WO2015046037A1 - 海中ケーブル、およびその遮水層用複層テープ - Google Patents

海中ケーブル、およびその遮水層用複層テープ Download PDF

Info

Publication number
WO2015046037A1
WO2015046037A1 PCT/JP2014/074805 JP2014074805W WO2015046037A1 WO 2015046037 A1 WO2015046037 A1 WO 2015046037A1 JP 2014074805 W JP2014074805 W JP 2014074805W WO 2015046037 A1 WO2015046037 A1 WO 2015046037A1
Authority
WO
WIPO (PCT)
Prior art keywords
convex
concave portion
concave
convex portion
pitch
Prior art date
Application number
PCT/JP2014/074805
Other languages
English (en)
French (fr)
Inventor
博紀 眞鍋
広幸 榊原
雅裕 南出
Original Assignee
古河電気工業株式会社
株式会社ビスキャス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 株式会社ビスキャス filed Critical 古河電気工業株式会社
Priority to EP14848362.1A priority Critical patent/EP3051540B1/en
Publication of WO2015046037A1 publication Critical patent/WO2015046037A1/ja
Priority to US15/017,169 priority patent/US10056171B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/282Preventing penetration of fluid, e.g. water or humidity, into conductor or cable
    • H01B7/2825Preventing penetration of fluid, e.g. water or humidity, into conductor or cable using a water impermeable sheath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/04Flexible cables, conductors, or cords, e.g. trailing cables
    • H01B7/045Flexible cables, conductors, or cords, e.g. trailing cables attached to marine objects, e.g. buoys, diving equipment, aquatic probes, marine towline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/14Submarine cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/2806Protection against damage caused by corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/282Preventing penetration of fluid, e.g. water or humidity, into conductor or cable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/544Torsion strength; Torsion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/18Layered products comprising a layer of natural or synthetic rubber comprising butyl or halobutyl rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/20Layered products comprising a layer of natural or synthetic rubber comprising silicone rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/16Submarines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/18Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Definitions

