WO2015045682A1 - Fuel-cell anode and fuel cell - Google Patents

Fuel-cell anode and fuel cell Download PDF

Info

Publication number
WO2015045682A1
WO2015045682A1 PCT/JP2014/071733 JP2014071733W WO2015045682A1 WO 2015045682 A1 WO2015045682 A1 WO 2015045682A1 JP 2014071733 W JP2014071733 W JP 2014071733W WO 2015045682 A1 WO2015045682 A1 WO 2015045682A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
anode
fuel cell
fuel
solid electrolyte
Prior art date
Application number
PCT/JP2014/071733
Other languages
French (fr)
Japanese (ja)
Inventor
新田 高弘
朗 齋藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2015045682A1 publication Critical patent/WO2015045682A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/861Porous electrodes with a gradient in the porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell anode and a fuel cell single cell, and more particularly to a fuel cell anode used in a fuel cell single cell using a solid electrolyte as an electrolyte, and a fuel cell single cell using the same.
  • a solid electrolyte type fuel cell unit cell having an anode, a solid electrolyte layer, and a cathode is known.
  • the fuel gas supplied from the fuel gas inlet often flows along the surface of the anode and is discharged from the fuel gas outlet.
  • Prior Patent Document 1 discloses a fuel cell single cell in which a support having a fuel gas passage for circulating fuel gas therein, an anode layer, a solid electrolyte layer, and a cathode layer are laminated in this order. Has been. In Patent Document 1, it is assumed that the porosity in the anode layer portion located on the downstream side in the fuel gas flow direction is larger than the porosity in the anode layer portion located on the upstream side in the fuel gas flow direction. The structure is described.
  • the conventional technique has the following problems. That is, in the fuel cell single cell to which fuel gas is supplied along the surface direction of the anode, a large amount of fuel gas is consumed on the fuel gas inlet side, and the amount of fuel gas reaching the fuel gas outlet side tends to decrease. In some cases, the fuel gas may be exhausted on the fuel gas outlet side. Therefore, there is a problem that the power generation distribution in the cell plane becomes large, and as a result, the temperature distribution in the cell plane becomes large. When the temperature distribution in the surface of the unit cell becomes large, local stress is generated in the unit cell, which may lead to cracking of the unit cell during power generation.
  • the present invention has been made in view of the above-described background, and when used in a single fuel cell, a fuel capable of uniformizing the power generation distribution in the plane of the single fuel cell caused by the flow of fuel gas.
  • the present invention has been obtained in an attempt to provide a battery anode and a fuel cell unit cell using the same.
  • a preferred embodiment of the present invention is an anode for a fuel cell that is used in a fuel cell single cell that has an anode, a solid electrolyte layer, and a cathode, and is supplied with fuel gas along the surface direction of the anode.
  • the fuel cell anode is composed of a plurality of layers, and of the plurality of layers of the fuel cell anode, the outermost layer disposed farthest from the solid electrolyte layer is partially thick.
  • the anode for a fuel cell is characterized by being different.
  • Another aspect of the present invention includes the anode for a fuel cell, a solid electrolyte layer, and a cathode, and fuel gas is supplied along a surface direction of the anode for the fuel cell. It is in a single fuel cell.
  • the fuel cell anode has the above-described configuration.
  • the outermost layer arranged farthest from the solid electrolyte layer is partially different in thickness. Therefore, when the fuel cell anode having the above-described structure is used for a single fuel cell, the gas diffusion distance of the fuel gas is shortened and the gas diffusion is increased in the portion where the thickness of the outermost layer is thin.
  • the power generation distribution in the cell plane due to the flow of the fuel gas can be made uniform.
  • the fuel cell anode is used in a fuel cell single cell, the temperature distribution in the cell surface is reduced, local stress is less likely to occur in the cell, and cell cracking during power generation is less likely to occur. . Therefore, the fuel cell anode is effective in improving the reliability of a single fuel cell.
  • the anode In the fuel cell anode, the anode is multilayered, and the gas diffusivity is controlled by partially changing the thickness of the outermost layer. Therefore, when compared with other fuel cell anodes that control the gas diffusibility by changing the porosity of the anode in the flow direction of the fuel gas, the fuel cell anode according to the present invention is easy to manufacture and reliable. There are advantages such as high and good.
  • the fuel cell single cell according to the present invention has the fuel cell anode, a solid electrolyte layer, and a cathode. Therefore, in the fuel cell unit cell, the temperature distribution in the cell surface becomes small, local stress is hardly generated in the cell, and cell cracking during power generation is difficult to occur. Therefore, the fuel cell single cell can exhibit high reliability.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2. It is sectional drawing which shows the structure of the outermost layer of the anode for fuel cells of Example 2 which concerns on this invention, and a fuel cell single cell, and shows the structure of the outermost layer in the anode for fuel cells which concerns on Example 1, and a fuel cell single cell This corresponds to FIG.
  • the fuel cell anode according to the present invention is applied as an anode in a solid electrolyte fuel cell single cell using a solid electrolyte as an electrolyte.
  • a solid electrolyte constituting the solid electrolyte layer
  • a solid oxide ceramic exhibiting oxygen ion conductivity can be used.
  • a fuel cell using solid oxide ceramics as a solid electrolyte is called a solid oxide fuel cell (SOFC).
  • SOFC solid oxide fuel cell
  • the battery structure of the single fuel cell can be a flat plate having a layered anode as a support from the viewpoint of excellent manufacturability and high power generation efficiency.
  • the fuel cell single cell includes a solid electrolyte layer, a fuel cell anode laminated on one surface (first surface) of the solid electrolyte layer, and the other surface (second surface) of the solid electrolyte layer. And a cathode laminated with or without an intermediate layer, and a fuel cell anode as a support.
  • the intermediate layer is a layer mainly for preventing a reaction that occurs between the material constituting the cathode and the material constituting the solid electrolyte layer.
  • the cathode and the intermediate layer can be composed of one layer or two or more layers.
  • the fuel gas and oxidant gas supply method is such that the fuel gas supplied to the fuel cell anode along the surface direction of the fuel cell anode and the oxidant gas supplied to the cathode along the surface direction of the cathode.
  • a so-called cross flow method in which the fuel cells are supplied to the fuel cell so as to be orthogonal to each other can be employed.
  • the outermost layer of the fuel cell anode is a layer disposed farthest from the solid electrolyte layer. Fuel gas flows from the outermost layer surface.
  • the outermost layer is partially different in thickness. Therefore, the outermost layer includes a relatively thin portion and a relatively thick portion.
  • the outermost layer can include a portion where the thickness is partially zero.
  • the outermost layer can have a plurality of thin portions. In this case, the thin portions may have the same thickness or different thicknesses. Further, the thin portions may have the same form or different forms. Specifically, the thin portion can be in the form of a hole, a groove or the like. The hole or groove may or may not penetrate from the outermost layer surface to the outermost solid electrolyte layer side surface.
  • the outer layer may have a structure in which many portions having a smaller thickness are formed on the gas flow downstream side than on the gas flow upstream side.
  • the layer configuration of the fuel cell anode is, for example, an active layer disposed on the solid electrolyte layer side, and an active layer surface of the active layer on the solid electrolyte layer side (second surface). ) And the outermost layer laminated on the surface (first surface) of the diffusion layer opposite to the solid electrolyte layer side in the diffusion layer. It can be set as the structure provided.
  • the active layer is a layer that mainly serves as a reaction field for electrochemical reaction on the anode side for the fuel cell.
  • the diffusion layer is a layer that can mainly diffuse the supplied fuel gas.
  • the fuel gas inflow amount can be controlled in the gas flow direction by the outermost layer. Further, the fuel gas that has flowed in can be appropriately diffused by the diffusion layer. Also, the active layer can cause an electrochemical reaction uniformly in the gas flow direction as compared with the case where the outermost layer is not provided. Therefore, in this case, there is an advantage that the distribution of power generation in the cell plane due to the flow of the fuel gas can be easily uniformed by sufficiently exerting each function by each layer to which the functions are shared.
  • the outer dimensions of the outermost layer, the diffusion layer, and the active layer are not particularly limited.
  • the outer dimensions of the outermost layer, the diffusion layer, and the active layer can all be the same.
  • the diffusion layer may be configured to cover the remaining surface of the active layer other than the surface in contact with the solid electrolyte layer. In this case, the fuel gas can be diffused from the side surface of the active layer, which is advantageous in improving gas diffusibility.
  • the fuel cell anode can be configured such that the pore diameter of the diffusion layer is larger than the pore diameter of the outermost layer, that is, the relationship of the outermost layer pore diameter ⁇ the diffusion layer pore diameter.
  • the gas diffusibility of the fuel gas is suppressed by the outermost layer, excessive consumption of the fuel gas on the upstream side of the gas flow is eliminated, and the fuel gas is easily sent to the downstream side of the gas flow. And gas diffusion increases in the thin part in the outermost layer. Therefore, in this case, there is an advantage that the power generation distribution in the cell plane due to the flow of the fuel gas can be made more uniform. In particular, when the outermost layer has a configuration in which the portion on the downstream side of the gas flow has a smaller thickness than the upstream side of the gas flow, the effect is increased.
  • the fuel cell anode is preferably configured to satisfy the relationship of the pore size of the active layer ⁇ the pore size of the outermost layer ⁇ the pore size of the diffusion layer.
  • the diffusion layer is unlikely to be a gas diffusion rate-determining field for the fuel gas supplied to the active layer, and the diffusion of the fuel gas to the active layer is difficult to be inhibited.
  • an increase in reaction points (high surface area) in the active layer is advantageous for improving the power generation characteristics of the single fuel cell.
  • the size relationship between the pore sizes can be determined by cross-sectional observation with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the average pore size of the outermost layer, the average pore size of the diffusion layer, and the average pore size of the active layer are measured. Can be compared.
  • the said average pore diameter is an average value of the pore diameter computed from the pore distribution measured with the palm porometer.
  • the average pore size of the active layer is preferably within the range of 0.1 to 5 ⁇ m, more preferably within the range of 0.2 to 3 ⁇ m, even more preferably within the range of 0.3 to 2 ⁇ m, and even more preferably 0.4. It can be in the range of ⁇ 1.5 ⁇ m.
  • the water generated by the electrode reaction is smoothly discharged, it is easy to suppress a momentary drop in the power generation output due to the water remaining without being discharged.
  • it is easy to secure the number of reaction points, and it is easy to suppress a decrease in output density.
  • the average pore size of the diffusion layer is preferably within the range of 0.3 to 20 ⁇ m, more preferably within the range of 0.4 to 17 ⁇ m, even more preferably within the range of 0.5 to 15 ⁇ m, and even more preferably 1 to 10 ⁇ m. Can be within the range. In this case, it is easy to quickly diffuse the fuel gas into the active layer by the diffusion layer, which is advantageous for suppressing a decrease in output density.
  • the fuel cell anode can be configured such that the porosity of the diffusion layer is larger than the porosity of the outermost layer, that is, the relationship of the porosity of the outermost layer ⁇ the porosity of the diffusion layer is satisfied. Also in this case, as described above, the same effect as in the case of satisfying the relationship of the pore diameter of the outermost layer ⁇ the pore diameter of the diffusion layer can be obtained.
  • the porosity of the outermost layer is larger than the porosity of the active layer
  • the porosity of the diffusion layer is larger than the porosity of the outermost layer, that is, the porosity of the active layer.
  • the porosity of the outermost layer ⁇ the porosity of the diffusion layer can be satisfied.
  • the porosity is a numerical value calculated by ⁇ 1 ⁇ (bulk density / apparent density) ⁇ ⁇ 100 by calculating the apparent density and the bulk density by the Archimedes method.
  • the porosity of the active layer is preferably within the range of 30-50%, more preferably within the range of 33-48%, even more preferably within the range of 36-46%, and even more preferably within the range of 39-44%. It can be. In this case, since the water generated by the electrode reaction is smoothly discharged, it is easy to suppress a momentary drop in the power generation output due to the water remaining without being discharged. In addition, it is easy to secure the number of reaction points, and it is easy to suppress a decrease in output density.
  • the porosity of the diffusion layer is preferably within the range of 30-60%, more preferably within the range of 36-57%, even more preferably within the range of 42-54%, and even more preferably within the range of 45-51%. It can be.
  • each layer constituting the fuel cell anode can be composed of, for example, a mixture containing a catalyst and a solid electrolyte.
  • the material of the catalyst include nickel (Ni), nickel oxide (NiO, etc.), cobalt (Co), noble metals (Au, Ag, platinum group elements Ru, Rh, Pd, Os, Ir. , Pt, preferably Pt, Pd, Ru) and the like. These can be used alone or in combination of two or more.
  • the catalyst in each layer may be in the form of particles, and all may be the same material or different materials.
  • nickel and / or nickel oxide can be suitably used.
  • Nickel nickel oxide becomes nickel in the reducing atmosphere of the anode
  • one or more oxides selected from Y 2 O 3 , Sc 2 O 3 , Yb 2 O 3 , and CaO are solid.
  • ZrO 2 dissolved oxide such as ZrO 2 ; lanthanum gallate oxide; CeO 2 , CeO 2 and Gd, Sm, Y, La, Nd, Yb, Ca, Dr, and Ho
  • a cerium oxide-based oxide such as a ceria-based solid solution doped with two or more elements can be exemplified. These can be used alone or in combination of two or more.
  • the solid electrolyte in each layer constituting the anode for a fuel cell can be in the form of particles, and may be the same material or different materials.
  • a zirconia solid electrolyte can be preferably used from the viewpoints of oxygen ion conductivity, mechanical strength, and the like.
  • the mixture that can constitute the outermost layer of the anode for a fuel cell contains, for example, a mass ratio of the catalyst and the solid electrolyte of 30/70 to 70/30, preferably 40/60 to 60/40. Can be contained within.
  • the mixture that can constitute the diffusion layer contains the catalyst and the solid electrolyte in a mass ratio of, for example, 30/70 to 70/30, preferably 40/60 to 60/40. it can.
  • the above-mentioned mixture that can constitute the active layer contains the catalyst and the solid electrolyte, for example, in a mass ratio of 30/70 to 70/30, preferably in the range of 40/60 to 60/40. it can.
  • the thickness of the outermost layer constituting the fuel cell anode in which the thickness is not reduced is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, and still more preferably from the viewpoint of manufacturing. It can be 10 ⁇ m or more.
  • the thickness of the outermost layer where the thickness is not reduced is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, and even more preferably 100 ⁇ m or less, from the viewpoint of relaxation of power generation distribution and the like.
  • the thickness of the diffusion layer is preferably 300 ⁇ m or more, more preferably 400 ⁇ m or more, and further preferably 500 ⁇ m or more, from the viewpoint of strength and the like when used as a support.
  • the thickness of the diffusion layer is preferably 1500 ⁇ m or less, more preferably 1000 ⁇ m or less, and even more preferably 800 ⁇ m or less.
  • the thickness of the active layer is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and further preferably 20 ⁇ m or more, from the viewpoint of securing a reaction field for gas, electrons, and ions.
  • the thickness of the active layer is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and still more preferably 60 ⁇ m or less from the viewpoint of oxygen ion conductivity and the like.
  • examples of the material constituting each layer of the fuel cell unit cell include the following, but are not particularly limited.
  • Examples of the solid electrolyte constituting the solid electrolyte layer include zirconium oxide-based oxides such as yttria-stabilized zirconia (YSZ) and scandia-stabilized zirconia (ScSZ); lanthanum gallate-based oxides; CeO 2 , CeO 2 with Gd, Examples include cerium oxide-based oxides such as ceria-based solid solutions doped with one or more elements selected from Sm, Y, La, Nd, Yb, Ca, Dr, and Ho. it can.
  • zirconium oxide-based oxides such as yttria-stabilized zirconia (YSZ) and scandia-stabilized zirconia (ScSZ); lanthanum gallate-based oxides; CeO 2 , CeO 2 with Gd
  • cerium oxide-based oxides such as ceria-based solid solutions doped with one or more elements selected from Sm, Y, La, Nd, Yb, Ca, Dr
  • the solid electrolyte layer has an advantage that the ohmic resistance is reduced by reducing its thickness and the output density is improved, but if the thickness is excessively thin, the probability of occurrence of holes penetrating the solid electrolyte layer increases.
  • the fuel gas or oxidant gas may cross leak through the solid electrolyte layer, resulting in a decrease in power density.
  • the thickness of the solid electrolyte layer is preferably 1 to 20 ⁇ m, more preferably 3 to 10 ⁇ m.
  • the cathode material examples include conductive perovskite oxides such as lanthanum-manganese oxides, lanthanum-cobalt oxides, lanthanum-iron oxides, the perovskite oxides, and the solid electrolytes. The mixture of these can be illustrated.
  • the thickness of the cathode is preferably 10 to 100 ⁇ m, more preferably 30 from the viewpoint of increasing the number of reaction active fields in which oxygen contained in an oxidant gas such as air receives and ionizes electrons on the surface of the cathode forming material. It can be ⁇ 50 ⁇ m.
  • Examples of the material for the intermediate layer include the cerium oxide-based oxides.
  • the thickness of the intermediate layer is preferably 1 to 10 ⁇ m, more preferably 3 to 7 ⁇ m from the viewpoint of preventing diffusion of the cathode constituent element into the solid electrolyte.
