WO2015046048A1 - 筆記具用水性インク組成物 - Google Patents

筆記具用水性インク組成物 Download PDF

Info

Publication number
WO2015046048A1
WO2015046048A1 PCT/JP2014/074824 JP2014074824W WO2015046048A1 WO 2015046048 A1 WO2015046048 A1 WO 2015046048A1 JP 2014074824 W JP2014074824 W JP 2014074824W WO 2015046048 A1 WO2015046048 A1 WO 2015046048A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
ink composition
cellulose
writing instrument
based ink
Prior art date
Application number
PCT/JP2014/074824
Other languages
English (en)
French (fr)
Inventor
西島 千裕
範子 坂根
竹内 容治
Original Assignee
三菱鉛筆株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱鉛筆株式会社 filed Critical 三菱鉛筆株式会社
Priority to KR1020167011304A priority Critical patent/KR102257192B1/ko
Priority to CN201480053818.8A priority patent/CN105593314B/zh
Priority to US15/023,313 priority patent/US20160264800A1/en
Priority to EP14849348.9A priority patent/EP3053970B8/en
Priority to ES14849348T priority patent/ES2841139T3/es
Publication of WO2015046048A1 publication Critical patent/WO2015046048A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/16Writing inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43KIMPLEMENTS FOR WRITING OR DRAWING
    • B43K7/00Ball-point pens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43KIMPLEMENTS FOR WRITING OR DRAWING
    • B43K8/00Pens with writing-points other than nibs or balls
    • B43K8/02Pens with writing-points other than nibs or balls with writing-points comprising fibres, felt, or similar porous or capillary material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43KIMPLEMENTS FOR WRITING OR DRAWING
    • B43K8/00Pens with writing-points other than nibs or balls
    • B43K8/02Pens with writing-points other than nibs or balls with writing-points comprising fibres, felt, or similar porous or capillary material
    • B43K8/024Pens with writing-points other than nibs or balls with writing-points comprising fibres, felt, or similar porous or capillary material with writing-points comprising felt
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/14Printing inks based on carbohydrates