  • the present invention relates to a submarine cable or the like for offshore floating facilities.
  • Underwater cables are used to transmit power from offshore floating facilities.
  • three core wires for power are twisted together for three-phase AC power transmission, and armored wires for supporting cable load are provided on the outer periphery of the core, and a plastic layer for preventing external damage is provided on the outside. Extruded coated structure.
  • a submarine cable for example, on the outer periphery of a linear assembly in which a plurality of cable wires and twisted reinforcement wires are twisted in one direction, the cable wire core and the twisted reinforcement wires are twisted in the opposite direction.
  • an underwater cable in which an armored body in which armored wires are twisted together is provided, and the torque balance applied by canceling the twisting torque acting on the linear assembly and the armored body is known (Patent Document 1).
  • a water shielding layer is formed on the outer periphery of the insulator (shield layer) in the power line core.
  • the water barrier of the power cable core is formed of a metal layer such as a metal tape. Therefore, there is a possibility that the metal layer constituting the water shielding layer may be damaged, and the fatigue life in the conventional water shielding layer structure is said to be about 5 to 7 years depending on the sea weather conditions.
  • the present invention has been made in view of such a problem, and provides an underwater cable or the like excellent in bending fatigue characteristics of a water shielding layer capable of achieving both sufficient flexibility and high water shielding properties. For the purpose.
  • the first invention is a submarine cable, and includes a plurality of power cable cores in which an insulating layer, a shield layer, a first water shielding layer, and an anticorrosion layer are formed on a conductor.
  • a plurality of wires are arranged in the circumferential direction of the entire outer periphery of the power wire core on the outer peripheral side of the entire power wire core, and the wire rod is provided in a spiral shape in the axial direction of the power wire core
  • a multi-layer tape comprising at least an armored portion formed and an external anticorrosion layer formed on the outer peripheral side of the armored portion, wherein the first water shielding layer sandwiches a metal layer with a resin.
  • the metal layer of the multilayer tape is formed with at least one of a convex portion or a concave portion repeatedly, and each convex portion or the concave portion is formed apart from each other via a flat portion, In any cross section in the axial direction of the water shielding layer, the convex portion or the concave portion At least a portion of a subsea cable being arranged at a predetermined pitch.
  • the water shielding layer is composed of a multi-layer tape in which a metal layer is sandwiched between resins, it is possible to reliably block the ingress of moisture from the outside. Therefore, deterioration of the insulation performance of the cable due to moisture can be prevented over a long period of time. Further, since the metal layer is sandwiched between the resins, the metal layer is not torn or bent when the water shielding layer is constructed. For this reason, a water shielding layer can be constructed reliably. Furthermore, the internal shield layer is not damaged by the metal layer.
  • the multi-layer tape metal layer
  • the multi-layer tape can be easily deformed in the direction of forming the concavo-convex shape when the multi-layer tape is wound. For this reason, it can suppress that a multilayer tape becomes a hindrance of a deformation
  • a flat portion is formed between the concave and convex shapes of the metal layer. That is, the convex portion and the concave portion, or the convex portions and the concave portions are not connected.
  • corrugated shape to a metal layer is easy.
  • the corrugations are formed so that the convex portions and the concave portions are continuously connected, it is difficult to form all the convex portions and the concave portions, or the joint portions between the convex portions and the concave portions smoothly and accurately. Therefore, the shape of the connected portion is not stable, and the shape variation increases. For this reason, there is a possibility that a generation source of a flaw or a stress concentration portion may be formed by an abrupt shape change portion or the like.
  • the concave portions or the convex portions are formed on the flat portion so as to be separated from each other independently, the respective shapes are likely to be stable, and the shape variation between the flat portion and the convex portion or the concave portion is unlikely to occur. Moreover, it is easy to manufacture a mold or the like for forming such a shape.
  • the flat part can be used as a reference position during manufacturing control when forming the concave / convex shape, and the concave / convex shape can be stably formed by grasping the distance from the flat part to the convex part, the concave part, and the top of each. It becomes possible to do.
  • the flat portion may continue in a straight line, particularly with respect to the axial direction of the power cable core. That is, there is a possibility that there is a portion where the water shielding layer does not have an uneven shape with respect to the axial direction of the power core. If it becomes like this, there exists a possibility that a deformation
  • transformation may be obstructed with respect to the flexibility of the underwater cable (electric power wire core) as mentioned above.
  • the flat portion in any cross section in the axial direction of the water shielding layer, at least a part of the convex portions or the concave portions is always arranged at a predetermined pitch. That is, the flat portion is not formed linearly in the axial direction. Therefore, since the uneven shape is always repeated in the axial direction for any direction of bending, the followability to deformation is excellent.
  • the metal layer has a substantially circular first convex portion or concave portion and a substantially circular second convex portion or concave portion in the circumferential pitch P1 of the water shielding layer and the axial direction of the water shielding layer, respectively.
  • the first convex portion or the concave portion and the second convex portion or the concave portion are arranged in a staggered pattern in a grid pattern of the pitch P2, and the respective convex portions or concave portions of the first convex portion or the concave portion are arranged in the axial direction of the water shielding layer.
  • the convex portions or the concave portions can be surely arranged at a predetermined pitch in any cross section in the axial direction of the water shielding layer.
  • the arrangement direction in which the distance between the convex portions or the concave portions is the shortest in the axial direction of the water shielding layer it efficiently follows the bending deformation of the submarine cable (power core). be able to.
  • substantially circular first convex portions or concave portions and substantially circular second convex portions or concave portions are arranged in a staggered manner in a lattice pattern having the same pitch P, respectively.
  • D1 and D2 ⁇ P, and P ⁇ D1 + D2 ⁇ 2 1/2 ⁇ P The relationship may be satisfied, and further, the relationship of P ⁇ 2 1/2 ⁇ D1 or P ⁇ 2 1/2 ⁇ D2 may be satisfied.
  • the water shielding layer can reliably follow not only the deformation in the bending direction but also the deformation in all directions. For example, according to a change in the amount of power generated in offshore wind power generation, the current flowing through the submarine cable fluctuates, thereby changing the amount of heat generated in the conductor. In addition, when the load increases due to strong winds when the weather changes, a large amount of heat is generated in the cable conductor. Therefore, with such a temperature change, the submarine cable not only bends but also expands and contracts in the radial direction. In addition, when the submarine cable oscillates in the sea and repeats unstable movements due to ocean currents or tidal currents, some torsional stress may be applied in addition to bending stress.
  • the concave portions or the convex portions can be arranged so that the flat portions do not continue linearly in any direction and the uneven shapes are always continuous. For this reason, the deformation of the metal layer can follow not only the axial direction of the submarine cable (power core) but also the deformation in the circumferential direction and the twisting direction.
  • the term “projections or recesses are formed in a grid-like position” refers to an arrangement in which the projections or recesses are repeatedly formed at the same pitch in two directions perpendicular to each other.
  • the staggered arrangement means that the first convex portion or the concave portion and the second convex portion or the concave portion are repeatedly arranged in the same direction, and shifted from each other by a half pitch in each repeating direction. It means that it is arranged in the state.
  • the metal layer has a substantially circular first convex portion or concave portion and a substantially circular second convex portion or concave portion arranged in a rhombus shape having the same pitch P, and in a staggered manner.
  • Diagonal lines are arranged in the axial direction of the water shielding layer, the diameter of the first protrusion or recess is D1, the diameter of the second protrusion or recess is D2, and the first protrusion or recess is The diagonal pitch of the rhombus, the pitch with respect to the circumferential direction of the water shielding layer is P1, the diagonal pitch of the rhombus of the first convex portion or the concave portion, and with respect to the longitudinal direction of the water shielding layer When the pitch is P2, the relationship of D1 ⁇ P, D2 ⁇ P, (D1 + D2) ⁇ P1, and (D1 + D2) ⁇ P2 is satisfied, and further, the relationship of P1 ⁇ 2D1 or P1 ⁇ 2D2 May be satisfied
  • each of the first convex portion or the concave portion and the second convex portion or the concave portion can be arranged not only in a lattice shape so as to be orthogonal to each other but also in a rhombus shape. . Even in this case, it is possible to efficiently follow the bending deformation of the submarine cable (power core).
  • the metal layer has a substantially elliptic first convex portion or concave portion and a substantially elliptic second convex portion or concave portion, each having a pitch P1 in the circumferential direction of the water shielding layer and an axis of the water shielding layer.
  • first convex portion or the concave portion and the second convex portion or the concave portion of the first convex portion or the concave portion are arranged in the axial direction of the water shielding layer.
  • the circumferential diameter of the water shielding layer of the first convex portion or concave portion is D1W
  • the axial diameter of the water shielding layer of the first convex portion or concave portion is D1L
  • the second The diameter of the water shielding layer in the circumferential direction of the convex portion or the concave portion is D2W
  • the diameter of the water shielding layer of the second convex portion or the concave portion is The radial direction and D2L, a diagonal direction of the pitch of the first projections or recesses, P3, the first projections or recesses pitch calculated by (P1 2 + P2 2) 1/2
  • the length of the second convex portion or concave portion on the line segment connecting in the oblique direction is D2S
  • the length of the first convex portion or concave portion on the line segment connecting the diagonal direction of the second convex portion or concave portion is When the length is D1S, the relationship of D1W ⁇ P1, D1L ⁇
  • the present invention even when the first convex portion or the concave portion having a substantially elliptic shape and the second convex portion or the concave portion having a substantially elliptic shape are used, the bending deformation of the submarine cable (power core) is prevented. Can follow up efficiently
  • the metal layer has a substantially elliptical first convex part or concave part and a substantially elliptical second convex part or concave part arranged in a staggered manner in a lattice shape with the same pitch P, respectively,
  • a major axis direction or a minor axis direction of each of the first convex part or the concave part and the second convex part or the concave part is arranged toward the axial direction of the water shielding layer, and Diagonal lines are arranged in the axial direction of the water shielding layer, the diameter of the first convex portion or the concave portion in the circumferential direction of the water shielding layer is D1W, and the water shielding layer of the first convex portion or the concave portion
  • the diameter in the axial direction is D1L
  • the diameter in the circumferential direction of the water shielding layer of the second convex portion or concave portion is D2W
  • each of the approximately elliptical first protrusions or recesses and the approximately elliptical second protrusions or recesses are not only arranged in a lattice pattern so as to be orthogonal to each other, It can also be arranged in a diamond shape. Even in this case, it is possible to efficiently follow the bending deformation of the submarine cable (power core).
  • the metal layer has a substantially elliptical first convex part or concave part and a substantially elliptical second convex part or concave part arranged in a rhombus shape having the same pitch P, and staggered with respect to each other,
  • the first convex portion or the concave portion and the second convex portion or the concave portion of each convex portion or the concave portion have a major axis direction or a minor axis direction arranged in an axial direction of the water shielding layer, Diagonal lines are arranged in the axial direction of the water shielding layer, the diameter of the first convex portion or the concave portion in the circumferential direction of the water shielding layer is D1W, and the water shielding layer of the first convex portion or the concave portion
  • the diameter in the axial direction is D1L
  • the diameter in the circumferential direction of the water shielding layer of the second convex portion or concave portion is D2W
  • the pitch in the oblique direction of the first convex portion or the concave portion, and the pitch with respect to the longitudinal direction of the water shielding layer is P2, the line segment connecting the arrangement direction of the first convex portion or the concave portion
  • the length of the second convex portion or concave portion is D2S
  • each of the approximately elliptical first protrusions or recesses and the approximately elliptical second protrusions or recesses are arranged in a rhombus. It is possible to reliably follow deformation in any direction.
  • a second water shielding layer may be formed on the inner surface of the external anticorrosion layer, and the second water shielding layer may be formed by the multilayer tape.
  • a water-impervious layer is also formed on the external anti-corrosion layer, and if this water-impervious layer is also formed of a multi-layer tape in the same manner as the water-impervious layer formed on the power cable core described above, flexibility It is possible to obtain a water-impervious layer having excellent fatigue resistance.
  • a second invention is a multilayer tape for a water shielding layer of a submarine cable, comprising a metal layer and a resin coating portion sandwiching the metal layer, wherein the metal layer is at least a convex portion or a concave portion.
  • One of them is repeatedly formed by being spaced apart from each other through a flat part, and at least a part of the convex part or the concave part is arranged at a predetermined pitch in an arbitrary cross section in the longitudinal direction of the multilayer tape. It is a multilayer tape for the water shielding layer of the underwater cable.
  • the metal layer has a substantially circular first convex portion or concave portion and a substantially circular second convex portion or concave portion having a pitch P1 in the width direction of the multilayer tape and a pitch P2 in the longitudinal direction of the multilayer tape, respectively.
  • the first convex portion or the concave portion and the second convex portion or the concave portion are arranged in a staggered lattice pattern at the same pitch P, and the diameter of the first convex portion or the concave portion is set.
  • the relationship ⁇ 2 1/2 ⁇ D1 or P ⁇ 2 1/2 ⁇ D2 may be satisfied.
  • the concave portions or the convex portions can be arranged so that the flat portions do not continue linearly in any direction and the concave and convex shapes are always continuous. For this reason, the deformation of the metal layer can follow not only the axial direction of the submarine cable (power core) but also the deformation in the circumferential direction and the twisting direction.
  • the metal layer has a substantially circular first convex portion or concave portion and a substantially circular second convex portion or concave portion arranged in a rhombus shape having the same pitch P, and staggered with respect to each other.
  • the diameter of the convex portion or the concave portion of the first convex portion or the concave portion is D1
  • the diameter of the second convex portion or the concave portion is D2
  • the diagonal pitch of the rhombus of the first convex portion or the concave portion, and with respect to the width direction of the multilayer tape When the pitch is P1, the diagonal pitch of the rhombus of the first convex part or the concave part, and the pitch with respect to the longitudinal direction of the multilayer tape is P2, D1 ⁇ P and D2 ⁇ P, and The relationship of (D1 + D2) ⁇ P1 and (D1 + D2) ⁇ P2 may be satisfied, and further the relationship of P1 ⁇ 2D1 or P1 ⁇ 2D
  • the substantially elliptical first convex part or concave part and the substantially elliptical second convex part or concave part can be arranged in a rhombus, respectively.
  • the metal layer has a substantially elliptical first convex portion or concave portion and a substantially elliptical second convex portion or concave portion in the pitch P1 in the width direction of the multilayer tape and the longitudinal direction of the multilayer tape, respectively.
  • the first convex portion or the concave portion and the second convex portion or the concave portion of the first convex portion or the concave portion are arranged in a staggered pattern with a pitch P2.
  • the first convex portion or the concave portion and the second convex portion or the concave portion of each of the first convex portion or the concave portion are arranged in the longitudinal direction of the multilayer tape.
  • the width of the multilayer tape of the first convex part or concave part is D1W
  • the diameter of the multilayer tape of the first convex part or concave part is D1L
  • the diameter of the second convex part or concave part is The diameter of the layer tape in the width direction is D2W
  • the second convex portion or the multiple layers of the concave portion The longitudinal diameter of the-loop and D2L, a diagonal direction of the pitch of the first projections or recesses, the pitch calculated by (P1 2 + P2 2) 1/2 P3, the first convex
  • the length of the second convex portion or concave portion on the line segment connecting the portion or concave portion in the oblique direction is D2S
  • the first convex shape on the line segment connecting the diagonal direction of the second convex portion or concave portion When the length of the part or the recess is D1S, the relationship of D1W ⁇ P1, D1L ⁇ P2, D2W ⁇ P1,
  • the approximately elliptical first protrusions or recesses and the approximately elliptical second protrusions or recesses can be arranged in a lattice pattern.
  • the metal layer has a substantially elliptical first convex part or concave part and a substantially elliptical second convex part or concave part arranged in a staggered manner in a lattice shape with the same pitch P, respectively,
  • the first convex portion or the concave portion and the second convex portion or the concave portion of each of the convex portion or the concave portion are arranged in a major axis direction or a minor axis direction toward a longitudinal direction of the multilayer tape, and a diagonal line of the lattice Are arranged in the longitudinal direction of the multilayer tape, the width in the width direction of the multilayer tape of the first convex portion or the concave portion is D1W, the diameter in the longitudinal direction of the multilayer tape of the first convex portion or the concave portion D1L, the width in the width direction of the multilayer tape of the second protrusion or recess is D2W, the diameter in the longitudinal direction of the multilayer
  • a substantially elliptic first convex part or concave part and a substantially elliptical second convex part or concave part are arranged in a lattice pattern, and the diagonal direction of the lattice is the seabed. They can be arranged in the axial direction of the cable.
  • the metal layer has a substantially elliptical first convex part or concave part and a substantially elliptical second convex part or concave part arranged in a rhombus shape having the same pitch P, and staggered with respect to each other,
  • the first convex portion or the concave portion and the second convex portion or the concave portion of each convex portion or the concave portion are arranged in a major axis direction or a minor axis direction toward the longitudinal direction of the multilayer tape, and a rhombus diagonal line
  • the width in the width direction of the multilayer tape of the first convex portion or the concave portion is D1W
  • the width in the width direction of the multilayer tape of the second protrusion or recess is D2W
  • a substantially elliptic first convex portion or concave portion and a substantially elliptic second convex portion or concave portion are arranged in a rhombus, and the diagonal direction of the rhombus is arranged in the submarine cable.
  • an undersea cable or the like excellent in the bending fatigue characteristics of a water shielding layer capable of achieving both sufficient flexibility and high water shielding properties has been made in view of such problems. Can be provided.
  • FIG. 2A and 2B are diagrams illustrating a configuration of a multilayer tape 30, in which FIG. 3A is a perspective view, FIG. 2B is a cross-sectional view taken along line AA in FIG. 3A, and FIG. It is a perspective view of the resin coating layer which shows the multilayer tape 30, (a) is a top view, (b) is the elements on larger scale. It is a figure of the resin coating layer which shows the multilayer tape 30, (a) is a plane enlarged view, (b) is each part sectional drawing of (a).
  • FIG. (A) is a figure which shows the bending state of the submarine cable 3
  • (b) is a figure which shows the deformation
  • FIG. (A) is a figure which shows the effect of the water shielding layer 21,
  • (b) is a figure which shows the water shielding effect of the multilayer tape 30.
  • FIG. It is a figure which shows the uneven
  • FIG. 1 is a view showing a state in which the undersea cable 3 is laid.
  • An offshore floating facility 1 is disposed on the ocean.
  • the offshore floating facility 1 is, for example, a floating offshore wind power generator.
  • the offshore floating facility 1 is in a state of floating on the ocean, and the lower part is fixed to the seabed by a mooring line 11.
  • a plurality of offshore floating facilities 1 are arranged on the ocean.
  • the offshore floating facility 1 is connected to the submarine cable 3 at the connection portion 5c.
  • the submarine cables 3 are connected to each other at a connection portion 5a installed on the seabed. That is, the offshore floating facilities 1 are connected to each other by the submarine cable 3.
  • a buoy 9 is connected between the offshore floating facility 1 of the undersea cable 3 and the connecting portion 5b. That is, the submarine cable 3 is floated in the sea by the buoy 9. Details of the submarine cable 3 will be described later.
  • the submarine cable 3 on the ground side is connected to the submarine cable 7 through a connecting portion 5a installed on the seabed.
  • the submarine cable 7 has substantially the same configuration as the submarine cable 3.
  • the submarine cable 7 is connected to a ground power transmission facility or the like. That is, the electricity generated by the offshore floating facility 1 is transmitted to the ground by the submarine cable 3 and the submarine cable 7.
  • the offshore floating facility 1 is greatly oscillated by ocean waves and tidal currents. Therefore, the submarine cable 3 connected to the offshore floating facility 1 follows the swinging of the offshore floating facility 1 and is repeatedly subjected to large bending deformation in the sea. The submarine cable 3 is floated in the sea by the buoy 9, so that it is not dragged to the bottom of the sea, and local stress is applied to the submarine cable 3 due to tide fullness or current. Is prevented.
  • FIG. 2 is a cross-sectional view of the submarine cable 3.
  • the submarine cable 3 is mainly composed of a power line core 13, armoring 23 a and 23 b, an external anticorrosion layer 25, and the like.
  • the power wire core 13 includes a conductor portion 15, an insulating portion 17, a shield layer 19, a water shielding layer 21, a corrosion protection layer 22, and the like.
  • the conductor portion 15 is configured by twisting copper strands, for example.
  • An insulating portion 17 is provided on the outer peripheral portion of the conductor portion 15.
  • the insulating part 17 is made of, for example, cross-linked polyethylene.
  • the insulating portion 17 may have a three-layer structure including an internal semiconductive layer, an insulator layer, and an external semiconductive layer.
  • By having a three-layer structure consisting of an internal semiconductive layer, an insulator layer, and an external semiconductive layer it is possible to suppress water tree degradation, which is a partial discharge phenomenon, and to obtain an effect as a mechanical buffer layer between the insulator and the metal layer. Can do.
  • the electric field concentrates there and becomes the starting point of water tree or partial discharge. Therefore, the electric field at the contact interface can be reduced by sandwiching a semiconductive resin therebetween.
  • the inner and outer semiconductive layers are sometimes referred to as “electric field relaxation layers”.
  • a shield layer 19 is provided on the outer periphery of the insulating portion 17.
  • the shield layer 19 is made of a conductive member, and is made of, for example, a metal, a conductive resin, or a conductive fiber.
  • the shield layer 19 is connected to the ground at the end of the undersea cable 3.
  • a water shielding layer 21 is provided on the outer periphery of the shielding layer 19.
  • the water shielding layer 21 is constituted by a multilayer tape in which a metal layer and a resin layer are laminated. The configuration of the multilayer tape will be described later.
  • An anticorrosion layer 22 is provided on the outer periphery of the water shielding layer 21.
  • the anticorrosion layer 22 is made of, for example, a resin that is extrusion coated on the outer periphery of the water shielding layer 21.
  • the anticorrosion layer 22 is for protecting each internal layer.
  • the anticorrosion layer 22 is made of, for example, polyethylene, ethylene-1-butene copolymer, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-propylene-diene terpolymer, nylon 6,6 Polyamide resin such as nylon 12 and nylon 11, polyarylate resin, and polyvinyl chloride resin non-crosslinked type can be used.
  • the power wire core 13 configured in this way is twisted together for three-phase AC power transmission. Further, after twisting the three power wires 13, an intervening layer 27 such as a resin string is formed in the gap to form a substantially circular core. An armor portion for supporting the load of the submarine cable 3 is provided on the outer periphery of the obtained core.
  • the intervening layer 27 may be provided with a communication cable such as an optical cable 29 as necessary.
  • the optical cable is preferably provided at three positions in contact with the two anticorrosion layers 22 of the adjacent cable conductors of the intervening layer 27. With such an arrangement, the arrangement of the communication cable can be stabilized, and at the same time, the stress acting on the communication cable can be reduced because the communication cable can be arranged at a position close to the center.
  • the armor portion has a two-layer structure of, for example, armor portions 23a and 23b.
  • the armoring 23a, 23b is, for example, a metal wire (steel wire or stainless steel wire) or a fiber reinforced plastic wire.
  • a plurality of armor portions 23a and 23b provided in the circumferential direction are wound around the outer periphery of the core with a long pitch without a gap. That is, the armorings 23a and 23b are formed such that the winding pitch is sufficiently long with respect to the outer diameter of the armorings 23a and 23b.
  • the inner armor 23a and the outer armor 23b are spirally wound around the outer periphery of the core in opposite directions.
  • a water shielding layer 24 is provided on the outer periphery of the armored portions (armored portions 23a and 23b) as necessary.
  • An outer anticorrosion layer 25 is provided on the outer periphery of the water shielding layer 24.
  • the external anticorrosion layer 25 is made of, for example, a resin that is extrusion-coated on the outer periphery of the exterior portion.