  • the fuel cell anode and the fuel cell single cell having the fuel cell anode can be suitably manufactured through the following first to third steps, but this is not particularly limited.
  • the first step includes an unfired outermost layer forming material that becomes an outermost layer by firing, and an unfired other layer forming material that becomes another layer excluding the outermost layer of the plurality of layers by firing.
  • the unfired solid electrolyte layer forming material that becomes a solid electrolyte layer by firing, and the unfired intermediate layer forming material that becomes an intermediate layer by firing, if necessary, are layered in this order and pressed. This is a step of obtaining a laminate.
  • the laminated body can be degreased as necessary.
  • the other layer forming material can be, for example, an unfired diffusion layer forming material that becomes a diffusion layer by firing and an unfired active layer formation material that becomes an active layer by firing. Further, the outermost layer forming materials partially differ in thickness so that a predetermined outermost layer is obtained.
  • the outermost layer forming material, the diffusion layer forming material, and the active layer forming material can be configured to include catalyst particles, solid electrolyte particles, a pore-forming agent, a binder, a plasticizer, and the like.
  • the outermost layer forming material, the diffusion layer forming material, and the active layer forming material have a pore-forming agent content and its content so that the pore diameter is different when the outermost layer, the diffusion layer, and the active layer are formed by firing, respectively.
  • the size, the catalyst particles, the particle diameter of the solid electrolyte particles, and the like can be appropriately adjusted.
  • a sheet-like material can be used for each forming material.
  • the diffusion layer forming material can be formed by laminating a plurality of sheets. In the above, it is also possible to form a paste-like outermost layer forming material in a layer shape partially different in thickness by a printing method or the like on one surface of the sheet-like diffusion layer forming material.
  • the second step is a step of co-firing the laminate at, for example, 1300 to 1500 ° C.
  • a fired body in which an anode composed of a plurality of layers including the outermost layer (in the above example, outermost layer, diffusion layer, active layer), solid electrolyte layer, and if necessary, an intermediate layer is laminated in this order is obtained. It is done.
  • the third step is a step of laminating a cathode forming material that becomes a cathode by firing on the surface of the intermediate layer or the surface of the solid electrolyte layer in the fired body, and firing at 900 to 1200 ° C., for example. is there.
  • a paste-like material can be used as the cathode forming material.
  • the cathode forming material can be applied in a layer form on the surface of the intermediate layer or the surface of the solid electrolyte layer by a printing method or the like.
  • Example 1 A fuel cell anode and a single fuel cell according to Example 1 will be described with reference to FIGS.
  • the fuel cell single cell 5 has the anode 10 for the fuel cell of the first embodiment, the solid electrolyte layer 2, and the cathode 3. Fuel gas is supplied along the surface direction F.
  • the fuel cell anode 10 according to the first embodiment is used for the single fuel cell 5.
  • the fuel cell anode 10 is composed of a plurality of layers, and among these layers, the outermost layer 11 disposed farthest from the solid electrolyte layer 2 is partially different in thickness.
  • the fuel cell single cell 5 of the first embodiment includes the fuel cell anode 10 of the first embodiment, the solid electrolyte layer 2, and the cathode 3, and the fuel cell. Fuel gas is supplied along the surface direction of the anode 10 for use.
  • the fuel cell single cell 5 includes a solid electrolyte layer 2, a fuel cell anode 10 laminated on one surface (first surface) of the solid electrolyte layer 2, and the other surface of the solid electrolyte layer 2 ( The cathode 2 is laminated on the second surface) with the intermediate layer 4 interposed therebetween, and is a flat single cell having the fuel cell anode 10 as a support.
  • the fuel gas and oxidant gas supply method is specifically, along the surface direction of the fuel gas anode 10 and the cathode 3 along the surface direction F of the fuel cell anode 10.
  • a so-called cross flow system is used in which the oxidant gas supplied to the cathode 3 is supplied to the single fuel cell 5 so as to be orthogonal to each other.
  • the outermost layer 11 includes a relatively thin portion 111 and a relatively thick portion 112 (portion where the thickness is not reduced).
  • the outermost layer 11 has a plurality of thin portions 111. Specifically, the thin portions 111 are perpendicular to the gas flow direction F of the fuel gas, as shown in FIGS.
  • a plurality of rows of holes 111a arranged in the direction are arranged in the gas flow direction F of the fuel gas.
  • the hole 111a is a non-through hole that does not penetrate from the surface (first surface) of the outermost layer 11 to the surface (second surface) of the outermost layer 11 on the solid electrolyte layer 2 side.
  • the fuel gas inlet side (left side in FIG. 2) from the intermediate point in the gas flow direction F of the fuel gas is the gas flow upstream side, and the fuel gas outlet side (right side in FIG. 2) from the intermediate point. ) On the downstream side of the gas flow.
  • the outermost layer 11 is formed with more thin portions 111 on the gas flow downstream side than on the gas flow upstream side.
  • the fuel cell anode 10 of the first embodiment includes an active layer 13 disposed on the solid electrolyte layer 2 side (that is, the first surface side of the solid electrolyte layer 2), and a solid in the active layer 13.
  • the anode 10 for the fuel cell of Example 1 has a configuration in which the pore diameter of the diffusion layer 12 is larger than the pore diameter of the outermost layer 11, that is, the relationship of the pore diameter of the outermost layer 11 ⁇ the pore diameter of the diffusion layer 12. It is configured.
  • the average pore diameter of the outermost layer 11 is 0.3 to 10 ⁇ m
  • the average pore diameter of the diffusion layer 12 is 0.3 to 20 ⁇ m
  • the average pore diameter of the active layer 13 is 0.1 to 5 ⁇ m.
  • the porosity of the outermost layer 11 is selected from 80 to 95%
  • the porosity of the diffusion layer 12 is selected from 30 to 60%
  • the porosity of the active layer 13 is selected from 30 to 50%.
  • each of the layers 11, 12, and 13 is composed of a mixture containing a catalyst and a solid electrolyte.
  • the catalyst is specifically NiO
  • the solid electrolyte is specifically yttria-stabilized zirconia (hereinafter, 8YSZ) containing 8 mol% Y 2 O 3 as a zirconia-based solid electrolyte. .
  • Each layer 11, 12, 13 is configured to satisfy the above pore diameter relationship by adjusting the particle diameter of the catalyst, the solid electrolyte, the amount of pore-forming agent added during production, the size thereof, and the like. ing. Further, the thickness of the portion 112 where the thickness is not reduced in the outermost layer 11 is 50 ⁇ m, and the thickness of the thin portion 111 in the outermost layer 11 is 5 ⁇ m.
  • the diffusion layer 12 has a thickness of 400 ⁇ m, and the active layer 13 has a thickness of 20 ⁇ m.
  • the solid electrolyte layer 2 is specifically formed of a zirconia solid electrolyte. More specifically, the zirconia-based solid electrolyte is 8YSZ, which is a zirconium oxide-based oxide, and the thickness thereof is 10 ⁇ m.
  • the intermediate layer 4 is specifically formed of ceria (hereinafter, 10GDC) doped with 10 mol% of Gd, which is a cerium oxide-based oxide, and has a thickness of 10 ⁇ m. .
  • 10GDC ceria
  • Gd cerium oxide-based oxide
  • Example 1 the fuel cell anode 10 (outermost layer 11, diffusion layer 12, active layer 13), solid electrolyte layer 2, intermediate layer 4, and cathode 3 are all rectangular in plan view. It has a shape. Further, the outer shapes of the fuel cell anode 10 (outermost layer 11, diffusion layer 12, active layer 13), solid electrolyte layer 2, and intermediate layer 4 are equal in size. On the other hand, the outer shape of the cathode 3 is formed smaller than the outer shape of the solid electrolyte layer 2. That is, in Example 1, the fuel cell single cell 5 is configured such that the outer dimensions of the cathode 3 and the solid electrolyte layer 2 satisfy the relationship of the outer shape of the cathode 3 ⁇ the outer shape of the solid electrolyte layer 2. .
  • the fuel cell anode 10 has the above-described configuration.
  • the outermost layer is composed of a plurality of layers (in the first embodiment, the outermost layer 11, the diffusion layer 12, and the active layer 13). 11 is partially different in thickness. Therefore, when the fuel cell anode 10 is used in the fuel cell single cell 5, in the thin portion 111 of the outermost layer 11, the gas diffusion distance of the fuel gas is shortened and the gas diffusion is increased. Power generation is promoted, and the power generation distribution in the cell plane due to the flow of fuel gas can be made uniform. As a result, when the fuel cell anode 10 is used for the single fuel cell 5, the temperature distribution in the cell surface becomes small, local stress is hardly generated in the cell, and cell cracking during power generation is difficult to occur. Become. Therefore, the fuel cell anode 10 is effective in improving the reliability of the single fuel cell 5.
  • the fuel gas inlet side of the fuel gas in the gas flow direction F (see FIGS. 1 and 2) is located on the upstream side of the gas flow and the intermediate point.
  • the outermost layer 11 is configured such that the portion 111 having a smaller thickness is formed on the downstream side of the gas flow than on the upstream side of the gas flow. ing. Therefore, in the fuel cell anode 10 of the first embodiment, the consumption of the fuel gas on the upstream side of the gas flow is suppressed, and the depletion of the fuel gas on the downstream side of the gas flow is easily suppressed. Also, in a relatively low concentration fuel gas atmosphere downstream of the gas flow, gas diffusion increases, so the amount of power generation increases, and it is even easier to make the power generation distribution in the cell plane uniform due to the fuel gas flow. There are advantages.
  • the anode 10 for the fuel cell of Example 1 is configured by laminating the outermost layer 11, the diffusion layer 12, and the active layer 13 in this order. Therefore, in the fuel cell anode 10 of the first embodiment, the fuel gas inflow amount can be controlled in the gas flow direction by the outermost layer 11. Further, the fuel layer that has flowed in can be appropriately diffused by the diffusion layer 12. In addition, the active layer 13 can cause an electrochemical reaction uniformly in the gas flow direction as compared with the case where the outermost layer 11 is not provided. Therefore, the anode 10 for the fuel cell according to the first embodiment is caused by the flow of the fuel gas because the outermost layer 11, the diffusion layer 12, and the active layer 13 to which the functions are shared sufficiently perform their respective functions. There is an advantage that it is easy to make the power generation distribution in the cell plane uniform.
  • the anode 10 for the fuel cell of Example 1 is configured to satisfy the relationship of the pore diameter of the outermost layer 11 ⁇ the pore diameter of the diffusion layer 12. Therefore, in the fuel cell anode 10 of the first embodiment, although the gas diffusibility of the fuel gas is suppressed by the outermost layer 11, the excessive consumption of the fuel gas on the upstream side of the gas flow is eliminated, and the downstream side of the gas flow. Fuel gas can be sent easily. And in the thin part 111 in the outermost layer 11, gas diffusion increases. Therefore, the fuel cell anode 10 of the first embodiment has an advantage that it is easier to make the power generation distribution in the cell plane uniform due to the flow of the fuel gas. In particular, the configuration of the outermost layer 11 is more effective because there are more thin portions 111 on the downstream side of the gas flow than on the upstream side of the gas flow.
  • the thin portion 111 in the outermost layer 11 is composed of a plurality of holes 111a. Therefore, the anode 10 for the fuel cell according to the first embodiment is made to correspond to the fuel gas flow path according to the shape of the fuel gas flow path included in the separator when the fuel cell single cells 5 are stacked via the separator. By arranging the holes 111a, there is an advantage that the gas diffusibility can be easily improved.
  • the fuel cell single cell 5 has a fuel cell anode 10, a solid electrolyte layer 2, and a cathode 3. Therefore, in the fuel cell single cell 5, the temperature distribution in the cell surface becomes small, local stress is hardly generated in the cell, and cell cracking during power generation is difficult to occur. Therefore, the fuel cell single cell 5 can exhibit high reliability.
  • Example 2 A fuel cell anode and a single fuel cell of Example 2 will be described with reference to FIG.
  • the anode 10 for the fuel cell of the second embodiment is most suitable by arranging a plurality of grooves 111b extending in the direction perpendicular to the gas flow direction F of the fuel gas in the gas flow direction F of the fuel gas. It differs from the anode 10 for fuel cells of Example 1 by the point in which the thin part 111 in the outer layer 11 is comprised.
  • the single fuel cell 5 of the second embodiment is different from the single fuel cell 5 of the first embodiment in that the anode 10 for the fuel cell of the second embodiment is used. Other configurations are the same as those of the first embodiment.
  • the thin portion 111 in the outermost layer 11 is composed of a plurality of grooves 111b. Therefore, the anode 10 for the fuel cell according to the second embodiment is configured such that the fuel gas flow path provided in the separator when stacking the fuel cell single cells 5 through the separator is arranged so as to be orthogonal to the groove 111b. In the rib of the fuel gas flow path in contact with the fuel cell anode 10, there is an advantage that gas diffusion under the rib is facilitated.
  • NiO powder (average particle size: 1 ⁇ m), 8YSZ powder (average particle size: 0.3 ⁇ m), spherical resin particles (average particle size: 1.5 ⁇ m), polyvinyl butyral (organic material), isoamyl acetate, 2
  • a slurry was prepared by mixing butanol and ethanol (mixed solvent) in a ball mill. The mass ratio of NiO powder and 8YSZ powder is 60:40.
  • the above slurry is applied in layers on a plastic substrate having surface protrusions for forming holes in the outermost layer using a doctor blade method, and dried, so that the surface shown in FIGS.
  • a sheet-shaped outermost layer forming material having a plurality of holes shown and having the other surface formed flat was prepared.
  • the outermost layer forming material is partially different in thickness so as to obtain an outermost layer having a partially different thickness.
  • the average particle diameter is the particle diameter (diameter) d50 when the volume-based cumulative frequency distribution measured by the laser diffraction / scattering method shows 50% (hereinafter the same).
  • NiO powder (average particle size: 1 ⁇ m), 8YSZ powder (average particle size: 0.3 ⁇ m), spherical resin particles (average particle size: 1.5 ⁇ m), polyvinyl butyral (organic material), isoamyl acetate, 2
  • a slurry was prepared by mixing butanol and ethanol (mixed solvent) in a ball mill. The mass ratio of NiO powder and 8YSZ powder is 60:40. The slurry was applied in a layer form on a flat plastic substrate using a doctor blade method and dried to prepare a sheet-shaped diffusion layer forming material.
  • NiO powder (average particle size: 1 ⁇ m), 8YSZ powder (average particle size: 0.3 ⁇ m), spherical resin particles (average particle size: 0.8 ⁇ m), polyvinyl butyral (organic material), isoamyl acetate, 2
  • a slurry was prepared by mixing butanol and ethanol (mixed solvent) in a ball mill. The mass ratio of NiO powder and 8YSZ powder is 60:40.
  • the slurry was applied in a layer form on a flat plastic substrate using a doctor blade method and dried to prepare a sheet-form active layer forming material.
  • the addition amount of each resin particle in the outermost layer forming material, the diffusion layer forming material, and the active layer forming material is as follows.
  • the added amount of the resin particles in the active layer forming material ⁇ the addition of the resin particles in the outermost layer forming material.
  • the relationship of the amount ⁇ the amount of resin particles added to the diffusion layer forming material is satisfied.
  • a slurry was prepared by mixing 8YSZ powder (average particle diameter: 0.3 ⁇ m), polyvinyl butyral (organic material), isoamyl acetate, 2-butanol and ethanol (mixed solvent) with a ball mill.
  • the slurry was applied in a layer form on a plastic substrate using a doctor blade method and dried to prepare a sheet-shaped solid electrolyte layer forming material.
  • a slurry was prepared by mixing 10 GDC powder (average particle size: 0.2 ⁇ m), polyvinyl butyral (organic material), isoamyl acetate, 2-butanol and ethanol (mixed solvent) with a ball mill.
  • the slurry was applied in a layer form on a plastic substrate using a doctor blade method and dried to prepare a sheet-shaped intermediate layer forming material.
  • LSCF La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 powder (average particle size: 0.45 ⁇ m), 10 GDC powder (average particle size: 0.2 ⁇ m), ethyl cellulose (organic material) ) And terpineol (solvent) were mixed in a ball mill to prepare a paste-like cathode forming material.
  • the mass ratio of the LSCF powder to the 10GDC powder is 90:10.
  • the laminate was fired at 1350 ° C. for 2 hours. Thereby, an outermost layer, a diffusion layer, an active layer, a solid electrolyte layer, and an intermediate layer having partially different thicknesses were obtained in this order.
  • a cathode forming material was applied to the surface of the intermediate layer in the sintered body by a screen printing method, and baked (baked) at 900 ° C. for 2 hours to form a layered cathode.
  • the cathode forming material is not printed up to the outer edge of the intermediate layer, and the outer shape of the cathode layer is smaller than the outer shape of the solid electrolyte layer. As a result, as shown in FIGS.
  • the fuel cell anode (the outermost layer 11, the diffusion layer 12, and the active layer 13 having partially different thicknesses), the solid electrolyte layer 2, the intermediate layer 4, and the cathode 3 were laminated in this order, and a fuel cell single cell having a fuel cell anode as a support was obtained.
  • an anode for a fuel cell was obtained in which three layers of an outermost layer, a diffusion layer and an active layer having partially different thicknesses were laminated.
  • the obtained fuel cell anode and fuel cell single cell are referred to as Sample 1 fuel cell anode and fuel cell single cell.
  • the outermost layer has a thickness of 50 ⁇ m at a portion where the thickness is not reduced and a thickness of 5 ⁇ m at a portion where the thickness is thin.
  • the diffusion layer has a thickness of 400 ⁇ m
  • the active layer has a thickness of 20 ⁇ m
  • the solid electrolyte layer has a thickness of 10 ⁇ m
  • the intermediate layer has a thickness of 10 ⁇ m
  • the cathode has a thickness of 40 ⁇ m.
  • the anode for a fuel cell and the single fuel cell of Sample 1 satisfy the relationship of the pore size of the active layer ⁇ the pore size of the outermost layer ⁇ the pore size of the diffusion layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

