JP2007035352A - Gas-permeable substrate - Google Patents

Gas-permeable substrate Download PDF

Info

Publication number
JP2007035352A
JP2007035352A JP2005214144A JP2005214144A JP2007035352A JP 2007035352 A JP2007035352 A JP 2007035352A JP 2005214144 A JP2005214144 A JP 2005214144A JP 2005214144 A JP2005214144 A JP 2005214144A JP 2007035352 A JP2007035352 A JP 2007035352A
Authority
JP
Japan
Prior art keywords
plate portion
gas
permeable substrate
gas permeable
thin plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005214144A
Other languages
Japanese (ja)
Inventor
Hiromi Sugimoto
博美 杉本
Masaharu Hatano
正治 秦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005214144A priority Critical patent/JP2007035352A/en
Publication of JP2007035352A publication Critical patent/JP2007035352A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas-permeable substrate small in thickness and weight, having strength capable of supporting a cell of a fuel cell and capable of directly forming the thin-film cell of a fuel cell. <P>SOLUTION: This flat metallic gas-permeable substrate 100 for forming a cell of a fuel cell thereon is provided with: thin plate parts 3 each having a plurality of gas-permeable holes 2 piercing in the thickness direction of the substrate formed therein; and thick plate parts 4 having a large dimension in the thickness direction as compared with the thin plate parts 3; and the hole diameter of each gas-permeable hole 2 is not greater than 50 μm. According to this invention, since the gas-permeable substrate 100 is provided with the thin plate parts 3 and the thick plate parts 4, the thickness and weight of the gas-permeable substrate 100 are reduced in the thin plate parts 3 and the strength capable of supporting the cell of a fuel cell can be ensured in the thick plate part 4. Since the hole diameter of each gas-permeable hole 2 is minute because of being not greater than 50 μm, the thin-film cell of a fuel cell can directly be formed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はガス透過性基体に関するものであり、特には、固体酸化物型燃料電池に使用するガス透過性基体に関するものである。   The present invention relates to a gas permeable substrate, and more particularly to a gas permeable substrate used for a solid oxide fuel cell.

燃料電池セルが形成されるガス透過性基体は、燃料電池自体を小型化するために薄型軽量である必要があると共に、燃料電池セルを支持する機能も有するものであるため、燃料電池セルを支持することができる強度も必要とする。   The gas permeable substrate on which the fuel cell is formed needs to be thin and light in order to reduce the size of the fuel cell itself, and also has a function of supporting the fuel cell, so the fuel cell is supported. You also need strength that can be done.

従来のガス透過性基体としては、例えば金属フィルタがある。特許文献1には、金網を圧下して得られる基板と、その基板に相対的に平均粒径が大きい粉末粒子を焼結した第1の粉末焼結層と、その第1の粉末焼結層上に形成された相対的に平均粒径が小さい粉末粒子を焼結した第2の粉末焼結層とを有する金属フィルタが記載されている。
特開平8−229320号公報
As a conventional gas permeable substrate, for example, there is a metal filter. Patent Document 1 discloses a substrate obtained by rolling down a wire mesh, a first powder sintered layer obtained by sintering powder particles having a relatively large average particle diameter on the substrate, and the first powder sintered layer. A metal filter having a second powder sintered layer formed by sintering powder particles having a relatively small average particle diameter formed thereon is described.
JP-A-8-229320

しかし、上記公報に記載の金属フィルタは強度を有するが、金網上部に粉末層を形成して製造されるものであるため、金属フィルタ全体を薄くすることは困難である。   However, although the metal filter described in the above publication has strength, it is difficult to make the entire metal filter thin because it is manufactured by forming a powder layer on the upper part of the wire mesh.

また、上記公報に記載の金属フィルタに形成される空孔径は、最大で100μm程度であるため、厚さが数〜数十μmの薄膜である燃料電池セルを金属フィルタ上に形成することは困難である。   Moreover, since the hole diameter formed in the metal filter described in the above publication is about 100 μm at the maximum, it is difficult to form a fuel cell having a thickness of several to several tens of μm on the metal filter. It is.