  • the resin constituting the external anticorrosion layer 25 for example, polyolefin resin, polyamide resin (polyamide 11, polyamide 12, etc.) can be used.
  • FIG. 3A and 3B are diagrams showing the multilayer tape 30, FIG. 3A is a perspective view, FIG. 3B is a cross-sectional view taken along the line AA in FIG. 3A, and FIG. It is a BB line sectional view of a).
  • the multilayer tape 30 includes a metal layer 31 and resin coating portions 33a and 33b. The metal layer 31 is sandwiched between the resin coating portions 33a and 33b.
  • the metal layer 31 may be a film that is thin, easy to process, and excellent in corrosion resistance.
  • stainless steel, aluminum, copper, lead, or clad steel whose outer surface is clad with a material having good corrosion resistance can be used.
  • the metal layer 31 has a thickness of about 0.05 mm, for example, and the multilayer tape 30 as a whole may be about 0.2 to 1.0 mm, for example.
  • the resin coating portions 33a and 33b are resin members, and can prevent the metal layer 31 from being bent, torn, or wrinkled when the water shielding layer 21 is constructed.
  • the material of the resin coating portions 33a and 33b will be described later.
  • the metal layer 31 has a substantially circular uneven shape.
  • convex portions 35 a are formed at a predetermined interval in a certain cross-sectional shape of the metal layer 31.
  • the recessed part 35b is formed in the cross-sectional shape with the metal layer 31 by predetermined spacing.
  • the convex part 35a and the recessed part 35b are respectively spaced apart and arranged, and the flat part 35c is formed between the convex part 35a and the recessed part 35b.
  • Such a metal layer 31 can be formed by, for example, passing a metal film through a roll having a concavo-convex shape formed on the surface and passing the metal film through the roll. Moreover, you may form an uneven
  • the multilayer tape 30 can be manufactured, for example, by extruding and coating a resin on a metal film having an uneven shape.
  • an uneven metal film may be installed in a corresponding mold and the resin may be integrated by injection.
  • attachment and pressure bonding, may be used.
  • a metal layer can also be formed by vapor deposition etc. on the resin member by which the surface was previously formed in uneven
  • the height of the uneven shape is preferably 0.2 to 0.6 mm, and particularly preferably 0.3 to 0.5 mm. If the uneven height is too low, the effect of making the uneven shape is small, and if the uneven height is too large, the thickness change will be large, on the contrary, the durability will be inferior, and the uneven shape will be deformed during production Because.
  • the pitch of the concavo-convex convex portions 35a or concave portions 35b is preferably 0.4 to 4 mm. If the concavo-convex pitch is too narrow, the workability deteriorates because the strain concentrates extremely when processing the concavo-convex shape. If the uneven pitch is too wide, uneven processing is easy, but the effect of improving the durability is reduced because the effect of absorbing strain by the convex portions 35a and the concave portions 35b is reduced.
  • FIG. 4A is a perspective view of the resin coating portion of the multilayer tape 30.
  • the convex portion 35a is indicated by a solid line
  • the concave portion 35b is indicated by a dotted line.
  • the metal layer 31 has the convex portions 35a and the concave portions 35b.
  • the convex portions 35a are repeatedly formed in a lattice shape with a pitch P.
  • the arrangement direction of the convex portions 35a coincides with the longitudinal direction (F direction in the drawing) and the width direction (G direction in the drawing) of the multilayer tape 30.
  • the arrangement direction of the protrusions 35a is a direction in which the protrusions 35a closest to each other are arranged.
  • the recesses 35b are repeatedly formed in a lattice shape with a pitch P.
  • the arrangement direction of the concave portions 35b is the same as that of the convex portions 35a, and the concave portions 35b are arranged so as to be shifted by a half pitch in the respective arrangement directions with respect to the convex portions 35a. That is, the concave portion 35b is positioned at the center surrounded by the four vertical and horizontal convex portions 35a, and the convex portion 35a is positioned at the center surrounded by the four vertical and horizontal concave portions 35b.
  • the convex portion 35a and the concave portion 35b are formed independently of each other without being in contact with each other. That is, the convex part 35a and the concave part 35b are spaced apart via the flat part 35c. Further, the convex portions 35a and the concave portions 35b are also arranged apart from each other through the flat portion.
  • the diameter of the convex portion 35a is D1
  • the diameter of the concave portion 35b is D2.
  • the concave portions 35b do not contact each other, a flat portion is formed between them, and the concave portions 35b are independently formed under the following conditions: D2 ⁇ P (2) It is.
  • the multilayer tape 30 functions as the water shielding layer 21
  • the axial direction of the power line core 13 is the longitudinal direction of the multilayer tape 30. That is, the formation direction of the convex portion 35 a or the formation direction of the concave portion 35 b corresponds to the axial direction of the power core 13.
  • the metal layer 31 is deformed by the tensile force in the longitudinal direction of the multilayer tape 30. At this time, the metal layer 31 can easily follow the deformation by forming an uneven shape on the metal layer 31.
  • the metal layer 31 does not have an uneven shape in this portion. For this reason, the followability to a deformation
  • the convex portions 35a or the concave portions 35b must be arranged at predetermined intervals.
  • FIG. 4B is a partially enlarged view of FIG.
  • FIG. 5 (a) is a view similar to FIG. 4 (b), and FIG. 5 (b) is a view showing a cross-sectional view (uneven shape of the metal layer 31) of each part of FIG. 5 (a).
  • a line L in FIG. 5A is a cross-sectional view passing through the center of the convex portion 35a.
  • the protrusions 35a are arranged at a predetermined pitch in this cross section.
  • wire of Fig.5 (a) is an end part vicinity of the convex part 35a, Comprising: It is a tangent of the recessed part 35b.
  • the protrusions 35a are arranged at a predetermined pitch even in this cross section.
  • FIG. 5A is a cross-sectional view passing through the centers of the convex portion 35a and the concave portion 35b.
  • the convex portions 35a and the concave portions 35b are arranged at a predetermined pitch.
  • the O line in FIG. 5A is in the vicinity of the end of the concave portion 35b and is a tangent to the convex portion 35a.
  • the recesses 35b are arranged at a predetermined pitch.
  • the Q line in FIG. 5A is a cross-sectional view passing through the center of the recess 35b.
  • the recesses 35b are arranged at a predetermined pitch even in this cross section.
  • the convex portion 35a or the concave portion 35b is not formed at all, and only the flat portion 35c is not aligned. That is, in any cross section, the convex portions 35a or the concave portions 35b are always formed at a predetermined pitch. Therefore, even if the power core 13 (submarine cable 3) is bent in any direction, since the metal layer 31 has an uneven shape in any cross section, it can follow the bending deformation.
  • the multilayer tape 30a shown in FIG. 6 can also be used.
  • 6A is a plan view of the multilayer tape 30a (a perspective view of the resin coating portion), and
  • FIG. 6B is a partially enlarged view thereof.
  • the multilayer tape 30a has substantially the same configuration as the multilayer tape 30, but the uneven shape arrangement of the metal layer 31 is different. In the following description, duplicate descriptions are omitted.
  • the convex portions 35a and the concave portions 35b are repeatedly formed in a lattice shape with a pitch P.
  • the arrangement direction of the convex portions 35a and the concave portions 35b coincides with 45 ° directions (S direction and T direction in the drawing) with respect to the longitudinal direction of the multilayer tape 30a.
  • the flat portion 35c is not formed linearly in any cross section in the longitudinal direction, but is flat in the direction of 45 ° with respect to the longitudinal direction.
  • the portions 35c may be arranged in a straight line (for example, the H line in FIG. 4A). If the power line core 13 (submarine cable 3) is deformed only by simple bending, it is sufficient that the power line core 13 (submarine cable) can follow the deformation with respect to axial tension or the like. 3) may be given radial deformation or twisting. For this reason, when the multilayer tape 30 is used, the followability may deteriorate with respect to the deformation in the 45 ° direction with respect to the axial direction.
  • the convex portion 35a and the concave portion 35b are spaced at a predetermined interval (pitch P) in any cross section. It is formed. That is, in the multilayer tape 30a, the convex portions 35a or the concave portions 35b are always formed at a predetermined pitch not only in the longitudinal direction but also in any cross section in all directions.
  • the shortest pitch (E in the figure) between the convex part 35a and the concave part 35b is 1/2 of the pitch (C in the figure) in the oblique direction between the convex parts 35a (that is, the direction in which the convex part 35a and the concave part 35b are arranged).
  • the flat portion 35c is not formed linearly. That is, P ⁇ 2 1/2 ⁇ D1 or P ⁇ 2 1/2 ⁇ D2 (6) If the above is satisfied, the flat portion 35c is not formed in a straight line. However, if both P ⁇ 2 1/2 ⁇ D1 and P ⁇ 2 1/2 ⁇ D2 are satisfied, the convex portion 35a and the concave portion 35b are connected to each other, so that only one of them is satisfied.
  • the multilayer tape 30a has convex portions 35a or concave portions 35b formed in the cross section in any direction
  • the arrangement direction of the convex portions 35a and the concave portions 35b with respect to the longitudinal direction of the multilayer tape 30a is illustrated.
  • the arrangement is not limited to the example described above, and it may be arranged in any direction.
  • Example 3 the multilayer tape 30b shown in FIG. 7 can also be used.
  • FIG. 7A is a plan view of the multilayer tape 30b (a perspective view of the resin coating portion), and FIG. 7B is a partially enlarged view thereof.
  • the multilayer tape 30b has substantially the same configuration as the multilayer tape 30, but the shape of the concavo-convex shape of the metal layer 31 is different.
  • the convex part 35a and the concave part 35b are substantially elliptical.
  • the convex portions 35a and the concave portions 35b are repeatedly formed in a lattice shape with a pitch P1 in the width direction and a pitch P2 in the longitudinal direction.
  • the arrangement direction of the convex portions 35a and the concave portions 35b coincides with the longitudinal direction (F direction in the drawing) and the width direction (G direction in the drawing) of the multilayer tape 30.
  • the major axis direction or minor axis direction of the ellipse of the convex part 35a and the concave part 35b coincides with the longitudinal direction (F direction in the figure) and the width direction (G direction in the figure) of the multilayer tape 30.
  • the diameter in the width direction of the convex portion 35a is D1W
  • the diameter in the longitudinal direction is D1L
  • the diameter in the width direction of the concave portion 35b is D2W
  • the diameter in the longitudinal direction is D2L.
  • the length of the concave portion 35b on the line segment connecting the convex portion 35a in the oblique direction in the pitch direction (C in the figure) calculated by (P1 2 + P2 2 ) 1/2 P is D2S.
  • D1S be the length of the convex portion 35a on the line segment connecting the diagonal direction of 35b.
  • the concave portions 35b do not contact each other, a flat portion is formed between them, and the concave portions 35b are independently formed under the following conditions: D2W ⁇ P1 (9) D2L ⁇ P2 (10) It is.
  • Example 4 the multilayer tape 30c shown in FIG. 8 can also be used.
  • FIG. 8A is a plan view of the multilayer tape 30c (a perspective view of the resin coating portion), and FIG. 8B is a partially enlarged view thereof.
  • the multilayer tape 30c has substantially the same configuration as the multilayer tape 30a, but the shape and arrangement of the concavo-convex shape of the metal layer 31 are different.
  • the convex part 35a and the concave part 35b are substantially elliptical.
  • the convex portion 35a and the concave portion 35b are repeatedly formed in a rhombus with a pitch P.
  • the diagonal direction of a rhombus corresponds with the longitudinal direction and width direction of the multilayer tape 30c.
  • the major axis direction or minor axis direction of the ellipse of the convex portion 35a and the concave portion 35b coincides with the longitudinal direction and the width direction of the multilayer tape 30c.
  • the diameter in the width direction of the convex portion 35a is D1W
  • the diameter in the longitudinal direction is D1L
  • the diameter in the width direction of the concave portion 35b is D2W
  • the diameter in the longitudinal direction is D2L.
  • the length of the concave portion 35b on the line segment connecting the convex portion 35a to the oblique direction of the multilayer tape 30c is D2S in the arrangement direction of the convex portions 35a and the concave portions 35b (S, T in the figure).
  • D1S be the length of the convex portion 35a on the line segment connecting the diagonal direction of 35b.
  • the shortest pitch between the convex portion 35a and the concave portion 35b is E1 (width direction pitch C1 / 2) or E2 (longitudinal direction pitch C2 / 2), (D1W + D2W) / 2 ⁇ E1 (16) (D1L + D2L) / 2 ⁇ E2 (17) It is.
  • the pitch in the width direction of the multilayer tape 30c between the convex portions 35a is C1
  • the pitch in the longitudinal direction of the multilayer tape 30c between the convex portions 35a is C2
  • D1W ⁇ C1, D1L ⁇ C2, D2W ⁇ C1, and D2L ⁇ C2 must be satisfied.
  • Equation (18) and Equation (19) are P ⁇ 2 1/2 D1W or P ⁇ 2 1/2 D2W (20) P ⁇ 2 1/2 D1L or P ⁇ 2 1/2 D2L (21) Should be satisfied.
  • FIG. 9 is a diagram showing a forming process when winding the multilayer tape 30 around the power wire core 13 on which the shield layer 19 is formed by vertical winding.
  • the insulating portion 17 is formed on the outer periphery of the conductor portion 15, and the shield layer 19 is formed on the outer periphery thereof.
  • a multilayer tape 30 is wound around the outer periphery of the shield layer 19.
  • the multilayer tape 30 is wound vertically as shown in FIG.
  • the multilayer tape 30 is sent to the power core 13 so that the longitudinal direction of the multilayer tape 30 is substantially the same as the axial direction of the power core 13.
  • both sides of the multilayer tape 30 are bent in a U shape so as to wrap the entire power core 13 (shield layer 19).
  • the power core 13 (shield layer 19) is wrapped by the multilayer tape 30. That is, as shown in FIG. 9B, both end portions of the multilayer tape 30 are wrapped around the outer periphery of the shield layer 19, and the shield layer 19 is wrapped with the multilayer tape 30. That is, the wrap portion 38 is formed along the axial direction of the power line core 13. As described above, the multilayer tape 30 is wound around the power core 13 (shield layer 19) by vertical winding, and the water shielding layer 21 is formed.
  • the multilayer tape 30 is wound so that the longitudinal direction of the multilayer tape 30 substantially coincides with the axial direction of the power line core 13 and the width direction of the multilayer tape 30 is the circumferential direction of the power line core 13.
  • the wrap length between the multilayer tapes 30 with respect to the entire length of the power core 13 can be shortened as compared with the case of wrapping with spiral winding.
  • a gap is slightly formed between the metal layers 31 in the wrap portion 38, but by shortening the length of the wrap portion, the metal layers 31 can be compared with each other with respect to the total length of the power core 13. The gap can be reduced. Moreover, since the wrap portion 38 is formed straight in the axial direction of the power core 13 by using the vertical winding, the wrap portion can be easily fused and the manufacturability is excellent.
  • the lap portion 38 needs to have a sufficient wrap allowance. In other words, the amount of water intrusion can be suppressed by increasing the lapping allowance of the lapping portion 38 sufficiently.
  • the anticorrosion layer 22 is extrusion coated on the outer periphery of the water shielding layer 21 thus formed.
  • the power core 13 is formed.
  • fusing point of the resin coating part 33a which comprises the water-impervious layer 21 (resin part which is located in the outer peripheral side when it is wound and contacts the anticorrosion layer 22) is higher than the melting point of the resin constituting the anticorrosion layer 22.
  • the resin constituting the resin coating portion 33a and the resin constituting the anticorrosion layer 22 may be compatible. If the resin coating portion 33a and the anticorrosion layer 22 are compatible and the melting point of the resin coating portion 33a is lower than the melting point of the anticorrosion layer 22, when the resin of the anticorrosion layer 22 is extruded, the anticorrosion layer 22 and the multiple layers It is easy to integrate the tape 30 and the like with each other. For this reason, when the anticorrosion layer 22 is formed, a shift or the like does not occur between the water shielding layer 21 and the anticorrosion layer 22.
  • the resin covering portion 33a may be nylon 12, and the anticorrosion layer 22 may be nylon 11.
  • the resin coating portion is low density polyethylene (LDPE)
  • the anticorrosion layer 22 is high density polyethylene (HDPE)
  • the resin coating portion is acid-modified EVA (ethylene-vinyl acetate copolymer)
  • the anticorrosion layer 22 is low density polyethylene (LDPE).
  • the resin coating portion 33a (the surface thereof) can be made of a rubber material (for example, ethylene rubber, ethylene propylene rubber, silicon rubber, urethane rubber, butyl rubber, etc.).
  • a rubber material for example, ethylene rubber, ethylene propylene rubber, silicon rubber, urethane rubber, butyl rubber, etc.
  • the entire resin coating portion 33a is made of a rubber material, the adhesion with the metal layer 31 may be inferior. For this reason, it is good also considering the resin coating part 33a as a multilayer. That is, the resin coating portion 33a may be provided with a resin layer excellent in adhesiveness with the metal layer 31 in the inner layer, and only the outer layer may be formed of a rubber material.
  • an adhesive layer may be further formed on the outer periphery of the resin coating portion 33a.
  • the resin coating portion 33a and the anticorrosion layer 22 can be bonded. For this reason, the anticorrosion layer 22 and the multilayer tape 30 etc. do not adhere and shift.
  • the resin coating portion 33b (the resin portion located on the inner peripheral side when it is wound and in contact with the shield layer 19) constituting the water shielding layer 21 may be made of a conductive resin.
  • a conductive resin in which a conductive filler or the like is mixed into EEA (ethylene-ethyl acrylate copolymer), PVC (polyvinyl chloride), EVA (ethylene-vinyl acetate copolymer) resin, or the like is used.
  • EEA ethylene-ethyl acrylate copolymer
  • PVC polyvinyl chloride
  • EVA ethylene-vinyl acetate copolymer
  • the internal shield layer 19 and the resin coating portion 33b can be electrically connected.
  • the shield layer 19 is connected to the ground at the end of the undersea cable 3.
  • the metal layer 31 can be electrically connected to the shield layer 19 by configuring the resin coating portion 33b on the inner surface side with a conductive resin. Therefore, the metal layer 31 can be connected to the ground.
  • FIG. 10 is a diagram showing a state in which the submarine cable 3 is deformed.
  • the power core 13 inside the submarine cable 3 is also bent in the same direction.
  • the bending deformation of the electric power core 13 causes tensile deformation.
  • FIG. 10B is a schematic diagram showing a state of the multilayer tape 30 in the tensile deformation portion of the power line core 13.
  • tensile deformation also occurs in the multilayer tape 30 wound around the portion, and attempts to follow the bending of the electric power core 13 (FIG. Middle arrow W direction).
  • the resin coating portions 33a and 33b can be easily followed and deformed by the elastic deformability of the resin.
  • the metal layer 31 since the metal layer 31 has a concavo-convex shape, it can easily follow the deformation by expansion and contraction of the convex portion 35a or the concave portion 35b.
  • the concavo-convex shape is repeatedly formed in any cross section in the axial direction of the power line core 13, the multilayer tape 30 (water shielding layer 21) is easily against bending deformation of the power line core 13. It can follow and deform. That is, the winding of the multilayer tape 30 having the metal layer 31 does not hinder the flexibility (deformation) of the power line core 13. Therefore, the power core 13 can follow the bending deformation of the submarine cable 3.
  • the uneven shape of the metal layer 31 is also formed in the circumferential direction. Therefore, it can be expanded and contracted in the radial direction of the cable. For example, even when the power core 13 expands in the radial direction and is pulled in the circumferential direction, the multilayer tape 30 can follow this deformation. Therefore, the power core 13 can follow the radial expansion / contraction caused by the temperature change of the submarine cable 3 or the like. Furthermore, as in the case of the multi-layer tape 30a, an uneven shape is always formed in the cross section in all directions, so that, for example, the power core 13 is swung and twisted by a tidal current or ocean current. Even when receiving, if the cable of the present invention is used, it is possible to follow the distortion in all directions including the axial direction and the circumferential direction.
  • FIG. 11A and 11B are views showing a cross section of the power core 13.
  • FIG. 11A is an axial cross-sectional view
  • FIG. 11B is an enlarged view of the multilayer tape 30 constituting the water shielding layer 21. It is.
  • the submarine cable 3 is usually used, for example, submerged or floated in the sea.
  • the external anticorrosion layer 25 and the anticorrosion layer 22 are made of resin, they have a certain degree of waterproofness, but the resin itself has a slight water absorption. For this reason, the seawater component penetrates slightly into the anticorrosion layer 22. In particular, a high water pressure is applied to the seabed, and there is a great risk of penetration of seawater components into the anticorrosion layer 22 when used for a long time (in the direction of arrow X in the figure).
  • the water shielding layer 21 is provided on the inner peripheral surface of the anticorrosion layer 22. Accordingly, as shown in FIG. 11B, the water shielding layer 21 reliably shields the ingress of water from the outside by the internal metal layer 31 (in the direction of arrow Y in the figure). Therefore, there is no fear of dielectric breakdown due to water entering the insulating portion 17.
  • the water shielding layer 21 is provided on the outer periphery of the shield layer 19, the dielectric breakdown does not occur due to the ingress of water from the outside. Further, since the water shielding layer 21 is composed of a multilayer tape 30 or the like in which the metal layer 31 is sandwiched between the resin coating portions 33a and 33b, the flow of water from the outside in the tubular body radial direction (tubular center direction) The metal layer 31 can be reliably shielded.
  • the metal layer 31 is sandwiched between the resin coating portions 33a and 33b, the metal layer 31 is not torn or bent when the water shielding layer 21 is constructed, and the water shielding layer 21 can be reliably constructed. it can. Furthermore, since the metal layer 31 does not contact the shield layer 19 directly, each layer is not damaged during manufacturing.
  • the multilayer tape 30 (the metal layer 31) easily expands and contracts in the direction of forming the uneven shape when the multilayer tape 30 is wound. It can be deformed.
  • the metal layer 31 by forming the metal layer 31 to have a concavo-convex shape, local stress concentration generated in the metal layer 31 when the underwater cable 3 (power core 13) is bent can be alleviated. For this reason, a long-term repeated bending fatigue characteristic can be improved and the flexible tube excellent in long-term reliability can be obtained.
  • the convex portion 35a and the concave portion 35b are all formed independently. That is, the convex portions 35a and the concave portions 35b are not connected, and the convex portions 35a and the concave portions 35b are not connected. For this reason, the shape of the convex part 35a and the recessed part 35b can be formed stably. For example, when the convex portions 35a are connected to each other, there is a risk that an abrupt shape change portion is formed at the joint. Such joints are difficult to stabilize in shape and cause variation in shape. Further, when such shape variation occurs, it may become a source of generation of cracks in the metal layer 31. On the other hand, since all the convex part 35a and the recessed part 35b are formed independently in this invention, a shape is easy to be stabilized and a process is also easy.
  • the convex portion 35 a or the concave portion 35 b in the state where the multilayer tape 30 is wound is also formed in the circumferential direction of the power line core 13. For this reason, the multilayer tape 30 (metal layer 31) easily follows not only the bending of the submarine cable 3 (power core 13) but also the radial direction to ensure high flexibility. be able to.
  • the multilayer tapes 30 and 30 a can be used for the water shielding layer 24.
  • the resin part on the outer peripheral side of the multilayer tape constituting the water shielding layer 24 is compatible with the external anticorrosion layer 25 and the like, and the melting point thereof is lower than the melting point of the resin constituting the external anticorrosion layer 25. Is desirable.
  • the convex portion 35a may be a concave portion, and the concave and convex shape may be formed only by the concave portion and the flat portion 35c.
  • the concave portion 35b may be a convex portion, and the concave and convex shape may be formed only by the convex portion and the flat portion 35c.
  • the first convex portion or the concave portion and the second convex portion or the concave portion are formed in a lattice pattern at the same pitch, and are shifted from each other by a half pitch with respect to the forming direction of the convex portion or the concave portion. If it becomes the arrangement, it may be either convex or concave.
  • the fatigue durability was evaluated based on the arrangement of the concavo-convex shape.
  • an uneven shape was formed on the metal layer, and a multilayer tape was prepared by laminating both sides with a resin.
  • the multilayer tape sample 41 was sandwiched between bending jigs 43, and the multilayer tape sample 41 was repeatedly bent along the bending jig 43 (in the direction of arrow Z in the figure).
  • terminals were provided at both ends of the metal layer of the multilayer tape, and the electric resistance of the metal layer was measured.
  • the fracture of the metal layer was confirmed by the increase in the electric resistance value.
  • the multilayer tape sample 41 was made into 1 cycle in center-> right-> center-> left-> center.
  • the amount of strain applied to the multilayer tape sample 41 was changed and evaluated.
  • FIG. 13 (a) Two types of samples were prepared, one shown in FIG. 13 (a) and one shown in FIG. 13 (b).
  • the longitudinal direction of the multilayer tape sample 41 set on the bending jig 43 was defined as the R direction. That is, R is the direction in which tension and compression are applied by a bending test.
  • sample A The sample shown in FIG. 13A (hereinafter referred to as sample A) was arranged so that the convex portion 35a or the concave portion 35b was always formed in the longitudinal direction of the multilayer tape sample 41.
  • sample B the size and pitch of the convex portions 35a and the concave portions 35b are the same, but the length of the multilayer tape sample 41 is changed by changing the formation direction by 45 °.
  • the flat portions 35c are arranged in a straight line with respect to the direction.
  • the amount of strain (single amplitude strain) generated in the metal layer by repeated bending was calculated from the curvature radius of the bending jig and the thickness of the multilayer tape sample, and a double logarithmic graph of the number of times of fracture-single amplitude strain was created.
  • an SN curve was created for each sample using a log-log regression model and fatigue characteristics were compared.
  • 2 times of standard deviation SD was considered.
  • the circle plot and the solid line are the results of the sample A
  • the triangle plot and the dotted line are the results of the sample B.
  • sample A the number of breaks is about 7000 times
  • the flat portion 35c is not continuous in the longitudinal direction is nearly twice as large as that of sample B (the number of breaks is about 4000). It turned out to be a lifetime.
  • the flat part 35c does not continue in the longitudinal direction, and higher fatigue characteristics can be obtained by arranging the irregularities so that the convex part 35a or the concave part 35b is always formed in any cross section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Abstract