This fuel cell (5) has a fuel-cell anode (10), a solid electrolyte layer (2), and a cathode (3). A fuel gas is supplied in the direction (F) of the plane of the fuel-cell anode (10). The fuel-cell anode (10) comprises a plurality of layers, and the outermost layer (11) thereof, i.e. the layer that is the farthest from the solid electrolyte layer (2), has different thicknesses in different sections. The downstream side of said outermost layer (11), where said downstream side is considered to extend from the center of the outermost layer (11) in the flow direction (F) of the fuel gas to a fuel-gas outlet, has more thin sections (111) than the upstream side of the outermost layer (11), where said upstream side is considered to extend from the aforementioned center to a fuel-gas inlet.

Description

燃料電池用アノードおよび燃料電池単セルAnode for fuel cell and single cell for fuel cell
 本発明は、燃料電池用アノードおよび燃料電池単セルに関し、さらに詳しくは、電解質として固体電解質を利用する燃料電池単セルに用いられる燃料電池用アノード、およびこれを用いた燃料電池単セルに関する。 The present invention relates to a fuel cell anode and a fuel cell single cell, and more particularly to a fuel cell anode used in a fuel cell single cell using a solid electrolyte as an electrolyte, and a fuel cell single cell using the same.
 従来、アノードと、固体電解質層と、カソードとを有する固体電解質型の燃料電池単セルが知られている。一般に、上記燃料電池単セルにおいて、燃料ガスの入口から供給された燃料ガスは、アノードの面方向に沿って流れ、燃料ガスの出口より排出されることが多い。 Conventionally, a solid electrolyte type fuel cell unit cell having an anode, a solid electrolyte layer, and a cathode is known. In general, in the fuel cell unit cell, the fuel gas supplied from the fuel gas inlet often flows along the surface of the anode and is discharged from the fuel gas outlet.
 なお、先行する特許文献1には、内部に燃料ガスを流通させるための燃料ガス流路を有する支持体、アノード層、固体電解質層、カソード層がこの順で積層された燃料電池単セルが開示されている。同特許文献1には、燃料ガスの流れ方向の下流側に位置するアノード層の部分における気孔率が、燃料ガスの流れ方向の上流側に位置するアノード層の部分における気孔率よりも大きいとする構造が記載されている。 Prior Patent Document 1 discloses a fuel cell single cell in which a support having a fuel gas passage for circulating fuel gas therein, an anode layer, a solid electrolyte layer, and a cathode layer are laminated in this order. Has been. In Patent Document 1, it is assumed that the porosity in the anode layer portion located on the downstream side in the fuel gas flow direction is larger than the porosity in the anode layer portion located on the upstream side in the fuel gas flow direction. The structure is described.
特開2012-94427号公報JP 2012-94427 A
 しかしながら、従来技術は以下の点で問題がある。すなわち、アノードの面方向に沿って燃料ガスが供給される燃料電池単セルは、燃料ガス入口側で燃料ガスが多く消費され、燃料ガス出口側に達する燃料ガス量が減少しやすい。場合によっては、燃料ガス出口側にて燃料ガスが枯渇することもある。そのため、セル面内の発電分布が大きくなり、その結果、セル面内の温度分布が大きくなるという問題がある。燃料電池単セル面内の温度分布が大きくなると、燃料電池単セルに局所的な応力が発生し、発電時の燃料電池単セルの割れに繋がるおそれがある。 However, the conventional technique has the following problems. That is, in the fuel cell single cell to which fuel gas is supplied along the surface direction of the anode, a large amount of fuel gas is consumed on the fuel gas inlet side, and the amount of fuel gas reaching the fuel gas outlet side tends to decrease. In some cases, the fuel gas may be exhausted on the fuel gas outlet side. Therefore, there is a problem that the power generation distribution in the cell plane becomes large, and as a result, the temperature distribution in the cell plane becomes large. When the temperature distribution in the surface of the unit cell becomes large, local stress is generated in the unit cell, which may lead to cracking of the unit cell during power generation.
 本発明は、上記背景に鑑みてなされたものであり、燃料電池単セルに用いた場合に、燃料ガスの流れに起因する燃料電池単セル面内の発電分布を均一化することが可能な燃料電池用アノード、およびこれを用いた燃料電池単セルを提供しようとして得られたものである。 The present invention has been made in view of the above-described background, and when used in a single fuel cell, a fuel capable of uniformizing the power generation distribution in the plane of the single fuel cell caused by the flow of fuel gas. The present invention has been obtained in an attempt to provide a battery anode and a fuel cell unit cell using the same.
 本発明の好適な一態様は、アノードと、固体電解質層と、カソードとを有し、上記アノードの面方向に沿って燃料ガスが供給される燃料電池単セルに使用される燃料電池用アノードであって、上記燃料電池用アノードは複数の層より構成されており、上記燃料電池用アノードの複数の層のうち、上記固体電解質層から最も離れて配置される最外層は、部分的に厚みが異なっていることを特徴とする燃料電池用アノードにある。 A preferred embodiment of the present invention is an anode for a fuel cell that is used in a fuel cell single cell that has an anode, a solid electrolyte layer, and a cathode, and is supplied with fuel gas along the surface direction of the anode. The fuel cell anode is composed of a plurality of layers, and of the plurality of layers of the fuel cell anode, the outermost layer disposed farthest from the solid electrolyte layer is partially thick. The anode for a fuel cell is characterized by being different.
 本発明の他の態様は、上記燃料電池用アノードと、固体電解質層と、カソードとを有しており、上記燃料電池用アノードの面方向に沿って燃料ガスが供給されることを特徴とする燃料電池単セルにある。 Another aspect of the present invention includes the anode for a fuel cell, a solid electrolyte layer, and a cathode, and fuel gas is supplied along a surface direction of the anode for the fuel cell. It is in a single fuel cell.
 上記燃料電池用アノードは、上記の構成を有している。特に、燃料電池用アノードを構成する複数の層のうち、固体電解質層から最も離れて配置される最外層は、部分的に厚みが異なっている。そのため、上記した構造の燃料電池用アノードを燃料電池単セルに用いた場合に、最外層の厚みの薄い部分では、燃料ガスのガス拡散距離が短くなってガス拡散が増加し、その部分における発電が促進され、燃料ガスの流れに起因するセル面内の発電分布の均一化を図ることができる。その結果、上記燃料電池用アノードを、燃料電池単セルに用いた場合に、セル面内の温度分布が小さくなり、セルに局所的な応力が生じ難くなって発電時のセル割れが生じ難くなる。そのため、上記燃料電池用アノードは、燃料電池単セルの信頼性向上に有効である。 The fuel cell anode has the above-described configuration. In particular, among the plurality of layers constituting the anode for the fuel cell, the outermost layer arranged farthest from the solid electrolyte layer is partially different in thickness. Therefore, when the fuel cell anode having the above-described structure is used for a single fuel cell, the gas diffusion distance of the fuel gas is shortened and the gas diffusion is increased in the portion where the thickness of the outermost layer is thin. The power generation distribution in the cell plane due to the flow of the fuel gas can be made uniform. As a result, when the fuel cell anode is used in a fuel cell single cell, the temperature distribution in the cell surface is reduced, local stress is less likely to occur in the cell, and cell cracking during power generation is less likely to occur. . Therefore, the fuel cell anode is effective in improving the reliability of a single fuel cell.
 また、上記燃料電池用アノードは、アノードを多層化し、最外層の厚みを部分的に変えてガス拡散性を制御している。そのため、燃料ガスの流れ方向でアノードの気孔率を変えてガス拡散性を制御する他の燃料電池用アノードと比較した場合、本願発明に係る上記燃料電池用アノードは、製造性が容易で信頼性が高く、良好であるなどの利点がある。 In the fuel cell anode, the anode is multilayered, and the gas diffusivity is controlled by partially changing the thickness of the outermost layer. Therefore, when compared with other fuel cell anodes that control the gas diffusibility by changing the porosity of the anode in the flow direction of the fuel gas, the fuel cell anode according to the present invention is easy to manufacture and reliable. There are advantages such as high and good.
 本願発明に係る上記燃料電池単セルは、上記燃料電池用アノードと、固体電解質層と、カソードとを有している。そのため、上記燃料電池単セルは、セル面内の温度分布が小さくなり、セルに局所的な応力が生じ難くなって発電時のセル割れが生じ難くなる。そのため、上記燃料電池単セルは、高い信頼性を発揮することができる。 The fuel cell single cell according to the present invention has the fuel cell anode, a solid electrolyte layer, and a cathode. Therefore, in the fuel cell unit cell, the temperature distribution in the cell surface becomes small, local stress is hardly generated in the cell, and cell cracking during power generation is difficult to occur. Therefore, the fuel cell single cell can exhibit high reliability.
本願発明に係る実施例1の燃料電池用アノード、燃料電池単セルの模式的な外観斜視図である。It is a typical external appearance perspective view of the anode for fuel cells of Example 1 which concerns on this invention, and a fuel cell single cell. 図1におけるII-II断面図である。FIG. 2 is a sectional view taken along line II-II in FIG. 図2におけるIII-III断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 2. 本願発明に係る実施例2の燃料電池用アノード、燃料電池単セルの最外層の構造を示す断面図であり、実施例1に係る燃料電池用アノード、燃料電池単セルにおける最外層の構造を示した図3に対応するものである。It is sectional drawing which shows the structure of the outermost layer of the anode for fuel cells of Example 2 which concerns on this invention, and a fuel cell single cell, and shows the structure of the outermost layer in the anode for fuel cells which concerns on Example 1, and a fuel cell single cell This corresponds to FIG.
 本願発明に係る上記燃料電池用アノードは、電解質として固体電解質を利用する固体電解質型の燃料電池単セルにおけるアノードとして適用される。固体電解質層を構成する固体電解質には、酸素イオン導電性を示す固体酸化物セラミックス等を用いることができる。 The fuel cell anode according to the present invention is applied as an anode in a solid electrolyte fuel cell single cell using a solid electrolyte as an electrolyte. As the solid electrolyte constituting the solid electrolyte layer, a solid oxide ceramic exhibiting oxygen ion conductivity can be used.
 なお、固体電解質として固体酸化物セラミックスを用いる燃料電池は、固体酸化物形燃料電池(SOFC)と称される。上記燃料電池単セルの電池構造は、製造性に優れる、発電効率が高い等の観点から、層状のアノードを支持体とする平板形とすることができる。 A fuel cell using solid oxide ceramics as a solid electrolyte is called a solid oxide fuel cell (SOFC). The battery structure of the single fuel cell can be a flat plate having a layered anode as a support from the viewpoint of excellent manufacturability and high power generation efficiency.
 上記燃料電池単セルは、具体的には、固体電解質層と、固体電解質層の一方面(第1の面)に積層された燃料電池用アノードと、固体電解質層の他方面(第2の面)に中間層を介してまたは中間層を介さずに積層されたカソードとを有しており、燃料電池用アノードを支持体とする構成とすることができる。なお、中間層は、主に、カソードを構成する材料と固体電解質層を構成する材料との間で生じる反応を防止するための層である。カソードおよび中間層は、1層または2層以上から構成することができる。なお、燃料ガス、酸化剤ガスの供給方式は、燃料電池用アノードの面方向に沿って、燃料電池用アノードに供給される燃料ガスとカソードの面方向に沿ってカソードに供給される酸化剤ガスとが互いに直交するように燃料電池単セルに供給される、いわゆるクロスフロー方式などを採用することができる。 Specifically, the fuel cell single cell includes a solid electrolyte layer, a fuel cell anode laminated on one surface (first surface) of the solid electrolyte layer, and the other surface (second surface) of the solid electrolyte layer. And a cathode laminated with or without an intermediate layer, and a fuel cell anode as a support. The intermediate layer is a layer mainly for preventing a reaction that occurs between the material constituting the cathode and the material constituting the solid electrolyte layer. The cathode and the intermediate layer can be composed of one layer or two or more layers. The fuel gas and oxidant gas supply method is such that the fuel gas supplied to the fuel cell anode along the surface direction of the fuel cell anode and the oxidant gas supplied to the cathode along the surface direction of the cathode. A so-called cross flow method in which the fuel cells are supplied to the fuel cell so as to be orthogonal to each other can be employed.
 上記燃料電池用アノードの構造において、上記燃料電池用アノードの最外層は、固体電解質層から最も離れて配置される層である。この最外層表面より燃料ガスが流入する。最外層は、部分的に厚みが異なっている。したがって、最外層は、相対的に厚みの薄い部分と相対的に厚みの厚い部分とが混在している。なお、最外層は、部分的に厚みが0である部分を含むことができる。最外層は、上記厚みの薄い部分を複数有することができる。この場合、上記厚みの薄い部分は、それぞれ厚みが同じであってもよいし、異なっていてもよい。また、上記厚みの薄い部分は、それぞれ同じ形態であってもよいし、異なる形態であってもよい。上記厚みの薄い部分は、具体的には、穴、溝等の形態とすることができる。上記穴、溝は、最外層表面から最外層の固体電解質層側の面まで貫通していなくてもよいし、貫通していてもよい。 In the structure of the fuel cell anode, the outermost layer of the fuel cell anode is a layer disposed farthest from the solid electrolyte layer. Fuel gas flows from the outermost layer surface. The outermost layer is partially different in thickness. Therefore, the outermost layer includes a relatively thin portion and a relatively thick portion. The outermost layer can include a portion where the thickness is partially zero. The outermost layer can have a plurality of thin portions. In this case, the thin portions may have the same thickness or different thicknesses. Further, the thin portions may have the same form or different forms. Specifically, the thin portion can be in the form of a hole, a groove or the like. The hole or groove may or may not penetrate from the outermost layer surface to the outermost solid electrolyte layer side surface.
 上記燃料電池用アノードにおいて、燃料ガスのガス流れ方向の中間地点よりも燃料ガスの入口側をガス流れ上流側、上記中間地点よりも燃料ガスの出口側をガス流れ下流側とした場合に、最外層は、ガス流れ上流側に比べ、ガス流れ下流側の方が、厚みの薄い部分が多く形成されている構成とすることができる。 In the fuel cell anode, when the fuel gas inlet side is the upstream side of the gas flow with respect to the intermediate point in the gas flow direction of the fuel gas and the fuel gas outlet side is the downstream side of the gas flow with respect to the intermediate point. The outer layer may have a structure in which many portions having a smaller thickness are formed on the gas flow downstream side than on the gas flow upstream side.
 この場合は、ガス流れ上流側での燃料ガスの消費が抑えられ、ガス流れ下流側での燃料ガスの枯渇を抑制しやすくなる。また、ガス流れ下流側の比較的低濃度の燃料ガス雰囲気では、ガス拡散が増加するため、発電量が増え、燃料ガスの流れに起因するセル面内の発電分布の均一化をより一層図りやすくなる利点がある。 In this case, the consumption of the fuel gas on the upstream side of the gas flow is suppressed, and the depletion of the fuel gas on the downstream side of the gas flow is easily suppressed. In addition, in a relatively low concentration fuel gas atmosphere downstream of the gas flow, gas diffusion increases, so the amount of power generation increases and it is easier to make the power generation distribution in the cell plane uniform due to the flow of fuel gas. There are advantages.
 上記燃料電池用アノードにおいて、上記燃料電池用アノードの層構成としては、例えば、固体電解質層側に配置される活性層と、活性層において、固体電解質層側の活性層の面(第2の面)と反対側の面(第1の面)に積層された拡散層と、拡散層において、固体電解質層側と反対側の拡散層の面(第1の面)に積層された最外層とを備える構成などとすることができる。なお、活性層は、主に、燃料電池用アノード側における電気化学的反応の反応場となる層である。また、拡散層は、主に、供給される燃料ガスを拡散させることが可能な層である。 In the fuel cell anode, the layer configuration of the fuel cell anode is, for example, an active layer disposed on the solid electrolyte layer side, and an active layer surface of the active layer on the solid electrolyte layer side (second surface). ) And the outermost layer laminated on the surface (first surface) of the diffusion layer opposite to the solid electrolyte layer side in the diffusion layer. It can be set as the structure provided. The active layer is a layer that mainly serves as a reaction field for electrochemical reaction on the anode side for the fuel cell. The diffusion layer is a layer that can mainly diffuse the supplied fuel gas.
 この場合は、最外層によって、燃料ガス流入量をガス流れ方向で制御することができる。また、拡散層によって、流入した燃料ガスを適切に拡散させることができる。また、活性層によって、上記最外層がない場合に比べ、ガス流れ方向で均一に電気化学的反応を生じさせることができる。そのため、この場合は、機能分担された各層が各機能を十分に発揮することによって、燃料ガスの流れに起因するセル面内の発電分布の均一化を図りやすい利点がある。 In this case, the fuel gas inflow amount can be controlled in the gas flow direction by the outermost layer. Further, the fuel gas that has flowed in can be appropriately diffused by the diffusion layer. Also, the active layer can cause an electrochemical reaction uniformly in the gas flow direction as compared with the case where the outermost layer is not provided. Therefore, in this case, there is an advantage that the distribution of power generation in the cell plane due to the flow of the fuel gas can be easily uniformed by sufficiently exerting each function by each layer to which the functions are shared.
 なお、最外層、拡散層および活性層の外形の大きさは、特に制限されない。最外層、拡散層および活性層の外形の大きさは、いずれも同じ大きさとすることができる。また、その他にも、活性層における固体電解質層と接する面を除いた残りの面を拡散層が覆うように構成することもできる。この場合は、活性層の側面から燃料ガスを拡散させることができるので、ガス拡散性の向上に有利である。 The outer dimensions of the outermost layer, the diffusion layer, and the active layer are not particularly limited. The outer dimensions of the outermost layer, the diffusion layer, and the active layer can all be the same. In addition, the diffusion layer may be configured to cover the remaining surface of the active layer other than the surface in contact with the solid electrolyte layer. In this case, the fuel gas can be diffused from the side surface of the active layer, which is advantageous in improving gas diffusibility.
 上記燃料電池用アノードにおいて、最外層の気孔径より拡散層の気孔径を大きくした構成、即ち、最外層の気孔径<拡散層の気孔径の関係を満たすように構成することができる。 The fuel cell anode can be configured such that the pore diameter of the diffusion layer is larger than the pore diameter of the outermost layer, that is, the relationship of the outermost layer pore diameter <the diffusion layer pore diameter.
