JP2007035321A - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP2007035321A
JP2007035321A JP2005213176A JP2005213176A JP2007035321A JP 2007035321 A JP2007035321 A JP 2007035321A JP 2005213176 A JP2005213176 A JP 2005213176A JP 2005213176 A JP2005213176 A JP 2005213176A JP 2007035321 A JP2007035321 A JP 2007035321A
Authority
JP
Japan
Prior art keywords
electrode layer
fuel cell
solid oxide
oxide fuel
air electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005213176A
Other languages
Japanese (ja)
Inventor
Hiromi Sugimoto
博美 杉本
Masaharu Hatano
正治 秦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005213176A priority Critical patent/JP2007035321A/en
Publication of JP2007035321A publication Critical patent/JP2007035321A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid oxide fuel cell small in thickness and weight and capable of stably collecting current from a cell of the fuel cell. <P>SOLUTION: This solid oxide fuel cell is provided with: a cell 10 of the solid oxide fuel cell composed by sandwiching a solid electrolyte layer 1 between electrode layers comprising a fuel electrode layer 2 and an air electrode layer 3; and a collector member 4 having a plurality of gas-permeable holes 4a piercing in the thickness direction of the cell 10 of the solid oxide fuel cell; and is composed by embedding the collector member 4 in the fuel electrode layer 2, the air electrode layer 3 or both of them. By virtue of such a structure, the need of arranging a member for pressing the collector member 4 against the electrode layer 3 is obviated and generation of friction between the collector member 4 and the electrode layer 3 can be prevented. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固体酸化物型燃料電池に関するものである。   The present invention relates to a solid oxide fuel cell.

従来の燃料電池において、電極層とセパレータとの間に集電部材を配置した構造のものがある。特許文献1には、電極層とセパレータとの間に多孔質クッション材よりなる集電部材が配置された燃料電池が記載されている。
特開2002−358980
Some conventional fuel cells have a structure in which a current collecting member is disposed between an electrode layer and a separator. Patent Document 1 describes a fuel cell in which a current collecting member made of a porous cushion material is disposed between an electrode layer and a separator.
JP 2002-358980

上記公報記載のような構造の燃料電池では、集電部材と電極層との接触状態が不良の場合には、燃料電池の性能に悪影響を及ぼすため、集電部材を電極層に押付けるための部材を設けるのが一般的である。しかし、このような押付け部材を設ける場合には、燃料電池スタック全体が厚くなり、重量も増えてしまう。   In the fuel cell having the structure described in the above publication, when the contact state between the current collecting member and the electrode layer is poor, the performance of the fuel cell is adversely affected, so that the current collecting member is pressed against the electrode layer. It is common to provide a member. However, when such a pressing member is provided, the entire fuel cell stack becomes thick and the weight also increases.

また、集電部材を電極層に押付けた状態で燃料電池を車載すると、車両の振動により集電部材と電極層との接触部に摩擦が発生し、集電部材が電極層を削ってしまう場合もある。電極層が磨耗した場合には、安定した集電を行うことができない。   In addition, when the fuel cell is mounted in a state where the current collecting member is pressed against the electrode layer, friction is generated at the contact portion between the current collecting member and the electrode layer due to vibration of the vehicle, and the current collecting member scrapes the electrode layer. There is also. When the electrode layer is worn, stable current collection cannot be performed.

本発明は、上記の問題点に鑑みてなされたものであり、薄型軽量であると共に、燃料電池セルから安定して集電を行うことができる固体酸化物型燃料電池を得ることを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to obtain a solid oxide fuel cell that is thin and lightweight and can stably collect current from a fuel cell. .

本発明に係る固体酸化物型燃料電池は、固体電解質層を燃料極層と空気極層との電極層により挟持した固体酸化物型燃料電池セルと、固体酸化物型燃料電池セルの厚さ方向に貫通する複数のガス透過孔を有する集電部材とを備え、燃料極層又は空気極層もしくは双方に、集電部材を埋め込んで成る。   A solid oxide fuel cell according to the present invention includes a solid oxide fuel cell having a solid electrolyte layer sandwiched between electrode layers of a fuel electrode layer and an air electrode layer, and a thickness direction of the solid oxide fuel cell. And a current collecting member having a plurality of gas permeation holes penetrating into the fuel electrode layer. The current collecting member is embedded in the fuel electrode layer or the air electrode layer or both.

本発明によれば、集電部材を電極層に埋め込むため、集電部材を電極層に押付ける部材を設ける必要がなく、また、集電部材と電極層との間の摩擦の発生を防止することができる。したがって、薄型軽量であると共に、燃料電池セルから安定して集電を行うことができる固体酸化物型燃料電池を得ることができる。   According to the present invention, since the current collecting member is embedded in the electrode layer, there is no need to provide a member for pressing the current collecting member against the electrode layer, and the occurrence of friction between the current collecting member and the electrode layer is prevented. be able to. Therefore, it is possible to obtain a solid oxide fuel cell that is thin and light and that can stably collect current from the fuel cell.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1、2を参照して実施の形態に係る固体酸化物型燃料電池100について説明する。図1(a)は燃料電池100を示す平面図、図1(b)は燃料電池100を示す正面図、図1(c)は図1(a)におけるc−c断面を示す断面図、図2は集電部材を示す平面図である。   A solid oxide fuel cell 100 according to an embodiment will be described with reference to FIGS. 1A is a plan view showing the fuel cell 100, FIG. 1B is a front view showing the fuel cell 100, FIG. 1C is a cross-sectional view showing a cc cross section in FIG. 2 is a plan view showing a current collecting member.

固体酸化物型燃料電池(以下、「燃料電池」と称する。)100は、燃料極支持型の支持膜式であり、固体電解質層1を燃料極層2と空気極層3との電極層により挟持した固体酸化物型燃料電池セル(以下、「燃料電池セル」と称する。)10と、燃料電池セル10の厚さ方向に貫通する複数のガス透過孔4aを有する集電部材としてのスルーホール基板4とを備える。   A solid oxide fuel cell (hereinafter referred to as “fuel cell”) 100 is a fuel electrode support type support membrane type, and a solid electrolyte layer 1 is composed of an electrode layer of a fuel electrode layer 2 and an air electrode layer 3. Through hole as a current collecting member having sandwiched solid oxide fuel cell (hereinafter referred to as “fuel cell”) 10 and a plurality of gas permeation holes 4a penetrating in the thickness direction of the fuel cell 10 And a substrate 4.

燃料電池セル10は、固体電解質層1及び空気極層3と比較して厚さ方向の寸法が大きい燃料極層2が燃料電池10を支持する支持体として機能し、その燃料極層2の表面上に、薄膜層である固体電解質層1と空気極層3とを順番に積層したものである。なお、固体電解質層1、燃料極層2、及び空気極層3は円板形状である。また、固体電解質層1と燃料極層2との外径はほぼ同一であり、空気極層3の外径は、固体電解質層1及び燃料極層2の外径と比較して小さい。   In the fuel cell 10, the fuel electrode layer 2 having a larger dimension in the thickness direction than the solid electrolyte layer 1 and the air electrode layer 3 functions as a support for supporting the fuel cell 10, and the surface of the fuel electrode layer 2 On top, the solid electrolyte layer 1 and the air electrode layer 3 which are thin film layers are laminated in order. The solid electrolyte layer 1, the fuel electrode layer 2, and the air electrode layer 3 are disk-shaped. Further, the outer diameters of the solid electrolyte layer 1 and the fuel electrode layer 2 are substantially the same, and the outer diameter of the air electrode layer 3 is smaller than the outer diameters of the solid electrolyte layer 1 and the fuel electrode layer 2.

固体電解質膜1の材料としては、例えば、YSZ等の安定化ジルコニア、SDC等のセリア系固溶体、LSGM等のペロブスカイト型酸化物が用いられる。また、燃料極層2の材料としては、例えば、Ni−YSZ等のサーメット材料が用いられる。また、空気極層3の材料としては、例えば、ランタンコバルト系酸化物(La1−xSrxCoO3など)、ランタンマンガン系酸化物(La1−xSrxMnO3など)、サマリウムコバルト系酸化物、ランタン鉄系酸化物等のペロブスカイト型酸化物を用いる。 As a material of the solid electrolyte membrane 1, for example, stabilized zirconia such as YSZ, ceria-based solid solution such as SDC, and perovskite oxide such as LSGM are used. Moreover, as a material of the fuel electrode layer 2, for example, a cermet material such as Ni—YSZ is used. Examples of the material of the air electrode layer 3 include lanthanum cobalt-based oxides (La1-xSrxCoO 3 and the like), lanthanum manganese-based oxides (La1-xSrxMnO 3 and the like), samarium cobalt-based oxides, and lanthanum iron-based oxides. A perovskite oxide such as

スルーホール基板4は、図2に示すように、導電性とガス透過性とを有するメッシュ状部材であり、本体部4bと、その本体部4bの厚さ方向に貫通するガス透過孔4aとからなる。スルーホール基板4は、燃料電池セル10の厚さ方向とガス透過孔4aの軸方向とが一致する態様にて、薄膜層である空気極層3に埋め込まれている。したがって、スルーホール基板4のガス透過孔4a内には、空気極層3が充填された状態となっている。なお、空気極層3の外径は、スルーホール基板4の奥行方向及び幅方向の寸法よりも小さいため、スルーホール基板4には、空気極層3に埋め込まれていない剥き出しの部分が存在し、その部分から燃料電池セル10によって発電された電気が取り出される。   As shown in FIG. 2, the through-hole substrate 4 is a mesh-like member having conductivity and gas permeability, and includes a main body portion 4b and a gas permeation hole 4a penetrating in the thickness direction of the main body portion 4b. Become. The through-hole substrate 4 is embedded in the air electrode layer 3 that is a thin film layer in such a manner that the thickness direction of the fuel cell 10 and the axial direction of the gas permeation hole 4a coincide. Therefore, the air electrode layer 3 is filled in the gas permeable holes 4 a of the through-hole substrate 4. In addition, since the outer diameter of the air electrode layer 3 is smaller than the dimension in the depth direction and the width direction of the through-hole substrate 4, the through-hole substrate 4 has a bare portion that is not embedded in the air electrode layer 3. The electricity generated by the fuel cell 10 is taken out from the portion.

スルーホール基板4の厚さ方向の寸法dは、薄膜層である空気極層3に埋め込むことを考慮し、0.02mm<d<0.5mmの範囲に設定されるのが好ましい。スルーホール基板4の寸法dが0.02mm以下の場合には、スルーホール基板4を空気極層3に埋め込む際の扱いが困難であり、0.5mm以上の場合には、燃料電池100が厚くなり薄型軽量の燃料電池を得ることができない。このように、スルーホール基板4も薄膜に形成される。   The dimension d in the thickness direction of the through-hole substrate 4 is preferably set in a range of 0.02 mm <d <0.5 mm in consideration of embedding in the air electrode layer 3 which is a thin film layer. When the dimension d of the through-hole substrate 4 is 0.02 mm or less, it is difficult to handle the through-hole substrate 4 when embedded in the air electrode layer 3, and when it is 0.5 mm or more, the fuel cell 100 is thick. Therefore, a thin and light fuel cell cannot be obtained. Thus, the through-hole substrate 4 is also formed in a thin film.

空気極層3の厚さ方向の寸法が、スルーホール基板4の厚さ方向の寸法dよりも大きい場合には、図1(c)に示すように、スルーホール基板4の厚さ方向の断面は、空気極層3に包囲された状態となる。これに対して、空気極層3の厚さ方向の寸法が、スルーホール基板4の厚さ方向の寸法dよりも小さい場合には、図3(c)に示すように、スルーホール基板4のガス透過孔4a内の一部に空気極層3が充填された状態となり、スルーホール基板4の厚さ方向の断面は、一部が空気極層3に包囲された状態となる。このように、スルーホール基板4は、空気極層3との接触部が、空気極層3に埋め込まれた状態となっている。   When the dimension in the thickness direction of the air electrode layer 3 is larger than the dimension d in the thickness direction of the through-hole substrate 4, a cross section in the thickness direction of the through-hole substrate 4 as shown in FIG. Is surrounded by the air electrode layer 3. On the other hand, when the dimension in the thickness direction of the air electrode layer 3 is smaller than the dimension d in the thickness direction of the through-hole substrate 4, as shown in FIG. The gas electrode hole 4 a is partially filled with the air electrode layer 3, and the cross-section in the thickness direction of the through-hole substrate 4 is partially surrounded by the air electrode layer 3. Thus, the through-hole substrate 4 is in a state where the contact portion with the air electrode layer 3 is embedded in the air electrode layer 3.

スルーホール基板4の材料としては、耐熱性及び導電性を有する金属又は酸化物である。金属材料としては、例えば、ステンレス鋼やインコネルの耐熱金属、又はNi、Ag、Pt、Cu、Feを少なくとも1種含む導電性部材が用いられる。   The material of the through-hole substrate 4 is a metal or oxide having heat resistance and conductivity. As the metal material, for example, a heat-resistant metal such as stainless steel or Inconel, or a conductive member containing at least one kind of Ni, Ag, Pt, Cu, and Fe is used.

スルーホール基板4は、金属箔をケミカルエッチングしてガス透過孔4aを形成することによって作製するか、電鋳法にて本体4bを成長させガス透過孔4aを形成することによって作製する。このように、スルーホール基板4を作成することによって、スルーホール基板4における燃料電池セル10に対峙する面4c、及び面4cに対向する面4dを平滑な面とすることができる。面4c、4dを平滑な面に形成することによって、スルーホール基板4を空気極層3に埋め込み易くなると共に、燃料電池100を薄くすることができる。   The through-hole substrate 4 is produced by chemically etching a metal foil to form the gas permeable holes 4a, or is produced by growing the main body 4b by electroforming and forming the gas permeable holes 4a. Thus, by creating the through-hole substrate 4, the surface 4c facing the fuel cell 10 in the through-hole substrate 4 and the surface 4d facing the surface 4c can be made smooth. By forming the surfaces 4c and 4d as smooth surfaces, the through-hole substrate 4 can be easily embedded in the air electrode layer 3, and the fuel cell 100 can be made thin.

なお、集電部材は、導電性とガス透過性を有するメッシュ状部材であれば、スルーホール基板4以外のどのようなものでもよく、例えば、図4(a)に示す金属繊維を圧縮して形成した金属不織布や、図4(b)に示す金属線を織った金網や、図4(c)に示す金属粉体を圧粉して焼成した多孔質の発泡金属等を用いることができる。   The current collecting member may be any member other than the through-hole substrate 4 as long as it is a mesh-like member having conductivity and gas permeability. For example, the current collecting member compresses the metal fiber shown in FIG. The formed metal nonwoven fabric, a wire mesh woven with a metal wire shown in FIG. 4B, a porous foam metal obtained by compacting and firing a metal powder shown in FIG. 4C can be used.

以下に、燃料電池100の製造方法について説明する。まず、支持体として機能する燃料極層2の表面上に固体電解質層1を形成する。次に、固体電解質層1の表面上に、空気極層3の原料である電極微粒子のスラリーを、スクリーン印刷法、グリーンシート法、ディッピング法、ゾルゲル法、SPD(スプレー熱分解)法等によって塗布する。   Below, the manufacturing method of the fuel cell 100 is demonstrated. First, the solid electrolyte layer 1 is formed on the surface of the fuel electrode layer 2 that functions as a support. Next, a slurry of electrode fine particles as a raw material of the air electrode layer 3 is applied on the surface of the solid electrolyte layer 1 by a screen printing method, a green sheet method, a dipping method, a sol-gel method, an SPD (spray thermal decomposition) method, or the like. To do.

そして、その表面上にスルーホール基板4を載置し、スルーホール基板4の表面上に再度、空気極層3の原料である電極微粒子のスラリーを塗布する。   Then, the through-hole substrate 4 is placed on the surface, and a slurry of electrode fine particles as a raw material of the air electrode layer 3 is applied again on the surface of the through-hole substrate 4.

この状態で、真空、N2、Ar等の不活性雰囲気中、又はH2等の還元性雰囲気中にて焼成する。以上のようにして、空気極層3にスルーホール基板4が埋め込まれた燃料電池100を得ることができる。 In this state, baking is performed in a vacuum, an inert atmosphere such as N 2 or Ar, or a reducing atmosphere such as H 2 . As described above, the fuel cell 100 in which the through-hole substrate 4 is embedded in the air electrode layer 3 can be obtained.

以上の実施の形態に係る燃料電池100によれば、スルーホール基板4を空気極層3に埋め込むため、スルーホール基板4を空気極層3に押付ける部材を設ける必要がない。また、その空気極層3は、支持体としては用いない薄膜の電極層であり、スルーホール基板4及び空気極層3の双方が薄膜であるため、薄型軽量の燃料電池を得ることができる。   According to the fuel cell 100 according to the above embodiment, since the through-hole substrate 4 is embedded in the air electrode layer 3, it is not necessary to provide a member for pressing the through-hole substrate 4 against the air electrode layer 3. The air electrode layer 3 is a thin electrode layer that is not used as a support. Since both the through-hole substrate 4 and the air electrode layer 3 are thin films, a thin and light fuel cell can be obtained.

また、スルーホール基板4を空気極層3に埋め込むことで、スルーホール基板4と空気極層3との間の摩擦の発生を防止することができ、また、スルーホール基板4と空気極層3とが接触し易く、かつ両者の接触面積が大きいため、燃料電池セル10によって発電した電気を安定に効率良く集電することができる。さらに、このように、燃料電池性能が向上するため、燃料電池の低温作動、小型化が可能となる。   Further, by embedding the through-hole substrate 4 in the air electrode layer 3, it is possible to prevent the friction between the through-hole substrate 4 and the air electrode layer 3, and the through-hole substrate 4 and the air electrode layer 3 can be prevented. And the contact area between the two is large, and thus the electricity generated by the fuel cell 10 can be collected stably and efficiently. Further, since the fuel cell performance is improved in this way, the fuel cell can be operated at a low temperature and downsized.

なお、図5に示すように、複数の燃料電池100を、セパレータ5を介して積層することによって燃料電池スタック101を得ることができる。燃料電池スタック101は、集電部材4を押付ける部材を設ける必要がないため、全体として薄型軽量なものとなる。   As shown in FIG. 5, the fuel cell stack 101 can be obtained by stacking a plurality of fuel cells 100 via the separator 5. Since the fuel cell stack 101 does not need to be provided with a member for pressing the current collecting member 4, it is thin and light as a whole.

本発明の実施の形態の他の態様について説明する。本実施の形態に係る燃料電池100は、燃料極支持型の支持膜式として説明したが、空気極支持型の支持膜式とすることもできる。その場合には、固体電解質層1を支持しない燃料極層2は薄膜に形成され、その燃料極層2にスルーホール基板4が埋め込まれる。さらに、図6に示すように、電解質支持型の自立膜式とすることもできる。その場合には、燃料極層2と空気極層3とは薄膜に形成され、燃料極層2と空気極層3との双方にスルーホール基板4が埋め込まれる。このように、本発明は、支持体としては用いない電極層、つまり薄膜に形成された電極層に集電部材が埋め込まれるものである。   Another aspect of the embodiment of the present invention will be described. Although the fuel cell 100 according to the present embodiment has been described as the fuel electrode support type support membrane type, it can also be an air electrode support type support membrane type. In that case, the fuel electrode layer 2 that does not support the solid electrolyte layer 1 is formed into a thin film, and the through-hole substrate 4 is embedded in the fuel electrode layer 2. Further, as shown in FIG. 6, an electrolyte-supporting self-supporting membrane type may be used. In that case, the fuel electrode layer 2 and the air electrode layer 3 are formed as thin films, and the through-hole substrate 4 is embedded in both the fuel electrode layer 2 and the air electrode layer 3. Thus, in the present invention, the current collecting member is embedded in an electrode layer that is not used as a support, that is, an electrode layer formed in a thin film.

以下に、本発明の実施例について示す。しかし、本発明はこれらの実施例に限定されるものではない。   Examples of the present invention will be described below. However, the present invention is not limited to these examples.

(実施例1)
厚さ50μmのSUS430泊にケミカルエッチングにて多数のガス透過孔を形成し、スルーホール基板を作製した。そして、そのスルーホール基板を燃料極層の原料であるNi−8YSZペーストにて、厚さ500μmのランタンガレート系電解質(LSGM)基板の一方の面に貼付け、不活性雰囲気中1100℃にて焼成した。次に、電解質基板の他方の面に、Ptからなるメッシュ状の金網を、空気極層の原料であるSSC(Sm、Sr添加コバルト酸化物)ペーストにて貼付け、大気中800℃にて焼成した。これにより、両電極層に集電部材を埋め込んだ自立膜式の燃料電池を得ることができた。
Example 1
A large number of gas permeation holes were formed by chemical etching in SUS430 night having a thickness of 50 μm to produce a through-hole substrate. Then, the through-hole substrate was attached to one surface of a 500 μm-thick lanthanum gallate electrolyte (LSGM) substrate with Ni-8YSZ paste as a raw material for the fuel electrode layer, and fired at 1100 ° C. in an inert atmosphere. . Next, a mesh-like wire net made of Pt is attached to the other surface of the electrolyte substrate with an SSC (Sm, Sr-added cobalt oxide) paste that is a raw material of the air electrode layer, and fired at 800 ° C. in the atmosphere. . As a result, a self-supporting membrane fuel cell in which current collecting members were embedded in both electrode layers could be obtained.

(実施例2)
Ni−8YSZからなる厚さ500μmの燃料極基板表面上に、SPD法にて8YSZ(安定化ジルコニア)/SDC(サマリアドープセリア)/SSCの各層を順番に形成した。そして、電鋳法にて作製したNi―Co合金からなる厚さ20μmのメッシュ状の金網を空気極層に貼付け、さらに、その金網上にSSCをSPD法にて塗布した。これにより、空気極層に集電部材が埋め込まれた燃料極支持型の燃料電池を得ることができた。
(Example 2)
Each layer of 8YSZ (stabilized zirconia) / SDC (samaria doped ceria) / SSC was formed in order on the surface of a fuel electrode substrate made of Ni-8YSZ and having a thickness of 500 μm by the SPD method. Then, a 20 μm-thick mesh-like wire mesh made of an Ni—Co alloy produced by electroforming was attached to the air electrode layer, and SSC was applied onto the wire mesh by the SPD method. As a result, a fuel electrode-supporting fuel cell in which the current collecting member was embedded in the air electrode layer could be obtained.

このように、以上の実施例においては、電極層に集電部材が埋め込まれた薄型軽量の燃料電池を得ることができた。   Thus, in the above examples, a thin and light fuel cell in which the current collecting member was embedded in the electrode layer could be obtained.

本発明は上記の実施の形態に限定されずに、その技術的な思想の範囲内において種々の変更がなしうることは明白である。   The present invention is not limited to the above-described embodiment, and it is obvious that various modifications can be made within the scope of the technical idea.

本発明に係る固体酸化物型燃料電池は、分散電源等、産業用の電源装置に利用することができる。   The solid oxide fuel cell according to the present invention can be used for industrial power supply devices such as distributed power supplies.

(a)本発明の実施の形態に係る燃料電池100を示す平面図である。(b)同じく燃料電池100を示す正面図である。(c)図1(a)におけるc−c断面を示す断面図である。(A) It is a top view which shows the fuel cell 100 which concerns on embodiment of this invention. (B) It is a front view which similarly shows the fuel cell 100. FIG. (C) It is sectional drawing which shows the cc cross section in Fig.1 (a). 集電部材を示す平面図である。It is a top view which shows a current collection member. 本発明の実施の形態の他の態様を示す平面図、正面図、及び断面図である。It is the top view which shows the other aspect of embodiment of this invention, a front view, and sectional drawing. 集電部材の他の態様を示す平面図である。It is a top view which shows the other aspect of a current collection member. 燃料電池100を積層した状態を示す図である。It is a figure which shows the state which laminated | stacked the fuel cell. 本発明の実施の形態の他の態様を示す平面図、正面図、及び断面図である。It is the top view which shows the other aspect of embodiment of this invention, a front view, and sectional drawing.

符号の説明Explanation of symbols

100 燃料電池
101 燃料電池スタック
1 固体電解質層
2 燃料極層
3 空気極層
4 スルーホール基板
4a ガス透過孔
4b 本体部
5 セパレータ
10 燃料電池セル
DESCRIPTION OF SYMBOLS 100 Fuel cell 101 Fuel cell stack 1 Solid electrolyte layer 2 Fuel electrode layer 3 Air electrode layer 4 Through-hole board | substrate 4a Gas permeation hole 4b Main-body part 5 Separator 10 Fuel cell

Claims (8)

固体電解質層を燃料極層と空気極層との電極層により挟持した固体酸化物型燃料電池セルと、前記固体酸化物型燃料電池セルの厚さ方向に貫通する複数のガス透過孔を有する集電部材とを備え、
前記燃料極層又は前記空気極層もしくは双方に、前記集電部材を埋め込んで成ることを特徴とする固体酸化物型燃料電池。
A solid oxide fuel cell having a solid electrolyte layer sandwiched between electrode layers of a fuel electrode layer and an air electrode layer, and a plurality of gas permeation holes penetrating in the thickness direction of the solid oxide fuel cell. An electrical member,
A solid oxide fuel cell comprising the current collecting member embedded in the fuel electrode layer, the air electrode layer, or both.
前記集電部材における前記電極層との接続部が、当該電極層に埋め込まれて成ることを特徴とする請求項1に記載の固体酸化物型燃料電池。   2. The solid oxide fuel cell according to claim 1, wherein a connecting portion of the current collecting member with the electrode layer is embedded in the electrode layer. 前記集電部材がメッシュ状部材であることを特徴とする請求項1又は請求項2に記載の固体酸化物型燃料電池。   The solid oxide fuel cell according to claim 1, wherein the current collecting member is a mesh-like member. 前記メッシュ状部材は、固体酸化物型燃料電池セルに対峙する面が平滑に形成されたスルーホール基板であることを特徴とする請求項3に記載の固体酸化物型燃料電池。   4. The solid oxide fuel cell according to claim 3, wherein the mesh member is a through-hole substrate having a smooth surface facing the solid oxide fuel cell. 上記集電部材の厚さ方向の寸法dが、0.02mm<d<0.5mmの範囲に設定されることを特徴とする請求項1乃至請求項4のいずれか一に記載の固体酸化物型燃料電池。   5. The solid oxide according to claim 1, wherein a dimension d in a thickness direction of the current collecting member is set in a range of 0.02 mm <d <0.5 mm. Type fuel cell. 前記固体酸化物型燃料電池セルが自立膜式である場合には、前記燃料極層と前記空気極層との双方に前記集電部材を埋め込んで成ることを特徴とする請求項1乃至請求項5のいずれか一に記載の固体酸化物型燃料電池。   When the solid oxide fuel cell is a self-supporting membrane type, the current collecting member is embedded in both the fuel electrode layer and the air electrode layer. The solid oxide fuel cell according to any one of 5. 前記固体酸化物型燃料電池セルが支持膜式である場合には、前記燃料極層と前記空気極層のうち前記固体電解質層を支持しない一方に前記集電部材を埋め込んで成ることを特徴とする請求項1乃至請求項6のいずれか一に記載の固体酸化物型燃料電池。   When the solid oxide fuel cell is a support membrane type, the current collecting member is embedded in one of the fuel electrode layer and the air electrode layer that does not support the solid electrolyte layer. The solid oxide fuel cell according to any one of claims 1 to 6. 請求項1乃至請求項7のいずれか一に記載の固体酸化物型燃料電池を複数積層して成ることを特徴とする固体酸化物型燃料電池スタック。   A solid oxide fuel cell stack comprising a plurality of stacked solid oxide fuel cells according to any one of claims 1 to 7.
JP2005213176A 2005-07-22 2005-07-22 Solid oxide fuel cell Pending JP2007035321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005213176A JP2007035321A (en) 2005-07-22 2005-07-22 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005213176A JP2007035321A (en) 2005-07-22 2005-07-22 Solid oxide fuel cell

Publications (1)

Publication Number Publication Date
JP2007035321A true JP2007035321A (en) 2007-02-08

Family

ID=37794340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213176A Pending JP2007035321A (en) 2005-07-22 2005-07-22 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2007035321A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245897A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Solid oxide fuel cell and method of manufacturing the same
WO2019106765A1 (en) 2017-11-29 2019-06-06 日産自動車株式会社 Fuel cell stack
WO2019146101A1 (en) 2018-01-29 2019-08-01 日産自動車株式会社 Cell unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245897A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Solid oxide fuel cell and method of manufacturing the same
WO2019106765A1 (en) 2017-11-29 2019-06-06 日産自動車株式会社 Fuel cell stack
US11456477B2 (en) 2017-11-29 2022-09-27 Nissan Motor Co., Ltd. Fuel cell stack
WO2019146101A1 (en) 2018-01-29 2019-08-01 日産自動車株式会社 Cell unit
US11127958B2 (en) 2018-01-29 2021-09-21 Nissan Motor Co., Ltd. Cell unit

Similar Documents

Publication Publication Date Title
JP3997874B2 (en) Single cell for solid oxide fuel cell and method for producing the same
KR100685215B1 (en) Gas permeable substrate and solid oxide fuel cell using the same
JP4811622B2 (en) Solid oxide fuel cell
CA3020251C (en) Fuel cell single cell with a current collection assisting layer
JP5772125B2 (en) Solid oxide fuel cell and method for producing the same
JP6434723B2 (en) Membrane electrode assembly, method for manufacturing membrane electrode assembly, fuel cell, and method for manufacturing fuel cell
JP3705485B2 (en) Single cell for fuel cell and solid oxide fuel cell
JP6545986B2 (en) Solid oxide fuel cell
JP2007026975A (en) Electrolyte membrane/electrode laminate for solid oxide film fuel cell
JP5284921B2 (en) Reactor and method for producing reactor
JP6394143B2 (en) Solid oxide fuel cell
JP2007035321A (en) Solid oxide fuel cell
JP5428178B2 (en) Method for producing solid oxide fuel cell and laminate
JP2007026868A (en) Fuel cell
JP2020087792A (en) Fuel cell stack and method for manufacturing the same
WO2013125457A1 (en) Solid oxide fuel cell and method for producing same
JP5077633B2 (en) Electrode for solid oxide fuel cell and solid oxide fuel cell
JP2005129281A (en) Solid electrolyte fuel battery cell
JP2004355814A (en) Solid oxide fuel battery cell and its manufacturing method
JP6277897B2 (en) Solid oxide fuel cell
JP2009146805A (en) Electrochemical device
JP6477273B2 (en) Anode for fuel cell, method for producing the same, and single cell for fuel cell
JP2016024995A (en) Solid oxide fuel battery cell and method for manufacturing the same
JP2005251611A (en) Cell for solid oxide fuel cell and solid oxide fuel cell
JP4342267B2 (en) Solid oxide fuel cell and method for producing the same