 金属層31には、凸部35a、凹部35bが形成される。凸部35aは、ピッチPで格子状に繰り返し形成される。同様に、凹部35bは、ピッチPで格子状に繰り返し形成される。凹部35bの配列方向は凸部35aと同様であり、凹部35bは、凸部35aに対し、それぞれの配列方向に半ピッチずつずれて配置される。凸部35aと凹部35bとは、接触せずに、互いに独立して形成される。電力用線心13(海中ケーブル3)の全ての方向への曲げ変形に確実に追従させるために、複層テープ30の長手方向(遮水層21の軸方向)の任意の断面において、必ず凸部35aまたは凹部35bが所定間隔で配列する。

Description

海中ケーブル、およびその遮水層用複層テープ
 本発明は、洋上浮体設備用の海中ケーブル等に関するものである。
 近年、地球温暖化対策の点から、再生可能エネルギーの開発が進められている。例えば、洋上浮体設備である発電用風車から送電する浮体式洋上風力発電の実用化が進められている。
 洋上浮体設備から送電するためには、海中ケーブルが使用される。海中ケーブルは、電力用線心を3相交流送電用に3本集合撚り合わせ、さらにコアの外周にケーブル荷重をサポートするための鎧装線を設け、更にその外部に外傷防止用のプラスチック層を押し出し被覆した構造である。
 このような海中ケーブルとしては、例えば、ケーブル線心と捻り補強線の複数本を一方向に撚り合わせた線状集合体の外周に、そのケーブル線心及び捻り補強線撚り合わせ方向と逆方向に鎧装線を撚り合わせた鎧装体を設け、線状集合体と鎧装体に作用する捻りトルクを打ち消してトルクバランスさせた海中ケーブルがある(特許文献1)。
特開2004-192831号公報
 このような海中ケーブルは、海中に敷設されるため、内部の電力用線心には、高い遮水性が要求される。したがって、電力用線心における絶縁体(シールド層)の外周には遮水層が形成される。
 一方、このような海中ケーブルは、洋上で揺動を繰り返す洋上浮体設備から海中に懸垂される。このため、波浪や潮流による流体力と浮体揺動によって、海中ケーブルは常に変形が繰り返される。したがって、電力用線心にも繰り返しの変形が付与される。
 しかし、電力用線心の遮水性を金属テープなどの金属層で構成しようとすると、この繰り返しの変形に追従することが困難である。したがって、遮水層を構成する金属層が損傷する恐れがあり、従来遮水層構造での疲労寿命は海気象条件に依るが、5年~7年程度と言われている。
 本発明は、このような問題に鑑みてなされたもので、十分な可撓性と、高い遮水性とを両立することが可能な遮水層の曲げ疲労特性に優れた海中ケーブル等を提供することを目的とする。
 前述した目的を達成するため、第1の発明は、海中ケーブルであって、導体上に絶縁層、シールド層、第1の遮水層および防食層が形成される電力用線心と、複数本の前記電力用線心の全体の外周側に、前記電力用線心の全体の外周の周方向に複数本の線材が配置され、前記線材が前記電力用線心の軸方向に螺旋状に設けられて形成される鎧装部と、前記鎧装部の外周側に形成される外部防食層と、を少なくとも具備し、前記第1の遮水層は、金属層を樹脂で挟み込んだ複層テープにより形成され、前記複層テープの金属層は、凸部または凹部の少なくとも一方が繰り返し形成され、それぞれの前記凸部または前記凹部は、平坦部を介して互いに離隔して形成され、前記第1の遮水層の軸方向の任意の断面において、前記凸部または前記凹部の少なくとも一部が所定のピッチで配置されることを特徴とする海中ケーブルである。
 このように、遮水層が金属層を樹脂で挟み込んだ複層テープで構成されため、外部からの水分の浸入を確実に遮蔽することができる。したがって、水分によるケーブルの絶縁性能の劣化を長期にわたって防止することができる。また、金属層が樹脂に挟み込まれているため、遮水層構築時に金属層が破れたり折れ曲がったりすることがない。このため、確実に遮水層を構築することができる。さらに、金属層によって、内部のシールド層を傷つけることがない。
 また、金属層の断面には凹凸形状が形成されるため、複層テープが巻き付けられた状態において、複層テープ(金属層)が凹凸形状の形成方向に容易に変形可能である。このため、複層テープが巻き付けられた状態で、複層テープが、海中ケーブル(電力用線心)の可撓性に対し、変形の妨げとなることを抑制することができる。
 また、本発明では、金属層の凹凸形状の間に平坦部が形成される。すなわち、凸部と凹部、または凸部同士、凹部同士がつながることがない。このようにすることで、金属層への凹凸形状の形成が容易である。例えば、凸部と凹部とが連続してつながるように波形状に形成すると、凸部と凹部、または凸部同士、凹部同士のつなぎ目を、すべてなだらかに精度よく形成することは困難である。したがって、このつながり部分の形状が安定せず、形状ばらつきが大きくなる。このため、急激な形状変化部などによって傷の発生源や応力集中部が形成される恐れがある。
 しかし、平坦部上に凹部または凸部を互いに独立して離隔して形成すると、それぞれの形状が安定しやすく、平坦部と凸部または凹部とのつなぎ目の形状ばらつきが生じにくい。また、このような形状を形成するための金型等の製造も容易である。
 また、平坦部は凹凸形状形成時、製造管理時の基準位置とすることができ、平坦部から、凸部、凹部、それぞれの頂部までの距離を把握することで、安定して凹凸形状を形成することが可能となる。
 ここで、凹部及び凸部の間に平坦部を形成すると、特に電力用線心の軸方向に対して、平坦部が一直線上に連続する恐れがある。すなわち、電力用線心の軸方向に対して、遮水層に凹凸形状がない部位が存在する恐れがある。このようになると、前述したような海中ケーブル(電力用線心)の可撓性に対し、変形の妨げとなる恐れがある。しかし、本発明では、遮水層の軸方向の任意の断面において、必ず凸部または凹部の少なくとも一部が所定のピッチで配置される。すなわち、平坦部が軸方向に直線状に形成されることがない。したがって、どの方向の曲げに対しても、軸方向には必ず凹凸形状が繰り返されるため、変形への追随性が優れる。
 前記金属層は、略円形の第1の凸部または凹部と、略円形の第2の凸部または凹部とが、それぞれ前記遮水層の周方向のピッチP1、前記遮水層の軸方向のピッチP2の格子状に、互いに千鳥状に配置され、前記第1の凸部または凹部と、前記第2の凸部または凹部の、それぞれの凸部または凹部が、前記遮水層の軸方向に配列し、前記第1の凸部または凹部の径をD1、前記第2の凸部または凹部の径をD2とした際に、D1<P1、かつ、D1<P2、D2<P1、D2<P2、かつ、P1<D1+D2、かつD1+D2<(P1+P21/2の関係を満たしてもよい。
 このようにすることで、確実に遮水層の軸方向の任意の断面において、必ず凸部または凹部の少なくとも一部が所定のピッチで配置することができる。この際、凸部または凹部同士の距離が最も近くなるような配列方向を、遮水層の軸方向に形成することで、海中ケーブル(電力用線心)の曲げ変形に対して効率よく追従することができる。
 前記金属層は、略円形の第1の凸部または凹部と、略円形の第2の凸部または凹部とが、それぞれ同一のピッチPの格子状に、互いに千鳥状に配置され、前記第1の凸部または凹部の径をD1、前記第2の凸部または凹部の径をD2とした際に、D1<P、かつ、D2<P、かつ、P<D1+D2<21/2×Pの関係を満たし、さらに、P<21/2×D1またはP<21/2×D2の関係を満たしてもよい。
 金属層の断面がこのような凹凸形状を有すれば、遮水層は、曲げ方向の変形だけでなく、あらゆる方向の変形に対しても、確実に追従することができる。例えば、洋上風力発電における発電量の変化に応じて、海中ケーブルを流れる電流が変動し、これによって導体における発熱量が変化する。また、天候の異変時の強風により負荷が増大する場合には、ケーブルの導体には大きな発熱が生じる。したがって、このような温度変化に伴い、海中ケーブルには、曲げだけでなく、径方向への膨張・収縮が生じる。また、海流や潮流により、海中ケーブルが海中で揺動して不安定な動きを繰り返す場合に、曲げ応力の他に、多少の捻り応力が加わることがある。
 これに対し、本発明では、いずれの方向に対しても、平坦部が直線状に連続せず、必ず凹凸形状が連続するように凹部または凸部を配列することができる。このため、海中ケーブル(電力用線心)の軸方向のみだけではなく、周方向や捻じり方向に対する変形にも、金属層の変形を追従させることができる。
 ここで、本発明において、凸部又は凹部が格子状位置に形成されるとは、互いに垂直な2方向に凸部又は凹部が同一ピッチで連続的に繰り返して形成されるような配置をいう。また、互いに千鳥状に配置されるとは、第1の凸部または凹部と、第2の凸部または凹部とが、それぞれ同一の方向に繰り返し配置され、互いにそれぞれの繰り返し方向に半ピッチずつずれた状態で配置されることをいう。
 前記金属層は、略円形の第1の凸部または凹部と、略円形の第2の凸部または凹部とが、それぞれ同一のピッチPのひし形状に、互いに千鳥状に配置されるとともにひし形の対角線が前記遮水層の軸方向に向けて配列し、前記第1の凸部または凹部の径をD1、前記第2の凸部または凹部の径をD2とし、前記第1の凸部または凹部のひし形の対角線方向のピッチであって、前記遮水層の周方向に対するピッチをP1、前記第1の凸部または凹部のひし形の対角線方向のピッチであって、前記遮水層の長手方向に対するピッチをP2、とした際に、D1<P、かつ、D2<P、かつ、(D1+D2)<P1、かつ、(D1+D2)<P2の関係を満たし、さらに、P1<2D1またはP1<2D2の関係を満たしてもよい。
 このように、本発明では、第1の凸部または凹部と、第2の凸部または凹部とのそれぞれを、互いに直交するように格子状に配置するのみではなく、ひし形に配置することもできる。この場合でも、海中ケーブル(電力用線心)の曲げ変形に対して効率よく追従することができる。
 前記金属層は、略楕円形の第1の凸部または凹部と、略楕円形の第2の凸部または凹部とが、それぞれ前記遮水層の周方向のピッチP1、前記遮水層の軸方向のピッチP2の格子状に、互いに千鳥状に配置され、前記第1の凸部または凹部と、前記第2の凸部または凹部の、それぞれの凸部または凹部の長径方向または短径方向が、前記遮水層の軸方向に向けて配列するとともに、前記第1の凸部または凹部と、前記第2の凸部または凹部の、それぞれの凸部または凹部が、前記遮水層の軸方向に配列し、前記第1の凸部または凹部の前記遮水層の周方向の径をD1W、前記第1の凸部または凹部の前記遮水層の軸方向の径をD1L、前記第2の凸部または凹部の前記遮水層の周方向の径をD2W、前記第2の凸部または凹部の前記遮水層の軸方向の径をD2Lとし、前記第1の凸部または凹部の斜め方向のピッチであって、(P1+P21/2で算出されるピッチをP3、前記第1の凸部または凹部を前記斜め方向に結ぶ線分上の前記第2の凸部または凹部の長さをD2S、前記第2の凸部または凹部の前記斜め方向を結ぶ線分上の前記第1の凸部または凹部の長さをD1S、とした際に、D1W<P1、かつ、D1L<P2、かつ、D2W<P1、かつ、D2L<P2、かつ、P1<D1W+D2W、かつ、D1S+D2S<P3の関係を満たしてもよい。
 このように、本発明では、略楕円形の第1の凸部または凹部と、略楕円形第2の凸部または凹部であっても、海中ケーブル(電力用線心)の曲げ変形に対して効率よく追従することができる
 前記金属層は、略楕円形の第1の凸部または凹部と、略楕円形の第2の凸部または凹部とが、それぞれ同一のピッチPの格子状に、互いに千鳥状に配置され、前記第1の凸部または凹部と、前記第2の凸部または凹部の、それぞれの凸部または凹部の長径方向または短径方向が、前記遮水層の軸方向に向けて配列するとともに、格子の対角線が前記遮水層の軸方向に向けて配列し、前記第1の凸部または凹部の前記遮水層の周方向の径をD1W、前記第1の凸部または凹部の前記遮水層の軸方向の径をD1L、前記第2の凸部または凹部の前記遮水層の周方向の径をD2W、前記第2の凸部または凹部の前記遮水層の軸方向の径をD2Lとし、前記第1の凸部または凹部の斜め方向のピッチであって、21/2Pで算出されるピッチをP3、前記第1の凸部または凹部の配列方向を結ぶ線分上の前記第2の凸部または凹部の長さをD2S、前記第2の凸部または凹部の配列方向を結ぶ線分上の前記第1の凸部または凹部の長さをD1S、とした際に、D1S<P、かつ、D2S<P、かつ、D1W+D2W<P3、かつ、D1L+D2L<P3の関係を満たし、さらに、P<21/2×D1WまたはP<21/2×D2W、かつ、P<21/2×D1LまたはP<21/2×D2Lの関係を満たしてもよい。
 このように、本発明では、略楕円形の第1の凸部または凹部と、略楕円形第2の凸部または凹部とのそれぞれを、互いに直交するように格子状に配置するのみではなく、ひし形に配置することもできる。この場合でも、海中ケーブル(電力用線心)の曲げ変形に対して効率よく追従することができる。
 前記金属層は、略楕円形の第1の凸部または凹部と、略楕円形の第2の凸部または凹部とが、それぞれ同一のピッチPのひし形状に、互いに千鳥状に配置され、前記第1の凸部または凹部と、前記第2の凸部または凹部の、それぞれの凸部または凹部の長径方向または短径方向が、前記遮水層の軸方向に向けて配列するとともに、ひし形の対角線が前記遮水層の軸方向に向けて配列し、前記第1の凸部または凹部の前記遮水層の周方向の径をD1W、前記第1の凸部または凹部の前記遮水層の軸方向の径をD1L、前記第2の凸部または凹部の前記遮水層の周方向の径をD2W、前記第2の凸部または凹部の前記遮水層の軸方向の径をD2Lとし、前記第1の凸部または凹部の斜め方向のピッチであって、前記遮水層の周方向に対するピッチをP1、前記第1の凸部または凹部の斜め方向のピッチであって、前記遮水層の長手方向に対するピッチをP2、前記第1の凸部または凹部の配列方向を結ぶ線分上の前記第2の凸部または凹部の長さをD2S、前記第2の凸部または凹部の配列方向を結ぶ線分上の前記第1の凸部または凹部の長さをD1S、とした際に、D1S<P、かつ、D2S<P、かつ、(D1W+D2W)<P1、かつ、(D1L+D2L)<P2の関係を満たし、さらに、P1<2D1WまたはP1<2D2Wの関係を満たしてもよい。
 このように、本発明では、略楕円形の第1の凸部または凹部と、略楕円形第2の凸部または凹部とのそれぞれを、ひし形に配置する場合でも、曲げ方向の変形だけでなく、あらゆる方向の変形に対しても、確実に追従することができる。
 前記外部防食層の内面には、さら第2の遮水層が形成され、前記第2の遮水層は、前記複層テープにより形成されてもよい。
 また、外部防食層に対しても、遮水層を形成し、この遮水層も前述の電力用線心に形成される遮水層と同様に、複層テープで形成すれば、可撓性に優れ、耐疲労特性にも優れた遮水層を得ることができる。
 第2の発明は、海中ケーブルの遮水層用の複層テープであって、金属層と、前記金属層を挟み込む樹脂被覆部と、を具備し、前記金属層は、凸部または凹部の少なくとも一方が、平坦部を介して互いに離隔して繰り返し形成され、複層テープの長手方向の任意の断面において、前記凸部または前記凹部の少なくとも一部が所定のピッチで配置されることを特徴とする海中ケーブルの遮水層用複層テープである。
 このようにすることで、遮水層用複層テープを用いて、海中ケーブルの遮水層を形成した際に、外部からの水分の浸入を確実に遮蔽することができる。したがって、水分によるケーブルの絶縁性能の劣化を長期にわたって防止することができる。また、複層テープが巻き付けられた状態で、複層テープが、海中ケーブルの可撓性に対し、変形の妨げとなることを抑制することができる。
 前記金属層は、略円形の第1の凸部または凹部と、略円形の第2の凸部または凹部とが、それぞれ複層テープの幅方向のピッチP1、複層テープの長手方向のピッチP2の格子状に、互いに千鳥状に配置され、前記第1の凸部または凹部と、前記第2の凸部または凹部の、それぞれの凸部または凹部が、複層テープの長手方向に配列し、前記第1の凸部または凹部の径をD1、前記第2の凸部または凹部の径をD2とした際に、D1<P1、かつ、D1<P2、D2<P1、D2<P2、かつ、P1<D1+D2、かつD1+D2<(P1+P21/2の関係を満たしてもよい。
 このような複層テープを縦添え巻きすれば、凸部または凹部同士の距離が最も近くなるような配列方向が、遮水層の軸方向に形成され、海中ケーブル(電力用線心)の曲げ変形に対して効率よく追従することができる。
 前記金属層は、第1の凸部または凹部と、第2の凸部または凹部とが、それぞれ同一のピッチPで互いに千鳥状に格子状に配置され、前記第1の凸部または凹部の径をD1、前記第2の凸部または凹部の径をD2とした際に、D1<P、かつ、D2<P、かつ、P<D1+D2<21/2×Pの関係を満たし、さらに、P<21/2×D1またはP<21/2×D2の関係を満たしてもよい。
 このような複層テープを縦添え巻きすれば、いずれの方向に対しても、平坦部が直線状に連続せず、必ず凹凸形状が連続するように凹部または凸部を配列することができる。このため、海中ケーブル(電力用線心)の軸方向のみだけではなく、周方向や捻じり方向に対する変形にも、金属層の変形を追従させることができる。
 さらに、複層テープの幅方向の任意の位置に対しても凹凸形状を周期的に形成することで、複層テープ巻き付け時の張力を小さくすることが可能となる。このため、ケーブルの製造を容易にすることが出来る。たとえば、ケーブル巻き付け後の可撓性のみを重視し、軸方向にのみ周期的な凹凸形状を持つ複層テープを用いた場合、幅方向には曲がり辛い。このため、複層テープ巻き付け時には大きな張力が必要となる。しかし、軸方向、幅方向の両方に任意の位置に周期的な凹凸形状を形成することで、ケーブル巻き付け後の可撓性を向上させるのみではなく、ケーブルへの巻き付けを容易にすることも可能となる。
  前記金属層は、略円形の第1の凸部または凹部と、略円形の第2の凸部または凹部とが、それぞれ同一のピッチPのひし形状に、互いに千鳥状に配置され、前記第1の凸部または凹部の径をD1、前記第2の凸部または凹部の径をD2とし、前記第1の凸部または凹部のひし形の対角線方向のピッチであって、複層テープの幅方向に対するピッチをP1、前記第1の凸部または凹部のひし形の対角線方向のピッチであって、複層テープの長手方向に対するピッチをP2とした際に、D1<P、かつ、D2<P、かつ、(D1+D2)<P1、かつ、(D1+D2)<P2の関係を満たし、さらに、P1<2D1またはP1<2D2の関係を満たしてもよい。
 このような複層テープを縦添え巻きすれば、略楕円形の第1の凸部または凹部と、略楕円形第2の凸部または凹部を、それぞれひし形に配置することができる。
 前記金属層は、略楕円形の第1の凸部または凹部と、略楕円形の第2の凸部または凹部とが、それぞれ複層テープの幅方向のピッチP1、複層テープの長手方向のピッチP2の格子状に、互いに千鳥状に配置され、前記第1の凸部または凹部と、前記第2の凸部または凹部の、それぞれの凸部または凹部の長径方向または短径方向が、複層テープの長手方向に向けて配列するとともに、前記第1の凸部または凹部と、前記第2の凸部または凹部の、それぞれの凸部または凹部が、複層テープの長手方向に配列し、前記第1の凸部または凹部の複層テープの幅方向の径をD1W、前記第1の凸部または凹部の複層テープの長手方向の径をD1L、前記第2の凸部または凹部の複層テープの幅方向の径をD2W、前記第2の凸部または凹部の複層テープの長手方向の径をD2Lとし、前記第1の凸部または凹部の斜め方向のピッチであって、(P1+P21/2で算出されるピッチをP3、前記第1の凸部または凹部を前記斜め方向に結ぶ線分上の前記第2の凸部または凹部の長さをD2S、前記第2の凸部または凹部の前記斜め方向を結ぶ線分上の前記第1の凸部または凹部の長さをD1S、とした際に、D1W<P1、かつ、D1L<P2、かつ、D2W<P1、かつ、D2L<P2、かつ、P1<D1W+D2W、かつ、D1S+D2S<P3の関係を満たしてもよい。
 このような複層テープを縦添え巻きすれば、略楕円形の第1の凸部または凹部と、略楕円形第2の凸部または凹部を、格子状に配置することができる。
 前記金属層は、略楕円形の第1の凸部または凹部と、略楕円形の第2の凸部または凹部とが、それぞれ同一のピッチPの格子状に、互いに千鳥状に配置され、前記第1の凸部または凹部と、前記第2の凸部または凹部の、それぞれの凸部または凹部の長径方向または短径方向が、複層テープの長手方向に向けて配列するとともに、格子の対角線が複層テープの長手方向に向けて配列し、前記第1の凸部または凹部の複層テープの幅方向の径をD1W、前記第1の凸部または凹部の複層テープの長手方向の径をD1L、前記第2の凸部または凹部の複層テープの幅方向の径をD2W、前記第2の凸部または凹部の複層テープの長手方向の径をD2Lとし、前記第1の凸部または凹部の斜め方向のピッチであって、21/2Pで算出されるピッチをP3、前記第1の凸部または凹部を前記斜め方向に結ぶ線分上の前記第2の凸部または凹部の長さをD2S、前記第2の凸部または凹部の前記斜め方向を結ぶ線分上の前記第1の凸部または凹部の長さをD1S、とした際に、D1W<P、かつ、D1L<P、かつ、D2W<P、かつ、D2L<P、かつ、D1W+D2W<P3、かつ、D1L+D2L<P3の関係を満たし、さらに、P<21/2×D1WまたはP<21/2×D2W、かつ、P<21/2×D1LまたはP<21/2×D2Lの関係を満たしてもよい。