 この場合は、燃料ガスのガス拡散性が最外層により抑制されるが、ガス流れ上流側での燃料ガスの過剰な消費がなくなり、ガス流れ下流側へ燃料ガスが十分に送られやすくなる。そして、最外層における厚みの薄い部分では、ガス拡散が増加する。そのため、この場合は、燃料ガスの流れに起因するセル面内の発電分布の均一化をより一層図りやすくなる利点がある。特に、最外層の構成が、ガス流れ上流側に比べ、ガス流れ下流側の方が厚みの薄い部分が多い構成である場合に、その効果が大きくなる。 In this case, although the gas diffusibility of the fuel gas is suppressed by the outermost layer, excessive consumption of the fuel gas on the upstream side of the gas flow is eliminated, and the fuel gas is easily sent to the downstream side of the gas flow. And gas diffusion increases in the thin part in the outermost layer. Therefore, in this case, there is an advantage that the power generation distribution in the cell plane due to the flow of the fuel gas can be made more uniform. In particular, when the outermost layer has a configuration in which the portion on the downstream side of the gas flow has a smaller thickness than the upstream side of the gas flow, the effect is increased.
 上記燃料電池用アノードにおいて、好ましくは、活性層の気孔径<最外層の気孔径<拡散層の気孔径の関係を満たすように構成することができる。この場合は、上記効果に加え、拡散層が、活性層に供給される燃料ガスのガス拡散律速場となり難く、活性層への燃料ガスの拡散が阻害され難い。また、活性層における反応点の増大(高表面積化)により、燃料電池単セルの発電特性を向上させるのに有利である。 The fuel cell anode is preferably configured to satisfy the relationship of the pore size of the active layer <the pore size of the outermost layer <the pore size of the diffusion layer. In this case, in addition to the above effects, the diffusion layer is unlikely to be a gas diffusion rate-determining field for the fuel gas supplied to the active layer, and the diffusion of the fuel gas to the active layer is difficult to be inhibited. In addition, an increase in reaction points (high surface area) in the active layer is advantageous for improving the power generation characteristics of the single fuel cell.
 なお、各気孔径の大小関係は、走査型電子顕微鏡(SEM)による断面観察によって判断することができる。また、上記断面観察だけでは各気孔径の大小関係を明確に判断することができない場合には、最外層の平均気孔径、拡散層の平均気孔径、活性層の平均気孔径をそれぞれ測定して比較することができる。なお、上記平均気孔径は、パームポロメータ等により測定した細孔分布から算出した気孔径の平均値のことである。 Note that the size relationship between the pore sizes can be determined by cross-sectional observation with a scanning electron microscope (SEM). In addition, if the cross-sectional observation alone cannot clearly determine the size relationship between the pore sizes, the average pore size of the outermost layer, the average pore size of the diffusion layer, and the average pore size of the active layer are measured. Can be compared. In addition, the said average pore diameter is an average value of the pore diameter computed from the pore distribution measured with the palm porometer.
 活性層の平均気孔径は、好ましくは0.1~5μmの範囲内、より好ましくは0.2~3μmの範囲内、さらに好ましくは0.3~2μmの範囲内、さらにより好ましくは0.4~1.5μmの範囲内とすることができる。この場合は、電極反応によって生じる水の排出が円滑に行われるので、排出されずに残る水によって発電出力が瞬間的に落ちてしまうのを抑制しやすくなる。また、反応点数を確保しやすく、出力密度の低下を抑制しやすくなる。拡散層の平均気孔径は、好ましくは0.3~20μmの範囲内、より好ましくは0.4~17μmの範囲内、さらに好ましくは0.5~15μmの範囲内、さらにより好ましくは1~10μmの範囲内とすることができる。この場合は、拡散層によって燃料ガスを活性層に速やかに拡散させやすく、出力密度の低下抑制に有利である。 The average pore size of the active layer is preferably within the range of 0.1 to 5 μm, more preferably within the range of 0.2 to 3 μm, even more preferably within the range of 0.3 to 2 μm, and even more preferably 0.4. It can be in the range of ˜1.5 μm. In this case, since the water generated by the electrode reaction is smoothly discharged, it is easy to suppress a momentary drop in the power generation output due to the water remaining without being discharged. In addition, it is easy to secure the number of reaction points, and it is easy to suppress a decrease in output density. The average pore size of the diffusion layer is preferably within the range of 0.3 to 20 μm, more preferably within the range of 0.4 to 17 μm, even more preferably within the range of 0.5 to 15 μm, and even more preferably 1 to 10 μm. Can be within the range. In this case, it is easy to quickly diffuse the fuel gas into the active layer by the diffusion layer, which is advantageous for suppressing a decrease in output density.
 上記燃料電池用アノードにおいて、最外層の気孔率より拡散層の気孔率を大きくした構成、即ち、最外層の気孔率<拡散層の気孔率の関係を満たすように構成することができる。この場合も、上記したように、最外層の気孔径<拡散層の気孔径の関係を満たす場合と同様の効果を得ることができる。また、上記燃料電池用アノードにおいて、好ましくは、活性層の気孔率より最外層の気孔率を大きく、また最外層の気孔率より拡散層の気孔率を大きくした構成、即ち、活性層の気孔率<最外層の気孔率<拡散層の気孔率の関係を満たすように構成することができる。この場合も、活性層の気孔径<最外層の気孔径<拡散層の気孔径の関係を満たす場合と同様の効果を得ることができる。なお、上記気孔率は、アルキメデス法にて見かけ密度と嵩密度とを算出し、{1-(嵩密度/見かけ密度)}×100にて算出した数値のことである。 The fuel cell anode can be configured such that the porosity of the diffusion layer is larger than the porosity of the outermost layer, that is, the relationship of the porosity of the outermost layer <the porosity of the diffusion layer is satisfied. Also in this case, as described above, the same effect as in the case of satisfying the relationship of the pore diameter of the outermost layer <the pore diameter of the diffusion layer can be obtained. In the fuel cell anode, preferably, the porosity of the outermost layer is larger than the porosity of the active layer, and the porosity of the diffusion layer is larger than the porosity of the outermost layer, that is, the porosity of the active layer. <The porosity of the outermost layer <the porosity of the diffusion layer can be satisfied. In this case, the same effect as that in the case of satisfying the relationship of the pore size of the active layer <the pore size of the outermost layer <the pore size of the diffusion layer can be obtained. The porosity is a numerical value calculated by {1− (bulk density / apparent density)} × 100 by calculating the apparent density and the bulk density by the Archimedes method.
 活性層の気孔率は、好ましくは30~50%の範囲内、より好ましくは33~48%の範囲内、さらに好ましくは36~46%の範囲内、さらにより好ましくは39~44%の範囲内とすることができる。この場合は、電極反応によって生じる水の排出が円滑に行われるので、排出されずに残る水によって発電出力が瞬間的に落ちてしまうのを抑制しやすくなる。また、反応点数を確保しやすく、出力密度の低下を抑制しやすくなる。拡散層の気孔率は、好ましくは30~60%の範囲内、より好ましくは36~57%の範囲内、さらに好ましくは42~54%の範囲内、さらにより好ましくは45~51%の範囲内とすることができる。この場合は、拡散層によって燃料ガスを活性層に速やかに拡散させやすく、出力密度の低下抑制に有利である。また、アノードを支持体とする場合に支持体としての強度を確保しやすく、燃料電池単セルをスタックする際に割れ難くなり有利である。 The porosity of the active layer is preferably within the range of 30-50%, more preferably within the range of 33-48%, even more preferably within the range of 36-46%, and even more preferably within the range of 39-44%. It can be. In this case, since the water generated by the electrode reaction is smoothly discharged, it is easy to suppress a momentary drop in the power generation output due to the water remaining without being discharged. In addition, it is easy to secure the number of reaction points, and it is easy to suppress a decrease in output density. The porosity of the diffusion layer is preferably within the range of 30-60%, more preferably within the range of 36-57%, even more preferably within the range of 42-54%, and even more preferably within the range of 45-51%. It can be. In this case, it is easy to quickly diffuse the fuel gas into the active layer by the diffusion layer, which is advantageous for suppressing a decrease in output density. Further, when the anode is used as a support, it is easy to ensure the strength as the support, and it is advantageous because it is difficult to break when stacking the fuel cell single cells.
 上記燃料電池用アノードにおいて、上記燃料電池用アノードを構成する各層は、いずれも例えば、触媒と固体電解質とを含む混合物より構成することができる。上記触媒の材質としては、具体的には、例えば、ニッケル(Ni)、酸化ニッケル(NiO等)、コバルト(Co)、貴金属(Au、Ag、白金族元素のRu、Rh、Pd、Os、Ir、Pt、好ましくはPt、Pd、Ru)などを例示することができる。これらは1種または2種以上併用することができる。各層内の触媒は、粒子状とすることができ、いずれも同じ材質であってもよいし、異なる材質であってもよい。上記触媒の材質としては、ニッケルおよび/または酸化ニッケルを好適に用いることができる。ニッケル(酸化ニッケルは、アノードの還元性雰囲気中でニッケルとなる)は、燃料ガスに好適に用いられる水素との親和性が充分に大きく、他の金属に比べて安価であるので、アノード触媒として適当である。 In the fuel cell anode, each layer constituting the fuel cell anode can be composed of, for example, a mixture containing a catalyst and a solid electrolyte. Specific examples of the material of the catalyst include nickel (Ni), nickel oxide (NiO, etc.), cobalt (Co), noble metals (Au, Ag, platinum group elements Ru, Rh, Pd, Os, Ir. , Pt, preferably Pt, Pd, Ru) and the like. These can be used alone or in combination of two or more. The catalyst in each layer may be in the form of particles, and all may be the same material or different materials. As the material of the catalyst, nickel and / or nickel oxide can be suitably used. Nickel (nickel oxide becomes nickel in the reducing atmosphere of the anode) has a sufficiently large affinity with hydrogen, which is suitably used for fuel gas, and is less expensive than other metals. Is appropriate.
 また、上記固体電解質の材質としては、具体的には、例えば、Y、Sc、Yb、および、CaOから選択される1種または2種以上の酸化物が固溶されたZrO等の酸化ジルコニウム系酸化物;ランタンガレート系酸化物;CeO、CeOにGd、Sm、Y、La、Nd、Yb、Ca、Dr、および、Hoから選択される1種または2種以上の元素等がドープされたセリア系固溶体等の酸化セリウム系酸化物などを例示することができる。これらは1種または2種以上併用することができる。上記燃料電池用アノードを構成する各層内の固体電解質は、粒子状とすることができ、いずれも同じ材質であってもよいし、異なる材質であってもよい。上記固体電解質の材質としては、酸素イオン導電性、機械的強度などの観点から、好ましくは、ジルコニア系固体電解質を好適に用いることができる。 As the material of the solid electrolyte, specifically, for example, one or more oxides selected from Y 2 O 3 , Sc 2 O 3 , Yb 2 O 3 , and CaO are solid. ZrO 2 dissolved oxide such as ZrO 2 ; lanthanum gallate oxide; CeO 2 , CeO 2 and Gd, Sm, Y, La, Nd, Yb, Ca, Dr, and Ho Alternatively, a cerium oxide-based oxide such as a ceria-based solid solution doped with two or more elements can be exemplified. These can be used alone or in combination of two or more. The solid electrolyte in each layer constituting the anode for a fuel cell can be in the form of particles, and may be the same material or different materials. As the material of the solid electrolyte, a zirconia solid electrolyte can be preferably used from the viewpoints of oxygen ion conductivity, mechanical strength, and the like.
 また、上記燃料電池用アノードの最外層を構成しうる上記混合物は、触媒と固体電解質とを、例えば、質量比で、30/70~70/30、好ましくは40/60~60/40の範囲内で含有することができる。また、拡散層を構成しうる上記混合物は、触媒と固体電解質とを、例えば、質量比で、30/70~70/30、好ましくは40/60~60/40の範囲内で含有することができる。また、活性層を構成しうる上記混合物は、触媒と固体電解質とを、例えば、質量比で、30/70~70/30、好ましくは40/60~60/40の範囲内で含有することができる。 In addition, the mixture that can constitute the outermost layer of the anode for a fuel cell contains, for example, a mass ratio of the catalyst and the solid electrolyte of 30/70 to 70/30, preferably 40/60 to 60/40. Can be contained within. In addition, the mixture that can constitute the diffusion layer contains the catalyst and the solid electrolyte in a mass ratio of, for example, 30/70 to 70/30, preferably 40/60 to 60/40. it can. The above-mentioned mixture that can constitute the active layer contains the catalyst and the solid electrolyte, for example, in a mass ratio of 30/70 to 70/30, preferably in the range of 40/60 to 60/40. it can.
 上記燃料電池用アノードにおいて、上記燃料電池用アノードを構成する最外層における厚みが薄くされていない部分の厚みは、製造上などの観点から、好ましくは5μm以上、より好ましくは7μm以上、さらに好ましくは10μm以上とすることができる。最外層における厚みが薄くされていない部分の厚みは、発電分布の緩和等の観点から、好ましくは300μm以下、より好ましくは200μm以下、さらに好ましくは100μm以下とすることができる。また、拡散層の厚みは、支持体とする場合の強度等の観点から、好ましくは300μm以上、より好ましくは400μm以上、さらに好ましくは500μm以上とすることができる。拡散層の厚みは、ガス拡散等の観点から、好ましくは1500μm以下、より好ましくは1000μm以下、さらに好ましくは800μm以下とすることができる。また、活性層の厚みは、ガス、電子およびイオンの反応場の確保等の観点から、好ましくは5μm以上、より好ましくは10μm以上、さらに好ましくは20μm以上とすることができる。活性層の厚みは、酸素イオン導電性等の観点から、好ましくは100μm以下、より好ましくは80μm以下、さらに好ましくは60μm以下とすることができる。 In the fuel cell anode, the thickness of the outermost layer constituting the fuel cell anode in which the thickness is not reduced is preferably 5 μm or more, more preferably 7 μm or more, and still more preferably from the viewpoint of manufacturing. It can be 10 μm or more. The thickness of the outermost layer where the thickness is not reduced is preferably 300 μm or less, more preferably 200 μm or less, and even more preferably 100 μm or less, from the viewpoint of relaxation of power generation distribution and the like. The thickness of the diffusion layer is preferably 300 μm or more, more preferably 400 μm or more, and further preferably 500 μm or more, from the viewpoint of strength and the like when used as a support. From the viewpoint of gas diffusion and the like, the thickness of the diffusion layer is preferably 1500 μm or less, more preferably 1000 μm or less, and even more preferably 800 μm or less. The thickness of the active layer is preferably 5 μm or more, more preferably 10 μm or more, and further preferably 20 μm or more, from the viewpoint of securing a reaction field for gas, electrons, and ions. The thickness of the active layer is preferably 100 μm or less, more preferably 80 μm or less, and still more preferably 60 μm or less from the viewpoint of oxygen ion conductivity and the like.
 上記燃料電池単セルにおいて、上記燃料電池単セルの各層を構成する材料としては、以下のものを例示することができるが、特に限定されない。 In the fuel cell unit cell, examples of the material constituting each layer of the fuel cell unit cell include the following, but are not particularly limited.
 固体電解質層を構成する固体電解質としては、例えば、イットリア安定化ジルコニア(YSZ)、スカンジア安定化ジルコニア(ScSZ)等の酸化ジルコニウム系酸化物;ランタンガレート系酸化物;CeO、CeOにGd、Sm、Y、La、Nd、Yb、Ca、Dr、および、Hoから選択される1種または2種以上の元素等がドープされたセリア系固溶体等の酸化セリウム系酸化物などを例示することができる。固体電解質層は、その厚みを薄くすることによってオーミック抵抗が低減し、出力密度が向上するといった利点がある反面、過度に厚みが薄くなると固体電解質層を貫通する穴の発生確率が増えてしまい、燃料ガスもしくは酸化剤ガスが固体電解質層を介してクロスリークし、出力密度の低下が起こる場合がある。上記観点から、固体電解質層の厚みは、好ましくは1~20μm、より好ましくは3~10μmとすることができる。 Examples of the solid electrolyte constituting the solid electrolyte layer include zirconium oxide-based oxides such as yttria-stabilized zirconia (YSZ) and scandia-stabilized zirconia (ScSZ); lanthanum gallate-based oxides; CeO 2 , CeO 2 with Gd, Examples include cerium oxide-based oxides such as ceria-based solid solutions doped with one or more elements selected from Sm, Y, La, Nd, Yb, Ca, Dr, and Ho. it can. The solid electrolyte layer has an advantage that the ohmic resistance is reduced by reducing its thickness and the output density is improved, but if the thickness is excessively thin, the probability of occurrence of holes penetrating the solid electrolyte layer increases. The fuel gas or oxidant gas may cross leak through the solid electrolyte layer, resulting in a decrease in power density. From the above viewpoint, the thickness of the solid electrolyte layer is preferably 1 to 20 μm, more preferably 3 to 10 μm.
 カソードの材質としては、例えば、ランタン-マンガン系酸化物、ランタン-コバルト系酸化物、ランタン-鉄系酸化物等の導電性を有するペロブスカイト型酸化物、上記ペロブスカイト型酸化物と上記固体電解質等との混合物などを例示することができる。カソードの厚みは、空気等の酸化剤ガス中に含まれる酸素がカソード形成用材料表面で電子を受け取りイオン化する反応活性場の数を増やすなどの観点から、好ましくは10~100μm、より好ましくは30~50μmとすることができる。 Examples of the cathode material include conductive perovskite oxides such as lanthanum-manganese oxides, lanthanum-cobalt oxides, lanthanum-iron oxides, the perovskite oxides, and the solid electrolytes. The mixture of these can be illustrated. The thickness of the cathode is preferably 10 to 100 μm, more preferably 30 from the viewpoint of increasing the number of reaction active fields in which oxygen contained in an oxidant gas such as air receives and ionizes electrons on the surface of the cathode forming material. It can be ˜50 μm.
 中間層の材質としては、上記酸化セリウム系酸化物などを例示することができる。中間層の厚みは、カソード構成元素の固体電解質への拡散を防止するなどの観点から、好ましくは1~10μm、より好ましくは3~7μmとすることができる。 Examples of the material for the intermediate layer include the cerium oxide-based oxides. The thickness of the intermediate layer is preferably 1 to 10 μm, more preferably 3 to 7 μm from the viewpoint of preventing diffusion of the cathode constituent element into the solid electrolyte.
 上記燃料電池用アノード、上記燃料電池用アノードを有する燃料電池単セルは、以下の第1~第3の工程を経ることによって好適に製造することができるが、これは特に制限されない。 The fuel cell anode and the fuel cell single cell having the fuel cell anode can be suitably manufactured through the following first to third steps, but this is not particularly limited.
 第1の工程は、焼成により最外層となる未焼成の最外層形成用材料と、焼成により上記複数の層のうちの最外層を除いた他の層になる未焼成の他層形成用材料と、焼成により固体電解質層になる未焼成の固体電解質層形成用材料と、必要に応じて、焼成により中間層になる未焼成の中間層形成用材料とをこの順に層状に積層し、圧着して積層体を得る工程である。上記積層体には、必要に応じて脱脂等を行うことができる。 The first step includes an unfired outermost layer forming material that becomes an outermost layer by firing, and an unfired other layer forming material that becomes another layer excluding the outermost layer of the plurality of layers by firing. The unfired solid electrolyte layer forming material that becomes a solid electrolyte layer by firing, and the unfired intermediate layer forming material that becomes an intermediate layer by firing, if necessary, are layered in this order and pressed. This is a step of obtaining a laminate. The laminated body can be degreased as necessary.
