP (1) EP3050622B1 (ja)
JP (1) JP6476525B2 (ja)
KR (1) KR102229870B1 (ja)
CN (1) CN105579132B (ja)
WO (1) WO2015046316A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3050623B1 (en) * 2013-09-27 2021-01-27 Cosmo Oil Co., Ltd. Hydrogenation catalyst for heavy hydrocarbon oil, production method for hydrogenation catalyst for heavy hydrocarbon oil, and hydrogenation method for heavy hydrocarbon oil
KR102229944B1 (ko) * 2013-10-11 2021-03-19 코스모세키유 가부시키가이샤 중질 탄화수소유의 수소화 처리 촉매, 중질 탄화수소유의 수소화 처리 촉매의 제조 방법 및 중질 탄화수소유의 수소화 처리 방법
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US20190233741A1 (en) 2017-02-12 2019-08-01 Magēmā Technology, LLC Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil
CN115702040A (zh) * 2020-07-03 2023-02-14 克斯莫石油株式会社 烃油的加氢处理催化剂、烃油的加氢处理催化剂的制造方法、以及烃油的加氢处理方法
CN116474753A (zh) * 2022-01-13 2023-07-25 中国石油化工股份有限公司 一种氧化铝载体及其成型方法和应用
US11731120B1 (en) 2022-03-11 2023-08-22 Saudi Arabian Oil Company Lobular catalyst structure and reactor for hydrocarbon conversion by hot and compressed water based processes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248460A (ja) * 1996-03-14 1997-09-22 Japan Energy Corp 重質油の水素化処理用触媒および水素化処理方法
JP2001314770A (ja) 2000-05-11 2001-11-13 Petroleum Energy Center 重質炭化水素油の水素化処理触媒およびそれを用いる水素化処理方法
JP2010248476A (ja) * 2009-03-23 2010-11-04 Petroleum Energy Center 重質炭化水素油の水素化処理方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2992971B2 (ja) 1994-09-01 1999-12-20 株式会社ジャパンエナジー 水素化処理用触媒
CN1043359C (zh) 1994-11-25 1999-05-12 中国石化齐鲁石油化工公司 烃类加氢脱硫催化剂及制备方法
JP4638610B2 (ja) * 2001-01-05 2011-02-23 日本ケッチェン株式会社 水素化処理用触媒並びに水素化処理方法
JP4612229B2 (ja) * 2001-06-08 2011-01-12 日本ケッチェン株式会社 重質炭化水素油の水素化処理用触媒並びに水素化処理方法
US7846977B2 (en) * 2004-04-30 2010-12-07 Basf Corporation Processes using a supported catalyst
US7361626B2 (en) * 2004-04-30 2008-04-22 Engelhard Corporation Supported catalyst
CN100340639C (zh) * 2004-10-29 2007-10-03 中国石油化工股份有限公司 一种含有ⅱb族金属氧化物的加氢裂化催化剂和应用
JP4805211B2 (ja) * 2007-05-28 2011-11-02 コスモ石油株式会社 重質炭化水素油の水素化処理触媒、その製造方法、及び水素化処理方法
WO2015046323A1 (ja) * 2013-09-27 2015-04-02 コスモ石油株式会社 重質炭化水素油の水素化処理触媒、及び重質炭化水素油の水素化処理方法
EP3050623B1 (en) * 2013-09-27 2021-01-27 Cosmo Oil Co., Ltd. Hydrogenation catalyst for heavy hydrocarbon oil, production method for hydrogenation catalyst for heavy hydrocarbon oil, and hydrogenation method for heavy hydrocarbon oil
KR102229944B1 (ko) * 2013-10-11 2021-03-19 코스모세키유 가부시키가이샤 중질 탄화수소유의 수소화 처리 촉매, 중질 탄화수소유의 수소화 처리 촉매의 제조 방법 및 중질 탄화수소유의 수소화 처리 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248460A (ja) * 1996-03-14 1997-09-22 Japan Energy Corp 重質油の水素化処理用触媒および水素化処理方法
JP2001314770A (ja) 2000-05-11 2001-11-13 Petroleum Energy Center 重質炭化水素油の水素化処理触媒およびそれを用いる水素化処理方法
JP2010248476A (ja) * 2009-03-23 2010-11-04 Petroleum Energy Center 重質炭化水素油の水素化処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3050622A4

Also Published As

Publication number Publication date
US20160220985A1 (en) 2016-08-04
CN105579132B (zh) 2018-04-27
CN105579132A (zh) 2016-05-11
KR20160061361A (ko) 2016-05-31
EP3050622A4 (en) 2017-06-28
JP6476525B2 (ja) 2019-03-06
KR102229870B1 (ko) 2021-03-19
EP3050622A1 (en) 2016-08-03
US10137436B2 (en) 2018-11-27
EP3050622B1 (en) 2021-05-05
JPWO2015046316A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
JP6476525B2 (ja) 重質炭化水素油の水素化処理触媒、及び重質炭化水素油の水素化処理方法
US7491313B2 (en) Two-step hydroprocessing method for heavy hydrocarbon oil
US7790652B2 (en) Process and catalyst for the hydroconversion of a heavy hydrocarbon feedstock
JP6413168B2 (ja) 重質炭化水素油の水素化処理触媒、及び重質炭化水素油の水素化処理方法
EP2750792B1 (en) Catalyst support and catalysts prepared therefrom
JP6432086B2 (ja) 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法
JP6773384B2 (ja) 重質炭化水素油の水素化処理方法
WO1998026866A1 (fr) Catalyseur d'hydrotraitement destine a des huiles d'hydrocarbures lourds, procede de production du catalyseur, et procede d'hydrotraitement employant ceux-ci
JP2006509084A (ja) 触媒の混合物を使用する重質原料のhpc法
JP4408527B2 (ja) 重質炭化水素油の水素化処理触媒およびそれを用いる水素化処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480052600.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847966

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539306

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15022463

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014847966

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014847966

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167010379

Country of ref document: KR

Kind code of ref document: A