 このような複層テープを縦添え巻きすれば、略楕円形の第1の凸部または凹部と、略楕円形第2の凸部または凹部を、格子状に配置し、格子の対角線方向を海底ケーブルの軸方向に配列することができる。
 前記金属層は、略楕円形の第1の凸部または凹部と、略楕円形の第2の凸部または凹部とが、それぞれ同一のピッチPのひし形状に、互いに千鳥状に配置され、前記第1の凸部または凹部と、前記第2の凸部または凹部の、それぞれの凸部または凹部の長径方向または短径方向が、複層テープの長手方向に向けて配列するとともに、ひし形の対角線が複層テープの長手方向に向けて配列し、前記第1の凸部または凹部の複層テープの幅方向の径をD1W、前記第1の凸部または凹部の複層テープの長手方向の径をD1L、前記第2の凸部または凹部の複層テープの幅方向の径をD2W、前記第2の凸部または凹部の複層テープの長手方向の径をD2Lとし、前記第1の凸部または凹部の斜め方向のピッチであって、複層テープの幅方向に対するピッチをP1、前記第1の凸部または凹部の斜め方向のピッチであって、複層テープの長手方向に対するピッチをP2、前記第1の凸部または凹部の配列方向を結ぶ線分上の前記第2の凸部または凹部の長さをD2S、前記第2の凸部または凹部の配列方向を結ぶ線分上の前記第1の凸部または凹部の長さをD1S、とした際に、D1S<P、かつ、D2S<P、かつ、(D1W+D2W)<P1、かつ、(D1L+D2L)<P2の関係を満たし、さらに、P1<2D1WまたはP1<2D2Wの関係を満たしてもよい。
 このような複層テープを縦添え巻きすれば、略楕円形の第1の凸部または凹部と、略楕円形第2の凸部または凹部を、ひし形に配置し、ひし形の対角線方向を海底ケーブルの軸方向に配列することができる。
 本発明によれば、このような問題に鑑みてなされたもので、十分な可撓性と、高い遮水性とを両立することが可能な遮水層の曲げ疲労特性に優れた海中ケーブル等を提供することができる。
海中ケーブル3の敷設状態を示す図。 海中ケーブル3を示す断面図。 複層テープ30の構成を示す図であり、(a)は斜視図、(b)は(a)のA-A線断面図、(c)は(a)のB-B線断面図。 複層テープ30を示す樹脂被覆層の透視図であり、(a)は平面図、(b)は部分拡大図。 複層テープ30を示す樹脂被覆層の図であり、(a)は平面拡大図、(b)は(a)の各部断面図。 複層テープ30aを示す樹脂被覆層の透視図であり、(a)は平面図、(b)は部分拡大図。 複層テープ30bを示す樹脂被覆層の透視図であり、(a)は平面図、(b)は部分拡大図。 複層テープ30cを示す樹脂被覆層の透視図であり、(a)は平面図、(b)は部分拡大図。 (a)は複層テープ30を巻きつける前の状態を示す図、(b)は複層テープ30を縦添え巻きした巻き付け状態を示す図。 (a)は海中ケーブル3の曲げ状態を示す図、(b)は複層テープ30の変形状態を示す図。 (a)は遮水層21の効果を示す図、(b)は複層テープ30の遮水効果を示す図。 複層テープサンプル41の曲げ試験方法を示す図。 複層テープサンプル41の凹凸形状の配列を示す図で、(a)はサンプルAを示す図、(b)はサンプルBを示す図。 曲げ試験結果を示す図。
 以下、本発明の実施の形態にかかる海中ケーブル等について説明する。図1は海中ケーブル3の敷設状態を示す図である。洋上には、洋上浮体設備1が配置される。洋上浮体設備1は、たとえば浮体式洋上風力発電装置である。洋上浮体設備1は、洋上に浮いた状態であり、下部が海底に係留索11で固定される。
 例えば、複数の洋上浮体設備1が洋上に配置される。洋上浮体設備1は接続部5cで海中ケーブル3と接続される。また、海中ケーブル3同士は、海底に設置された接続部5aにおいて接続される。すなわち、それぞれの洋上浮体設備1同士は海中ケーブル3で接続される。
 また、海中ケーブル3の洋上浮体設備1と接続部5bとの間にはブイ9が接続される。すなわち、海中ケーブル3は、ブイ9によって海中で浮遊した状態となる。海中ケーブル3の詳細は後述する。
 地上側の海中ケーブル3は、海底に設置された接続部5aで海底ケーブル7と接続される。海底ケーブル7は海中ケーブル3と略同一の構成である。海底ケーブル7は地上の電力送電設備等と接続される。すなわち、洋上浮体設備1で発電された電気は、海中ケーブル3および海底ケーブル7によって地上に送電される。
 ここで、洋上浮体設備1は、洋上の波浪や、潮流等によって大きく揺動する。したがって、洋上浮体設備1と接続される海中ケーブル3は、洋上浮体設備1の揺動に追従し、海中で繰り返しの大きな曲げ変形を受ける。なお、海中ケーブル3は、ブイ9によって海中に浮遊するため、海底に引きずられることがなく、また、潮の満ち引きや海流に対して、海中ケーブル3に局所的な応力が付与されることが防止される。
 次に、海中ケーブル3の構造について説明する。図2は、海中ケーブル3の断面図である。海中ケーブル3は、主に電力用線心13、鎧装23a、23b、外部防食層25等から構成される。
 電力用線心13は、導体部15、絶縁部17、シールド層19、遮水層21、防食層22等から構成される。導体部15は、例えば銅素線を撚り合わせて構成される。
 導体部15の外周部には、絶縁部17が設けられる。絶縁部17は、例えば架橋ポリエチレンで構成される。なお、絶縁部17は、内部半導電層、絶縁体層、外部半導電層の三層構造としてもよい。内部半導電層、絶縁体層、外部半導電層の三層構造とすることで、部分放電現象である水トリー劣化抑制と、絶縁体と金属層との機械的緩衝層としての効果を得ることができる。
 例えば、導体と絶縁体、シールドと絶縁体とが直接接している場合において、接触界面に突起等があると、そこに電界が集中し、水トリーや部分放電の発生起点となる。そこで半導電の樹脂を間に挟むことにより、接触界面の電界を緩和することができる。なお、この内部および外部半導電層のことを「電界緩和層」と呼ぶこともある。
 また、内部半導電層や外部半導電層が無かった場合、導体やシールドの金属層等が絶縁体に直接食い込む恐れがある。金属層が絶縁体に食い込むと、電界集中により部分放電発生が起こり、絶縁破壊の原因となる。このため、絶縁体と金属層の間に半導電の樹脂層を形成することでこのような問題を抑制することが可能となる。
 絶縁部17の外周には、シールド層19が設けられる。シールド層19は、導電性部材により構成され、例えば金属製、導電性樹脂製、導電性繊維製である。なお、海中ケーブル3の端部おいて、シールド層19はアースと接続される。
 シールド層19の外周部には遮水層21が設けられる。遮水層21は、金属層と樹脂層が積層された複層テープにより構成される。複層テープの構成については後述する。
 遮水層21の外周部には防食層22が設けられる。防食層22は、例えば遮水層21の外周に押出被覆される樹脂製である。防食層22は、内部の各層を保護する為のものである。防食層22は、例えば、ポリエチレン、エチレン-1-ブテン共重合体、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸エチル共重合体、エチレンープロピレンージエン三元共重合体、ナイロン6,6、ナイロン12、ナイロン11等のポリアミド樹脂、ポリアリレート樹脂、ポリ塩化ビニル樹脂の非架橋タイプが使用できる。
 このようにして構成される電力用線心13が、3相交流送電用に3本集合撚りされる。また、3本の電力用線心13を撚り合わせた後、隙間に樹脂紐等の介在層27を形成して略円形のコアを形成する。得られたコアの外周に海中ケーブル3の荷重を支持する鎧装部が設けられる。また、介在層27には、必要に応じて光ケーブル29等の通信ケーブルを設けてもよい。ここで、海中ケーブルの変形による曲げ歪の影響をできるだけ少なくするため、光ケーブルは介在層27の隣接するケーブル導体の2つの防食層22に接する3箇所の位置に設けるのが好ましい。このような配置とすることで、通信ケーブルの配置を安定させることができると同時に、通信ケーブルを中心に近い位置に配置できることから通信ケーブルに働く応力を小さくできる。
 鎧装部は、たとえば鎧装23a、23bの2層構造である。鎧装23a、23bは、例えば金属線(鋼線またはステンレス線)や繊維補強プラスチック製の線材である。鎧装部は、それぞれ周方向に併設された複数の鎧装23a、23bがコアの外周にロングピッチで隙間なく巻きつけられる。すなわち、鎧装23a、23bは、鎧装23a、23bの外径に対して巻きつけピッチが十分に長くなるように形成される。なお、内周側の鎧装23aと外周側の鎧装23bは、コアの外周に互いに逆方向に螺旋巻きされる。
 鎧装部(鎧装23a、23b)の外周には、必要に応じて遮水層24が設けられる。また、遮水層24の外周には、外部防食層25が設けられる。なお、遮水層24を設けず、鎧装部の外周に直接外部防食層25を設けてもよい。外部防食層25は、例えば外装部の外周に押出被覆される樹脂製である。外部防食層25を構成する樹脂としては、例えばポリオレフィン樹脂、ポリアミド樹脂(ポリアミド11、ポリアミド12等)を使用することができる。
(実施例1)
 次に、遮水層21を構成する複層テープ30について説明する。図3は複層テープ30を示す図であり、図3(a)は斜視図、図3(b)は図3(a)のA―A線断面図、図3(c)は図3(a)のB-B線断面図である。複層テープ30は、金属層31、樹脂被覆部33a、33bにより構成される。金属層31は、樹脂被覆部33a、33bに挟み込まれる。
 金属層31は、フィルム状で薄く、加工が容易であるものであり、耐食性に優れるものであれば良い。たとえば、ステンレス、アルミニウム、銅、鉛や外面を耐食性の良い材質でクラッドしたクラッド鋼等が使用できる。ここで、軽量化を重視する場合は、ステンレス、アルミニウム、クラッド鋼などを用いることが望ましい。なお、金属層31は例えば0.05mm程度の厚さであり、複層テープ30全体としては、例えば0.2~1.0mm程度であればよい。
 樹脂被覆部33a、33bは、樹脂製の部材であり、遮水層21の構築時に、金属層31の折れ曲がりや破れ、しわなどの発生を防止できる。樹脂被覆部33a、33bの材質については後述する。
 金属層31には、略円形の凹凸形状が形成される。例えば、図3(b)に示すように、金属層31のある断面形状には、所定の間隔で凸部35aが形成される。また、図3(c)に示すように、金属層31のある断面形状には、所定の間隔で凹部35bが形成される。なお、凸部35a、凹部35bは、それぞれ独立して離隔して配列し、凸部35a、凹部35bの間には、平坦部35cが形成される。
 このような金属層31は、例えば、表面に凹凸形状が形成されたロールに金属フィルムを通して、金属フィルムがロールを通過することにより形成することができる。また、金属フィルムを所定間隔ごとに、プレス成形により、凹凸形状を形成してもよい。また、凹凸形状を順送プレス(トランスファプレス)により、数段階で形成してもよい。
 複層テープ30は、例えば、凹凸形状が加工された金属フィルムに樹脂を押し出し被覆して製造することができる。または、凹凸形状の金属フィルムを対応する金型に設置して樹脂を射出により一体化させてもよい。または、それぞれ別々に形成された、対応する凹凸形状を有する樹脂部材と金属フィルムとを接着や圧着など公知の技術で一体化したものでもよい。また、あらかじめ表面が凹凸形状に形成された樹脂部材に、金属層を蒸着等により形成することもできる。
 凹凸形状の高さとしては、0.2~0.6mmが望ましく、特に望ましくは、0.3~0.5mmである。凹凸高さが低すぎると、凹凸形状とした効果が小さく、また、凹凸高さを大きくし過ぎると、肉厚変化が大きくなり、却って耐久性が劣り、また、製造時に凹凸形状の変形が生じるためである。
 また、凹凸形状の凸部35aまたは凹部35bピッチとしては、0.4~4mmが望ましい。凹凸ピッチが狭すぎると、凹凸形状の加工時に極部的に歪が集中するため加工性が低下する。また、凹凸ピッチが広すぎると、凹凸加工は容易であるが、凸部35a、凹部35bによる歪の吸収効果が小さくなるため、耐久性の向上効果が少なくなる。
 図4(a)は、複層テープ30の樹脂被覆部を透視した図である。なお、以下の図において、凸部35aを実線で示し、凹部35bを点線で示す。前述したように、金属層31には、凸部35a、凹部35bが形成される。凸部35aは、ピッチPで格子状に繰り返し形成される。なお、凸部35aの配列方向は、複層テープ30の長手方向(図中F方向)および幅方向(図中G方向)と一致する。ここで、凸部35aの配列方向とは、互いに最も近い凸部35a同士が並ぶ方向である。
 同様に、凹部35bは、ピッチPで格子状に繰り返し形成される。凹部35bの配列方向は凸部35aと同様であり、凹部35bは、凸部35aに対し、それぞれの配列方向に半ピッチずつずれて配置される。すなわち、縦横四つの凸部35aで囲まれる中心に凹部35bが位置し、縦横四つの凹部35bで囲まれる中心に凸部35aが位置する。
 凸部35aと凹部35bとは、接触せずに、互いに独立して形成される。すなわち、凸部35aと凹部35bは、平坦部35cを介して離隔して配置される。また、凸部35a同士および凹部35b同士も、平坦部を介して互いに離隔して配置される。
 ここで、凸部35aの直径をD1とし、凹部35bの直径をD2とする。凸部35a同士が接触せずに、凸部35a同士の間に平坦部が形成され、凸部35aが独立して形成される条件は、
 D1<P・・・(1)
 である。
 また、同様に、凹部35b同士が接触せずに、間に平坦部が形成され、凹部35bが独立して形成される条件は、
 D2<P・・・(2)
 である。
 また、凸部35aと凹部35bの最短ピッチ(図中E)は、凸部35a同士の斜め方向(すなわち凸部35aと凹部35bとが並ぶ方向)のピッチ(図中C)の1/2であるから、
 C=21/2×P より、
 E=21/2/2×P
 である。
 したがって、凸部35aと凹部35bとが接触せずに、間に平坦部が形成される条件は、
 (D1+D2)/2<E
 であるため、
 (D1+D2)<21/2×P ・・・(3)
 となる。すなわち、凸部35a、凹部35bがそれぞれ独立して配置されるためには、(1)~(3)式を満足する必要がある。
 ここで、複層テープ30が遮水層21として機能する際、電力用線心13(海中ケーブル3)の軸方向が、複層テープ30の長手方向となるとする。すなわち、凸部35aの形成方向または凹部35bの形成方向が電力用線心13の軸方向に対応する。この場合、電力用線心13(海中ケーブル3)が曲げ変形すると、複層テープ30の長手方向への引張力により金属層31が変形する。この際、金属層31に凹凸形状が形成されることで、金属層31は容易に変形に追従することができる。
 しかし、凸部35aと凹部35bとの間の平坦部35cが、遮水層21の軸方向に一直線に配置すると、この部位においては、金属層31に凹凸形状を有さない。このため、変形への追従性が悪くなる。すなわち、電力用線心13(海中ケーブル3)の全ての方向への曲げ変形に確実に追従させるためには、複層テープ30の長手方向(遮水層21の軸方向)の任意の断面において、必ず凸部35aまたは凹部35bが所定間隔で配列する必要がある。
 図4(b)は、図4(a)の部分拡大図である。複層テープ30の長手方向に凸部35aまたは凹部35bが必ず配列するようにするためには、凸部35aと凹部35bとのそれぞれの配列方向(複層テープ30の幅方向)のピッチをIとすると(I=P/2)、
 I<J+K
 となればよい。
 J=D1/2、K=D2/2であるので、
 I<(D1+D2)/2 であるから、
 P<(D1+D2) ・・・(4)
 を満たせばよい。すなわち、(3)および(4)から、
 P<(D1+D2)<21/2×P・・・(5)
 を満たせばよい。
 図5(a)は、図4(b)と同様の図であり、図5(b)は、図5(a)の各部の断面図(金属層31の凹凸形状)を示す図である。図5(a)のL線は、凸部35aの中心を通る断面図である。図5(b)に示すように、この断面では、凸部35aが所定のピッチで配列する。また、図5(a)のM線は、凸部35aの端部近傍であって、凹部35bの接線である。図5(b)に示すように、この断面でも、凸部35aが所定のピッチで配列する。
 図5(a)のN線は、凸部35aと凹部35bの中心を通る断面図である。図5(b)に示すように、この断面では、凸部35aと凹部35bが所定のピッチで配列する。また、図5(a)のO線は、凹部35bの端部近傍であって、凸部35aの接線である。図5(b)に示すように、この断面では、凹部35bが所定のピッチで配列する。図5(a)のQ線は、凹部35bの中心を通る断面図である。図5(b)に示すように、この断面でも、凹部35bが所定のピッチで配列する。
 このように、本発明では、複層テープ30の長手方向のいずれの断面においても、凸部35aまたは凹部35bが全く形成されずに平坦部35cのみが一直線上に並ぶことがない。すなわち、任意の断面において、必ず凸部35aまたは凹部35bが所定のピッチで形成される。したがって、電力用線心13(海中ケーブル3)が、いずれの方向に曲げられても、いずれの断面にも金属層31には凹凸形状が形成されるため、曲げ変形に追従することができる。
 このように、凸部35aまたは凹部35bの距離が最も近くなるような配列方向を、遮水層21の軸方向に形成することで、電力用線心13(海中ケーブル3)の曲げ変形に対して効率よく追従することができる。
(実施例2)
 また、本発明では、図6に示す複層テープ30a用いることもできる。図6(a)は複層テープ30aの平面図(樹脂被覆部の透視図)、図6(b)は、その部分拡大図である。複層テープ30aは、複層テープ30と略同様の構成であるが、金属層31の凹凸形状の配列が異なる。なお、以下の説明において、重複する説明は省略する。
 凸部35aおよび凹部35bは、ピッチPで格子状に繰り返し形成される。なお、凸部35aおよび凹部35bの配列方向は、複層テープ30aの長手方向に対して45°の方向(図中S方向およびT方向)と一致する。
 ここで、前述した複層テープ30は、その長手方向のいずれの断面においても、平坦部35cのみが直線状に形成されることがないが、長手方向に対して45°の方向には、平坦部35cが直線状に配列する場合がある(例えば、図4(a)のH線)。電力用線心13(海中ケーブル3)が単純な曲げのみの変形であれば、軸方向への引張等に対して変形に追従できればよいが、前述したように、電力用線心13(海中ケーブル3)には、径方向の変形や捻じりなどが付与される場合がある。このため、複層テープ30を用いた場合には、軸方向に対して45°方向の変形に、追従性が悪くなる場合がある。
 これに対し、複層テープ30aは、凸部35aまたは凹部35bの形成方向に対して45°の角度に配列しても、いずれの断面でも凸部35aおよび凹部35bが所定間隔(ピッチP)で形成される。すなわち、複層テープ30aは、長手方向のみではなく、全ての方向のいずれの断面に対しても、必ず凸部35aまたは凹部35bが所定ピッチで形成される。
 このように配置されるためには、前述した(1)~(5)を満たした上で、さらに下記の関係を満たす必要がある。
 凸部35aと凹部35bの最短ピッチ(図中E)は、凸部35a同士の斜め方向(すなわち凸部35aと凹部35bとが並ぶ方向)のピッチ(図中C)の1/2であるから、
 C=21/2×P より、
 E=21/2/2×P
 である。
 図6(b)に示すように、凸部35aと凹部35bの最短ピッチ方向における、凸部35aまたは凹部35bと、凸部35aと凹部35bとの中心線との距離Uは、
 U=21/2/4×P
 である。
 本発明では、U<D1/2またはU<D2/2を満たせば、平坦部35cが直線状に形成されることがない。すなわち、
 P<21/2×D1 または P<21/2×D2・・・(6)
 を満たせば、平坦部35cが直線状に形成されることがない。但し、P<21/2×D1およびP<21/2×D2の両者を満たすと、凸部35aと凹部35bとがつながってしまうため、いずれか一方のみを満たす場合に限られる。
 なお、複層テープ30aは、いずれの方向に対してもその断面に凸部35aまたは凹部35bが形成されるため、複層テープ30aの長手方向に対する凸部35aおよび凹部35bの配列方向は、図示した例に限られず、いずれの向きで配列してもよい。