 上記他層形成用材料は、例えば、焼成により拡散層になる未焼成の拡散層形成用材料と、焼成により活性層になる未焼成の活性層形成用材料とすることができる。また、最外層形成用材料は、所定の最外層が得られるように部分的に厚みが異なっている。なお、最外層形成用材料、拡散層形成用材料、活性層形成用材料は、触媒粒子、固体電解質粒子、造孔剤、バインダー、可塑剤等を含んで構成することができる。最外層形成用材料、拡散層形成用材料、活性層形成用材料は、それぞれ焼成によって最外層、拡散層、活性層になった場合に、気孔径が異なるように造孔剤の含有量やその大きさ、触媒粒子、固体電解質粒子の粒子径等を適宜調整することができる。各形成用材料には、シート状材料を用いることができる。拡散層形成用材料は、複数のシートを積層することにより形成することができる。また、上記において、シート状の拡散層形成用材料の一方面に、ペースト状の最外層形成用材料を、印刷法等によって部分的に厚みが異なる層状に形成することも可能である。 The other layer forming material can be, for example, an unfired diffusion layer forming material that becomes a diffusion layer by firing and an unfired active layer formation material that becomes an active layer by firing. Further, the outermost layer forming materials partially differ in thickness so that a predetermined outermost layer is obtained. The outermost layer forming material, the diffusion layer forming material, and the active layer forming material can be configured to include catalyst particles, solid electrolyte particles, a pore-forming agent, a binder, a plasticizer, and the like. The outermost layer forming material, the diffusion layer forming material, and the active layer forming material have a pore-forming agent content and its content so that the pore diameter is different when the outermost layer, the diffusion layer, and the active layer are formed by firing, respectively. The size, the catalyst particles, the particle diameter of the solid electrolyte particles, and the like can be appropriately adjusted. A sheet-like material can be used for each forming material. The diffusion layer forming material can be formed by laminating a plurality of sheets. In the above, it is also possible to form a paste-like outermost layer forming material in a layer shape partially different in thickness by a printing method or the like on one surface of the sheet-like diffusion layer forming material.
 第2の工程は、上記積層体を、例えば、1300~1500℃で同時焼成する工程である。これにより、最外層を含む複数の層からなるアノード(上記の例では、最外層、拡散層、活性層)、固体電解質層、必要に応じて、中間層がこの順に積層された焼成体が得られる。 The second step is a step of co-firing the laminate at, for example, 1300 to 1500 ° C. As a result, a fired body in which an anode composed of a plurality of layers including the outermost layer (in the above example, outermost layer, diffusion layer, active layer), solid electrolyte layer, and if necessary, an intermediate layer is laminated in this order is obtained. It is done.
 第3の工程は、上記焼成体における中間層の表面、あるいは、固体電解質層の表面に、焼成によりカソードになるカソード形成用材料を層状に積層し、例えば、900~1200℃で焼成する工程である。 The third step is a step of laminating a cathode forming material that becomes a cathode by firing on the surface of the intermediate layer or the surface of the solid electrolyte layer in the fired body, and firing at 900 to 1200 ° C., for example. is there.
 カソード形成用材料には、ペースト状材料を用いることができる。カソード形成用材料は、中間層の表面、あるいは、固体電解質層の表面に印刷法等によって層状に塗布することができる。 A paste-like material can be used as the cathode forming material. The cathode forming material can be applied in a layer form on the surface of the intermediate layer or the surface of the solid electrolyte layer by a printing method or the like.
 これにより、上記燃料電池用アノード、上記燃料電池用アノードを有する燃料電池単セルを得ることができる。 Thereby, a fuel cell single cell having the fuel cell anode and the fuel cell anode can be obtained.
 なお、上述した各構成は、上述した各作用効果等を得るなどのために必要に応じて任意に組み合わせることができる。 In addition, each structure mentioned above can be arbitrarily combined as needed, in order to obtain each effect mentioned above.
 以下、実施例の燃料電池用アノードおよび燃料電池単セルについて、図面を用いて説明する。なお、同一部材については同一の符号を用いて説明する。 Hereinafter, the anode for a fuel cell and the single cell of the fuel cell of the example will be described with reference to the drawings. In addition, about the same member, it demonstrates using the same code | symbol.
(実施例1)
 実施例1に係る燃料電池用アノードおよび燃料電池単セルについて、図1~図3を用いて説明する。図1~図3に示すように、燃料電池単セル5は、本実施例1の燃料電池用アノード10と、固体電解質層2と、カソード3とを有しており、燃料電池用アノード10の面方向Fに沿って燃料ガスが供給される。このように、実施例1に係る燃料電池用アノード10は、燃料電池単セル5に用いられるものである。
Example 1
A fuel cell anode and a single fuel cell according to Example 1 will be described with reference to FIGS. As shown in FIG. 1 to FIG. 3, the fuel cell single cell 5 has the anode 10 for the fuel cell of the first embodiment, the solid electrolyte layer 2, and the cathode 3. Fuel gas is supplied along the surface direction F. As described above, the fuel cell anode 10 according to the first embodiment is used for the single fuel cell 5.
 燃料電池用アノード10は、複数の層より構成されており、これら複数の層のうち、固体電解質層2から最も離れて配置される最外層11は、部分的に厚みが異なっている。 The fuel cell anode 10 is composed of a plurality of layers, and among these layers, the outermost layer 11 disposed farthest from the solid electrolyte layer 2 is partially different in thickness.
 また、本実施例1の燃料電池単セル5は、図1に示すように、本実施例1の燃料電池用アノード10と、固体電解質層2と、カソード3とを有しており、燃料電池用アノード10の面方向に沿って燃料ガスが供給される。具体的には、燃料電池単セル5は、固体電解質層2と、固体電解質層2の一方面(第1の面)に積層された燃料電池用アノード10と、固体電解質層2の他方面(第2の面)に中間層4を介して積層されたカソード3とを有しており、燃料電池用アノード10を支持体とする平板形の単セルである。また、燃料ガス、酸化剤ガスの供給方式は、具体的には、燃料電池用アノード10の面方向Fに沿って燃料電池用アノード10に供給される燃料ガスとカソード3の面方向に沿ってカソード3に供給される酸化剤ガスとが互いに直交するように燃料電池単セル5に供給される、いわゆるクロスフロー方式とされている。以下、これらを詳説する。 Further, as shown in FIG. 1, the fuel cell single cell 5 of the first embodiment includes the fuel cell anode 10 of the first embodiment, the solid electrolyte layer 2, and the cathode 3, and the fuel cell. Fuel gas is supplied along the surface direction of the anode 10 for use. Specifically, the fuel cell single cell 5 includes a solid electrolyte layer 2, a fuel cell anode 10 laminated on one surface (first surface) of the solid electrolyte layer 2, and the other surface of the solid electrolyte layer 2 ( The cathode 2 is laminated on the second surface) with the intermediate layer 4 interposed therebetween, and is a flat single cell having the fuel cell anode 10 as a support. Further, the fuel gas and oxidant gas supply method is specifically, along the surface direction of the fuel gas anode 10 and the cathode 3 along the surface direction F of the fuel cell anode 10. A so-called cross flow system is used in which the oxidant gas supplied to the cathode 3 is supplied to the single fuel cell 5 so as to be orthogonal to each other. These are described in detail below.
 本実施例1の燃料電池用アノード10において、最外層11は、相対的に厚みの薄い部分111と相対的に厚みの厚い部分112(厚みが薄くされていない部分)とが混在している。最外層11は、厚みの薄い部分111を複数有しており、当該厚みの薄い部分111は、具体的には、図1および図2に示すように、燃料ガスのガス流れ方向Fと垂直な方向に配列した複数の穴111aの列が、燃料ガスのガス流れ方向Fに複数配置されて構成されている。なお、上記穴111aは、最外層11表面(第1の面)から最外層11の固体電解質層2側の面(第2の面)まで貫通していない非貫通穴である。 In the fuel cell anode 10 of the first embodiment, the outermost layer 11 includes a relatively thin portion 111 and a relatively thick portion 112 (portion where the thickness is not reduced). The outermost layer 11 has a plurality of thin portions 111. Specifically, the thin portions 111 are perpendicular to the gas flow direction F of the fuel gas, as shown in FIGS. A plurality of rows of holes 111a arranged in the direction are arranged in the gas flow direction F of the fuel gas. The hole 111a is a non-through hole that does not penetrate from the surface (first surface) of the outermost layer 11 to the surface (second surface) of the outermost layer 11 on the solid electrolyte layer 2 side.
 本実施例1において、燃料ガスのガス流れ方向Fの中間地点よりも燃料ガスの入口側(図2左側)を、ガス流れ上流側とし、上記中間地点よりも燃料ガスの出口側(図2右側)を、ガス流れ下流側とする。本実施例1の燃料電池用アノード10において、最外層11は、具体的には、ガス流れ上流側に比べ、ガス流れ下流側の方が、厚みの薄い部分111が多く形成されている。 In the first embodiment, the fuel gas inlet side (left side in FIG. 2) from the intermediate point in the gas flow direction F of the fuel gas is the gas flow upstream side, and the fuel gas outlet side (right side in FIG. 2) from the intermediate point. ) On the downstream side of the gas flow. In the fuel cell anode 10 of the first embodiment, specifically, the outermost layer 11 is formed with more thin portions 111 on the gas flow downstream side than on the gas flow upstream side.
 本実施例1の燃料電池用アノード10は、具体的には、固体電解質層2側(即ち、固体電解質層2の第1の面側)に配置される活性層13と、活性層13における固体電解質層2側と反対側の面(即ち、活性層13の第1の面側)に積層された拡散層12と、拡散層12における固体電解質層2側と反対側の面(即ち、拡散層12の第1の面側)に積層された上記最外層11とを備えている。本実施例1の燃料電池用アノード10は、最外層11の気孔径より拡散層12の気孔径が大きい構成、即ち、最外層11の気孔径<拡散層12の気孔径の関係を満たすように構成されている。なお、本実施例1では、最外層11の平均気孔径は0.3~10μm、拡散層12の平均気孔径は0.3~20μm、活性層13の平均気孔径は0.1~5μmより選択される。また、最外層11の気孔率は80~95%、拡散層12の気孔率は30~60%、活性層13の気孔率は30~50%より選択される。 Specifically, the fuel cell anode 10 of the first embodiment includes an active layer 13 disposed on the solid electrolyte layer 2 side (that is, the first surface side of the solid electrolyte layer 2), and a solid in the active layer 13. The diffusion layer 12 laminated on the surface opposite to the electrolyte layer 2 side (namely, the first surface side of the active layer 13), and the surface opposite to the solid electrolyte layer 2 side in the diffusion layer 12 (namely, the diffusion layer) 12 and the outermost layer 11 stacked on the first surface side. The anode 10 for the fuel cell of Example 1 has a configuration in which the pore diameter of the diffusion layer 12 is larger than the pore diameter of the outermost layer 11, that is, the relationship of the pore diameter of the outermost layer 11 <the pore diameter of the diffusion layer 12. It is configured. In Example 1, the average pore diameter of the outermost layer 11 is 0.3 to 10 μm, the average pore diameter of the diffusion layer 12 is 0.3 to 20 μm, and the average pore diameter of the active layer 13 is 0.1 to 5 μm. Selected. Further, the porosity of the outermost layer 11 is selected from 80 to 95%, the porosity of the diffusion layer 12 is selected from 30 to 60%, and the porosity of the active layer 13 is selected from 30 to 50%.
 本実施例1の燃料電池用アノード10において、各層11、12、13は、いずれも触媒と固体電解質とを含む混合物より構成されている。触媒は、具体的にはいずれもNiOであり、固体電解質は、具体的には、いずれもジルコニア系固体電解質としての8mol%のYを含むイットリア安定化ジルコニア(以下、8YSZ)である。 In the fuel cell anode 10 of the first embodiment, each of the layers 11, 12, and 13 is composed of a mixture containing a catalyst and a solid electrolyte. The catalyst is specifically NiO, and the solid electrolyte is specifically yttria-stabilized zirconia (hereinafter, 8YSZ) containing 8 mol% Y 2 O 3 as a zirconia-based solid electrolyte. .
 なお、各層11、12、13は、触媒、固体電解質の粒子径や、製造時における造孔剤の添加量やその大きさ等を調整することにより、上記気孔径の関係を満たすように構成されている。また、最外層11における厚みが薄くされていない部分112の厚みは50μmであり、最外層11における厚みの薄い部分111の厚みは5μmである。拡散層12の厚みは400μmであり、活性層13の厚みは20μmである。 Each layer 11, 12, 13 is configured to satisfy the above pore diameter relationship by adjusting the particle diameter of the catalyst, the solid electrolyte, the amount of pore-forming agent added during production, the size thereof, and the like. ing. Further, the thickness of the portion 112 where the thickness is not reduced in the outermost layer 11 is 50 μm, and the thickness of the thin portion 111 in the outermost layer 11 is 5 μm. The diffusion layer 12 has a thickness of 400 μm, and the active layer 13 has a thickness of 20 μm.
 本実施例1において、固体電解質層2は、具体的には、ジルコニア系固体電解質より形成されている。より具体的には、ジルコニア系固体電解質は、酸化ジルコニウム系酸化物である、8YSZであり、その厚みは10μmである。 In Example 1, the solid electrolyte layer 2 is specifically formed of a zirconia solid electrolyte. More specifically, the zirconia-based solid electrolyte is 8YSZ, which is a zirconium oxide-based oxide, and the thickness thereof is 10 μm.
 本実施例1において、中間層4は、具体的には、酸化セリウム系酸化物である、10mol%のGdがドープされたセリア(以下、10GDC)より形成されており、その厚みは10μmである。 In the first embodiment, the intermediate layer 4 is specifically formed of ceria (hereinafter, 10GDC) doped with 10 mol% of Gd, which is a cerium oxide-based oxide, and has a thickness of 10 μm. .
 本実施例1において、カソード3は、具体的には、ペロブスカイト型酸化物と固体電解質とを含む混合物より層状に形成されている。より具体的には、ペロブスカイト型酸化物は、La1-xSrCo1-y(x=0.4、y=0.8、以下、LSCF)であり、固体電解質は、酸化セリウム系酸化物である10GDCである。カソードの厚みは20μmである。 In the first embodiment, the cathode 3 is specifically formed in a layer form from a mixture containing a perovskite oxide and a solid electrolyte. More specifically, the perovskite oxide is La 1-x Sr x Co 1-y F y O 3 (x = 0.4, y = 0.8, hereinafter, LSCF), and the solid electrolyte is 10GDC, which is a cerium oxide-based oxide. The thickness of the cathode is 20 μm.
 本実施例1において、燃料電池用アノード10(最外層11、拡散層12、活性層13)、固体電解質層2、中間層4、および、カソード3は、いずれも、平面視で、矩形状の形状を呈している。また、燃料電池用アノード10(最外層11、拡散層12、活性層13)、固体電解質層2、および中間層4の外形は、同じ大きさに揃えられている。一方、カソード3の外形は、固体電解質層2の外形よりも小さく形成されている。つまり、本実施例1では、燃料電池単セル5は、カソード3および固体電解質層2の外形の大きさが、カソード3の外形<固体電解質層2の外形の関係を満たすように構成されている。 In Example 1, the fuel cell anode 10 (outermost layer 11, diffusion layer 12, active layer 13), solid electrolyte layer 2, intermediate layer 4, and cathode 3 are all rectangular in plan view. It has a shape. Further, the outer shapes of the fuel cell anode 10 (outermost layer 11, diffusion layer 12, active layer 13), solid electrolyte layer 2, and intermediate layer 4 are equal in size. On the other hand, the outer shape of the cathode 3 is formed smaller than the outer shape of the solid electrolyte layer 2. That is, in Example 1, the fuel cell single cell 5 is configured such that the outer dimensions of the cathode 3 and the solid electrolyte layer 2 satisfy the relationship of the outer shape of the cathode 3 <the outer shape of the solid electrolyte layer 2. .
 本実施例1の燃料電池用アノードの作用効果について説明する。 The function and effect of the fuel cell anode of the first embodiment will be described.
 燃料電池用アノード10は、上記した構成を有している。特に、複数の層(本実施例1では、最外層11、拡散層12、活性層13)より構成されており、これら複数の層のうち、固体電解質層2から最も離れて配置される最外層11は、部分的に厚みが異なっている。そのため、燃料電池用アノード10は、燃料電池単セル5に用いた場合に、最外層11の厚みの薄い部分111では、燃料ガスのガス拡散距離が短くなってガス拡散が増加し、その部分における発電が促進され、燃料ガスの流れに起因するセル面内の発電分布の均一化を図ることができる。その結果、燃料電池用アノード10は、燃料電池単セル5に用いた場合に、セル面内の温度分布が小さくなり、セルに局所的な応力が生じ難くなって発電時のセル割れが生じ難くなる。そのため、燃料電池用アノード10は、燃料電池単セル5の信頼性向上に有効である。 The fuel cell anode 10 has the above-described configuration. In particular, the outermost layer is composed of a plurality of layers (in the first embodiment, the outermost layer 11, the diffusion layer 12, and the active layer 13). 11 is partially different in thickness. Therefore, when the fuel cell anode 10 is used in the fuel cell single cell 5, in the thin portion 111 of the outermost layer 11, the gas diffusion distance of the fuel gas is shortened and the gas diffusion is increased. Power generation is promoted, and the power generation distribution in the cell plane due to the flow of fuel gas can be made uniform. As a result, when the fuel cell anode 10 is used for the single fuel cell 5, the temperature distribution in the cell surface becomes small, local stress is hardly generated in the cell, and cell cracking during power generation is difficult to occur. Become. Therefore, the fuel cell anode 10 is effective in improving the reliability of the single fuel cell 5.
 また、本実施例1の燃料電池用アノード10は、燃料ガスのガス流れ方向F(図1および図2を参照)の中間地点よりも燃料ガスの入口側をガス流れ上流側、上記中間地点よりも燃料ガスの出口側をガス流れ下流側とした場合に、最外層11は、ガス流れ上流側に比べ、ガス流れ下流側の方が、厚みの薄い部分111が多く形成されている構成とされている。そのため、本実施例1の燃料電池用アノード10は、ガス流れ上流側での燃料ガスの消費が抑えられ、ガス流れ下流側での燃料ガスの枯渇を抑制しやすくなる。また、ガス流れ下流側の比較的低濃度の燃料ガス雰囲気では、ガス拡散が増加するため、発電量が増え、燃料ガスの流れに起因するセル面内の発電分布の均一化をより一層図りやすい利点がある。 Further, in the fuel cell anode 10 of the first embodiment, the fuel gas inlet side of the fuel gas in the gas flow direction F (see FIGS. 1 and 2) is located on the upstream side of the gas flow and the intermediate point. In the case where the outlet side of the fuel gas is the downstream side of the gas flow, the outermost layer 11 is configured such that the portion 111 having a smaller thickness is formed on the downstream side of the gas flow than on the upstream side of the gas flow. ing. Therefore, in the fuel cell anode 10 of the first embodiment, the consumption of the fuel gas on the upstream side of the gas flow is suppressed, and the depletion of the fuel gas on the downstream side of the gas flow is easily suppressed. Also, in a relatively low concentration fuel gas atmosphere downstream of the gas flow, gas diffusion increases, so the amount of power generation increases, and it is even easier to make the power generation distribution in the cell plane uniform due to the fuel gas flow. There are advantages.