Definitions

  • the present invention is for a writing instrument that is superior in storage stability, writing performance over time, and drawing quality of particles such as pigments while having a low viscosity as compared with a conventional thickening / gelling agent such as xanthan gum that exhibits shear thinning.
  • the present invention relates to an aqueous ink composition.
  • each of the thickening and gelling agents disclosed in Patent Documents 1 to 3 must contain a large amount in the composition in order to exhibit the storage stability of particles such as pigments.
  • problems such as impaired writing feeling and fluidity.
  • cellulose-derived natural thickeners are known as those obtained by physically finely processing cellulose itself, and powdered cellulose, fermented cellulose (bacterial cellulose), and the like are known.
  • an aqueous ink composition using these celluloses for example, an aqueous ballpoint pen ink composition (for example, see Patent Document 4) characterized by comprising at least water, a colorant, and fermented cellulose is known.
  • the fermented cellulose in the aqueous ballpoint pen ink composition of Patent Document 4 is composed of fine fibrous particles, and improves the dry-up performance by forming a soft resin film (cellulose fiber film) at the tip of the chip.
  • the adjustment of the ink viscosity, etc. further uses a shear thinning agent (xanthan gum), and the present invention is different from the present invention in terms of the technical concept including the physical properties of cellulose and its mechanism of action.
  • JP 59-74175 (Claims, Examples, etc.) JP-A-62-124170 (Claims, Examples, etc.) Japanese Patent Laid-Open No. 2002-2335025 (Claims, Examples, etc.) JP 2013-91730 A (Claims, Examples, etc.)
  • the present invention has been made in view of the above-mentioned problems of the prior art and the current situation.
  • An aqueous ink composition for a writing instrument that is excellent in the storage stability of particles, writing performance with time and drawing quality while having low viscosity. The purpose is to provide.
  • the present invention resides in the following (1) to (3).
  • a water-based ink composition for a writing instrument containing 0.05 to 1.5% by mass of oxidized cellulose and having an intrinsic viscosity derived from the Casson formula of 10 mPa ⁇ s or less.
  • a writing instrument comprising the water-based ink composition for a writing instrument described in (1) or (2) above.
  • an aqueous ink composition for a writing instrument which is excellent in storage stability of particles, writing performance with time and drawing quality compared to conventional thickening and gelling agents such as xanthan gum. Is done.
  • FIG. 6 is a characteristic diagram showing the relationship between the shear rate and the viscosity of the oxidized cellulose dispersion used in the present invention (Examples 1 to 5) and the xanthan gum aqueous solution used in Comparative Examples 1, 2, 4 and 6.
  • the aqueous ink composition for a writing instrument of the present invention is characterized by containing 0.05 to 1.5% by mass of oxidized cellulose and having an intrinsic viscosity derived from the Casson formula of 10 mPa ⁇ s or less.
  • the oxidized cellulose used in the present invention has cellulose I type crystal structure and constitutes cellulose [(C 6 H 10 O 5 ) n: a natural polymer in which a number of ⁇ -glucose molecules are linearly polymerized by glycosidic bonds].
  • ⁇ -glucose having a hydroxyl group at the C6 position (—OH group) is oxidized and modified to an aldehyde group (—CHO) and a carboxyl group (—COOH group).
  • the oxidized cellulose used in the present invention is a fiber obtained by surface-oxidizing a cellulose solid raw material derived from a natural product having an I-type crystal structure to a nano size.
  • cellulose derived from natural products which is a raw material, has almost no exception, so that nanofibers called microfibrils are multi-bundled to form a higher order structure. It is something that cannot be done.
  • oxidized cellulose of the present invention a part of the hydroxyl groups of the cellulose fiber is oxidized to introduce aldehyde groups and carboxyl groups, and the hydrogen bonds between the surfaces, which are the driving force of the strong cohesive force between the microfibrils, are weakened, and the dispersion treatment However, it is refined to nano size.
  • the effect of the present invention can be exhibited by using oxidized cellulose having the above physical properties.
  • the number average fiber diameter is 2 to 150 nm. From the viewpoint of dispersion stability, it is more preferable that the number average fiber diameter is 3 to 80 nm.
  • the number average fiber diameter can be measured, for example, as follows.
  • a sample diluted with water added to cellulose fibers is dispersed, cast onto a carbon film-coated grid that has been subjected to a hydrophilic treatment, and this is observed with a transmission electron microscope (TEM). From the obtained image, The number average fiber diameter can be measured and calculated.
  • oxidized cellulose used in the present invention is, for example, an oxidation process in which natural cellulose is used as a raw material, an N-oxyl compound is used as an oxidation catalyst in water, and the natural cellulose is oxidized by acting a co-oxidant to obtain a reactant fiber. It can be obtained by at least three steps: a reaction step, a purification step for obtaining a reactant fiber impregnated with water by removing impurities, and a dispersion step for dispersing the reactant fiber impregnated with water in a solvent.
  • natural cellulose means purified cellulose isolated from cellulose biosynthetic systems such as plants, animals, and bacteria-producing gels. More specifically, softwood pulp, hardwood pulp, cotton pulp such as cotton linter and cotton lint, non-wood pulp such as straw pulp and bagasse pulp, BC (bacterial cellulose), cellulose isolated from sea squirts, Examples include cellulose isolated from seaweed, but are not limited thereto. Natural cellulose is preferably subjected to a treatment for increasing the surface area such as beating, whereby the reaction efficiency can be increased and the productivity can be increased.
  • the dispersion medium of natural cellulose in the reaction is water, and the concentration of natural cellulose in the reaction aqueous solution is arbitrary as long as the reagent can sufficiently diffuse, but usually about 5% with respect to the weight of the reaction aqueous solution. It is as follows.
  • N-oxyl compounds that can be used as an oxidation catalyst for cellulose have been reported ("Cellulose” Vol. 10, 2003, pages 335 to 341, using "TEMPO derivatives by I. Shibata and A. Isogai”).
  • the article entitled “Catalyzed Oxidation of Cellulose: HPSEC and NMR Analysis of the Oxidation Products”) in particular, TEMPO (2,2,6,6-tetramethyl-1-piperidine-N-oxyl), 4-acetamido-TEMPO, 4-Carboxy-TEMPO and 4-phosphonooxy-TEMPO are preferable in the reaction rate at room temperature in water.
  • a catalytic amount is sufficient for the addition of these N-oxyl compounds, preferably 0.1 to 4 mmol / l, more preferably 0.2 to 2 mmol / l.
  • hypohalous acid or a salt thereof hypohalous acid or a salt thereof, perhalogen acid or a salt thereof, hydrogen peroxide, a perorganic acid, and the like
  • Hypohalites such as sodium hypochlorite and sodium hypobromite.
  • sodium hypochlorite it is preferable in terms of the reaction rate to advance the reaction in the presence of an alkali metal bromide such as sodium bromide.
  • the addition amount of the alkali metal bromide is about 1 to 40 times mol, preferably about 10 to 20 times mol for the N-oxyl compound.
  • the amount of co-oxidant added is preferably in the range of about 0.5 to 8 mmol with respect to 1 g of natural cellulose, and the reaction is completed within about 5 to 120 minutes and at most 240 minutes.
  • the pH of the aqueous reaction solution is preferably maintained in the range of about 8-11.
  • the temperature of the aqueous solution is arbitrary at about 4 to 40 ° C., but the reaction can be performed at room temperature, and the temperature is not particularly required to be controlled.
  • reactant fibers and compounds other than water contained in the reaction slurry such as unreacted hypochlorous acid and various by-products are removed from the system. Since it is not dispersed evenly to the nanofiber unit, a normal purification method, that is, washing with water and filtration are repeated to obtain a dispersion of high-purity (99% by mass or more) reactant fiber and water.
  • a normal purification method that is, washing with water and filtration are repeated to obtain a dispersion of high-purity (99% by mass or more) reactant fiber and water.
  • any apparatus can be used as long as it can achieve the above-described object, such as a method using centrifugal dehydration (for example, a continuous decanter).
  • the aqueous dispersion of the reactant fibers thus obtained has a solid content (cellulose) concentration in the range of approximately 10% to 50% by mass in the squeezed state.
  • a solid content concentration higher than 50% by mass is not preferable because extremely high energy is required for dispersion.
  • a dispersion of oxidized cellulose can be obtained by dispersing the reaction fiber (water dispersion) impregnated with water obtained in the above-described purification step in a solvent and performing a dispersion treatment, It can be set as the oxidized cellulose used by drying this dispersion.