(実施例3)
 また、本発明では、図7に示す複層テープ30b用いることもできる。図7(a)は複層テープ30bの平面図(樹脂被覆部の透視図)、図7(b)は、その部分拡大図である。複層テープ30bは、複層テープ30と略同様の構成であるが、金属層31の凹凸形状の形状が異なる。
 凸部35aおよび凹部35bは、略楕円形状である。凸部35aおよび凹部35bは、幅方向にピッチP1、長手方向にピッチP2で格子状に繰り返し形成される。なお、凸部35a、凹部35bの配列方向は、複層テープ30の長手方向(図中F方向)および幅方向(図中G方向)と一致する。また、凸部35aおよび凹部35bの楕円の長軸方向または短軸方向が、複層テープ30の長手方向(図中F方向)および幅方向(図中G方向)と一致する。
 ここで、凸部35aの幅方向の直径をD1W、長手方向の直径をD1Lとし、凹部35bの幅方向の直径をD2W、長手方向の直径をD2Lとする。また、(P1+P21/2Pで算出されるピッチ方向(図中C)であって、凸部35aを斜め方向に結ぶ線分上の凹部35bの長さをD2Sとし、同じく凹部35bを斜め方向を結ぶ線分上の凸部35aの長さをD1Sとする。凸部35a同士が接触せずに、凸部35a同士の間に平坦部が形成され、凸部35aが独立して形成される条件は、
 D1W<P1・・・(7)
 D1L<P2・・・(8)
 である。
 また、同様に、凹部35b同士が接触せずに、間に平坦部が形成され、凹部35bが独立して形成される条件は、
 D2W<P1・・・(9)
 D2L<P2・・・(10)
 である。
 また、凸部35aと凹部35bの最短ピッチ(図中E)は、凸部35a同士の斜め方向(すなわち凸部35aと凹部35bとが並ぶ方向)のピッチ(図中C)の1/2であるから、
 C=(P1+P21/2 より、
 E=(P1+P21/2/2
 である。
 したがって、凸部35aと凹部35bとが接触せずに、間に平坦部が形成される条件は、
 (D1S+D2S)/2<E
 であるため、
 (D1S+D2S)<(P1+P21/2・・・(11)
 となる。すなわち、凸部35a、凹部35bがそれぞれ独立して配置されるためには、(7)~(11)式を満足する必要がある。
 また、図7(b)に示すように、複層テープ30bの長手方向に凸部35aまたは凹部35bが必ず配列するようにするためには、凸部35aと凹部35bとのそれぞれの配列方向(複層テープ30の幅方向)のピッチをIとすると(I=P1/2)、
 I<J+K
 となればよい。
 J=D1W/2、K=D2W/2であるので、
 I<(D1W+D2W)/2 であるから、
 P1<(D1W+D2W) ・・・(12)
 を満たせばよい。同様に、複層テープ30bの任意の幅方向に必ず凸部35aまたは凹部35bが必ず配列するようにするためには、さらに、
 P2<(D1L+D2L) ・・・(13)
 を満たせばよい。
 なお、楕円の長軸方向および短軸方向の向きは、図示した例には限られない。また、D1L=D1W=D1S、D2L=D2W=D2Sであれば、略円形の凸部または凹部の長方形の格子状配置に対する条件を導き出すこともできる。
(実施例4)
 また、本発明では、図8に示す複層テープ30c用いることもできる。図8(a)は複層テープ30cの平面図(樹脂被覆部の透視図)、図8(b)は、その部分拡大図である。複層テープ30cは、複層テープ30aと略同様の構成であるが、金属層31の凹凸形状の形状および配置が異なる。
 凸部35aおよび凹部35bは、略楕円形状である。凸部35aおよび凹部35bは、ピッチPでひし形に繰り返し形成される。なお、凸部35a、凹部35bの配列方向は、ひし形の対角線方向が、複層テープ30cの長手方向および幅方向と一致する。また、凸部35aおよび凹部35bの楕円の長軸方向または短軸方向が、複層テープ30cの長手方向および幅方向と一致する。
 ここで、凸部35aの幅方向の直径をD1W、長手方向の直径をD1Lとし、凹部35bの幅方向の直径をD2W、長手方向の直径をD2Lとする。また、凸部35aおよび凹部35bの配列方向(図中S,T)であって、凸部35aを複層テープ30cの斜め方向に結ぶ線分上の凹部35bの長さをD2Sとし、同じく凹部35bを斜め方向を結ぶ線分上の凸部35aの長さをD1Sとする。凸部35a同士が接触せずに、凸部35a同士、凹部35b同士の間に平坦部が形成され、凸部35a、凹部35b同士が独立して形成される条件は、
 D1S<P・・・(14)
 D2S<P・・・(15)
 である。
 また、凸部35aと凹部35bの最短ピッチをE1(幅方向のピッチであって、C1/2)またはE2(長手方向のピッチであって、C2/2)とすると、
 (D1W+D2W)/2<E1・・・(16)
 (D1L+D2L)/2<E2・・・(17)
 である。ここで、当然ではあるが、凸部35a同士の複層テープ30cの幅方向のピッチをC1、凸部35a同士の複層テープ30cの長手方向のピッチをC2とした場合、D1W<C1、D1L<C2、D2W<C1、D2L<C2を満たす必要がある。
 また、図8(b)に示すように、複層テープ30cの長手方向に凸部35aまたは凹部35bが必ず配列するようにするためには、凸部35aと凹部35bとの中心線との距離U1(U1=E1/2)は、
 U1<D1W/2またはU1<D2W/2であるため、
 C1<2D1WまたはC1<2D2W・・・(18)
 を満たせばよい。同様に、複層テープ30cの任意の幅方向に凸部35aまたは凹部35bが必ず配列するようにするためには、凸部35aと凹部35bとの中心線との距離U2(U2=E2/2)は、
 U2<D1L/2またはU2<D2L/2であるため、さらに、
 C2<2D1LまたはC2<2D2L・・・(19)
 を満たせばよい。
 C1=C2(E1=E2)であるとすれば、凸部35aと凹部35bとが、ひし形ではなく、正方形の格子状に配置されることとなる。したがって、この場合には、U1=U2=C1/4=C2/4=21/2P/4であるため、(18)式、(19)式は、
 P<21/2D1WまたはP<21/2D2W・・・(20)
 P<21/2D1LまたはP<21/2D2L・・・(21)
 を満たせばよい。
 また、ひし形の状態で、D1L=D1W=D1S、D2L=D2W=D2Sであれば、略円形の凸部または凹部のひし形配置に対する条件を導き出すこともできる。
 次に、複層テープ30の巻き付け方法について説明する。なお、以下の説明においては、複層テープ30を用いた例について説明するが、他の複層テープ30aについても同様に適用することができることは言うまでもない。
 図9は、複層テープ30をシールド層19が形成された電力用線心13に縦巻きで巻き付ける際のフォーミング工程を示す図である。あらかじめ、導体部15の外周に絶縁部17を形成し、その外周にシールド層19を形成する。シールド層19の外周には、複層テープ30が巻きつけられる。
 ここで、複層テープ30は、図9(a)に示すように、縦巻きされることが望ましい。この場合、複層テープ30は、複層テープ30の長手方向が電力用線心13の軸方向に略同一の方向になるように電力用線心13へ送られる。この際、複層テープ30の両側は、電力用線心13(シールド層19)全体を包むようにU字状に曲げられる。
 さらに、複層テープ30によって電力用線心13(シールド層19)が包みこまれる。すなわち、図9(b)に示すように、複層テープ30の両側端部同士をシールド層19の外周部でラップさせ、複層テープ30でシールド層19を包みこむ。すなわち、ラップ部38が電力用線心13の軸方向に沿って形成される。以上のようにして、複層テープ30が電力用線心13(シールド層19)に縦巻きで巻き付けられ、遮水層21が形成される。
 このように、複層テープ30の長手方向が電力用線心13の軸方向と略一致し、複層テープ30の幅方向が電力用線心13の周方向となるように巻き付けて、周方向に巻き付けた巻き付け部の先端を相互にラップさせることで、螺旋巻でラップさせる場合と比較して、電力用線心13の全長に対する複層テープ30同士のラップ長を短くできる。
 すなわち、ラップ部38においてはわずかに金属層31同士の間に隙間が形成されるが、ラップ部の長さを短くすることで、電力用線心13の全長に対して、金属層31同士の隙間を少なくすることができる。また、縦添え巻とすることで、ラップ部38が電力用線心13の軸方向にまっすぐに形成されるため、ラップ部の融着が容易となり、製造性にも優れる。
 なお、ラップ部38のラップ代は十分とる必要がある。すなわち、ラップ部38のラップ代を十大きくすることで、水の浸入量を抑制することができる。
 このようにして形成された遮水層21の外周に防食層22が押出被覆される。以上により、電力用線心13が形成される。
 なお、遮水層21を構成する樹脂被覆部33a(巻き付けられた際、外周側に位置し、防食層22と接触する側の樹脂部)の融点は、防食層22を構成する樹脂の融点よりも低く、樹脂被覆部33aを構成する樹脂と、防食層22を構成する樹脂とが相溶性を有してもよい。樹脂被覆部33aと防食層22とが相溶性を有し、樹脂被覆部33aの融点が防食層22の融点よりも低ければ、防食層22の樹脂を押し出した際に、防食層22と複層テープ30等とを互いに一体化しやすい。このため、防食層22が形成された際に、遮水層21と防食層22との間でずれ等が起こることがない。
 このような関係を有する材質としては、樹脂被覆部33aを例えばナイロン12とし、防食層22をナイロン11とすればよい。あるいは、樹脂被覆部を低密度ポリエチレン(LDPE)、防食層22を高密度ポリエチレン(HDPE)、樹脂被覆部を酸変性EVA(エチレン-酢酸ビニル共重合)、防食層22を低密度ポリエチレン(LDPE)とすればよい。
 また、樹脂被覆部33a(の表面)をゴム材料(例えば、エチレンゴム、エチレンプロピレンゴム、シリコンゴム、ウレタンゴム、ブチルゴムなど)で構成することもできる。このようにすることで、防食層22と樹脂被覆部33a(複層テープ30)との摩擦係数が大きくなる。このため、防食層22と複層テープ30等とが密着してずれることがない。
 なお、樹脂被覆部33a全体をゴム材料とすると、金属層31との接着性が劣る恐れがある。このため、樹脂被覆部33aを複層としてもよい。すなわち、樹脂被覆部33aが、金属層31との接着性に優れる樹脂層が内層に設けられ、その外層のみにゴム材料によって形成されてもよい。
 また、樹脂被覆部33aの外周に、さらに接着層を形成してもよい。接着層を形成することで、樹脂被覆部33aと防食層22とを接着することができる。このため、防食層22と複層テープ30等とが接着してずれることがない。
 また、遮水層21を構成する樹脂被覆部33b(巻き付けられた際、内周側に位置し、シールド層19と接触する側の樹脂部)を導電性樹脂で構成してもよい。導電性樹脂は、例えばEEA(エチレン・エチルアクリレート共重合体)、PVC(ポリ塩化ビニル)、EVA(エチレン-酢酸ビニル共重合)樹脂等に導電性のフィラー等を混入させたものを使用することができる。導電性のフィラーとしては、例えば、カーボンが使用できる。
 このようにすることで、内部のシールド層19と樹脂被覆部33bとを導通させることができる。前述の通り、シールド層19は、海中ケーブル3の端部において、アースと接続される。一方、金属層31が電力用線心13の断面において浮いた状態であると、帯電する恐れがある。しかし、内面側の樹脂被覆部33bを導電性樹脂で構成することで、金属層31をシールド層19と導通させることができる。したがって、金属層31をアースに接続することができる。
 図10は、海中ケーブル3を変形させた状態を示す図である。図10(a)に示すように、海中ケーブル3を曲げ変形させると(図中矢印V方向)、海中ケーブル3の内部の電力用線心13も同様の方向に曲げられる。この際、電力用線心13の曲げ外周側では引張変形となる。
 図10(b)は、電力用線心13の引張変形部における複層テープ30の状態を示す模式図である。電力用線心13が曲げ変形し、局部的に引張変形が生じると、当該部位に巻き付けられる複層テープ30にも引張変形が生じて、電力用線心13の曲げに追従しようとする(図中矢印W方向)。この際、樹脂被覆部33a、33bは、樹脂の弾性変形能によって容易に追従変形可能である。
 一方、金属層31は、凹凸形状であるため凸部35aまたは凹部35bの伸縮によって、容易に変形に追従可能である。特に、凹凸形状が電力用線心13の軸方向のいずれの断面においても繰り返し形成されるため、電力用線心13の曲げ変形に対して、複層テープ30(遮水層21)は容易に追従して変形することができる。すなわち、金属層31を有する複層テープ30の巻き付けが、電力用線心13の可撓性(変形)の妨げにならない。したがって、海中ケーブル3の曲げ変形に対し、電力用線心13が追従することができる。
 また、金属層31の凹凸形状は、周方向にも形成される。したがって、ケーブルの径方向に対しても伸縮が可能である。例えば、電力用線心13が径方向に膨張して周方向に引張が生じた場合でも、複層テープ30はこの変形に追従可能である。したがって、海中ケーブル3の温度変化等に伴う径方向の膨張・伸縮に対しても、電力用線心13が追従することができる。さらに、複層テープ30aのように、全ての方向の断面において、必ず凹凸形状が形成されるようにすることで、例えば、電力用線心13が潮流や海流により、揺動して捻り変形も受ける場合でも、本発明のケーブルを用いれば、軸方向と円周方向を含む全方向への歪みに対しても、追従することができる。
 次に、遮水層21の機能について説明する。図11は、電力用線心13の断面を示す図であり、図11(a)は軸方向の断面図、図11(b)は、遮水層21を構成する複層テープ30の拡大図である。前述の通り、海中ケーブル3は、例えば通常海中に沈めて、または浮かべて使用される。
 また、外部防食層25および防食層22は樹脂製であるため、ある程度の防水性は有しているが、樹脂自体がわずかながらの吸水性を有する。このため、防食層22内にも海水成分がわずかながら浸透する。特に、海底においては高い水圧が付与され、長時間の使用に際しては、防食層22内への海水成分の浸透の恐れが大きい(図中矢印X方向)。
 しかし、本願発明にかかる電力用線心13は、防食層22の内周面に遮水層21が設けられる。したがって、図11(b)に示すように、遮水層21は、内部の金属層31が外部からの水の浸入を確実に遮蔽する(図中矢印Y方向)。したがって、絶縁部17に対して水が浸入することによる絶縁破壊の恐れがない。
 以上説明したように、シールド層19の外周に遮水層21が設けられるため、外部からの水の浸入によって、絶縁破壊することがない。また、遮水層21が金属層31を樹脂被覆部33a、33bで挟み込んだ複層テープ30等で構成されるため、外部からの水の管体径方向(管体中心方向)の流れを、金属層31によって確実に遮蔽することができる。
 また、金属層31が樹脂被覆部33a、33bに挟み込まれているため、遮水層21の構築時に金属層31が破れたり折れ曲がったりすることがなく、確実に遮水層21を構築することができる。さらに、金属層31が直接シールド層19に接触しないため、製造時に各層を傷つけることがない。
 また、複層テープ30の金属層31の断面形状が凹凸形状を有するため、複層テープ30が巻き付けられた状態において、複層テープ30(金属層31)が凹凸形状の形成方向に容易に伸縮変形可能である。また、金属層31を凹凸形状とすることで、海中ケーブル3(電力用線心13)を曲げた際、金属層31に発生する局所的な応力集中を緩和できる。このため、長期的な繰り返し曲げ疲労特性を向上させることができ、長期信頼性に優れる可撓管を得ることができる。
 また、凸部35aと凹部35bとがすべて独立して形成される。すなわち、凸部35aと凹部35bとがつながることがなく、また、凸部35a同士、凹部35b同士がつながることがない。このため、凸部35aと凹部35bの形状を安定して形成することができる。例えば、凸部35a同士がつながると、つなぎ目に急激な形状変化部が形成される恐れがある。このような、つなぎ目は、形状が安定しにくく、形状ばらつきの要因となる。また、このような形状ばらつきが生じると、金属層31のクラック等の発生源となり得る。これに対し、本発明は、凸部35aと凹部35bがすべて独立して形成されるため、形状が安定しやすく、加工も容易である。
 また、複層テープ30が巻き付けられた状態における凸部35aまたは凹部35bが、電力用線心13の周方向にも形成される。このため、海中ケーブル3(電力用線心13)の曲げのみではなく、径方向の方向に対しても、複層テープ30(金属層31)が容易に追従し、高い可撓性を確保することができる。
 なお、外部防食層25の内周側に遮水層24を形成する場合には、遮水層24に対しても、複層テープ30、30aを用いることができる。この場合、遮水層24を構成する複層テープの外周側の樹脂部が、外部防食層25等と相溶性を有し、その融点が外部防食層25を構成する樹脂の融点よりも低いことが望ましい。
 以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 例えば、凸部35aと凹部35bとが形成される例について説明したが、本発明はこれに限られない。凸部35aを凹部として、凹部と平坦部35cのみで凹凸形状としてもよい。また、凹部35bを凸部として、凸部と平坦部35cのみで凹凸形状としてもよい。すなわち、本発明では、第1の凸部または凹部と、第2の凸部または凹部とが、同一のピッチで格子状に形成され、互いに凸部または凹部の形成方向に対して半ピッチずつずれた配置となれば、凸または凹のいずれであってもよい。
 次に、凹凸形状の配列による、疲労耐久性について評価した。まず、金属層に凹凸形状を形成し、両側を樹脂でラミネートした複層テープを作成した。図12に示すように、複層テープサンプル41を曲げ治具43に挟み込み、曲げ治具43に沿って、複層テープサンプル41に繰り返し曲げを付与した(図中矢印Z方向)。この際、複層テープの金属層の両端には端子を設け、金属層の電気抵抗を測定した。電気抵抗値の上昇によって、金属層の破断を確認した。なお、複層テープサンプル41を中央→右→中央→左→中央で、1サイクルとした。また、曲げ治具43を変更することで、複層テープサンプル41へ付与するひずみ量を変更して評価した。
 評価したサンプルは、図13(a)に示したものと、図13(b)に示したものの2種類を用意した。ここで、曲げ治具43にセットされた複層テープサンプル41の長手方向をR方向とした。すなわち、曲げ試験によって、引張及び圧縮が加わる方向をRとした。
 図13(a)に示したサンプル(以下、サンプルA)は、複層テープサンプル41の長手方向に対して、必ず凸部35aまたは凹部35bが形成されるように配置した。一方、図13(b)に示すサンプル(以下、サンプルB)では、凸部35a、凹部35bの大きさやピッチは同じであるが、形成方向を45°変えることで、複層テープサンプル41の長手方向に対して、平坦部35cが直線に並ぶように配置した。
 曲げ冶具の曲率半径と複層テープサンプルの厚みから繰り返し曲げにより金属層に発生するひずみ量(片振幅歪)を算出し、破断回数―片振幅歪の両対数グラフを作成した。ASTM E 739に従い、両対数直線回帰モデルを用いて、各サンプルのS-Nカーブを作成し、疲労特性の比較を行なった。なお、破断回数のばらつきについては、標準偏差SD(Standard Deviation)の2倍を考慮した。
 結果を図14に示す。図中、丸プロットおよび実線はサンプルAの結果であり、三角プロットおよび点線はサンプルBの結果である。例えば片振幅歪2%において、両者を比較すると、長手方向に平坦部35cが連続しないサンプルA(破断回数約7000回)は、サンプルB(破断回数約4000回)と比較して、2倍近い寿命となることが分かった。このように、長手方向に平坦部35cが連続せず、いずれの断面でも、必ず凸部35aまたは凹部35bが形成されるように凹凸を配置することで、より高い疲労特性を得ることができる。
1………洋上浮体設備
3………海中ケーブル
5a、5b、5c………接続部
7………海底ケーブル
9………ブイ
11………係留索
13………電力用線心
15………導体部
17………絶縁部
19………シールド層
21………遮水層
22………防食層
23a、23b………鎧装
24………遮水層
25………外部防食層
27………介在層
29………光ケーブル
30、30a、30b、30c………複層テープ
31………金属層
33a、33b………樹脂被覆部
35a………凸部
35b………凹部
35c………平坦部
38………ラップ部
41………複層テープサンプル
43………曲げ治具