 また、本実施例1の燃料電池用アノード10は、最外層11、拡散層12、および活性層13がこの順に積層されて構成されている。そのため、本実施例1の燃料電池用アノード10は、最外層11によって、燃料ガス流入量をガス流れ方向で制御することができる。また、拡散層12によって、流入した燃料ガスを適切に拡散させることができる。また、活性層13によって、最外層11がない場合に比べ、ガス流れ方向で均一に電気化学的反応を生じさせることができる。それ故、本実施例1の燃料電池用アノード10は、機能分担された最外層11、拡散層12、活性層13が、それぞれの各機能を十分に発揮することによって、燃料ガスの流れに起因するセル面内の発電分布の均一化を図りやすいという利点がある。 Also, the anode 10 for the fuel cell of Example 1 is configured by laminating the outermost layer 11, the diffusion layer 12, and the active layer 13 in this order. Therefore, in the fuel cell anode 10 of the first embodiment, the fuel gas inflow amount can be controlled in the gas flow direction by the outermost layer 11. Further, the fuel layer that has flowed in can be appropriately diffused by the diffusion layer 12. In addition, the active layer 13 can cause an electrochemical reaction uniformly in the gas flow direction as compared with the case where the outermost layer 11 is not provided. Therefore, the anode 10 for the fuel cell according to the first embodiment is caused by the flow of the fuel gas because the outermost layer 11, the diffusion layer 12, and the active layer 13 to which the functions are shared sufficiently perform their respective functions. There is an advantage that it is easy to make the power generation distribution in the cell plane uniform.
 また、本実施例1の燃料電池用アノード10は、最外層11の気孔径<拡散層12の気孔径の関係を満たすように構成されている。そのため、本実施例1の燃料電池用アノード10は、燃料ガスのガス拡散性が最外層11により抑制されるが、ガス流れ上流側での燃料ガスの過剰な消費がなくなり、ガス流れ下流側へ燃料ガスが十分に送られやすくなる。そして、最外層11における厚みの薄い部分111では、ガス拡散が増加する。そのため、本実施例1の燃料電池用アノード10は、燃料ガスの流れに起因するセル面内の発電分布の均一化をより一層図りやすい利点がある。特に、最外層11の構成が、ガス流れ上流側に比べ、ガス流れ下流側の方が厚みの薄い部分111が多い構成であるため、その効果が大きい。 The anode 10 for the fuel cell of Example 1 is configured to satisfy the relationship of the pore diameter of the outermost layer 11 <the pore diameter of the diffusion layer 12. Therefore, in the fuel cell anode 10 of the first embodiment, although the gas diffusibility of the fuel gas is suppressed by the outermost layer 11, the excessive consumption of the fuel gas on the upstream side of the gas flow is eliminated, and the downstream side of the gas flow. Fuel gas can be sent easily. And in the thin part 111 in the outermost layer 11, gas diffusion increases. Therefore, the fuel cell anode 10 of the first embodiment has an advantage that it is easier to make the power generation distribution in the cell plane uniform due to the flow of the fuel gas. In particular, the configuration of the outermost layer 11 is more effective because there are more thin portions 111 on the downstream side of the gas flow than on the upstream side of the gas flow.
 また、本実施例1の燃料電池用アノード10は、最外層11における厚みの薄い部分111は、複数の穴111aから構成されている。そのため、本実施例1の燃料電池用アノード10は、燃料電池単セル5をセパレータを介してスタック化する際における上記セパレータが備える燃料ガス流路の形状に合わせ、当該燃料ガス流路に対応させて穴111aを配置することによってガス拡散性を向上させやすくなる利点がある。 Further, in the fuel cell anode 10 of Example 1, the thin portion 111 in the outermost layer 11 is composed of a plurality of holes 111a. Therefore, the anode 10 for the fuel cell according to the first embodiment is made to correspond to the fuel gas flow path according to the shape of the fuel gas flow path included in the separator when the fuel cell single cells 5 are stacked via the separator. By arranging the holes 111a, there is an advantage that the gas diffusibility can be easily improved.
 本実施例1の燃料電池単セルの作用効果について説明する。 The function and effect of the single fuel cell of Example 1 will be described.
 燃料電池単セル5は、燃料電池用アノード10と、固体電解質層2と、カソード3とを有している。そのため、燃料電池単セル5は、セル面内の温度分布が小さくなり、セルに局所的な応力が生じ難くなって発電時のセル割れが生じ難くなる。そのため、燃料電池単セル5は、高い信頼性を発揮することができる。 The fuel cell single cell 5 has a fuel cell anode 10, a solid electrolyte layer 2, and a cathode 3. Therefore, in the fuel cell single cell 5, the temperature distribution in the cell surface becomes small, local stress is hardly generated in the cell, and cell cracking during power generation is difficult to occur. Therefore, the fuel cell single cell 5 can exhibit high reliability.
(実施例2)
 実施例2の燃料電池用アノードおよび燃料電池単セルについて、図4を用いて説明する。図4に示すように、本実施例2の燃料電池用アノード10は、燃料ガスのガス流れ方向Fと垂直な方向に延びる溝111bが燃料ガスのガス流れ方向Fに複数配置されることによって最外層11における厚みの薄い部分111が構成されている点で、実施例1の燃料電池用アノード10と異なっている。また、本実施例2の燃料電池単セル5は、実施例2の燃料電池用アノード10を用いた点で、実施例1の燃料電池単セル5と異なっている。その他の構成は、実施例1と同様の構成である。
(Example 2)
A fuel cell anode and a single fuel cell of Example 2 will be described with reference to FIG. As shown in FIG. 4, the anode 10 for the fuel cell of the second embodiment is most suitable by arranging a plurality of grooves 111b extending in the direction perpendicular to the gas flow direction F of the fuel gas in the gas flow direction F of the fuel gas. It differs from the anode 10 for fuel cells of Example 1 by the point in which the thin part 111 in the outer layer 11 is comprised. Further, the single fuel cell 5 of the second embodiment is different from the single fuel cell 5 of the first embodiment in that the anode 10 for the fuel cell of the second embodiment is used. Other configurations are the same as those of the first embodiment.
 本実施例2の構成によっても、実施例1と同様の作用効果を奏することができる。 Also with the configuration of the second embodiment, the same operational effects as the first embodiment can be obtained.
 また、本実施例2の燃料電池用アノード10は、最外層11における厚みの薄い部分111が、複数の溝111bから構成されている。そのため、本実施例2の燃料電池用アノード10は、燃料電池単セル5をセパレータを介してスタック化する際における上記セパレータが備える燃料ガス流路を溝111bと直交するように配置することにより、燃料電池用アノード10と接する燃料ガス流路のリブにおいて、リブ下へのガス拡散を促進しやすくなる利点がある。 Further, in the fuel cell anode 10 of Example 2, the thin portion 111 in the outermost layer 11 is composed of a plurality of grooves 111b. Therefore, the anode 10 for the fuel cell according to the second embodiment is configured such that the fuel gas flow path provided in the separator when stacking the fuel cell single cells 5 through the separator is arranged so as to be orthogonal to the groove 111b. In the rib of the fuel gas flow path in contact with the fuel cell anode 10, there is an advantage that gas diffusion under the rib is facilitated.
 以下、実験例を用いてより具体的に説明する。
<実験例>
(材料準備)
Hereinafter, it demonstrates more concretely using an experiment example.
<Experimental example>
(Material preparation)
 NiO粉末(平均粒子径:1μm)と、8YSZ粉末(平均粒子径:0.3μm)と、球状の樹脂粒子(平均粒子径1.5μm)と、ポリビニルブチラール(有機材料)と、酢酸イソアミル、2-ブタノールおよびエタノール(混合溶媒)とをボールミルにて混合することによりスラリーを調製した。NiO粉末と8YSZ粉末の質量比は、60:40である。上記スラリーを、ドクターブレード法を用いて、最外層に穴を形成するための表面突起を有するプラスチック基材上に層状に塗工し、乾燥させることにより、一方の面に図2および図3に示される穴を複数有し、他方面は平坦に形成されたシート状の最外層形成用材料を準備した。つまり、最外層形成用材料は、部分的に厚みが異なる最外層が得られるように、それに対応して部分的に厚みが異なっている。なお、上記平均粒子径は、レーザー回折・散乱法により測定した体積基準の累積度数分布が50%を示すときの粒子径(直径)d50である(以下、同様)。 NiO powder (average particle size: 1 μm), 8YSZ powder (average particle size: 0.3 μm), spherical resin particles (average particle size: 1.5 μm), polyvinyl butyral (organic material), isoamyl acetate, 2 A slurry was prepared by mixing butanol and ethanol (mixed solvent) in a ball mill. The mass ratio of NiO powder and 8YSZ powder is 60:40. The above slurry is applied in layers on a plastic substrate having surface protrusions for forming holes in the outermost layer using a doctor blade method, and dried, so that the surface shown in FIGS. A sheet-shaped outermost layer forming material having a plurality of holes shown and having the other surface formed flat was prepared. That is, the outermost layer forming material is partially different in thickness so as to obtain an outermost layer having a partially different thickness. The average particle diameter is the particle diameter (diameter) d50 when the volume-based cumulative frequency distribution measured by the laser diffraction / scattering method shows 50% (hereinafter the same).
 NiO粉末(平均粒子径:1μm)と、8YSZ粉末(平均粒子径:0.3μm)と、球状の樹脂粒子(平均粒子径1.5μm)と、ポリビニルブチラール(有機材料)と、酢酸イソアミル、2-ブタノールおよびエタノール(混合溶媒)とをボールミルにて混合することによりスラリーを調製した。NiO粉末と8YSZ粉末の質量比は、60:40である。上記スラリーを、ドクターブレード法を用いて、平坦なプラスチック基材上に層状に塗工し、乾燥させることにより、シート状の拡散層形成用材料を準備した。 NiO powder (average particle size: 1 μm), 8YSZ powder (average particle size: 0.3 μm), spherical resin particles (average particle size: 1.5 μm), polyvinyl butyral (organic material), isoamyl acetate, 2 A slurry was prepared by mixing butanol and ethanol (mixed solvent) in a ball mill. The mass ratio of NiO powder and 8YSZ powder is 60:40. The slurry was applied in a layer form on a flat plastic substrate using a doctor blade method and dried to prepare a sheet-shaped diffusion layer forming material.
 NiO粉末(平均粒子径:1μm)と、8YSZ粉末(平均粒子径:0.3μm)と、球状の樹脂粒子(平均粒子径0.8μm)と、ポリビニルブチラール(有機材料)と、酢酸イソアミル、2-ブタノールおよびエタノール(混合溶媒)とをボールミルにて混合することによりスラリーを調製した。NiO粉末と8YSZ粉末の質量比は、60:40である。上記スラリーを、ドクターブレード法を用いて、平坦なプラスチック基材上に層状に塗工し、乾燥させることにより、シート状の活性層形成用材料を準備した。なお、最外層形成用材料、拡散層形成用材料および活性層形成用材料における各樹脂粒子の添加量は、活性層形成用材料における樹脂粒子の添加量<最外層形成用材料における樹脂粒子の添加量<拡散層形成用材料における樹脂粒子の添加量の関係を満たしている。 NiO powder (average particle size: 1 μm), 8YSZ powder (average particle size: 0.3 μm), spherical resin particles (average particle size: 0.8 μm), polyvinyl butyral (organic material), isoamyl acetate, 2 A slurry was prepared by mixing butanol and ethanol (mixed solvent) in a ball mill. The mass ratio of NiO powder and 8YSZ powder is 60:40. The slurry was applied in a layer form on a flat plastic substrate using a doctor blade method and dried to prepare a sheet-form active layer forming material. The addition amount of each resin particle in the outermost layer forming material, the diffusion layer forming material, and the active layer forming material is as follows. The added amount of the resin particles in the active layer forming material <the addition of the resin particles in the outermost layer forming material. The relationship of the amount <the amount of resin particles added to the diffusion layer forming material is satisfied.
 8YSZ粉末(平均粒子径:0.3μm)と、ポリビニルブチラール(有機材料)と、酢酸イソアミル、2-ブタノールおよびエタノール(混合溶媒)とをボールミルにて混合することによりスラリーを調製した。このスラリーを、ドクターブレード法を用いて、プラスチック基材上に層状に塗工し、乾燥させることにより、シート状の固体電解質層形成用材料を準備した。 A slurry was prepared by mixing 8YSZ powder (average particle diameter: 0.3 μm), polyvinyl butyral (organic material), isoamyl acetate, 2-butanol and ethanol (mixed solvent) with a ball mill. The slurry was applied in a layer form on a plastic substrate using a doctor blade method and dried to prepare a sheet-shaped solid electrolyte layer forming material.
 10GDC粉末(平均粒子径:0.2μm)と、ポリビニルブチラール(有機材料)と、酢酸イソアミル、2-ブタノールおよびエタノール(混合溶媒)とをボールミルにて混合することによりスラリーを調製した。このスラリーを、ドクターブレード法を用いて、プラスチック基材上に層状に塗工し、乾燥させることにより、シート状の中間層形成用材料を準備した。 A slurry was prepared by mixing 10 GDC powder (average particle size: 0.2 μm), polyvinyl butyral (organic material), isoamyl acetate, 2-butanol and ethanol (mixed solvent) with a ball mill. The slurry was applied in a layer form on a plastic substrate using a doctor blade method and dried to prepare a sheet-shaped intermediate layer forming material.
 LSCF(La0.6Sr0.4Co0.2Fe0.8)粉末(平均粒子径:0.45μm)と、10GDC粉末(平均粒子径:0.2μm)と、エチルセルロース(有機材料)と、テルピネオール(溶媒)とをボールミルにて混合することにより、ペースト状のカソード形成用材料を準備した。なお、LSCF粉末と10GDC粉末の質量比は、90:10である。 LSCF (La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 ) powder (average particle size: 0.45 μm), 10 GDC powder (average particle size: 0.2 μm), ethyl cellulose (organic material) ) And terpineol (solvent) were mixed in a ball mill to prepare a paste-like cathode forming material. The mass ratio of the LSCF powder to the 10GDC powder is 90:10.
(第1の工程)
 シート状の最外層形成用材料、シート状の拡散層形成用材料、シート状の活性層形成用材料、シート状の固体電解質層形成用材料、および、シート状の中間層形成用材料をこの順に積層し、圧着して積層体を得た。この際、最外層形成用材料における穴の形成面は、拡散層形成用材料の積層側の面と反対側の面に配置した。なお、圧着には、CIP成形法を用いた。CIP成形条件は、温度80℃、加圧力50MPa、加圧時間10分という条件とした。また、上記圧着後、積層体を脱脂した。
(First step)
The sheet-shaped outermost layer forming material, the sheet-shaped diffusion layer forming material, the sheet-shaped active layer forming material, the sheet-shaped solid electrolyte layer forming material, and the sheet-shaped intermediate layer forming material in this order. It laminated | stacked and crimped | bonded and the laminated body was obtained. At this time, the hole forming surface in the outermost layer forming material was disposed on the surface opposite to the layer on the diffusion layer forming material. Note that the CIP molding method was used for pressure bonding. The CIP molding conditions were a temperature of 80 ° C., a pressing force of 50 MPa, and a pressing time of 10 minutes. Moreover, the laminated body was degreased after the pressure bonding.
(第2の工程)
 次いで、上記積層体を1350℃で2時間焼成した。これにより、部分的に厚みが異なる最外層、拡散層、活性層、固体電解質層、および中間層がこの順に積層された焼結体を得た。
(Second step)
Next, the laminate was fired at 1350 ° C. for 2 hours. Thereby, an outermost layer, a diffusion layer, an active layer, a solid electrolyte layer, and an intermediate layer having partially different thicknesses were obtained in this order.
(第3の工程)
 次いで、上記焼結体における中間層の表面に、カソード形成用材料をスクリーン印刷法により塗布し、900℃で2時間焼成(焼付)することによって層状のカソードを形成した。なお、カソード形成用材料は、中間層の外縁まで印刷しておらず、カソード層の外形は、固体電解質層の外形よりも小さく形成されている。これにより、図1~図3に示されるように、燃料電池用アノード(部分的に厚みが異なる最外層11、拡散層12、活性層13)、固体電解質層2、中間層4、および、カソード3がこの順に積層されており、燃料電池用アノードを支持体とする燃料電池単セルを得た。また、部分的に厚みが異なる最外層、拡散層および活性層の三層が積層されてなる燃料電池用アノードを得た。得られた燃料電池用アノード、燃料電池単セルを、試料1の記燃料電池用アノード、燃料電池単セルとする。最外層は、厚みが薄くされていない部分の厚みが50μm、厚みの薄い部分の厚みが5μmである。拡散層の厚みは400μm、活性層の厚みは20μm、固体電解質層の厚みは10μm、中間層の厚みは10μm、カソードの厚みは40μmである。また、試料1の記燃料電池用アノード、燃料電池単セルは、活性層の気孔径<最外層の気孔径<拡散層の気孔径の関係を満たしている。
(Third step)
Next, a cathode forming material was applied to the surface of the intermediate layer in the sintered body by a screen printing method, and baked (baked) at 900 ° C. for 2 hours to form a layered cathode. The cathode forming material is not printed up to the outer edge of the intermediate layer, and the outer shape of the cathode layer is smaller than the outer shape of the solid electrolyte layer. As a result, as shown in FIGS. 1 to 3, the fuel cell anode (the outermost layer 11, the diffusion layer 12, and the active layer 13 having partially different thicknesses), the solid electrolyte layer 2, the intermediate layer 4, and the cathode 3 were laminated in this order, and a fuel cell single cell having a fuel cell anode as a support was obtained. In addition, an anode for a fuel cell was obtained in which three layers of an outermost layer, a diffusion layer and an active layer having partially different thicknesses were laminated. The obtained fuel cell anode and fuel cell single cell are referred to as Sample 1 fuel cell anode and fuel cell single cell. The outermost layer has a thickness of 50 μm at a portion where the thickness is not reduced and a thickness of 5 μm at a portion where the thickness is thin. The diffusion layer has a thickness of 400 μm, the active layer has a thickness of 20 μm, the solid electrolyte layer has a thickness of 10 μm, the intermediate layer has a thickness of 10 μm, and the cathode has a thickness of 40 μm. In addition, the anode for a fuel cell and the single fuel cell of Sample 1 satisfy the relationship of the pore size of the active layer <the pore size of the outermost layer <the pore size of the diffusion layer.
 試料1の燃料電池用アノード、燃料電池単セルの作製において、最外層に溝を形成するための表面突出部を有するプラスチック基材を用い、最外層形成用材料を準備した点以外は同様にして、図4に示されるように、部分的に厚みが異なる最外層を有する試料2の燃料電池用アノード、燃料電池単セルを得た。 In the preparation of the fuel cell anode and fuel cell single cell of Sample 1, the same procedure was used except that the outermost layer forming material was prepared using a plastic substrate having a surface protrusion for forming a groove in the outermost layer. As shown in FIG. 4, a fuel cell anode and a fuel cell single cell of Sample 2 having an outermost layer partially different in thickness were obtained.
 以上、本発明の実施例について詳細に説明したが、本発明は上記実施例に限定されるものではなく、本発明の趣旨を損なわない範囲内で種々の変更が可能である。 As mentioned above, although the Example of this invention was described in detail, this invention is not limited to the said Example, A various change is possible within the range which does not impair the meaning of this invention.
 1 アノード
 2 固体電解質層
 3 カソード
 4 中間層
 5 燃料電池単セル
 10 燃料電池用アノード
 11 最外層
 12 拡散層
 13 活性層
 111 厚みの薄い部分
 F 燃料ガスのガス流れ方向
DESCRIPTION OF SYMBOLS 1 Anode 2 Solid electrolyte layer 3 Cathode 4 Intermediate | middle layer 5 Fuel cell single cell 10 Fuel cell anode 11 Outermost layer 12 Diffusion layer 13 Active layer 111 Thin part F The direction of gas flow of fuel gas

Claims (12)

  1.  アノード(1)と、固体電解質層(2)と、カソード(3)とを有し、上記アノード(1)の面方向に沿って燃料ガスが供給される燃料電池単セル(5)に使用される燃料電池用アノード(10)であって、
     上記燃料電池用アノード(10)は、複数の層より構成されており、
     上記複数の層のうち、上記固体電解質層(2)から最も離れて配置される最外層(11)は、部分的に厚みが異なっていることを特徴とする燃料電池用アノード(10)。
    Used in a fuel cell single cell (5) having an anode (1), a solid electrolyte layer (2), and a cathode (3), and fuel gas is supplied along the surface direction of the anode (1). A fuel cell anode (10) comprising:
    The fuel cell anode (10) is composed of a plurality of layers,
    Of the plurality of layers, the outermost layer (11) disposed farthest from the solid electrolyte layer (2) has a partially different thickness, and the anode (10) for fuel cells.
  2.  上記燃料ガスのガス流れ方向(F)の中間地点よりも上記燃料ガスの入口側をガス流れ上流側、上記中間地点よりも上記燃料ガスの出口側をガス流れ下流側とした場合に、上記最外層(11)は、上記ガス流れ上流側に比べ、上記ガス流れ下流側の方が、厚みの薄い部分(111)が多く形成されていることを特徴とする請求項1に記載の燃料電池用アノード(10)。 When the fuel gas inlet side is a gas flow upstream side from the intermediate point in the gas flow direction (F) of the fuel gas and the fuel gas outlet side is a gas flow downstream side from the intermediate point, the above-mentioned maximum point is obtained. 2. The fuel cell according to claim 1, wherein the outer layer (11) is formed with a thinner portion (111) on the downstream side of the gas flow than on the upstream side of the gas flow. Anode (10).
  3.  上記固体電解質層(2)の第1の面側に配置される活性層(13)と、該活性層(13)における上記固体電解質層(2)側と反対側の面である、該活性層(13)の第1の面側に積層された拡散層(12)と、該拡散層(12)における上記固体電解質層(2)側と反対側の面である、該拡散層(12)の第1の面側に積層された上記最外層(11)とを備えることを特徴とする請求項1または2に記載の燃料電池用アノード(10)。 The active layer (13) disposed on the first surface side of the solid electrolyte layer (2), and the active layer which is the surface of the active layer (13) opposite to the solid electrolyte layer (2) side The diffusion layer (12) laminated on the first surface side of (13), and the diffusion layer (12), which is the surface of the diffusion layer (12) opposite to the solid electrolyte layer (2) side. The anode (10) for a fuel cell according to claim 1 or 2, further comprising the outermost layer (11) laminated on the first surface side.
  4.  上記最外層(11)の気孔径は、上記拡散層(12)の気孔径より小さい、即ち、上記最外層(11)の気孔径<上記拡散層(12)の気孔径の関係を満たすことを特徴とする請求項3に記載の燃料電池用アノード(10)。 The pore diameter of the outermost layer (11) is smaller than the pore diameter of the diffusion layer (12), that is, the pore diameter of the outermost layer (11) <the pore diameter of the diffusion layer (12) is satisfied. A fuel cell anode (10) according to claim 3, characterized in that
  5.  請求項1~4のいずれか1項に記載の燃料電池用アノード(10)と、固体電解質層(2)と、カソード(3)とを有しており、上記燃料電池用アノード(10)の面方向に沿って燃料ガスが供給されることを特徴とする燃料電池単セル(5)。 A fuel cell anode according to any one of claims 1 to 4, a solid electrolyte layer (2), and a cathode (3), wherein the fuel cell anode (10) A fuel cell unit cell (5), wherein fuel gas is supplied along the surface direction.
  6.  上記燃料電池用アノード(10)において、上記活性層(13)の気孔径より上記最外層(11)の気孔径が大きく、かつ上記最外層(11)の気孔径より、上記拡散層(12)の気孔径が大きい、即ち上記活性層(13)の気孔径<上記最外層(11)の気孔径<上記拡散層(12)の気孔径の関係を満たすことを特徴とする請求項3または4に記載の燃料電池用アノード(10)。 In the fuel cell anode (10), the pore diameter of the outermost layer (11) is larger than the pore diameter of the active layer (13), and the diffusion layer (12) is larger than the pore diameter of the outermost layer (11). The pore diameter of the active layer (13) <the pore diameter of the outermost layer (11) <the pore diameter of the diffusion layer (12) is satisfied. Anode (10) for a fuel cell as described in 1. above.
  7.  上記活性層(13)の平均気孔径は、0.1~5μmの範囲内であり、上記拡散層(12)の平均気孔径は、0.3~20μmの範囲内であることを特徴とする請求項3または4に記載の燃料電池用アノード(10)。 The average pore diameter of the active layer (13) is in the range of 0.1 to 5 μm, and the average pore diameter of the diffusion layer (12) is in the range of 0.3 to 20 μm. The anode (10) for fuel cells according to claim 3 or 4.
  8.  上記最外層(11)の気孔率より、上記拡散層(12)の気孔率が大きい、即ち上記最外層(11)の気孔率<拡散層(12)の気孔率の関係を満たすことを特徴とする請求項3または4に記載の燃料電池用アノード(10)。 The porosity of the diffusion layer (12) is larger than the porosity of the outermost layer (11), that is, the relationship of the porosity of the outermost layer (11) <the porosity of the diffusion layer (12) is satisfied. The anode (10) for fuel cells according to claim 3 or 4.
  9.  上記活性層(13)の気孔率は、30~50%の範囲内、上記拡散層(12)の気孔率は、30~60%の範囲内であることを特徴とする請求項3または4に記載の燃料電池用アノード(10)。 The porosity of the active layer (13) is in the range of 30 to 50%, and the porosity of the diffusion layer (12) is in the range of 30 to 60%. The anode (10) for fuel cells as described.
  10.  上記最外層(11)における厚みが薄くされていない部分の厚みは5μm以上、上記最外層(11)における厚みが薄くされていない部分の厚みは、300μm以下であることを特徴とする請求項3または4に記載の燃料電池用アノード(10)。 4. The thickness of the outermost layer (11) where the thickness is not thinned is 5 μm or more, and the thickness of the outermost layer (11) where the thickness is not thinned is 300 μm or less. Or the anode (10) for fuel cells of 4.
  11.  上記固体電解質層(2)の厚みは1~20μmであることを特徴とする請求項3または4に記載の燃料電池用アノード(10)。 The fuel cell anode (10) according to claim 3 or 4, wherein the solid electrolyte layer (2) has a thickness of 1 to 20 µm.
  12.  上記カソード(3)の厚みは10~100μmであり、上記カソード(3)と上記固体電解質層(2)の間に形成される中間層(4)の厚みは1~10μmであることを特徴とする請求項11に記載の燃料電池用アノード(10)。 The cathode (3) has a thickness of 10 to 100 μm, and the intermediate layer (4) formed between the cathode (3) and the solid electrolyte layer (2) has a thickness of 1 to 10 μm. The anode (10) for fuel cells according to claim 11.
PCT/JP2014/071733 2013-09-25 2014-08-20 Fuel-cell anode and fuel cell WO2015045682A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013198050A JP6118694B2 (en) 2013-09-25 2013-09-25 Anode for fuel cell and single cell for fuel cell
JP2013-198050 2013-09-25