  • the solvent as the dispersion medium is usually preferably water, but in addition to water, alcohols that are soluble in water depending on the purpose (methanol, ethanol, isopropanol, isobutanol, sec-butanol, tert-butanol, methyl) Cellosolve, ethyl cellosolve, ethylene glycol, glycerin, etc.), ethers (ethylene glycol dimethyl ether, 1,4-dioxane, tetrahydrofuran, etc.), ketones (acetone, methyl ethyl ketone), N, N-dimethylformamide, N, N-dimethylacetamide Dimethyl sulfoxide or the like may be used.
  • alcohols that are soluble in water depending on the purpose methanol, ethanol, isopropanol, isobutanol, sec-butanol, tert-butanol, methyl
  • Cellosolve ethyl cellosolve
  • these mixtures can also be used conveniently.
  • the dispersion of the above-described reactant fibers is diluted and dispersed with a solvent, the solvent is gradually added to disperse, and when a stepwise dispersion is attempted, a nanofiber-level fiber dispersion is efficiently obtained. You may be able to get Due to operational problems, the dispersion conditions can be selected so that the state after the dispersion step is a viscous dispersion or gel.
  • the oxidized cellulose used may be a dispersion of the above oxidized cellulose.
  • the aqueous ink composition for a writing instrument of the present invention is characterized by containing the above oxidized cellulose, and is used as an ink composition for a writing instrument such as an aqueous ballpoint pen.
  • the content (solid content) of the oxidized cellulose is 0.05 to 1.5% by mass (hereinafter simply referred to as “%”), preferably in the aqueous ink composition for writing instruments (total amount). Is preferably 0.1 to 1.0%. If the content of oxidized cellulose is less than 0.05%, sufficient thickening action cannot be obtained, and precipitation of solids such as pigments may occur over time. On the other hand, if the content exceeds 1.5% In addition, since the intrinsic viscosity is increased, the phenomenon of broken lines in writing lines and defective ink discharge may occur, which is not preferable.
  • the aqueous ink composition for a writing instrument of the present invention contains at least a colorant and a water-soluble solvent in addition to the oxidized cellulose.
  • Colorants that can be used include pigments and / or water-soluble dyes.
  • limiting in particular about the kind of pigment Arbitrary things can be used from the inorganic type and organic type pigment conventionally used for writing instruments, such as a water-based ballpoint pen.
  • inorganic pigments include carbon black and metal powder.
  • organic pigments include azo lakes, insoluble azo pigments, chelate azo pigments, phthalocyanine pigments, perylene and perinone pigments, anthraquinone pigments, quinacridone pigments, dye lakes, nitro pigments, and nitroso pigments.
  • phthalocyanine blue C.I. 74160
  • phthalocyanine green C.I. 74260
  • Hansa Yellow 3G C.I. 11670
  • disazo yellow GR C.I. 21100
  • permanent red 4R C.I. 12335
  • brilliant carmine 6B C.I. 15850
  • quinacridone red C.I. 46500
  • a plastic pigment composed of particles of styrene or acrylic resin can be used.
  • the hollow resin particles having voids inside the particles can be used as white pigments, or resin particles (pseudo pigments) dyed with a basic dye described later having excellent color development and dispersibility.
  • any of direct dyes, acid dyes, food dyes, and basic dyes can be used.
  • the direct dye include C.I. I. Direct Black 17, 19, 19, 22, 32, 38, 51, 71, C.I. I. Direct yellow 4, 26, 44, 50, C.I. I. Direct Red 1, 4, 23, 31, 37, 39, 75, 80, 81, 83, 225, 226, 227, C.I. I. Direct Blue 1, 15, 71, 86, 106, 119 and the like.
  • the acid dye include C.I. I. Acid Black 1, 2, 24, 26, 31, 31, 52, 107, 109, 110, 119, 154, C.I. I.
  • Examples of basic dyes include C.I. I. Basic Yellow 1, 2 and 21, C.I. I. Basic Orange 2, 14, 32, C.I. I. Basic Red 1, 2, 9, 9, 14 C.I. I. Basic Brown 12, Basic Black 2, 8 and the like.
  • Examples of the resin particles dyed with a basic dye include fluorescent pigments obtained by dyeing acrylonitrile copolymer resin particles with a basic fluorescent dye.
  • Specific product names include Sinloi Color SF Series (Sinloihi Co., Ltd.), NKW and NKP Series (Nippon Fluorochemicals Co., Ltd.).
  • the content in the total amount of the aqueous ink composition for writing instruments is usually 0.5 to 30%, preferably 1 It is in the range of ⁇ 15%. If the content of this colorant is less than 0.5%, coloring may be weak or the hue of the handwriting may not be known. On the other hand, if it exceeds 30%, writing defects may occur. This is not preferable.
  • water-soluble solvents examples include glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, polyethylene glycol, 3-butylene glycol, thiodiethylene glycol, glycerin, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, and the like. These can be used alone or in combination.
  • the content of the water-soluble solvent is preferably 5 to 40% in the total amount of the water-based ink composition for writing instruments.
  • the balance is water which is a solvent (tap water, purified water, distilled water, ion-exchanged water, pure water, etc.)
  • a dispersant, a lubricant, a pH adjuster, a rust preventive, a preservative, or a fungicide can be appropriately contained within a range not impairing the effects of the present invention.
  • a dispersant When a pigment is used as the colorant, it is preferable to use a dispersant.
  • This dispersant acts on the pigment surface to improve the affinity with water and to stably disperse the pigment in water.
  • Nonionic, anionic surfactants and water-soluble resins are used.
  • a water-soluble polymer is preferably used.
  • Lubricants include nonionics such as fatty acid esters of polyhydric alcohols, higher fatty acid esters of sugars, polyoxyalkylene higher fatty acid esters, and alkyl phosphates, which are also used in pigment surface treatment agents, and alkyl sulfonic acids of higher fatty acid amides. Examples thereof include salts, anionic compounds such as alkyl allyl sulfonates, polyalkylene glycol derivatives, fluorosurfactants, and polyether-modified silicones.
  • pH adjusters examples include ammonia, urea, monoethanolamine, diethanolamine, triethanolamine, sodium tripolyphosphate, sodium carbonate, and alkali metal salts of phosphoric acid and alkali metal hydrates such as sodium hydroxide.
  • Etc. alkali metal salts of phosphoric acid and alkali metal hydrates such as sodium hydroxide.
  • rust preventives benzotriazole, tolyltriazole, dicyclohexylammonium nitrite, saponins, etc., as antiseptics or fungicides, phenol, sodium omadin, sodium benzoate, benzimidazole compounds, etc. Can be mentioned.
  • a water-based ink composition for a writing instrument is a homomixer in which the above-mentioned oxidized cellulose, colorant, water-soluble solvent, and other components are appropriately combined according to the use of writing tool ink (for ballpoint pens and marking pens).
  • the aqueous ink composition for writing instruments can be prepared by stirring and mixing with a stirrer such as a homogenizer or a disper, and if necessary, by removing coarse particles in the ink composition by filtration or centrifugation.
  • a stirrer such as a homogenizer or a disper
  • the aqueous ink composition for a writing instrument can be prepared by filling an aqueous ballpoint pen provided with balls having a diameter of 0.18 to 2.0 mm.
  • the aqueous ballpoint pen to be used is not particularly limited as long as it has a ball having a diameter in the above-mentioned range.
  • the water-based ink composition is filled in an ink storage tube of a polypropylene tube, and a tip stainless tip (ball is A refilled water-based ballpoint pen with a super steel alloy) is desirable.
  • the limit derived from the Casson equation is used in order to prevent the line cracking phenomenon that is likely to occur when using a particularly high viscosity ink or when the writing speed is increased.
  • the viscosity needs to be 10 mPa ⁇ s or less, more preferably 1 to 10 mPa ⁇ s.
  • “Intrinsic viscosity” in the present invention is a viscosity value when the shear rate is infinite, and the intrinsic viscosity ( ⁇ ) was calculated from the Casson calculation formula shown below.
  • ⁇ 1/2 ( ⁇ ) 1/2 ⁇ D 1/2 + ( ⁇ 0 ) 1/2
  • shear stress (Pa)
  • D shear rate (s ⁇ 1 )
  • intrinsic viscosity (mPa ⁇ s)
  • ⁇ 0 yield value (Pa).
  • the shear stress ( ⁇ ) can be calculated from the shear rate (D) and the measured viscosity value (25 ° C.).
  • tau 0 yield value
  • tau 0 yield value is two or more points of shear rate - the square of the primary straight sections plotted from each of the square root of shear stress (measured value) is tau 0.
  • the intrinsic viscosity ( ⁇ ) is obtained as the slope of a straight line obtained by plotting the square root of shear stress (Casson plot) against the square root of shear rate (particularly the high shear rate region).
  • the water-based ink composition for a writing instrument of the present invention
  • the oxidized cellulose in order to make the intrinsic viscosity 10 mPa ⁇ s or less, the oxidized cellulose must be uniformly dispersed. Simple stirring with a disper or the like cannot achieve sufficient uniformity, and it is difficult to make the intrinsic viscosity 10 mPa ⁇ s or less.
  • the intrinsic viscosity can be 10 mPa ⁇ s or less.
  • the method for producing a water-based ink composition for a writing instrument of the present invention can be produced without any particular change compared to other methods for producing a water-based ink composition. That is, the aqueous ink composition for a writing instrument according to the present invention comprises a bead mill, a homomixer, a homogenizer, and a high-pressure homogenizer that can apply particularly strong shearing by mixing and stirring the above-described components containing oxidized cellulose with a mixer or the like.
  • a thixotropic ink (for example, a gel ink water-based ballpoint pen ink) can be produced by setting the stirring condition to a suitable condition using an ultrasonic homogenizer, a high-pressure wet medialess atomizer, or the like.
  • the pH (25 ° C.) of the aqueous ink composition for a writing instrument of the present invention is adjusted to 5 to 10 by a pH adjuster or the like from the viewpoints of usability, safety, stability of the ink itself, and matching with the ink container. It is preferably adjusted, and more preferably 6 to 9.5.
  • the water-based ink composition for a writing instrument of the present invention is mounted on a ballpoint pen, a marking pen, or the like having a pen tip such as a ballpoint pen tip, a fiber tip, a felt tip, or a plastic tip.
  • the water-based ink composition for writing instruments having the above composition is accommodated in a ballpoint pen ink container (refill), and is not compatible with the water-based ink composition housed in the ink container.
  • the ink follower include substances having a small specific gravity with respect to the water-based ink composition, such as polybutene, silicone oil, mineral oil, and the like.
  • the structure of the ballpoint pen and the marking pen is not particularly limited.
  • a collector structure in which the shaft tube itself is used as an ink container and the water-based ink composition for a writing instrument having the above configuration is filled in the shaft tube. It may be a direct liquid ballpoint pen or a marking pen provided.
  • the water-based ink composition for a writing instrument of the present invention configured as described above, even if the oxidized cellulose used has a low viscosity of 0.05 to 1.5% in the water-based ink composition for a writing instrument, the viscosity is high.
  • As a thickening and gelling agent for water-based ink compositions for writing instruments it exhibits a rheology control effect in a smaller amount than conventional fine cellulose and xanthan gum.
  • the water-based ink composition for writing instruments is suitable for writing instruments such as water-based ballpoint pens that are low in viscosity but excellent in particle storage stability, writing performance over time and drawing quality. Things will be obtained.
  • Examples 1 to 5 and Comparative Examples 1 to 9 Using oxidized cellulose having the following physical properties, a predetermined amount of each water-based ink composition for a writing instrument according to the composition shown in Table 1 below was stirred using a high-pressure wet medialess atomizer (Nanovaita, manufactured by Yoshida Kikai Kogyo Co., Ltd.) (Shearing force, pressure, stirring time) were appropriately changed, mixed and stirred by a wet method, and filtered through a 10 ⁇ m bag filter. The pH of each water-based ink composition for writing instruments was measured at 25 ° C. with a pH meter (manufactured by HORIBA) and found to be in the range of 7.9 to 8.2.
  • the viscosity values of the water-based ink compositions for writing instruments obtained in Examples 1 to 5 and Comparative Examples 1 to 9 were measured by the following method.
  • each ink stored in a glass bottle at room temperature for one month was measured with an EMD viscometer (manufactured by Tokyo Keiki Co., Ltd.) at shear rates of 3.83 ⁇ 1 and 383 ⁇ 1 at 25 ° C.
  • the viscosity value was measured.
  • the intrinsic viscosity ( ⁇ ) was calculated from the Casson calculation formula shown above.
  • the intrinsic viscosity ( ⁇ ) was calculated by determining the shear stress 30 seconds after the start of viscosity measurement at the shear rates of 3.83 ⁇ 1 and 383 ⁇ 1 .
  • an aqueous ballpoint pen was prepared by the following method, and writing performance with time, pigment sedimentation resistance and The drawing quality (line cracking) was evaluated. These results are shown in Table 1 below.
  • the reaction product is filtered through a glass filter, washed with a sufficient amount of water and filtered five times to impregnate 25% by weight of water with a solid content of 25% by mass. Reactant fibers were obtained. Next, water was added to the reactant fiber to make a 2% by mass slurry, which was then treated with a rotary blade mixer for about 5 minutes. Since the viscosity of the slurry significantly increased with the treatment, water was gradually added, and the dispersion treatment with the mixer was continued until the solid content concentration became 0.15% by mass.
  • the dispersion of oxidized cellulose having a cellulose concentration of 0.15% by mass thus obtained was subjected to removal of suspended solids by centrifugation, and then the concentration was adjusted with water to give a cellulose concentration of 0.1% by mass.
  • a transparent and slightly viscous dispersion of oxidized cellulose was obtained.
  • Oxidized cellulose obtained by drying this dispersion was used.
  • the oxidized cellulose shown to each Example etc. of Table 1 displays what was manufactured above by solid content concentration of each Example etc.
  • the number average fiber diameter of the oxidized cellulose obtained above was confirmed and measured by the following method.
  • a water-based ballpoint pen was produced using each ink composition obtained above. Specifically, using a shaft of a ballpoint pen [Mitsubishi Pencil Co., Ltd., trade name: Signo UM-100], an inner diameter of 4.0 mm, a length of 113 mm, an ink containing tube made of polypropylene, and a stainless tip (a cemented carbide ball, A water ballpoint pen is manufactured by filling each water-based ink with a refill consisting of a joint connecting the receiving tube and the tip with a ball diameter of 0.7 mm, and an ink follower mainly composed of mineral oil at the rear end of the ink. did.
  • Evaluation method of writing performance over time Each water-based ballpoint pen obtained was allowed to stand at 50 ° C. for 1 week, then written, and evaluated according to the following evaluation criteria. Evaluation criteria: A: There is no problem at the time of writing. ⁇ : Some blurring was observed at the beginning of writing, but it is not inferior thereafter. ⁇ : The drawn line is slightly blurred. The lines are light. X: Writing is not possible.
  • Evaluation method of pigment settling resistance Each ink composition obtained above was set in a test tube and centrifuged at 5000 rpm for 10 minutes, and then the ink in the test tube was divided into upper and lower colors and evaluated according to the following evaluation criteria. Evaluation criteria: A: There is no difference in density at the top and bottom. ⁇ : There is a slight difference when the colors are displayed side by side, but it is almost unknown. ⁇ : Although there is a vertical difference, a certain degree of darkness is maintained. X: Obviously, the upper part is thin and the lower part is dark. Visually evaluate the drawn state.
  • Examples 1 to 3 and 5 and Comparative Examples 1 to 5 and 7 to 9 use the above water-based ballpoint pen, and Examples 4 and 6 have a ballpoint pen for correction tool, CLN-250 (Mitsubishi Pencil Co., Ltd.). And the state (line breakage) when handwritten on the examination paper using each water-based ballpoint pen and correction tool ballpoint pen was evaluated according to the following evaluation criteria. Evaluation criteria: (Double-circle): A line crack is not seen at all. ⁇ : Some line cracking is observed, but it is not a concern. X: Line cracks are clearly recognized.
  • the aqueous ink compositions for writing instruments of Examples 1 to 5 according to the present invention have satisfactory writing characteristics over time, no pigment sedimentation, and good line drawing quality. It turned out to be excellent.
  • Comparative Examples 1, 2, 4 and 6 are cases where xanthan gum is used
  • Comparative Example 3 is a case where carboxyvinyl polymer is used
  • Comparative Example 5 is a case where carboxymethyl cellulose (CMC) is used.
  • Comparative Examples 7 and 8 are cases where the oxidized cellulose is outside the range of the content of the present invention
  • Comparative Example 9 has an intrinsic viscosity value even when the oxidized cellulose is within the range of the content of the present invention. This is a case that falls outside the scope of the present invention, and in these cases, it has been found that satisfactory results cannot be obtained with respect to any one of writing performance with time, resistance to sedimentation of pigment, and drawing quality.
  • Test Example 1 The relationship between the shear rate and the viscosity of the oxidized cellulose used in the present invention (Examples 1 to 5) and the xanthan gum used in Comparative Examples 1, 2, 4, and 6 was tested. That is, a 1% xanthan gum aqueous solution and a 0.5% oxidized cellulose dispersion were prepared, and their viscosities at shear rates of 3.83 s ⁇ 1 , 38.3 s ⁇ 1 , and 383 s ⁇ 1 were measured using an EMD viscometer (East Measured using a machine industry company). These results are shown in FIG. From the results shown in FIG.
  • both the oxidized cellulose and xanthan gum exhibit pseudoplastic flow in which the viscosity decreases as the shear rate increases, but the oxidized cellulose of the present invention exhibits a high viscosity when left standing. It sometimes shows a flow characteristic in which the viscosity is extremely lowered, and the behavior change is large.
  • An aqueous ink composition for writing instruments suitable for writing instruments such as water-based ballpoint pens and marking pens can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Pens And Brushes (AREA)

Abstract

 キサンタンガムのような従来の増粘・ゲル化剤と比較して、低粘度でありながら粒子の保存安定性、経時筆記性および描線品位に優れる筆記具用水性インク組成物を提供する。 この筆記具用水性インク組成物は、酸化セルロースを0.05~1.5質量%含有し、Cassonの式で導かれる極限粘度値が10mPa・s以下であることを特徴とする。

Description

筆記具用水性インク組成物
 本発明は、剪断減粘性を示すキサンタンガムのような従来の増粘・ゲル化剤と比較して、低粘度でありながら顔料などの粒子の保存安定性、経時筆記性および描線品位に優れる筆記具用水性インク組成物に関する。
 従来より、筆記具用インク組成物に用いられる剪断減粘性を示す増粘・ゲル化剤としては、天然系、天然物を化学修飾した半合成系、石油化学原料から化学合成される合成系のものが知られている。
 例えば、天然系では、キサンタンガムを0.20~0.45重量%含有することを特徴とする水性ボールペン用インク組成物(例えば、特許文献1参照)、半合成系では、セルロースを化学修飾したエーテル化度1.5以上のカルボキシメチルセルロースナトリウムなどのアルカリ金属塩又はアンモニウム塩を含有することを特徴とする水性インク組成物(例えば、特許文献2参照)、合成系では、ポリエーテル系、ウレタン変性ポリエーテル系、ポリアミノプラストールエーテル系を含有してなるボールペン用水性インク組成物(例えば、特許文献3参照)などが知られている。
 しかしながら、これらの特許文献1~3に開示の各増粘・ゲル化剤などは、顔料などの粒子の保存安定性を発揮させるためには組成物中に多くの量を含有しなければならず、筆記感や流動性などが損なわれるなどの課題があるのが現状である。
 一方、セルロース由来の天然系増粘剤等としては、セルロースそのものを物理的に微細に加工したもので知られており、粉末セルロース、発酵セルロース(バクテリアセルロース)などが知られている。これらのセルロースを利用した水性インク組成物としては、例えば、少なくとも水、着色剤、発酵セルロースからなることを特徴とする水性ボールペン用インク組成物(例えば、特許文献4参照)などが知られている。
 しかしながら、上記特許文献4の水性ボールペン用インク組成物における発酵セルロースは繊細な繊維性粒子からなるものであり、チップ先端に柔らかい樹脂皮膜(セルロース繊維の皮膜)を形成せしめることによりドライアップ性能を向上させるものであり、インク粘度の調整などは、更に、剪断減粘性付与剤(キサンタンガム)を併用するものであり、本発明とは、セルロース物性、その作用機構を含む技術思想が異なるものである。
特開昭59-74175号公報(特許請求の範囲、実施例等) 特開昭62-124170号公報(特許請求の範囲、実施例等) 特開2002-235025号公報(特許請求の範囲、実施例等) 特開2013-91730号公報(特許請求の範囲、実施例等)
 本発明は、上記従来技術の課題及び現状に鑑み、これを解消しようとするものであり、低粘度でありながら粒子の保存安定性、経時筆記性および描線品位に優れる筆記具用水性インク組成物を提供することを目的とする。
 本発明者らは、上記従来の課題等に鑑み、鋭意研究を行った結果、安全性や環境に対する配慮からは、天然系の増粘・ゲル化剤が好まれる傾向にあることから、天然系の特定物性となる増粘・ゲル化剤を用いることにより、上記目的の筆記具用水性インク組成物が得られることを見出し、本発明を完成するに至ったのである。
 すなわち、本発明は、次の(1)~(3)に存する。
(1) 酸化セルロースを0.05~1.5質量%含有し、Cassonの式で導かれる極限粘度が10mPa・s以下であることを特徴とする筆記具用水性インク組成物。
(2) 前記酸化セルロースは、数平均繊維径が2~150nmであることを特徴とする上記(1)に記載の筆記具用水性インク組成物。
(3) 上記(1)又は(2)に記載の筆記具用水性インク組成物を搭載したことを特徴とする筆記具。
 本発明によれば、キサンタンガムのような従来の増粘・ゲル化剤と比較して、低粘度でありながら粒子の保存安定性、経時筆記性および描線品位に優れる筆記具用水性インク組成物が提供される。
本発明(実施例1~5)で用いた酸化セルロース分散液と比較例1、2、4及び6で用いたキサンタンガム水溶液との剪断速度と粘度との関係を示す特性図である。
 以下に、本発明の実施形態を詳しく説明する。
 本発明の筆記具用水性インク組成物は、酸化セルロースを0.05~1.5質量%含有し、Cassonの式で導かれる極限粘度が10mPa・s以下であることを特徴とするものである。
<酸化セルロース>
 本発明に用いる酸化セルロースは、セルロースI型結晶構造を有すると共に、セルロース〔(C10)n:多数のβグルコース分子がグリコシド結合により直鎖状に重合した天然高分子〕を構成するβグルコースのC6位の水酸基(-OH基)を酸化しアルデヒド基(-CHO)およびカルボキシル基(-COOH基)に変性したものである。
 本発明に用いる酸化セルロースは、I型結晶構造を有する天然物由来のセルロース固体原料を表面酸化し、ナノサイズにまで微細化した繊維である。一般に、原料となる、天然物由来のセルロースは、ほぼ例外なくミクロフィブリルと呼ばれるナノファイバーが多束化して高次構造を取っているため、そのままでは容易にはナノサイズにまで微細化して分散させることができないものである。本発明の酸化セルロースでは、セルロース繊維の水酸基の一部を酸化しアルデヒド基およびカルボキシル基を導入し、ミクロフィブリル間の強い凝集力の原動となっている表面間の水素結合を弱めて、分散処理し、ナノサイズにまで微細化したものである。
 本発明では、上記物性の酸化セルロースを用いることで、本発明の効果を発揮できるものであり、好ましくは、数平均繊維径が2~150nmとなるものが望ましい。
 分散安定性の点から、更に好ましくは、数平均繊維径が3~80nmとなるものが望ましい。この酸化セルロースの数平均繊維径を2nm以上とすることにより、分散媒体としての機能を発揮せしめ、逆に数平均繊維径を150nm以下とすることにより、セルロース繊維そのものの分散安定性を更に向上させることができる。
 本発明において、上記数平均繊維径は、例えば、次のようにして測定することができる。すなわち、セルロース繊維に水を加え希釈した試料を分散処理し、親水化処理済みのカーボン膜被覆グリッド上にキャストして、これを透過型電子顕微鏡(TEM)で観察し、得られた画像から、数平均繊維径を測定算出することができる。
 また、上記特定のセルロース繊維を構成するセルロースが、天然物由来のI型結晶構造を有することは、例えば、広角X線回折像測定により得られる回折プロファイルにおいて、2シータ=14~17°付近と、2シータ=22~23°付近の2つの位置に典型的なピークを持つことから同定することができる。
 本発明に用いる酸化セルロースの製造は、例えば、天然セルロースを原料とし、水中においてN-オキシル化合物を酸化触媒とし、共酸化剤を作用させることにより該天然セルロースを酸化して反応物繊維を得る酸化反応工程、不純物を除去して水を含浸させた反応物繊維を得る精製工程、および水を含浸させた反応物繊維を溶媒に分散させる分散工程の少なくとも3つの工程により得ることができる。
 上記酸化反応工程では、水中に天然セルロースを分散させた分散液を調製する。ここで、天然セルロースは、植物、動物、バクテリア産生ゲル等のセルロースの生合成系から単離した精製セルロースを意味する。より具体的には、針葉樹系パルプ、広葉樹系パルプ、コットンリンターやコットンリントのような綿系パルプ、麦わらパルプやバガスパルプ等の非木材系パルプ、BC(バクテリアセルロース)、ホヤから単離されるセルロース、海草から単離されるセルロースなどを挙げることができるが、これに限定されるものではない。天然セルロースは、好ましくは、叩解等の表面積を高める処理を施すと、反応効率を高めることができ、生産性を高めることができる。さらに、天然セルロースとして、単離、精製の後、ネバードライで保存していたものを使用するとミクロフィブリルの集束体が膨潤し易い状態であるため、やはり反応効率を高め、微細化処理後の数平均繊維径を小さくすることができ、好ましい。
 反応における天然セルロースの分散媒は水であり、反応水溶液中の天然セルロース濃度は、試薬の十分な拡散が可能な濃度であれば任意であるが、通常、反応水溶液の重量に対して約5%以下である。
 また、セルロースの酸化触媒として使用可能なN-オキシル化合物は数多く報告されている(「Cellulose」Vol.10、2003年、第335~341ページにおけるI.Shibata及びA.Isogaiによる「TEMPO誘導体を用いたセルロースの触媒酸化:酸化生成物のHPSEC及びNMR分析」と題する記事)が、特にTEMPO(2,2,6,6-テトラメチル-1-ピペリジン-N-オキシル)、4-アセトアミド-TEMPO、4-カルボキシ-TEMPO、及び4-フォスフォノオキシ-TEMPOは水中常温での反応速度において好ましい。これらN-オキシル化合物の添加は触媒量で十分であり、好ましくは0.1~4mmol/l、さらに好ましくは0.2~2mmol/lの範囲で反応水溶液に添加する。
 共酸化剤として、次亜ハロゲン酸またはその塩、亜ハロゲン酸またはその塩、過ハロゲン酸またはその塩、過酸化水素、および過有機酸などが本発明において使用可能であるが、好ましくはアルカリ金属次亜ハロゲン酸塩、例えば、次亜塩素酸ナトリウムや次亜臭素酸ナトリウムである。次亜塩素酸ナトリウムを使用する場合、臭化アルカリ金属、たとえば臭化ナトリウムの存在下で反応を進めることが反応速度において好ましい。この臭化アルカリ金属の添加量は、N-オキシル化合物に対して約1~40倍モル量、好ましくは約10~20倍モル量である。一般に共酸化剤の添加量は、天然セルロース1gに対して約0.5~8mmolの範囲で選択することが好ましく、反応は約5~120分、長くとも240分以内に完了する。
 反応水溶液のpHは約8~11の範囲で維持されることが好ましい。水溶液の温度は約4~40℃において任意であるが、反応は室温で行うことが可能であり、特に温度の制御は必要としない。
 精製工程においては、未反応の次亜塩素酸や各種副生成物等の反応スラリー中に含まれる反応物繊維と水以外の化合物を系外へ除去するが、反応物繊維は通常、この段階ではナノファイバー単位までばらばらに分散しているわけではないため、通常の精製法、すなわち水洗とろ過を繰り返すことで高純度(99質量%以上)の反応物繊維と水の分散体とする。該精製工程における精製方法は遠心脱水を利用する方法(例えば、連続式デカンダー)のように、上述した目的を達成できる装置であればどんな装置を利用しても構わない。
 こうして得られる反応物繊維の水分散体は絞った状態で固形分(セルロース)濃度としておよそ10質量%~50質量%の範囲にある。この後の工程で、ナノファイバーへ分散させる場合は、50質量%よりも高い固形分濃度とすると、分散に極めて高いエネルギーが必要となることから好ましくない。
 さらに、本発明では、上述した精製工程にて得られる水を含浸した反応物繊維(水分散体)を溶媒中に分散させ分散処理を施すことにより、酸化セルロースの分散体を得ることができ、この分散体を乾燥させて用いる酸化セルロースとすることができる。
 ここで、分散媒としての溶媒は通常は水が好ましいが、水以外にも目的に応じて水に可溶するアルコール類(メタノール、エタノール、イソプロパノール、イソブタノール、sec-ブタノール、tert-ブタノール、メチルセロソルブ、エチルセロソルブ、エチレングリコール、グリセリン等)、エーテル類(エチレングリコールジメチルエーテル、1,4-ジオキサン、テトラヒドロフラン等)、ケトン類(アセトン、メチルエチルケトン)やN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキサイド等を使用してもよい。また、これらの混合物も好適に使用できる。さらに、上述した反応物繊維の分散体を溶媒によって希釈、分散する際には、少しづつ溶媒を加えて分散していく、段階的な分散を試みると効率的にナノファイバーレベルの繊維の分散体を得ることができることがある。操作上の問題から、分散工程後の状態は粘性のある分散液あるいはゲル状の状態となるように分散条件を選択することができる。用いる酸化セルロースは、上記酸化セルロースの分散体でもよいものである。
<筆記具用水性インク組成物>
 本発明の筆記具用水性インク組成物は、上記酸化セルロースを含有することを特徴とするものであり、例えば、水性のボールペンなどの筆記具用インク組成物として使用に供される。
 本発明において、上記酸化セルロースの含有量(固形分量)は、筆記具用水性インク組成物中(全量)に対して、0.05~1.5質量%(以下、単に「%」という)、好ましくは、0.1~1.0%とすることが望ましい。
 この酸化セルロースの含有量が0.05%未満では、充分な増粘作用が得られず、顔料などの固形分の経時的な沈降が発生することがあり、一方、1.5%を超えると、極限粘度が高くなるため、筆記描線の線割れ現象やインクの吐出不良が発生することがあるので好ましくない。
 本発明の筆記具用水性インク組成物には、上記酸化セルロースの他、少なくとも着色剤、水溶性溶剤が含有される。
 用いることができる着色剤としては、顔料及び/又は水溶性染料が挙げられる。顔料の種類については特に制限はなく、従来水性ボールペンなどの筆記具用に慣用されている無機系及び有機系顔料の中から任意のものを使用することができる。
 無機系顔料としては、例えば、カーボンブラックや、金属粉等が挙げられる。
 また、有機系顔料としては、例えば、アゾレーキ、不溶性アゾ顔料、キレートアゾ顔料、フタロシアニン顔料、ペリレン及びペリノン顔料、アントラキノン顔料、キナクリドン顔料、染料レーキ、ニトロ顔料、ニトロソ顔料などが挙げられる。具体的には、フタロシアニンブルー(C.I.74160)、フタロシアニングリーン(C.I.74260)、ハンザイエロー3G(C.I.11670)、ジスアゾイエローGR(C.I.21100)、パーマネントレッド4R(C.I.12335)、ブリリアントカーミン6B(C.I.15850)、キナクリドンレッド(C.I.46500)などが使用できる。
 また、スチレンやアクリル樹脂の粒子から構成されているプラスチックピグメントも使用できる。さらに、粒子内部に空隙のある中空樹脂粒子は白色顔料として、または、発色性、分散性に優れる後述する塩基性染料で染色した樹脂粒子(擬似顔料)等も使用できる。
 水溶性染料としては、直接染料、酸性染料、食用染料、塩基性染料のいずれも用いることができる。
 直接染料としては、例えば、C.I.ダイレクトブラック17、同19、同22、同32、同38、同51、同71、C.I.ダイレクトエロー4、同26、同44、同50、C.I.ダイレクトレッド1、同4、同23、同31、同37、同39、同75、同80、同81、同83、同225、同226、同227、C.I.ダイレクトブルー1、同15、同71、同86、同106、同119などが挙げられる。
 酸性染料としては、例えば、C.I.アシッドブラック1、同2、同24、同26、同31、同52、同107、同109、同110、同119、同154、C.I.アシッドエロー7、同17、同19、同23、同25、同29、同38、同42、同49、同61、同72、同78、同110、同127、同135、同141、同142、C.I.アシッドレッド8、同9、同14、同18、同26、同27、同35、同37、同51、同52、同57、同82、同87、同92、同94、同115、同129、同131、同186、同249、同254、同265、同276、C.I.アシッドバイオレット18、同17、C.I.アシッドブルー1、同7、同9、同22、同23、同25、同40、同41、同43、同62、同78、同83、同90、同93、同103、同112、同113、同158、C.I.アシッドグリーン3、同9、同16、同25、同27などが挙げられる。
 食用染料としては、その大部分が直接染料又は酸性染料に含まれるが、含まれないものの一例としては、C.I.フードエロー3が挙げられる。
 塩基性染料としては、例えば、C.I.ベーシックエロー1、同2、同21、C.I.ベーシックオレンジ2、同14、同32、C.I.ベーシックレッド1、同2、同9、同14、C.I.ベーシックブラウン12、ベーシックブラック2、同8などが挙げられる。
 また、塩基性染料で染色した樹脂粒子としては、アクリロニトリル系共重合体の樹脂粒子を塩基性蛍光染料で染色した蛍光顔料などが挙げられる。具体的な商品名として、シンロイヒカラーSFシリーズ(シンロイヒ株式会社)、NKW及びNKPシリーズ(日本蛍光化学株式会社)などが挙げられる。
 これらの着色剤は、それぞれ単独で用いてもよいし、2種類以上を組み合わせてもよく、筆記具用水性インク組成物全量中の含有量は、通常、0.5~30%、好ましくは、1~15%の範囲である。
 この着色剤の含有量が、0.5%未満では、着色が弱くなったり、筆跡の色相がわからなくなってしまうことがあり、一方、30%を超えて含有した場合に、筆記不良を生じることがあるので好ましくない。
 用いることができる水溶性溶剤としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ポリエチレングリコール、3-ブチレングリコール、チオジエチレングリコール、グリセリン等のグリコール類や、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、単独或いは混合して使用することができる。この水溶性溶剤の含有量は、筆記具用水性インク組成物全量中、5~40%とすることが望ましい。
 本発明の記具用水性インク組成物には、上記酸化セルロース、着色剤、水溶性溶剤の他、残部として溶媒である水(水道水、精製水、蒸留水、イオン交換水、純水等)の他、本発明の効果を損なわない範囲で、分散剤、潤滑剤、pH調整剤、防錆剤、防腐剤もしくは防菌剤などを適宜含有することができる。
 着色剤として顔料を用いた場合には、分散剤を使用することが好ましい。この分散剤は、顔料表面に吸着して、水との親和性を向上させ、水中に顔料を安定に分散させる作用をするものであり、ノニオン、アニオン界面活性剤や水溶性樹脂が用いられる。好ましくは水溶性高分子が用いられる。
 潤滑剤としては、顔料の表面処理剤にも用いられる多価アルコールの脂肪酸エステル、糖の高級脂肪酸エステル、ポリオキシアルキレン高級脂肪酸エステル、アルキル燐酸エステルなどのノニオン系や、高級脂肪酸アミドのアルキルスルホン酸塩、アルキルアリルスルホン酸塩などのアニオン系、ポリアルキレングリコールの誘導体やフッ素系界面活性剤、ポリエーテル変性シリコーンなどが挙げられる。
 pH調整剤としては、アンモニア、尿素、モノエタノーアミン、ジエタノールアミン、トリエタノールアミンや、トリポリリン酸ナトリウム、炭酸ナトリウムなとの炭酸やリン酸のアルカリ金属塩、水酸化ナトリウムなどのアルカリ金属の水和物などが挙げられる。
 また、防錆剤としては、ベンゾトリアゾール、トリルトリアゾール、ジシクロへキシルアンモニウムナイトライト、サポニン類など、防腐剤もしくは防菌剤としては、フェノール、ナトリウムオマジン、安息香酸ナトリウム、ベンズイミダゾール系化合物などが挙げられる。
 本発明の記具用水性インク組成物は、上記酸化セルロース、着色剤、水溶性溶剤、その他の各成分を筆記具用(ボールペン用、マーキングペン用)インクの用途に応じて適宜組み合わせて、ホモミキサー、ホモジナイザーもしくはディスパー等の攪拌機により攪拌混合することにより、更に必要に応じて、ろ過や遠心分離によってインク組成物中の粗大粒子を除去すること等によって筆記具用水性インク組成物を調製することができる。
 水性ボールペン用では、該筆記具用水性インク組成物を、直径が0.18~2.0mmのボールを備えた水性ボールペン体に充填することにより作製することができる。
 用いる水性ボールペン体として、直径が上記範囲のボールを備えたものであれば、特に限定されず、特に、上記水性インク組成物をポリプロピレンチューブのインク収容管に充填し、先端のステンレスチップ(ボールは超鋼合金)を有するリフィールの水性ボールペンに仕上げたものが望ましい。
 更に、本発明では、良好な描線品位とするため、特に粘度が高いインクを用いたり、筆記速度が速くなった場合に発生しやすい線割れ現象を防止する点から、Cassonの式から導かれる極限粘度が10mPa・s以下とすることが必要であり、更に好ましくは、1~10mPa・sであることが望ましい。
 本発明における「極限粘度」とは、ずり速度が無限大の時の粘度値であり、下記に示すCassonの計算式から、極限粘度(η∞)を算出した。
     τ1/2=(η∞)1/2・D1/2+(τ01/2
〔式中、τ:ずり応力(Pa)、D:ずり速度(s-1)、η∞:極限粘度(mPa・s)、τ0:降伏値(Pa)である。〕
 ずり応力(τ)は、ずり速度(D)と粘度の測定値(25℃)とから算出できる。τ0(降伏値)は、2点以上のずり速度-ずり応力(測定値)のそれぞれの平方根からプロットした1次直線の切片の2乗がτ0である。また、極限粘度(η∞)は、ずり速度の平方根(特に高ずり速度領域)に対してずり応力の平方根をプロット(Cassonプロット)して得られる直線の傾きとして求められる。
 本発明の筆記具用水性インク組成物が上記範囲の極限粘度を有することによって、粘度が高いインクを用いたり、筆記速度が速くなったとしても良好な描線品位を実現することができる。
 本発明において、上記極限粘度を10mPa・s以下とするには、酸化セルロースを均一に分散させなければならない。ディスパーなどの簡易的な攪拌では充分な均一性とすることができず、極限粘度を10mPa・s以下とすることは困難である。均一に分散させるためには、例えば、強力な剪断を加えることができるビーズミル、ホモミキサー、ホモジナイザー、高圧ホモジナイザー、超音波ホモジナイザー、高圧湿式メディアレス微粒化装置等を用いて撹拌条件を好適な条件に設定等することで、極限粘度を10mPa・s以下とすることが可能となる。
 本発明の筆記具用水性インク組成物の製造方法は、他の水性インク組成物の製造方法と比べて特に変わるところはなく製造することができる。
 すなわち、本発明の筆記具用水性インク組成物は、上述した酸化セルロースを含む各成分をミキサー等によって混合攪拌することによって、特に、強力な剪断を加えることができるビーズミル、ホモミキサー、ホモジナイザー、高圧ホモジナイザー、超音波ホモジナイザー、高圧湿式メディアレス微粒化装置等を用いて撹拌条件を好適な条件に設定等することよって、チキソトロピー性インク(例えば、ゲルインク水性ボールペン用インク)を製造することができる。
 また、本発明の筆記具用水性インク組成物のpH(25℃)は、使用性、安全性、インク自身の安定性、インク収容体とのマッチング性の点からpH調整剤などにより5~10に調整されることが好ましく、更に好ましくは、6~9.5とすることが望ましい。
 本発明の筆記具用水性インク組成物は、ボールペンチップ、繊維チップ、フェルトチップ、プラスクチップなどのペン先部を備えたボールペン、マーキングペン等に搭載される。
 本発明におけるボールペンとしては、上記組成の筆記具用水性インク組成物をボールペン用インク収容体(リフィール)に収容すると共に、該インク収容体内に収容された水性インク組成物とは相溶性がなく、かつ、該水性インク組成物に対して比重が小さい物質、例えば、ポリブテン、シリコーンオイル、鉱油等がインク追従体として収容されるものが挙げられる。
 なお、ボールペン、マーキングペンの構造は、特に限定されず、例えば、軸筒自体をインク収容体として該軸筒内に上記構成の筆記具用水性インク組成物を充填したコレクター構造(インク保持機構)を備えた直液式のボールペン、マーキングペンであってもよいものである。
 このように構成される本発明の筆記具用水性インク組成物にあっては、用いる酸化セルロースが筆記具用水性インク組成物中に0.05~1.5%の低粘度であっても高い粘性を示し、かつ、セルロースに固有の高いチキソトロピーインデックスを示すため、筆記具用水性インク組成物の増粘・ゲル化剤として、従来の微細セルロースや、キサンタンガムより少量でレオロジーコントロール効果を発揮すると共に、Cassonの式で導かれる極限粘度値を10mPa・s以下とすることにより、低粘度でありながら粒子の保存安定性、経時筆記性および描線品位に優れた水性ボールペン等の筆記具に好適な筆記具用水性インク組成物が得られることとなる。
 次に、実施例及び比較例により本発明を更に詳細に説明するが、本発明は下記実施例等に限定されるものではない。
〔実施例1~5及び比較例1~9〕
 下記物性となる酸化セルロースを用いて、下記表1の配合組成により各筆記具用水性インク組成物の所定量を高圧湿式メディアレス微粒化装置(吉田機械興業社製、ナノヴェイタ)を用いて撹拌条件(剪断力、圧力、撹拌時間)を適宜変動させて湿式法で混合撹拌し、10μmのバッグフィルターで濾過することにより調製した。各筆記具用水性インク組成物の25℃、pHをpH測定計(HORIBA社製)で測定したところ、7.9~8.2の範囲内であった。
 上記実施例1~5及び比較例1~9で得られた筆記具用水性インク組成物について、下記方法で粘度値を測定した。
 粘度値の測定に際しては、ガラス瓶にて室温で一ヶ月間保管した各インクを用いて、EMD型粘度計(東京計器社製)により、25℃における剪断速度3.83-1及び383-1の粘度値を測定した。
 また、極限粘度は、上記に示すCassonの計算式から、極限粘度(η∞)を算出した。具体的には、上記剪断速度3.83-1及び383-1における粘度測定開始から30秒後のずり応力を求めることにより、極限粘度(η∞)を算出した。
 次に、上記実施例1~5及び比較例1~9で得られた筆記具用水性インク組成物について、下記方法により水性ボールペンを作製して、下記評価方法で経時筆記性、耐顔料沈降性及び描線品位(線割れ)の評価を行った。
 これらの結果を下記表1に示す。
〔用いた酸化セルロース〕
 乾燥重量で2g相当分の未乾燥の亜硫酸漂白針葉樹パルプ(主に1000nmを超える繊維径の繊維から成る)、0.025gのTEMPOおよび0.25gの臭化ナトリウムを水150mlに分散させた後、13重量%次亜塩素酸ナトリウム水溶液を、1gのパルプに対して次亜塩素酸ナトリウムの量が2.5mmolとなるように次亜塩素酸ナトリウムを加えて反応を開始した。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10.5に保った。pHに変化が見られなくなった時点で反応終了と見なし、反応物をガラスフィルターにてろ過した後、十分な量の水による水洗、ろ過を5回繰り返し、固形分量25質量%の水を含浸させた反応物繊維を得た。
 次に、該反応物繊維に水を加え、2質量%スラリーとし、回転刃式ミキサーで約5分間の処理を行った。処理に伴って著しくスラリーの粘度が上昇したため、少しづつ水を加えていき固形分濃度が0.15質量%となるまでミキサーによる分散処理を続けた。こうして得られたセルロース濃度が0.15質量%の酸化セルロースの分散体に対して、遠心分離により浮遊物の除去を行った後、水による濃度調製を行ってセルロース濃度が0.1質量%の透明かつやや粘調な酸化セルロースの分散体を得た。この分散体を乾燥させて得られた酸化セルロースを用いた。なお、表1の各実施例等に示した酸化セルロースは、上記で製造したものを各実施例等の固形分濃度で表示したものである。
 上記で得た酸化セルロースの数平均繊維径は、下記方法により、確認、測定した。
<数平均繊維径>
 酸化セルロースの数平均繊維径を、次のようにして測定した。
 すなわち、酸化セルロースに水を加え希釈した試料をホモミキサーを用いて12000rpmで15分間分散した後、親水化処理済みのカーボン膜被覆グリッド上にキャストして、これを透過型電子顕微鏡(TEM)で観察し、得られた画像から、数平均繊維径を測定算出した。その結果、数平均繊維径は約140nmであった。
<セルロースI型結晶構造の確認>
 用いる酸化セルロースがI型結晶構造を有することの確認を次のようにして行った。
 すなわち、広角X線回折像測定により得られた回折プロファイルにおいて、2シータ=14~17°付近と、2シータ=22~23°付近の2つの位置に典型的なピークを持つことからI型結晶構造を有することを確認した。
(水性ボールペンの作製)
 上記で得られた各インク組成物を用いて水性ボールペンを作製した。具体的には、ボールペン〔三菱鉛筆株式会社製、商品名:シグノUM-100〕の軸を使用し、内径4.0mm、長さ113mmポリプロピレン製インク収容管とステンレス製チップ(超硬合金ボール、ボール径0.7mm)及び該収容管と該チップを連結する継手からなるリフィールに上記各水性インクを充填し、インク後端に鉱油を主成分とするインク追従体を装填し、水性ボールペンを作製した。
(経時筆記性の評価方法)
 得られた各水性ボールペンを、50℃、1週間放置後、筆記を行い、下記評価基準で評価した。
 評価基準:
    ◎:筆記に際し、全く問題がない。
    ○:書き始めに多少カスレが見られたが、その後は遜色ない。
    △:描線が多少かすれている。描線がうすい。
    ×:筆記ができない。
(耐顔料沈降性の評価方法)
 上記で得られた各インク組成物を試験管にセットし、5000rpmで10分間遠心処理を行った後、試験管内インクを上下にわけ、展色し、下記評価基準で評価した。
 評価基準:
    ◎:上下で全く濃度に差がない。
    ○:並べて展色すると若干差異があるが、殆どわからない程度。
    △:上下差はあるが、ある程度の濃さは保っている。
    ×:明らかに、上部が薄く下部が濃くなっている。描線状態を目視で評価。
〔描線品位(線割れ)の評価方法〕
 実施例1~3、5及び比較例1~5、7~9は、上記水性ボールペンを用いて、また、実施例4及び比較例6については、修正具用ボールペン、CLN-250(三菱鉛筆社製)に充填して、それぞれの水性ボールペン、修正具用ボールペンを用いて筆検用紙に手書きで筆記したときの状態(線割れ)を下記評価基準で評価した。
 評価基準:
    ◎:全く線割れが見られない。
    ○:若干の線割れが観察されるが、気にならない程度。
    ×:線割れがはっきりと認識される。
Figure JPOXMLDOC01-appb-T000001
 上記表1の結果から明らかなように、本発明となる実施例1~5の筆記具用水性インク組成物は、満足のいく経時筆記性が保たれ、顔料沈降性もなく、しかも、描線品位が優れることが判明した。
 比較例を個別的にみると、比較例1、2、4及び6は、キサンタンガムを用いた場合であり、比較例3はカルボキシビニルポリマーを用いた場合、比較例5はカルボキシメチルセルロース(CMC)を用いた場合、比較例7及び8は酸化セルロースが本発明の含有量の範囲外となる場合であり、比較例9は酸化セルロースが本発明の含有量の範囲内であっても極限粘度値が本発明の範囲外となる場合であり、これらの場合は、経時筆記性、耐顔料沈降性、描線品位の何れかについて満足のいく結果が得られないことが判った。
(試験例1)
 本発明(実施例1~5)で用いた酸化セルロースと比較例1、2、4及び6で用いたキサンタンガムとの剪断速度と粘度の関係について試験をした。すなわち、1%のキサンタンガム水溶液と0.5%の酸化セルロース分散液とを調製し、剪断速度3.83s-1、38.3s-1、383s-1の時の粘度をEMD型粘度計(東機産業社製)を用いて測定した。これらの結果を図1に示す。
 図1の結果を見ると、酸化セルロース及びキサンタンガムともに、剪断速度の増加に伴い粘度が低下する擬塑性流動を示すものであるが、本発明の酸化セルロースは静置時には高い粘度を示すが、流動時には極端に粘度が低下する流動特性を示し、挙動変化が大きいことが判る。
 上記表1の結果及び図1の結果を綜合的に考察すると、キサンタンガムのような従来の増粘・ゲル化剤と比較して、酸化セルロースを含有し、Cassonの式で導かれる極限粘度値が10mPa・s以下である筆記具用水性インク組成物は、低粘度でありながら粒子の保存安定性、経時筆記性および描線品位に優れることが判明した。
 水性のボールペン、マーキングペンなどの筆記具に好適な筆記具用水性インク組成物が得られる。

Claims (3)

  1.  酸化セルロースを0.05~1.5質量%含有し、Cassonの式で導かれる極限粘度値が10mPa・s以下であることを筆記具用水性インク組成物。
  2.  前記酸化セルロースは、数平均繊維径が2~150nmであることを特徴とする請求項1に記載の筆記具用水性インク組成物。
  3.  請求項1又は2に記載の筆記具用水性インク組成物を搭載したことを特徴とする筆記具。
PCT/JP2014/074824 2013-09-30 2014-09-19 筆記具用水性インク組成物 WO2015046048A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167011304A KR102257192B1 (ko) 2013-09-30 2014-09-19 필기구용 수성 잉크 조성물
CN201480053818.8A CN105593314B (zh) 2013-09-30 2014-09-19 书写工具用水性墨组合物
US15/023,313 US20160264800A1 (en) 2013-09-30 2014-09-19 Aqueous ink composition for writing instruments
EP14849348.9A EP3053970B8 (en) 2013-09-30 2014-09-19 Aqueous ink composition for writing instruments
ES14849348T ES2841139T3 (es) 2013-09-30 2014-09-19 Composición de tinta acuosa para instrumentos de escritura

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013203137A JP6202965B2 (ja) 2013-09-30 2013-09-30 筆記具用水性インク組成物
JP2013-203137 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015046048A1 true WO2015046048A1 (ja) 2015-04-02

Family

ID=52743185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074824 WO2015046048A1 (ja) 2013-09-30 2014-09-19 筆記具用水性インク組成物

Country Status (7)

Country Link
US (1) US20160264800A1 (ja)
EP (1) EP3053970B8 (ja)
JP (1) JP6202965B2 (ja)
KR (1) KR102257192B1 (ja)
CN (1) CN105593314B (ja)
ES (1) ES2841139T3 (ja)
WO (1) WO2015046048A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166808A1 (ja) * 2014-04-30 2015-11-05 Dic株式会社 水性顔料分散体および水性インク
JP6339914B2 (ja) * 2014-09-25 2018-06-06 三菱鉛筆株式会社 筆記具用水性インク組成物
JP2017048274A (ja) * 2015-08-31 2017-03-09 三菱鉛筆株式会社 筆記具用水性インク組成物
JP6571455B2 (ja) * 2015-08-31 2019-09-04 三菱鉛筆株式会社 筆記具用水性インク組成物
JP6647018B2 (ja) * 2015-11-12 2020-02-14 三菱鉛筆株式会社 筆記具用水性インク組成物
JP6809180B2 (ja) * 2015-12-08 2021-01-06 王子ホールディングス株式会社 塗料用組成物および筆記具
JP6896909B2 (ja) * 2015-12-09 2021-06-30 三菱鉛筆株式会社 ノック式筆記具
JP6712465B2 (ja) * 2016-01-14 2020-06-24 三菱鉛筆株式会社 筆記具用水性インク組成物
US10125284B2 (en) * 2016-05-20 2018-11-13 Canon Kabushiki Kaisha Aqueous ink, ink cartridge, and ink jet recording method
US10131806B2 (en) * 2016-05-20 2018-11-20 Canon Kabushiki Kaisha Aqueous ink, ink cartridge, and ink jet recording method
JP6843573B2 (ja) * 2016-09-30 2021-03-17 株式会社パイロットコーポレーション 筆記具用水性インキ組成物及びそれを用いた筆記具
EP3753746A1 (en) * 2019-06-20 2020-12-23 Société BIC Writing felt pen

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974175A (ja) 1982-10-20 1984-04-26 Sakura Color Prod Corp 水性ボ−ルペン用インキ組成物
JPS62124170A (ja) 1985-11-26 1987-06-05 Daicel Chem Ind Ltd 水性インキ組成物
JP2002235025A (ja) 2001-02-13 2002-08-23 Pilot Ink Co Ltd ボールペン用水性インキ組成物
JP2010001381A (ja) * 2008-06-20 2010-01-07 Mitsubishi Pencil Co Ltd 水性ボールペン用インク
JP2012087256A (ja) * 2010-10-22 2012-05-10 Dai Ichi Kogyo Seiyaku Co Ltd 粘性水系組成物およびその製法
JP2013091730A (ja) 2011-10-26 2013-05-16 Pilot Corporation 水性ボールペン用インキ組成物およびそれを用いた水性ボールペン
JP2013104133A (ja) * 2011-11-10 2013-05-30 Dai Ichi Kogyo Seiyaku Co Ltd 増粘用セルロース繊維の製法およびそれにより得られた増粘用セルロース繊維
JP2013103986A (ja) * 2011-11-14 2013-05-30 Mitsubishi Pencil Co Ltd ボールペン用インク組成物
JP2013181167A (ja) * 2012-03-05 2013-09-12 Dai Ichi Kogyo Seiyaku Co Ltd 水性インク組成物およびそれを用いた筆記具

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974175A (ja) 1982-10-20 1984-04-26 Sakura Color Prod Corp 水性ボ−ルペン用インキ組成物
JPS62124170A (ja) 1985-11-26 1987-06-05 Daicel Chem Ind Ltd 水性インキ組成物
JP2002235025A (ja) 2001-02-13 2002-08-23 Pilot Ink Co Ltd ボールペン用水性インキ組成物
JP2010001381A (ja) * 2008-06-20 2010-01-07 Mitsubishi Pencil Co Ltd 水性ボールペン用インク
JP2012087256A (ja) * 2010-10-22 2012-05-10 Dai Ichi Kogyo Seiyaku Co Ltd 粘性水系組成物およびその製法
JP2013091730A (ja) 2011-10-26 2013-05-16 Pilot Corporation 水性ボールペン用インキ組成物およびそれを用いた水性ボールペン
JP2013104133A (ja) * 2011-11-10 2013-05-30 Dai Ichi Kogyo Seiyaku Co Ltd 増粘用セルロース繊維の製法およびそれにより得られた増粘用セルロース繊維
JP2013103986A (ja) * 2011-11-14 2013-05-30 Mitsubishi Pencil Co Ltd ボールペン用インク組成物
JP2013181167A (ja) * 2012-03-05 2013-09-12 Dai Ichi Kogyo Seiyaku Co Ltd 水性インク組成物およびそれを用いた筆記具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
I. SHIBATA; A. ISOGAI: "Nitroxide-mediated oxidation of cellulose using TEMPO derivatives: HPSEC and NMR analyses of the oxidized products", CELLULOSE, vol. 10, 2003, pages 335 - 341, XP019234530, DOI: doi:10.1023/A:1027330409470

Also Published As

Publication number Publication date
JP6202965B2 (ja) 2017-09-27
US20160264800A1 (en) 2016-09-15
KR102257192B1 (ko) 2021-05-26
KR20160063382A (ko) 2016-06-03
JP2015067722A (ja) 2015-04-13
ES2841139T3 (es) 2021-07-07
EP3053970B8 (en) 2021-03-10
CN105593314A (zh) 2016-05-18
EP3053970B1 (en) 2020-12-09
EP3053970A4 (en) 2017-06-07
CN105593314B (zh) 2018-05-18
EP3053970A1 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
JP6202965B2 (ja) 筆記具用水性インク組成物
JP6339914B2 (ja) 筆記具用水性インク組成物
JP5545775B2 (ja) 水性インク組成物およびそれを用いた筆記具
JP6334139B2 (ja) 筆記具用水性インク組成物
JP6393568B2 (ja) 筆記具用水性インク組成物
JP6571455B2 (ja) 筆記具用水性インク組成物
JP2015174993A (ja) 筆記具用水性インク組成物
JP6322451B2 (ja) 筆記具
JP6712465B2 (ja) 筆記具用水性インク組成物
JP2017105907A (ja) 筆記具用水性インク組成物
JP2017125135A (ja) 筆記具用水性インク組成物
JP2017048274A (ja) 筆記具用水性インク組成物
JP6571496B2 (ja) 筆記具用水性インク組成物
JP6647018B2 (ja) 筆記具用水性インク組成物
JP2015101594A (ja) 筆記具用水性インク組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849348

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15023313

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167011304

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014849348

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014849348

Country of ref document: EP