Claims (15)

  1.  海中ケーブルであって、
     導体上に絶縁層、シールド層、第1の遮水層および防食層が形成される電力用線心と、
     複数本の前記電力用線心の全体の外周側に、前記電力用線心の全体の外周の周方向に複数本の線材が配置され、前記線材が前記電力用線心の軸方向に螺旋状に設けられて形成される鎧装部と、
     前記鎧装部の外周側に形成される外部防食層と、
     を少なくとも具備し、
     前記第1の遮水層は、金属層を樹脂で挟み込んだ複層テープにより形成され、
     前記複層テープの金属層は、凸部または凹部の少なくとも一方が繰り返し形成され、それぞれの前記凸部または前記凹部は、平坦部を介して互いに離隔して形成され、
     前記第1の遮水層の軸方向の任意の断面において、前記凸部または前記凹部の少なくとも一部が所定のピッチで配置されることを特徴とする海中ケーブル。
  2.  前記金属層は、略円形の第1の凸部または凹部と、略円形の第2の凸部または凹部とが、それぞれ前記遮水層の周方向のピッチP1、前記遮水層の軸方向のピッチP2の格子状に、互いに千鳥状に配置され、前記第1の凸部または凹部と、前記第2の凸部または凹部の、それぞれの凸部または凹部が、前記遮水層の軸方向に配列し、前記第1の凸部または凹部の径をD1、前記第2の凸部または凹部の径をD2とした際に、D1<P1、かつ、D1<P2、D2<P1、D2<P2、かつ、P1<D1+D2、かつD1+D2<(P1+P21/2の関係を満たすことを特徴とする請求項1記載の海中ケーブル。
  3.  前記金属層は、略円形の第1の凸部または凹部と、略円形の第2の凸部または凹部とが、それぞれ同一のピッチPの格子状に、互いに千鳥状に配置され、前記第1の凸部または凹部の径をD1、前記第2の凸部または凹部の径をD2とした際に、D1<P、かつ、D2<P、かつ、P<D1+D2<21/2×Pの関係を満たし、さらに、P<21/2×D1またはP<21/2×D2の関係を満たすことを特徴とする請求項1記載の海中ケーブル。
  4.  前記金属層は、略円形の第1の凸部または凹部と、略円形の第2の凸部または凹部とが、それぞれ同一のピッチPのひし形状に、互いに千鳥状に配置されるとともにひし形の対角線が前記遮水層の軸方向に向けて配列し、前記第1の凸部または凹部の径をD1、前記第2の凸部または凹部の径をD2とし、前記第1の凸部または凹部のひし形の対角線方向のピッチであって、前記遮水層の周方向に対するピッチをP1、前記第1の凸部または凹部のひし形の対角線方向のピッチであって、前記遮水層の長手方向に対するピッチをP2、とした際に、D1<P、かつ、D2<P、かつ、(D1+D2)<P1、かつ、(D1+D2)<P2の関係を満たし、さらに、P1<2D1またはP1<2D2の関係を満たすことを特徴とする請求項1記載の海中ケーブル。
  5.  前記金属層は、略楕円形の第1の凸部または凹部と、略楕円形の第2の凸部または凹部とが、それぞれ前記遮水層の周方向のピッチP1、前記遮水層の軸方向のピッチP2の格子状に、互いに千鳥状に配置され、前記第1の凸部または凹部と、前記第2の凸部または凹部の、それぞれの凸部または凹部の長径方向または短径方向が、前記遮水層の軸方向に向けて配列するとともに、前記第1の凸部または凹部と、前記第2の凸部または凹部の、それぞれの凸部または凹部が、前記遮水層の軸方向に配列し、前記第1の凸部または凹部の前記遮水層の周方向の径をD1W、前記第1の凸部または凹部の前記遮水層の軸方向の径をD1L、前記第2の凸部または凹部の前記遮水層の周方向の径をD2W、前記第2の凸部または凹部の前記遮水層の軸方向の径をD2Lとし、前記第1の凸部または凹部の斜め方向のピッチであって、(P1+P21/2で算出されるピッチをP3、前記第1の凸部または凹部を前記斜め方向に結ぶ線分上の前記第2の凸部または凹部の長さをD2S、前記第2の凸部または凹部の前記斜め方向を結ぶ線分上の前記第1の凸部または凹部の長さをD1S、とした際に、D1W<P1、かつ、D1L<P2、かつ、D2W<P1、かつ、D2L<P2、かつ、P1<D1W+D2W、かつ、D1S+D2S<P3の関係を満たすことを特徴とする請求項1記載の海中ケーブル。
  6.  前記金属層は、略楕円形の第1の凸部または凹部と、略楕円形の第2の凸部または凹部とが、それぞれ同一のピッチPの格子状に、互いに千鳥状に配置され、前記第1の凸部または凹部と、前記第2の凸部または凹部の、それぞれの凸部または凹部の長径方向または短径方向が、前記遮水層の軸方向に向けて配列するとともに、格子の対角線が前記遮水層の軸方向に向けて配列し、前記第1の凸部または凹部の前記遮水層の周方向の径をD1W、前記第1の凸部または凹部の前記遮水層の軸方向の径をD1L、前記第2の凸部または凹部の前記遮水層の周方向の径をD2W、前記第2の凸部または凹部の前記遮水層の軸方向の径をD2Lとし、前記第1の凸部または凹部の斜め方向のピッチであって、21/2Pで算出されるピッチをP3、前記第1の凸部または凹部の配列方向を結ぶ線分上の前記第2の凸部または凹部の長さをD2S、前記第2の凸部または凹部の配列方向を結ぶ線分上の前記第1の凸部または凹部の長さをD1S、とした際に、D1S<P、かつ、D2S<P、かつ、D1W+D2W<P3、かつ、D1L+D2L<P3の関係を満たし、さらに、P<21/2×D1WまたはP<21/2×D2W、かつ、P<21/2×D1LまたはP<21/2×D2Lの関係を満たすことを特徴とする請求項1記載の海中ケーブル。
  7.  前記金属層は、略楕円形の第1の凸部または凹部と、略楕円形の第2の凸部または凹部とが、それぞれ同一のピッチPのひし形状に、互いに千鳥状に配置され、前記第1の凸部または凹部と、前記第2の凸部または凹部の、それぞれの凸部または凹部の長径方向または短径方向が、前記遮水層の軸方向に向けて配列するとともに、ひし形の対角線が前記遮水層の軸方向に向けて配列し、前記第1の凸部または凹部の前記遮水層の周方向の径をD1W、前記第1の凸部または凹部の前記遮水層の軸方向の径をD1L、前記第2の凸部または凹部の前記遮水層の周方向の径をD2W、前記第2の凸部または凹部の前記遮水層の軸方向の径をD2Lとし、前記第1の凸部または凹部の斜め方向のピッチであって、前記遮水層の周方向に対するピッチをP1、前記第1の凸部または凹部の斜め方向のピッチであって、前記遮水層の長手方向に対するピッチをP2、前記第1の凸部または凹部の配列方向を結ぶ線分上の前記第2の凸部または凹部の長さをD2S、前記第2の凸部または凹部の配列方向を結ぶ線分上の前記第1の凸部または凹部の長さをD1S、とした際に、D1S<P、かつ、D2S<P、かつ、(D1W+D2W)<P1、かつ、(D1L+D2L)<P2の関係を満たし、さらに、P1<2D1WまたはP1<2D2Wの関係を満たすことを特徴とする請求項1記載の海中ケーブル。
  8.  前記外部防食層の内面には、さら第2の遮水層が形成され、前記第2の遮水層は、前記複層テープにより形成されることを特徴とする請求項1記載の海中ケーブル。
  9.  海中ケーブルの遮水層用の複層テープであって、
     金属層と、
     前記金属層を挟み込む樹脂被覆部と、
     を具備し、
     前記金属層は、凸部または凹部の少なくとも一方が、平坦部を介して互いに離隔して繰り返し形成され、
     複層テープの長手方向の任意の断面において、前記凸部または前記凹部の少なくとも一部が所定のピッチで配置されることを特徴とする海中ケーブルの遮水層用複層テープ。
  10.  前記金属層は、略円形の第1の凸部または凹部と、略円形の第2の凸部または凹部とが、それぞれ複層テープの幅方向のピッチP1、複層テープの長手方向のピッチP2の格子状に、互いに千鳥状に配置され、前記第1の凸部または凹部と、前記第2の凸部または凹部の、それぞれの凸部または凹部が、複層テープの長手方向に配列し、前記第1の凸部または凹部の径をD1、前記第2の凸部または凹部の径をD2とした際に、D1<P1、かつ、D1<P2、D2<P1、D2<P2、かつ、P1<D1+D2、かつD1+D2<(P1+P21/2の関係を満たすことを特徴とする請求項9記載の海中ケーブルの遮水層用複層テープ。
  11.  前記金属層は、第1の凸部または凹部と、第2の凸部または凹部とが、それぞれ同一のピッチPで互いに千鳥状に格子状に配置され、
     前記第1の凸部または凹部の径をD1、前記第2の凸部または凹部の径をD2とした際に、D1<P、かつ、D2<P、かつ、P<D1+D2<21/2×Pの関係を満たし、さらに、P<21/2×D1またはP<21/2×D2の関係を満たすことを特徴とする請求項9記載の海中ケーブルの遮水層用複層テープ。
  12.  前記金属層は、略円形の第1の凸部または凹部と、略円形の第2の凸部または凹部とが、それぞれ同一のピッチPのひし形状に、互いに千鳥状に配置され、前記第1の凸部または凹部の径をD1、前記第2の凸部または凹部の径をD2とし、前記第1の凸部または凹部のひし形の対角線方向のピッチであって、複層テープの幅方向に対するピッチをP1、前記第1の凸部または凹部のひし形の対角線方向のピッチであって、複層テープの長手方向に対するピッチをP2とした際に、D1<P、かつ、D2<P、かつ、(D1+D2)<P1、かつ、(D1+D2)<P2の関係を満たし、さらに、P1<2D1またはP1<2D2の関係を満たすことを特徴とする請求項9記載の海中ケーブルの遮水層用複層テープ。
  13.  前記金属層は、略楕円形の第1の凸部または凹部と、略楕円形の第2の凸部または凹部とが、それぞれ複層テープの幅方向のピッチP1、複層テープの長手方向のピッチP2の格子状に、互いに千鳥状に配置され、前記第1の凸部または凹部と、前記第2の凸部または凹部の、それぞれの凸部または凹部の長径方向または短径方向が、複層テープの長手方向に向けて配列するとともに、前記第1の凸部または凹部と、前記第2の凸部または凹部の、それぞれの凸部または凹部が、複層テープの長手方向に配列し、前記第1の凸部または凹部の複層テープの幅方向の径をD1W、前記第1の凸部または凹部の複層テープの長手方向の径をD1L、前記第2の凸部または凹部の複層テープの幅方向の径をD2W、前記第2の凸部または凹部の複層テープの長手方向の径をD2Lとし、前記第1の凸部または凹部の斜め方向のピッチであって、(P1+P21/2で算出されるピッチをP3、前記第1の凸部または凹部を前記斜め方向に結ぶ線分上の前記第2の凸部または凹部の長さをD2S、前記第2の凸部または凹部の前記斜め方向を結ぶ線分上の前記第1の凸部または凹部の長さをD1S、とした際に、D1W<P1、かつ、D1L<P2、かつ、D2W<P1、かつ、D2L<P2、かつ、P1<D1W+D2W、かつ、D1S+D2S<P3の関係を満たすことを特徴とする請求項9記載の海中ケーブルの遮水層用複層テープ。
  14.  前記金属層は、略楕円形の第1の凸部または凹部と、略楕円形の第2の凸部または凹部とが、それぞれ同一のピッチPの格子状に、互いに千鳥状に配置され、前記第1の凸部または凹部と、前記第2の凸部または凹部の、それぞれの凸部または凹部の長径方向または短径方向が、複層テープの長手方向に向けて配列するとともに、格子の対角線が複層テープの長手方向に向けて配列し、前記第1の凸部または凹部の複層テープの幅方向の径をD1W、前記第1の凸部または凹部の複層テープの長手方向の径をD1L、前記第2の凸部または凹部の複層テープの幅方向の径をD2W、前記第2の凸部または凹部の複層テープの長手方向の径をD2Lとし、前記第1の凸部または凹部の斜め方向のピッチであって、21/2Pで算出されるピッチをP3、前記第1の凸部または凹部を前記斜め方向に結ぶ線分上の前記第2の凸部または凹部の長さをD2S、前記第2の凸部または凹部の前記斜め方向を結ぶ線分上の前記第1の凸部または凹部の長さをD1S、とした際に、D1W<P、かつ、D1L<P、かつ、D2W<P、かつ、D2L<P、かつ、D1W+D2W<P3、かつ、D1L+D2L<P3の関係を満たし、さらに、P<21/2×D1WまたはP<21/2×D2W、かつ、P<21/2×D1LまたはP<21/2×D2Lの関係を満たすことを特徴とする請求項9記載の海中ケーブルの遮水層用複層テープ。
  15.  前記金属層は、略楕円形の第1の凸部または凹部と、略楕円形の第2の凸部または凹部とが、それぞれ同一のピッチPのひし形状に、互いに千鳥状に配置され、前記第1の凸部または凹部と、前記第2の凸部または凹部の、それぞれの凸部または凹部の長径方向または短径方向が、複層テープの長手方向に向けて配列するとともに、ひし形の対角線が複層テープの長手方向に向けて配列し、前記第1の凸部または凹部の複層テープの幅方向の径をD1W、前記第1の凸部または凹部の複層テープの長手方向の径をD1L、前記第2の凸部または凹部の複層テープの幅方向の径をD2W、前記第2の凸部または凹部の複層テープの長手方向の径をD2Lとし、前記第1の凸部または凹部の斜め方向のピッチであって、複層テープの幅方向に対するピッチをP1、前記第1の凸部または凹部の斜め方向のピッチであって、複層テープの長手方向に対するピッチをP2、前記第1の凸部または凹部の配列方向を結ぶ線分上の前記第2の凸部または凹部の長さをD2S、前記第2の凸部または凹部の配列方向を結ぶ線分上の前記第1の凸部または凹部の長さをD1S、とした際に、D1S<P、かつ、D2S<P、かつ、(D1W+D2W)<P1、かつ、(D1L+D2L)<P2の関係を満たし、さらに、P1<2D1WまたはP1<2D2Wの関係を満たすことを特徴とする請求項9記載の海中ケーブルの遮水層用複層テープ。
PCT/JP2014/074805 2013-09-24 2014-09-19 海中ケーブル、およびその遮水層用複層テープ WO2015046037A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14848362.1A EP3051540B1 (en) 2013-09-24 2014-09-19 Submarine cable and multilayer tape for impermeable layer of same
US15/017,169 US10056171B2 (en) 2013-09-24 2016-02-05 Submarine cable and multilayer tape for impermeable layer of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-197141 2013-09-24
JP2013197141A JP6294616B2 (ja) 2013-09-24 2013-09-24 海中ケーブル、およびその遮水層用複層テープ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/017,169 Continuation US10056171B2 (en) 2013-09-24 2016-02-05 Submarine cable and multilayer tape for impermeable layer of same