Publications (1)

Publication Number Publication Date
WO2015045682A1 true WO2015045682A1 (en) 2015-04-02

Family

ID=52742836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071733 WO2015045682A1 (en) 2013-09-25 2014-08-20 Fuel-cell anode and fuel cell

Country Status (2)

Country Link
JP (1) JP6118694B2 (en)
WO (1) WO2015045682A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185594A1 (en) * 2015-05-21 2016-11-24 日産自動車株式会社 Cell module for solid oxide fuel cell, and solid oxide fuel cell using same
JP2019091712A (en) * 2019-02-14 2019-06-13 日産自動車株式会社 Cell module for solid oxide type fuel battery, and solid oxide type fuel battery arranged by use thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349504A (en) * 1993-06-14 1994-12-22 Nippon Telegr & Teleph Corp <Ntt> Solid electrolyte type fuel cell
JPH08138690A (en) * 1994-11-07 1996-05-31 Tonen Corp Solid electrolyte fuel cell
JP2003168448A (en) * 2001-11-30 2003-06-13 Nissan Motor Co Ltd Unit cell for solid electrolyte type fuel cell
JP2007035352A (en) * 2005-07-25 2007-02-08 Nissan Motor Co Ltd Gas-permeable substrate
JP2010103009A (en) * 2008-10-24 2010-05-06 Toshiba Corp Internally modified solid oxide fuel cell, and fuel cell system
JP2011129309A (en) * 2009-12-16 2011-06-30 Ngk Spark Plug Co Ltd Solid oxide fuel cell
WO2011077923A1 (en) * 2009-12-24 2011-06-30 日本碍子株式会社 Method for producing solid oxide fuel cell and method for producing divided solid oxide fuel cell molded product
JP2012089443A (en) * 2010-10-22 2012-05-10 Toyota Motor Corp Manufacturing method of fuel cell
WO2013125457A1 (en) * 2012-02-22 2013-08-29 日産自動車株式会社 Solid oxide fuel cell and method for producing same
JP2013178956A (en) * 2012-02-28 2013-09-09 Toyota Motor Corp Fuel cell stack
JP2013225382A (en) * 2012-04-20 2013-10-31 Ngk Spark Plug Co Ltd Solid oxide fuel battery and fuel battery cell body

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349504A (en) * 1993-06-14 1994-12-22 Nippon Telegr & Teleph Corp <Ntt> Solid electrolyte type fuel cell
JPH08138690A (en) * 1994-11-07 1996-05-31 Tonen Corp Solid electrolyte fuel cell
JP2003168448A (en) * 2001-11-30 2003-06-13 Nissan Motor Co Ltd Unit cell for solid electrolyte type fuel cell
JP2007035352A (en) * 2005-07-25 2007-02-08 Nissan Motor Co Ltd Gas-permeable substrate
JP2010103009A (en) * 2008-10-24 2010-05-06 Toshiba Corp Internally modified solid oxide fuel cell, and fuel cell system
JP2011129309A (en) * 2009-12-16 2011-06-30 Ngk Spark Plug Co Ltd Solid oxide fuel cell
WO2011077923A1 (en) * 2009-12-24 2011-06-30 日本碍子株式会社 Method for producing solid oxide fuel cell and method for producing divided solid oxide fuel cell molded product
JP2012089443A (en) * 2010-10-22 2012-05-10 Toyota Motor Corp Manufacturing method of fuel cell
WO2013125457A1 (en) * 2012-02-22 2013-08-29 日産自動車株式会社 Solid oxide fuel cell and method for producing same
JP2013178956A (en) * 2012-02-28 2013-09-09 Toyota Motor Corp Fuel cell stack
JP2013225382A (en) * 2012-04-20 2013-10-31 Ngk Spark Plug Co Ltd Solid oxide fuel battery and fuel battery cell body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185594A1 (en) * 2015-05-21 2016-11-24 日産自動車株式会社 Cell module for solid oxide fuel cell, and solid oxide fuel cell using same
CN107615542A (en) * 2015-05-21 2018-01-19 日产自动车株式会社 SOFC unit module and the SOFC for having used the SOFC unit module
JPWO2016185594A1 (en) * 2015-05-21 2018-03-29 日産自動車株式会社 Cell module for solid oxide fuel cell and solid oxide fuel cell using the same
US10205176B2 (en) 2015-05-21 2019-02-12 Nissan Motor Co., Ltd. Cell module for solid oxide fuel cell, and solid oxide fuel cell using same
JP2019091712A (en) * 2019-02-14 2019-06-13 日産自動車株式会社 Cell module for solid oxide type fuel battery, and solid oxide type fuel battery arranged by use thereof

Also Published As

Publication number Publication date
JP2015065013A (en) 2015-04-09
JP6118694B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
JP5708923B2 (en) Fuel cell and fuel cell
JP5922434B2 (en) Solid oxide fuel cell
JP2010267631A (en) Fuel cell unit, and fuel cell
JP6396127B2 (en) Anode for fuel cell and single cell for fuel cell
JP5888420B2 (en) Fuel cell
JP2010238431A (en) Power generation cell of fuel battery
JP6018999B2 (en) Anode for fuel cell and single cell for fuel cell
JP6118694B2 (en) Anode for fuel cell and single cell for fuel cell
JP6382037B2 (en) Anode for fuel cell and single cell for fuel cell
JP6047471B2 (en) Anode for fuel cell and single cell for fuel cell
JP6047470B2 (en) Anode for fuel cell and single cell for fuel cell
EP3038197A1 (en) Ceramic substrate for electrochemical element, method for manufacturing same, fuel cell, and fuel cell stack
JP5679302B2 (en) Solid electrolyte fuel cell
JP6350068B2 (en) Solid oxide fuel cell
JP6277897B2 (en) Solid oxide fuel cell
JP6088949B2 (en) Fuel cell single cell and manufacturing method thereof
JP6075924B2 (en) Fuel cell single cell and manufacturing method thereof
JP5824204B2 (en) Fuel cell
JP2012074305A (en) Power generation cell for solid oxide fuel cell
JP5242951B2 (en) Solid electrolyte fuel cell and manufacturing method thereof
JP7114878B2 (en) Cathodes for Solid Oxide Fuel Cells and Solid Oxide Fuel Cell Single Cells
JP4761704B2 (en) Fuel cell and fuel cell
JP2012074304A (en) Power generation cell for solid oxide fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849275

Country of ref document: EP

Kind code of ref document: A1