本発明は、上記の問題点に鑑みてなされたものであり、薄型軽量であると共に、燃料電池セルを支持することができる強度を有し、かつ薄膜の燃料電池セルを直接形成することができるガス透過性基体を得ることを目的とする。   The present invention has been made in view of the above-described problems, and is thin and lightweight, has a strength capable of supporting a fuel cell, and can directly form a thin film fuel cell. The object is to obtain a gas permeable substrate.

本発明は、燃料電池セルが形成される平板状で金属製のガス透過性基体において、基体の厚さ方向に貫通する複数のガス透過孔が形成された薄板部と、薄板部と比較して厚さ方向の寸法が大きい厚板部とを備え、ガス透過孔の孔径が50μm以下である。   The present invention relates to a flat metal gas permeable substrate on which fuel cells are formed, and a thin plate portion in which a plurality of gas permeable holes penetrating in the thickness direction of the substrate are formed, compared with a thin plate portion. A thick plate portion having a large dimension in the thickness direction, and the diameter of the gas permeation hole is 50 μm or less.

本発明によれば、ガス透過性基体はガス透過孔が形成された薄板部と、その薄板部よりも厚い厚板部とを備えるため、薄板部にてガス透過性基体の薄型軽量化を実現すると共に、厚板部にて燃料電池セルを支持することができる強度を確保することができる。また、ガス透過孔の孔径は50μm以下と微細孔であるため、薄膜の燃料電池セルをガス透過性基体表面に直接形成することができる。   According to the present invention, since the gas permeable substrate includes a thin plate portion in which a gas permeable hole is formed and a thick plate portion thicker than the thin plate portion, the thin plate portion realizes a thin and lightweight gas permeable substrate. In addition, the strength capable of supporting the fuel cell by the thick plate portion can be ensured. Further, since the gas permeation hole has a fine hole diameter of 50 μm or less, a thin film fuel cell can be directly formed on the surface of the gas permeable substrate.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1、2を参照して実施の形態1に係るガス透過性基体100について説明する。図1はガス透過性基体100を示す平面図であり、図2はガス透過性基体100の一部断面を示す拡大模式図である。
(Embodiment 1)
A gas permeable substrate 100 according to Embodiment 1 will be described with reference to FIGS. FIG. 1 is a plan view showing a gas permeable substrate 100, and FIG. 2 is an enlarged schematic view showing a partial cross section of the gas permeable substrate 100.

ガス透過性基体100は、表面1に燃料電池セルが形成される平板状の金属製基体であり、燃料電池セルに供給されるガスのガス流路として機能すると共に、燃料電池セルを支持する支持体としても機能するものである。ガス透過性基体100は、厚さ方向に貫通する複数のガス透過孔2が形成された薄板部3と、薄板部3と比較して厚さ方向の寸法が大きい厚板部4とを備える。   The gas permeable substrate 100 is a flat metal substrate on which fuel cells are formed on the surface 1, and functions as a gas flow path for gas supplied to the fuel cells and supports the fuel cells. It also functions as a body. The gas permeable substrate 100 includes a thin plate portion 3 in which a plurality of gas permeable holes 2 penetrating in the thickness direction are formed, and a thick plate portion 4 having a larger dimension in the thickness direction than the thin plate portion 3.

ガス透過性基体100の材料としては、ステンレス鋼やインコネル等の耐熱金属、又はNi、Ag、Pt、Cu、Feを少なくとも1種含む金属、例えばNi−Cu合金等の導電性部材が用いられる。   As the material of the gas permeable substrate 100, a heat-resistant metal such as stainless steel or Inconel, or a metal containing at least one kind of Ni, Ag, Pt, Cu, and Fe, for example, a conductive member such as a Ni-Cu alloy is used.

薄板部3は、ガス流路としての機能を有すると共に、ガス透過性基体100の薄型軽量化に寄与するものであり、厚板部4に囲まれた領域に形成される。厚板部4に囲まれた領域は複数存在し、そのそれぞれの領域に薄板部3a、3b、3c・・・が形成される。厚板部4に囲まれたそれぞれの薄板部3の形状は、図1に示す4角形に限られず、多角形や円形など、どのような形状であってもよい。   The thin plate portion 3 has a function as a gas flow path and contributes to a reduction in the thickness and weight of the gas permeable substrate 100 and is formed in a region surrounded by the thick plate portion 4. There are a plurality of regions surrounded by the thick plate portion 4, and the thin plate portions 3a, 3b, 3c,... Are formed in the respective regions. The shape of each thin plate portion 3 surrounded by the thick plate portion 4 is not limited to the quadrangle shown in FIG. 1, and may be any shape such as a polygon or a circle.

薄板部3には、ガスが透過する複数のガス透過孔2が形成され、それぞれのガス透過孔2は孔径が50μm以下の微細孔である。孔径が50μmを超えると、薄膜の燃料電池セルをガス透過性基体100の表面1に形成することができない。なお、ガス透過性基体100の表面1に薄膜の燃料電池セルを安定に形成するには、ガス透過孔2の孔径は10μm以下であるのが望ましい。   A plurality of gas permeation holes 2 through which gas passes are formed in the thin plate portion 3, and each gas permeation hole 2 is a fine hole having a hole diameter of 50 μm or less. If the pore diameter exceeds 50 μm, a thin film fuel cell cannot be formed on the surface 1 of the gas permeable substrate 100. In order to stably form a thin-film fuel cell on the surface 1 of the gas permeable substrate 100, the hole diameter of the gas permeable hole 2 is desirably 10 μm or less.

厚板部4は、薄板部3によって薄型軽量化したガス透過性基体100が、燃料電池セルを支持することができるように補強部として機能する。厚板部4の形状としては、図1に示すように、格子状に形成、つまり、縦横のそれぞれの方向にある間隔をおいて形成するのが好ましい。このように、厚板部4を構成することによって、薄板部3の面積を最大限に取ることができ、薄型軽量でかつ強度も有するガス透過性基体100を得ることができる。   The thick plate portion 4 functions as a reinforcing portion so that the gas permeable substrate 100 thinned and lightened by the thin plate portion 3 can support the fuel cell. As shown in FIG. 1, the thick plate portion 4 is preferably formed in a lattice shape, that is, with a certain interval in each of the vertical and horizontal directions. In this way, by configuring the thick plate portion 4, the area of the thin plate portion 3 can be maximized, and a thin and light gas permeable substrate 100 having strength can be obtained.

次に、薄板部3及び厚板部4の厚さ方向の寸法について説明する。薄板部3の厚さ方向の寸法をd、厚板部4の厚さ方向の寸法をDとした場合に、薄板部3と厚板部4との寸法比d/Dは、0.1<d/D<0.9の範囲に設定するのが好ましい。寸法比d/Dが0.1以下の場合には、薄板部3の厚さが薄くて支持体としての強度を有さないか、又は厚板部4の厚さが厚くて燃料電池全体が重厚となり好ましくない。また、寸法比d/Dが0.9以上の場合には、薄板部3の厚さが厚くて薄板部3に微細なガス透過孔2を形成することができないか、又は厚板部4の厚さが薄くて補強部としての強度を保てない。   Next, the dimension of the thin plate part 3 and the thick plate part 4 in the thickness direction will be described. When the dimension in the thickness direction of the thin plate portion 3 is d and the dimension in the thickness direction of the thick plate portion 4 is D, the dimensional ratio d / D between the thin plate portion 3 and the thick plate portion 4 is 0.1 < It is preferable to set in the range of d / D <0.9. When the dimensional ratio d / D is 0.1 or less, the thickness of the thin plate portion 3 is thin and does not have strength as a support, or the thickness of the thick plate portion 4 is large and the entire fuel cell is It becomes heavy and is not preferable. When the dimensional ratio d / D is 0.9 or more, the thickness of the thin plate portion 3 is so thick that the fine gas permeation holes 2 cannot be formed in the thin plate portion 3, or the thickness of the thick plate portion 4 The thickness is thin and the strength as a reinforcing part cannot be maintained.

また、薄板部3及び厚板部4の厚さ方向のそれぞれの寸法は、薄板部3と厚板部4との寸法比d/Dが0.1<d/D<0.9を満たすと共に、薄板部3の寸法dが、0.02mm<d<0.1mmの範囲に設定され、厚板部4の寸法Dが、0.05mm<D<0.2mmの範囲に設定されるのが好ましい。薄板部3の寸法dが0.02mm以下の場合には支持体としての強度を有さず、0.1mm以上の場合には薄板部3に微細なガス透過孔2を形成することができない。また、厚板部4の寸法Dが0.05mm以下の場合には補強部としての強度を保てず、0.2mm以上の場合には燃料電池全体が重厚となるので好ましくない。   In addition, each dimension in the thickness direction of the thin plate portion 3 and the thick plate portion 4 is such that the dimensional ratio d / D between the thin plate portion 3 and the thick plate portion 4 satisfies 0.1 <d / D <0.9. The dimension d of the thin plate part 3 is set in a range of 0.02 mm <d <0.1 mm, and the dimension D of the thick plate part 4 is set in a range of 0.05 mm <D <0.2 mm. preferable. When the dimension d of the thin plate portion 3 is 0.02 mm or less, it does not have strength as a support, and when it is 0.1 mm or more, the fine gas permeation hole 2 cannot be formed in the thin plate portion 3. Further, when the dimension D of the thick plate portion 4 is 0.05 mm or less, the strength as the reinforcing portion cannot be maintained, and when it is 0.2 mm or more, the entire fuel cell becomes heavy, which is not preferable.

薄板部3及び厚板部4は、電鋳法にて作成するのが好ましい。すなわち、薄板部3に形成されるガス透過孔2は、薄板部3を電鋳法にて成長させることによって形成される。電鋳法を用いれば、孔径が50μm以下の微細孔を容易に作成することができる。電鋳法によって孔径が50μm以下のガス透過部2を作成する場合には、薄板部3の厚さ方向の寸法dは、上記したように0.1mm以上にすることができない。換言すれば、薄板部3の厚さ方向の寸法dを電鋳法によって0.1mm以上に形成すれば、ガス透過孔2の孔径は50μm以下の微細孔とはならない。このように、電鋳法を用いた場合、ガス透過孔2の孔径を微細孔とするために薄板部3を薄膜にせざるを得ず、その薄板部3の強度を補強するために、ガス透過性基体100には厚板部4が備えられる。   The thin plate portion 3 and the thick plate portion 4 are preferably prepared by electroforming. That is, the gas permeation hole 2 formed in the thin plate portion 3 is formed by growing the thin plate portion 3 by electroforming. If the electroforming method is used, a fine hole having a hole diameter of 50 μm or less can be easily formed. When the gas permeation part 2 having a hole diameter of 50 μm or less is prepared by electroforming, the dimension d in the thickness direction of the thin plate part 3 cannot be set to 0.1 mm or more as described above. In other words, if the dimension d in the thickness direction of the thin plate portion 3 is formed to be 0.1 mm or more by electroforming, the diameter of the gas transmission hole 2 is not a fine hole of 50 μm or less. Thus, when the electroforming method is used, the thin plate portion 3 must be made a thin film in order to make the hole diameter of the gas permeation hole 2 fine, and in order to reinforce the strength of the thin plate portion 3, The base 100 is provided with a thick plate portion 4.

また、電鋳法を用いた場合、ガス透過性基体100の表面1を平らに形成することができる。つまり、燃料電池セルに対向する面1における薄板部3と厚板部4とを同一平面上に形成することができる。これにより、ガス透過性基体100の表面1上に燃料電池セルを容易に形成させることができる。   In addition, when the electroforming method is used, the surface 1 of the gas permeable substrate 100 can be formed flat. That is, the thin plate portion 3 and the thick plate portion 4 on the surface 1 facing the fuel cell can be formed on the same plane. Thereby, a fuel cell can be easily formed on the surface 1 of the gas permeable substrate 100.

以上の実施の形態1に係るガス透過性基体100によれば、ガス透過孔2が形成された薄板部3と、その薄板部3よりも厚い厚板部4とを備えるため、薄板部3にてガス透過性基体100の薄型軽量化を実現すると共に、厚板部4にて燃料電池セルを支持することができる強度を確保することができる。また、ガス透過孔2の孔径は50μm以下と微細孔であると共に、燃料電池セルに対向する表面1は平らであるため、薄膜の燃料電池セルをガス透過性基体表面に直接形成することができる。   Since the gas permeable substrate 100 according to the first embodiment includes the thin plate portion 3 in which the gas permeable holes 2 are formed and the thick plate portion 4 that is thicker than the thin plate portion 3, Thus, the gas permeable substrate 100 can be reduced in thickness and weight, and the strength capable of supporting the fuel cell by the thick plate portion 4 can be ensured. Further, since the gas permeation hole 2 is a fine hole having a diameter of 50 μm or less and the surface 1 facing the fuel cell is flat, a thin film fuel cell can be directly formed on the surface of the gas permeable substrate. .

(実施の形態2)
次に、実施の形態2に係る固体酸化物型燃料電池について説明する。固体酸化物型燃料電池は、単位セル10を積層して構成される。そこで、単位セル10を、図3を参照して説明する。図3は、単位セル10の断面を示す模式図である。
(Embodiment 2)
Next, a solid oxide fuel cell according to Embodiment 2 will be described. The solid oxide fuel cell is configured by stacking unit cells 10. The unit cell 10 will be described with reference to FIG. FIG. 3 is a schematic diagram showing a cross section of the unit cell 10.

単位セル10は、実施の形態1にて説明したガス透過性基体100の表面1上に、スパッタ法、印刷法、ゾルゲル法等のPVD、SPD等によって、膜厚数〜数十μmの薄膜燃料電池セル11を形成したものである。   The unit cell 10 is a thin film fuel having a film thickness of several to several tens of μm on the surface 1 of the gas permeable substrate 100 described in the first embodiment by PVD, SPD, etc. such as sputtering, printing, sol-gel method. The battery cell 11 is formed.

燃料電池セル11は、燃料極(燃料極層)12と、燃料極12の表面に形成した電解質膜13と、電解質膜13の表面に形成した酸化剤極(酸化剤極層)14とを備える。   The fuel cell 11 includes a fuel electrode (fuel electrode layer) 12, an electrolyte film 13 formed on the surface of the fuel electrode 12, and an oxidant electrode (oxidant electrode layer) 14 formed on the surface of the electrolyte film 13. .

燃料極12は、例えば、Ni−YSZ(安定化ジルコニア)、酸化ニッケル(NiO)、酸化銅(CuO)、酸化アルミニウム(Al23)、酸化チタン(TiO)、セリア固溶物、ランタンコバルト系酸化物、ランタンマンガン系酸化物等のセラミックス、金属−セラミックス複合粒子などを用いる。燃料極12はガス透過性基体100の表面1に形成する。 The fuel electrode 12 includes, for example, Ni—YSZ (stabilized zirconia), nickel oxide (NiO), copper oxide (CuO), aluminum oxide (Al 2 O 3 ), titanium oxide (TiO), ceria solid solution, lanthanum cobalt Ceramics, ceramics such as lanthanum manganese oxide, metal-ceramic composite particles, and the like are used. The fuel electrode 12 is formed on the surface 1 of the gas permeable substrate 100.

電解質膜13は、例えば、イットリア安定化ジルコニア等のセラミックスであり、燃料極12の表面に形成する。   The electrolyte membrane 13 is, for example, ceramic such as yttria-stabilized zirconia, and is formed on the surface of the fuel electrode 12.

酸化剤極14は、例えば、ランタンコバルト系酸化物(La1−xSrxCoO3など)、ランタンマンガン系酸化物(La1−xSrxMnO3など)等であり、電解質膜13の表面に形成する。 The oxidant electrode 14 is, for example, a lanthanum cobalt-based oxide (La1-xSrxCoO 3 or the like), a lanthanum manganese-based oxide (La1-xSrxMnO 3 or the like), and is formed on the surface of the electrolyte membrane 13.

上述したように、ガス透過性基体100に形成されたガス透過孔2は50μm以下という微細孔であるため、ガス透過性基体100の表面1上に膜厚数〜数十μmの薄膜燃料電池セル11を形成させることができる。また、ガス透過性基体100は、集電体としても機能するため、部材点数を減らすことができる。このように、ガス透過性基体100を用いることによって、全体として薄膜軽量の固体酸化物型燃料電池を得ることができる。   As described above, since the gas permeable holes 2 formed in the gas permeable substrate 100 are fine holes of 50 μm or less, a thin film fuel cell having a film thickness of several to several tens of μm on the surface 1 of the gas permeable substrate 100. 11 can be formed. Further, since the gas permeable substrate 100 also functions as a current collector, the number of members can be reduced. Thus, by using the gas permeable substrate 100, a thin-film lightweight solid oxide fuel cell can be obtained as a whole.

以下に、本発明の実施例について示す。しかし、本発明はこれらの実施例に限定されるものではない。   Examples of the present invention will be described below. However, the present invention is not limited to these examples.

(実施例1)
電鋳法にて板厚20μmの薄板部3と板厚200μの厚板部4とを備えるNi製のガス透過性基体100を作成した。これにより、薄板部3に、孔径5μmのガス透過孔2を形成させることができた。そして、ガス透過性基板100の表面1上に、スプレー熱分解(SPD)法にて、Ni−8YSZからなる板厚20μmの燃料極12、8YSZからなる板厚10μmの電解質膜13、SSC(Sm、Sr添加コバルト酸化物)からなる板厚5μmの酸化剤極14を順番に積層して単位セル10を得た。固体酸化物型燃料電池は、単位セル10を積層することによって得ることができる。
Example 1
A Ni gas permeable substrate 100 including a thin plate portion 3 having a plate thickness of 20 μm and a thick plate portion 4 having a plate thickness of 200 μm was prepared by electroforming. Thereby, the gas permeation hole 2 having a hole diameter of 5 μm could be formed in the thin plate portion 3. Then, on the surface 1 of the gas permeable substrate 100, by spray pyrolysis (SPD), a 20 μm thick fuel electrode 12 made of Ni-8YSZ, a 10 μm thick electrolyte membrane 13 made of 8YSZ, and SSC (Sm The unit cell 10 was obtained by sequentially stacking 5 μm thick oxidizer electrodes 14 made of Sr-added cobalt oxide). The solid oxide fuel cell can be obtained by stacking the unit cells 10.

(実施例2)
電鋳法にて板厚50μmの薄板部3と板厚150μの厚板部4とを備えるNi−Co合金製のガス透過性基体100を作成した。これにより、薄板部3に、孔径10μmのガス透過孔2を形成させることができた。そして、ガス透過性基板100の表面1上に、印刷法にてNiO−YSZからなる板厚20μmの燃料極12を積層し、不活性ガス雰囲気中にて1100℃で焼成した。その後、燃料極12上に、スパッタ法にて8YSZからなる板厚5μmの電解質膜13、SSCからなる板厚0.5μmの酸化剤極14を順番に積層して単位セル10を得た。固体酸化物型燃料電池は、単位セル10を積層することによって得ることができる。
(Example 2)
A gas-permeable substrate 100 made of a Ni—Co alloy including the thin plate portion 3 having a plate thickness of 50 μm and the thick plate portion 4 having a plate thickness of 150 μm was prepared by electroforming. Thereby, the gas permeation hole 2 having a hole diameter of 10 μm could be formed in the thin plate portion 3. Then, a fuel electrode 12 having a thickness of 20 μm made of NiO—YSZ was laminated on the surface 1 of the gas permeable substrate 100 by a printing method, and fired at 1100 ° C. in an inert gas atmosphere. Thereafter, an electrolyte film 13 made of 8YSZ and having a thickness of 5 μm and an oxidizer electrode 14 made of SSC and having a thickness of 0.5 μm were sequentially laminated on the fuel electrode 12 by sputtering to obtain a unit cell 10. A solid oxide fuel cell can be obtained by stacking unit cells 10.

以上の実施例においては、微細なガス透過孔2を有する薄型軽量のガス透過性基体100の表面1に薄膜の燃料電池セル11を形成することがき、全体として薄膜軽量の固体酸化物型燃料電池を得ることができた。   In the above embodiment, the thin film fuel cell 11 can be formed on the surface 1 of the thin and light gas permeable substrate 100 having the fine gas permeation holes 2, and the thin film light weight solid oxide fuel cell as a whole. Could get.

本発明は上記の実施の形態に限定されずに、その技術的な思想の範囲内において種々の変更がなしうることは明白である。   The present invention is not limited to the above-described embodiment, and it is obvious that various modifications can be made within the scope of the technical idea.

本発明に係るガス透過性基体は、固体酸化物型燃料電池に利用することができる。   The gas permeable substrate according to the present invention can be used for a solid oxide fuel cell.

本発明の実施の形態1に係るガス透過性基体100を示す平面図である。It is a top view which shows the gas-permeable base | substrate 100 which concerns on Embodiment 1 of this invention. 同じくガス透過性基体100の一部断面を示す拡大模式図である。3 is an enlarged schematic view showing a partial cross section of the gas permeable substrate 100. FIG. 本発明の実施の形態2に係る固体酸化物型燃料電池における単位セル10の断面を示す模式図である。It is a schematic diagram which shows the cross section of the unit cell 10 in the solid oxide fuel cell which concerns on Embodiment 2 of this invention.

符号の説明Explanation of symbols

100 ガス透過性基体
1 ガス透過性基体の表面
2 ガス透過孔
3 薄板部
4 厚板部
10 単位セル
11 燃料電池セル
12 燃料極
13 電解質膜
14 酸化剤極
100 Gas-permeable substrate 1 Gas-permeable substrate surface 2 Gas-permeable hole 3 Thin plate portion 4 Thick plate portion 10 Unit cell 11 Fuel cell 12 Fuel electrode 13 Electrolyte membrane 14 Oxidant electrode

Claims (8)

燃料電池セルが形成される平板状で金属製のガス透過性基体において、
前記基体の厚さ方向に貫通する複数のガス透過孔が形成された薄板部と、
当該薄板部と比較して厚さ方向の寸法が大きい厚板部とを備え、
前記ガス透過孔の孔径が50μm以下であることを特徴とするガス透過性基体。
In a flat metal gas-permeable substrate on which fuel cells are formed,
A thin plate portion formed with a plurality of gas permeation holes penetrating in the thickness direction of the substrate;
A thick plate portion having a large dimension in the thickness direction compared to the thin plate portion,
A gas permeable substrate, wherein the gas permeable hole has a diameter of 50 μm or less.
前記薄板部は、前記厚板部に囲まれた領域に形成されて成ることを特徴とする請求項1に記載のガス透過性基体。   The gas permeable substrate according to claim 1, wherein the thin plate portion is formed in a region surrounded by the thick plate portion. 前記厚板部は格子状に形成されることを特徴とする請求項2に記載のガス透過性基体。   The gas permeable substrate according to claim 2, wherein the thick plate portion is formed in a lattice shape. 前記薄板部の厚さ方向の寸法をd、前記厚板部の厚さ方向の寸法をDとした場合に、前記薄板部と前記厚板部との厚さ方向の寸法比d/Dが0.1<d/D<0.9の範囲に設定されることを特徴とする請求項1乃至請求項3のいずれか一に記載のガス透過性基体。   When the dimension in the thickness direction of the thin plate portion is d and the dimension in the thickness direction of the thick plate portion is D, the dimension ratio d / D in the thickness direction between the thin plate portion and the thick plate portion is 0. The gas permeable substrate according to any one of claims 1 to 3, wherein a range of 0.1 <d / D <0.9 is set. 前記薄板部の厚さ方向の寸法dが、0.02mm<d<0.1mmの範囲に設定されることを特徴とする請求項4に記載のガス透過性基体。   The gas permeable substrate according to claim 4, wherein a dimension d in a thickness direction of the thin plate portion is set in a range of 0.02 mm <d <0.1 mm. 前記厚板部の厚さ方向の寸法Dが、0.05mm<D<0.2mmの範囲に設定されることを特徴とする請求項4に記載のガス透過性基体。   The gas permeable substrate according to claim 4, wherein a dimension D in a thickness direction of the thick plate portion is set in a range of 0.05 mm <D <0.2 mm. 前記薄板部及び前記厚板部が、電鋳法にて作成されることを特徴とする請求項1乃至請求項6のいずれか一に記載のガス透過性基体。   The gas permeable substrate according to any one of claims 1 to 6, wherein the thin plate portion and the thick plate portion are formed by an electroforming method. 請求項1乃至請求項7のいずれか一に記載のガス透過性基体表面に燃料電池セルが形成されて成ることを特徴とする固体酸化物型燃料電池。
A solid oxide fuel cell comprising a fuel cell formed on the surface of the gas permeable substrate according to any one of claims 1 to 7.
JP2005214144A 2005-07-25 2005-07-25 Gas-permeable substrate Pending JP2007035352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005214144A JP2007035352A (en) 2005-07-25 2005-07-25 Gas-permeable substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005214144A JP2007035352A (en) 2005-07-25 2005-07-25 Gas-permeable substrate

Publications (1)

Publication Number Publication Date
JP2007035352A true JP2007035352A (en) 2007-02-08

Family

ID=37794369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005214144A Pending JP2007035352A (en) 2005-07-25 2005-07-25 Gas-permeable substrate

Country Status (1)

Country Link
JP (1) JP2007035352A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033615A (en) * 2011-08-01 2013-02-14 Dainippon Printing Co Ltd Solid oxide fuel cell and manufacturing method thereof
WO2015045682A1 (en) * 2013-09-25 2015-04-02 株式会社デンソー Fuel-cell anode and fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033615A (en) * 2011-08-01 2013-02-14 Dainippon Printing Co Ltd Solid oxide fuel cell and manufacturing method thereof
WO2015045682A1 (en) * 2013-09-25 2015-04-02 株式会社デンソー Fuel-cell anode and fuel cell
JP2015065013A (en) * 2013-09-25 2015-04-09 株式会社日本自動車部品総合研究所 Anode for fuel cell and single fuel cell

Similar Documents

Publication Publication Date Title
JP3997874B2 (en) Single cell for solid oxide fuel cell and method for producing the same
KR100685215B1 (en) Gas permeable substrate and solid oxide fuel cell using the same
JP5179718B2 (en) Solid oxide fuel cell, solid oxide fuel cell stack, and method for producing solid oxide fuel cell
US9005846B2 (en) Substrate made of porous metal or metal alloy, preparation method thereof, and HTE or SOFC cells with a metal support comprising this substrate
AU2006210103B2 (en) A method for producing a reversible solid oxide fuel cell
NL1014284C2 (en) A method of manufacturing an assembly comprising an anode-supported electrolyte and a ceramic cell comprising such an assembly.
JP2007113114A (en) Electrochemical cell structures and method of making the same
Noh et al. Scale-up of thin-film deposition-based solid oxide fuel cell by sputtering, a commercially viable thin-film technology
JP2012033418A (en) Solid oxide fuel cell and method for manufacturing the same
KR101041933B1 (en) Anode-supported solid oxide fuel cell having pore-gradient structure for forming thin film electrolyte and the fabrication method thereof
JP2002334706A (en) Cell element layer base and cell plate for solid electrolyte type fuel cell
Zhang et al. Stability of Ni-YSZ anode for SOFCs in methane fuel: the effects of infiltrating La0. 8Sr0. 2FeO3-δ and Gd-doped CeO2 materials
EP2808932A1 (en) Metal-supported solid oxide cell
KR101175581B1 (en) Electrolyte membrane formation method, membrane-electrode assembly, and membrane-electrode assembly manufacturing method
JP2007035352A (en) Gas-permeable substrate
JP5955719B2 (en) Method for producing molded article for solid oxide fuel cell
JP5110340B2 (en) Solid oxide fuel cell and method for producing the same
US8182965B2 (en) Optimized cell configurations for stable LSCF-based solid oxide fuel cells
US20210202960A1 (en) Fuel cell
JP2007035321A (en) Solid oxide fuel cell
JP2009054520A (en) Electrode-electrolyte membrane assembly, and manufacturing method thereof
JP2006032239A (en) Gas permeable base material and solid oxide fuel cell using this
JP2012099497A (en) Solid oxide fuel cell and solid oxide fuel cell stack
JP2005347095A (en) Substrate for solid oxide fuel cell and cell for solid oxide fuel cell
JP2006114306A (en) Substrate for solid oxide fuel cell, and its manufacturing method