Publications (1)

Publication Number Publication Date
WO2015046037A1 true WO2015046037A1 (ja) 2015-04-02

Family

ID=52743174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074805 WO2015046037A1 (ja) 2013-09-24 2014-09-19 海中ケーブル、およびその遮水層用複層テープ

Country Status (4)

Country Link
US (1) US10056171B2 (ja)
EP (1) EP3051540B1 (ja)
JP (1) JP6294616B2 (ja)
WO (1) WO2015046037A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104112509A (zh) * 2014-07-18 2014-10-22 中天科技海缆有限公司 一种基于扭矩平衡设计的金属铠装电缆及其设计方法
TWI548429B (zh) 2014-11-07 2016-09-11 財團法人工業技術研究院 醫療用複合材料及其製作方法與應用
TWI522231B (zh) * 2014-12-01 2016-02-21 財團法人工業技術研究院 金屬/高分子複合材料及其製作方法
EP3297001B1 (en) * 2015-05-11 2021-04-14 LS Cable & System Ltd. Power cable
US10676918B2 (en) * 2017-08-29 2020-06-09 Benjamin Obdyke Incorporated Double-sided drainage-promoting wrap
WO2019043806A1 (ja) * 2017-08-30 2019-03-07 三菱電機株式会社 電力変換装置
US20190080819A1 (en) * 2017-09-12 2019-03-14 General Cable Technologies Corporation Low-smoke, halogen-free flexible cords
US11401631B2 (en) * 2019-10-28 2022-08-02 Federal-Mogul Powertrain Llc Impact resistant, wrappable multilayered woven sleeve and method of construction thereof
IT202000000343A1 (it) * 2020-01-10 2021-07-10 Prysmian Spa Cavo armato per trasportare corrente alternata
CN111403080A (zh) * 2020-03-24 2020-07-10 东莞讯滔电子有限公司 电缆及其制造方法
EP4273890A1 (en) * 2022-05-02 2023-11-08 Nexans Dynamic cables with thermoplastic sheath reinforced by wound fibres
EP4273891A1 (en) * 2022-05-02 2023-11-08 Nexans Dynamic cables with fibre reinforced thermoplastic composite sheath

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58131518U (ja) * 1982-03-02 1983-09-05 昭和電線電纜株式会社 電気ケ−ブル
JP2004192831A (ja) 2002-12-06 2004-07-08 Furukawa Electric Co Ltd:The 海中ケーブル
JP2013045552A (ja) * 2011-08-23 2013-03-04 Furukawa Electric Co Ltd:The 海中ケーブル、海中ケーブルの遮水層用複層テープおよび海中ケーブルの疲労特性の向上方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US463107A (en) * 1891-11-10 Sylvania
US3244799A (en) * 1963-04-02 1966-04-05 Superior Cable Corp Electrical cable with cable core wrap
US3505144A (en) * 1964-10-08 1970-04-07 Timothy J Kilduff Method of making electrically conductive pressure sensitive adhesive tapes
US3594489A (en) * 1968-10-07 1971-07-20 Gen Cable Corp Extra high voltage cables
US3594492A (en) * 1969-09-30 1971-07-20 Gen Cable Corp Pipe-type cable systems with reduced ac losses
US3651244A (en) * 1969-10-15 1972-03-21 Gen Cable Corp Power cable with corrugated or smooth longitudinally folded metallic shielding tape
US3701840A (en) * 1971-05-11 1972-10-31 Fmc Corp Embossed core wrap for electrical cables
JPS58131518A (ja) * 1982-02-01 1983-08-05 Toyota Motor Corp トラッキング分析方法
JPS59152629U (ja) * 1983-03-31 1984-10-13 三菱電線工業株式会社 同軸ケ−ブル
US4746767A (en) * 1987-02-27 1988-05-24 Neptco Incorporated Shielded electrical cable construction
US5141790A (en) * 1989-11-20 1992-08-25 Minnesota Mining And Manufacturing Company Repositionable pressure-sensitive adhesive tape
DE102004042656B3 (de) * 2004-09-03 2005-12-29 Draka Comteq Germany Gmbh & Co. Kg Mehrlagige, streifenförmige Abschirmfolie für elektrische Leitungen und damit ausgerüstetes elektrisches Kabel, insbesondere Datenübertragungskabel
CN100553037C (zh) * 2005-03-28 2009-10-21 立维腾制造有限公司 不连续的电缆屏蔽系统及方法
US8450606B2 (en) * 2006-08-11 2013-05-28 Superior Essex Communication LP Communication cable having electrically isolated shield providing enhanced return loss
US8119907B1 (en) * 2006-08-11 2012-02-21 Superior Essex Communications, Lp Communication cable with electrically isolated shield comprising holes
EP1998340A1 (en) * 2007-05-29 2008-12-03 ABB Technology AG An electric power cable
TWI498922B (zh) * 2008-03-06 2015-09-01 Panduit Corp 具有改良串音衰減之通訊系統、通訊電纜及障壁帶,以及用於衰減在複數個通訊電纜之間的外來串音的方法
WO2010075873A1 (en) * 2008-12-29 2010-07-08 Prysmian S.P.A. Submarine electric power transmission cable with cable armour transition
US9129727B2 (en) * 2009-05-04 2015-09-08 Panduit Corp. Communication cable with embossed tape having encapsulated gas
NO2750144T3 (ja) * 2011-08-23 2018-01-06
US9196398B2 (en) * 2013-02-27 2015-11-24 Nexans Discontinuous shielding tapes for data communications cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58131518U (ja) * 1982-03-02 1983-09-05 昭和電線電纜株式会社 電気ケ−ブル
JP2004192831A (ja) 2002-12-06 2004-07-08 Furukawa Electric Co Ltd:The 海中ケーブル
JP2013045552A (ja) * 2011-08-23 2013-03-04 Furukawa Electric Co Ltd:The 海中ケーブル、海中ケーブルの遮水層用複層テープおよび海中ケーブルの疲労特性の向上方法

Also Published As

Publication number Publication date
US20160155537A1 (en) 2016-06-02
EP3051540A4 (en) 2017-06-07
EP3051540A1 (en) 2016-08-03
JP6294616B2 (ja) 2018-03-14
JP2015064970A (ja) 2015-04-09
US10056171B2 (en) 2018-08-21
EP3051540B1 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
JP6294616B2 (ja) 海中ケーブル、およびその遮水層用複層テープ
WO2013027748A1 (ja) 海中ケーブル、その遮水層用複層テープおよび海中ケーブルの疲労特性の向上方法
JP5323901B2 (ja) 海中ケーブル、海中ケーブルの遮水層用複層テープおよび海中ケーブルの疲労特性の向上方法
US9722406B2 (en) Undersea cable, undersea cable installation structure, and method for installing undersea cable
EP2382639B1 (en) Submarine electric power transmission cable with cable armour transition
US11631505B2 (en) CuNiSi alloy cable sheathing
JP6135858B2 (ja) 水中・水底ケーブル線路
JP5323973B1 (ja) 疲労特性に優れた海中ケーブルおよびその遮水層用複層テープ
JP2015038841A (ja) 水中・水底ケーブル
JP6229916B2 (ja) 電力用水中・水底ケーブル線路
CN111540522A (zh) 一种风力发电高压交流海缆
JP6270701B2 (ja) ケーブル
US20240047956A1 (en) Jointing system of power cable
WO2020050180A1 (ja) ラミネートテープ及びケーブル
EP3879653A1 (en) Joint system of power cable
WO2017178024A1 (en) Self-supporting electric power cable and buoy arrangement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848362

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014848362

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014848362

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE