JPH06349504A - Solid electrolyte type fuel cell - Google Patents

Solid electrolyte type fuel cell

Info

Publication number
JPH06349504A
JPH06349504A JP5141655A JP14165593A JPH06349504A JP H06349504 A JPH06349504 A JP H06349504A JP 5141655 A JP5141655 A JP 5141655A JP 14165593 A JP14165593 A JP 14165593A JP H06349504 A JPH06349504 A JP H06349504A
Authority
JP
Japan
Prior art keywords
fuel
gas
electrode
cell
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5141655A
Other languages
Japanese (ja)
Inventor
Tetsuo Take
武  哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5141655A priority Critical patent/JPH06349504A/en
Publication of JPH06349504A publication Critical patent/JPH06349504A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a solid electrolyte fuel cell which solves the generation of temperature distribution caused by the irregular vapor reforming reaction of fuel gas as endothermic reaction at a fuel electrode and prevents the deterioration of a cell and cell property due to temperature distribution. CONSTITUTION:All or part of the surface of a fuel cell 1 in contact wit fuel gas is covered with a gas diffused layer which is formed of material having no catalytic activity to the vapor reforming reaction of the fuel gas, the layer being thicher at the entrance of the fuel gas and gradually thinner toward the exit. The gas diffused layer 6 is preferably formed of ceramics identical with electrolyte or ceramics with the thermal expansion coefficient equal to that of the electrolyte, the fuel electrode 1 or an oxidant electrode 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料ガスの内部改質が
可能で、しかも、改質反応による温度分布の発生が小さ
い固体電解質型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell capable of internally reforming a fuel gas and having a small temperature distribution due to a reforming reaction.

【0002】[0002]

【従来の技術】固体電解質型燃料電池は、一般に、酸素
イオン伝導性を有する固体物質を電解質として用い、10
00℃近辺という高温で使用される。このため、使用原料
が限定され、電解質のみならず、各電極、集電体等の殆
ど全てに固体材料が用いられ、例えば、電解質にはイッ
トリア(Y2O3)を混ぜたジルコニア(ZrO2)(以下、YSZ と
略称する)、燃料電極にはニッケルと YSZ のサーメッ
ト、酸化剤電極には LaSrO 3や LaCoO3等の酸素イオン伝
導性と電子伝導性とを有するペロブスカイト酸化物が使
用されている。
2. Description of the Related Art Solid oxide fuel cells generally contain oxygen.
Using a solid substance having ion conductivity as an electrolyte,
It is used at high temperature around 00 ℃. Therefore, the raw materials used
Is limited, and not only the electrolyte but also most of each electrode, current collector, etc.
Solid materials are used for all of them, for example, electrolytes
Toria (Y2O3) Mixed zirconia (ZrO2) (Hereafter, YSZ and
Abbreviated), the fuel electrode has nickel and YSZ cermet.
LaSrO for the oxidizer electrode 3And LaCoO3Oxygen ion transmission
A perovskite oxide having electrical conductivity and electronic conductivity is used.
Is used.

【0003】固体電解質型燃料電池においては、酸化剤
中の酸素が電子をもらって酸化剤電極表面で(1)式に示
す反応によってイオン化する。生成した酸素イオンは固
体電解質中を移動し、燃料電極表面で(2)式に従って電
子を放出して酸素になるとともに、生成した酸素が燃料
ガスを水蒸気改質することによって得られた水素あるい
は一酸化炭素と(3)式及び(4)式に従って反応し、水蒸気
または二酸化炭素が生成される。電子は外部回路を経て
燃料電極から酸化剤電極に移動し、電気エネルギーとし
て利用される。固体電解質中の酸素イオンの伝導度は温
度が高いほど高いので、固体電解質型燃料電池は、通
常、1000℃の高温で作動させる。
In the solid oxide fuel cell, oxygen in the oxidizer receives electrons and is ionized on the surface of the oxidizer electrode by the reaction represented by the formula (1). The generated oxygen ions move in the solid electrolyte and release electrons according to equation (2) on the surface of the fuel electrode to become oxygen, and the generated oxygen produces hydrogen or one of the hydrogen obtained by steam reforming the fuel gas. It reacts with carbon oxide according to the equations (3) and (4) to generate water vapor or carbon dioxide. The electrons move from the fuel electrode to the oxidant electrode through the external circuit and are used as electric energy. Since the conductivity of oxygen ions in the solid electrolyte is higher as the temperature is higher, the solid oxide fuel cell is usually operated at a high temperature of 1000 ° C.

【0004】1/2 O2+ e~ → O~ (1) O~ → 1/2 O2 + e~ (2) CO +1/2 O2 → CO2 (3) H2 +1/2 O2 → H2O (4) 燃料ガスの水蒸気改質を行うためには、改質装置を固体
電解質型燃料電池とは別に設けることも可能であるが、
改質装置の設置スペースが必要であり、装置のコンパク
ト化の障害となること、装置コストがかかることなどの
問題があった。この問題点を解決するために、近年、燃
料電極で直接燃料ガスの水蒸気改質を行う直接内部改質
方式の検討が進められている。直接内部改質方式は、燃
料電極、例えば Ni‐YSZ 電極を電池反応に必要な電極
としてだけではなく、水蒸気改質反応の触媒としても使
用して燃料ガスの水蒸気改質を行う方式であり、これま
でに、メタン等の燃料ガスが Ni‐YSZ 電極上で水蒸気
改質可能なことが報告されている。
1/2 O 2 + e ~ → O ~ (1) O ~ → 1/2 O 2 + e ~ (2) CO + 1/2 O 2 → CO 2 (3) H 2 + 1/2 O 2 → H 2 O (4) In order to perform steam reforming of fuel gas, a reformer can be installed separately from the solid oxide fuel cell.
There is a problem that a space for installing the reforming device is required, which hinders downsizing of the device and increases the cost of the device. In order to solve this problem, in recent years, a direct internal reforming method in which the fuel electrode directly performs steam reforming of the fuel gas has been studied. The direct internal reforming system is a system in which the fuel electrode, for example, Ni-YSZ electrode is used not only as an electrode necessary for the cell reaction but also as a catalyst for the steam reforming reaction to perform steam reforming of the fuel gas, So far, it has been reported that fuel gas such as methane can be steam reformed on the Ni-YSZ electrode.

【0005】従来の固体電解質型燃料電池の構成の概略
を図3に示す。直接内部改質方式では、燃料電極1に燃
料と水蒸気との混合ガス6を供給し、燃料電極1上で水
蒸気改質反応を行わせるとともに、水蒸気改質反応で生
成した水素もしくは一酸化炭素を上記の電池反応によっ
て酸素と反応させることにより、燃料電池の発電を行わ
せるものである。
FIG. 3 shows a schematic structure of a conventional solid oxide fuel cell. In the direct internal reforming system, a mixed gas 6 of fuel and steam is supplied to the fuel electrode 1 to cause a steam reforming reaction on the fuel electrode 1, and hydrogen or carbon monoxide generated by the steam reforming reaction is generated. The fuel cell is caused to generate power by reacting with oxygen by the above-mentioned cell reaction.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、この場
合、燃料ガスの水蒸気改質反応は燃料電極表面で均一に
起るわけではなく、燃料ガスの反応量は燃料電極の燃料
ガス入口付近で多く、燃料ガス出口に向かうにつれて減
少する。一方、メタン等の燃料ガスの水蒸気改質反応は
吸熱反応であることが知られている。このため、直接内
部改質方式を従来の固体電解質型燃料電池に適用する
と、吸熱反応である水蒸気改質反応の進行によって、セ
ル内部に図4に示すような温度分布が生じ、例えば、反
応が急激に進む燃料ガス入口付近でセル内部温度が1000
℃から500℃に急激に低下することになる。セル内部に
このような温度分布が生じると、セラミックから形成さ
れている固体電解質型燃料電池セルが熱膨張の差によっ
て破壊したり、あるいは、局部的に温度低下が発生した
部分で固体電解質中の酸素イオンの伝導度が低下するた
めに、電池性能も低下するなどの問題があった。
However, in this case, the steam reforming reaction of the fuel gas does not occur uniformly on the surface of the fuel electrode, and the reaction amount of the fuel gas is large near the fuel gas inlet of the fuel electrode. It decreases as it goes to the fuel gas outlet. On the other hand, it is known that the steam reforming reaction of fuel gas such as methane is an endothermic reaction. Therefore, when the direct internal reforming method is applied to a conventional solid oxide fuel cell, the temperature distribution as shown in FIG. 4 is generated inside the cell due to the progress of the steam reforming reaction which is an endothermic reaction. The cell internal temperature is 1000 near the rapidly advancing fuel gas inlet.
It will drop rapidly from ℃ to 500 ℃. When such a temperature distribution is generated inside the cell, the solid oxide fuel cell formed of ceramic is destroyed due to the difference in thermal expansion, or the temperature in the solid electrolyte is locally reduced. Since the conductivity of oxygen ions is lowered, there is a problem that the battery performance is also lowered.

【0007】本発明の目的は、上記したような、従来の
固体電解質型燃料電池において燃料電極で吸熱反応であ
る燃料ガスの水蒸気改質反応が不均一に起ることによっ
て生じる温度分布の発生を解決して、内部改質が可能
で、しかも温度分布によるセルの劣化や電池特性の劣化
を生じることのない固体電解質型燃料電池を提供するこ
とにある。
An object of the present invention is to generate a temperature distribution caused by the nonuniform heat reforming reaction of the fuel gas, which is an endothermic reaction at the fuel electrode, in the conventional solid oxide fuel cell as described above. A solution is to provide a solid oxide fuel cell that can undergo internal reforming and that does not cause cell deterioration or cell characteristic deterioration due to temperature distribution.

【0008】[0008]

【課題を解決するための手段】上記目的は、酸化剤電極
と燃料電極とを電解質を介して配置し、燃料ガスと酸化
剤ガスを供給することによって発電する固体電解質型燃
料電池において、燃料ガスと接する燃料電極の表面の一
部もしくは全部を燃料ガスの水蒸気改質反応に対して触
媒活性を有しない物質から構成されるガス拡散層で覆っ
たことを特徴とする固体電解質型燃料電池とすることに
よって達成することができる。
The above object is to provide a solid electrolyte fuel cell in which an oxidant electrode and a fuel electrode are arranged via an electrolyte, and a fuel gas and an oxidant gas are supplied to generate electric power. A solid oxide fuel cell characterized in that a part or all of the surface of the fuel electrode in contact with the fuel cell is covered with a gas diffusion layer composed of a substance having no catalytic activity for the steam reforming reaction of the fuel gas. Can be achieved by

【0009】また、燃料電極表面の上記ガス拡散層の厚
さを燃料ガス入口側で厚く、燃料ガス出口側に近づくに
つれて薄くすることによってより効果的な結果を得るこ
とができる。なお、上記ガス拡散層は、電解質と同じセ
ラミックス、もしくは電解質、燃料電極あるいは酸化剤
電極と熱膨張率が等しいセラミックスを用いることが好
ましい。
Further, a more effective result can be obtained by making the gas diffusion layer on the surface of the fuel electrode thicker on the fuel gas inlet side and thinner on the fuel gas outlet side. The gas diffusion layer is preferably made of the same ceramic as the electrolyte, or ceramics having the same coefficient of thermal expansion as the electrolyte, the fuel electrode or the oxidizer electrode.

【0010】[0010]

【作用】本発明は、燃料電極の燃料ガス流路側表面に、
燃料ガスの燃料電極への到達を制限するためのガス拡散
層を設けたことを主要な特徴とするものであり、このよ
うな構成とすることによって、燃料電極で燃料ガスの水
蒸気改質反応が均一に起るために、セル内温度分布の発
生が少なく、内部改質による燃料電池の特性低下及び劣
化を生じることがない。
The present invention, on the surface of the fuel electrode on the side of the fuel gas passage,
The main feature is that a gas diffusion layer for restricting the arrival of the fuel gas at the fuel electrode is provided.With such a configuration, the steam reforming reaction of the fuel gas at the fuel electrode is prevented. Since it occurs uniformly, the temperature distribution in the cell is less likely to occur, and the deterioration and deterioration of the characteristics of the fuel cell due to internal reforming will not occur.

【0011】[0011]

【実施例】以下、本発明固体電解質型燃料電池の構成に
ついて実施例によって具体的に説明する。
EXAMPLES The constitution of the solid oxide fuel cell of the present invention will be specifically described below with reference to examples.

【0012】本発明固体電解質型燃料電池の一実施例の
セル構成を図1に示す。図3に示した従来の固体電解質
型燃料電池とは、燃料電極1の燃料ガス流路側表面にガ
ス拡散層を設けた点が大きく異なる。燃料電極1と固体
電解質2の厚さは100μmとし、酸化剤電極の厚さは5mm
とした。また、ガス拡散層6の厚さは、燃料ガス入口側
で厚く、燃料ガス出口側に近づくにつれて薄くし、80μ
m〜0μmとした。電極面積は25cm2とした。また、燃料
電極1にはニッケルを50%含有する Ni‐YSZ サーメッ
トを、固体電解質2とガス拡散層6には YSZ を、酸化
剤電極3には LaSrO3をそれぞれ用いた。燃料ガスとし
てはメタンを用い、その供給量は400cc/minとした。ま
た、水蒸気の供給量は1200cc/minとした。一方、酸化剤
ガス9としては空気を用い、その供給量は2500cc/minと
した。燃料ガスと水蒸気の混合ガス7と酸化剤ガス9は
予め1000℃に予熱してからセルに供給した。0.4W/cm2
発電を行った。燃料電極1の表面にガス拡散層6を設
け、燃料電極1に到達する燃料ガス量を制御することに
よって、燃料電極1で均一に燃料ガスの水蒸気改質反応
を行わせることができ、図2に示すように、セル内部に
温度分布が生じることを防ぐことが可能となった。セル
内部温度は1000℃で一定であった。
FIG. 1 shows the cell structure of an embodiment of the solid oxide fuel cell of the present invention. 3 is different from the conventional solid oxide fuel cell shown in FIG. 3 in that a gas diffusion layer is provided on the fuel gas flow path side surface of the fuel electrode 1. The thickness of the fuel electrode 1 and the solid electrolyte 2 is 100 μm, and the thickness of the oxidizer electrode is 5 mm.
And The thickness of the gas diffusion layer 6 is thicker on the fuel gas inlet side and thinner toward the fuel gas outlet side.
It was set to m to 0 μm. The electrode area was 25 cm 2 . Further, Ni-YSZ cermet containing 50% nickel was used for the fuel electrode 1, YSZ was used for the solid electrolyte 2 and the gas diffusion layer 6, and LaSrO 3 was used for the oxidizer electrode 3. Methane was used as the fuel gas, and the supply rate was 400 cc / min. Further, the supply amount of water vapor was 1200 cc / min. On the other hand, air was used as the oxidant gas 9, and the supply rate was 2500 cc / min. The mixed gas 7 of fuel gas and water vapor and the oxidant gas 9 were preheated to 1000 ° C. in advance and then supplied to the cell. Power was generated at 0.4 W / cm 2 . By providing the gas diffusion layer 6 on the surface of the fuel electrode 1 and controlling the amount of the fuel gas reaching the fuel electrode 1, the steam reforming reaction of the fuel gas can be uniformly performed in the fuel electrode 1. As shown in, it became possible to prevent the temperature distribution from occurring inside the cell. The cell internal temperature was constant at 1000 ° C.

【0013】ガス拡散層6の材料としては、セルの他の
構成部材と熱膨張率が近く、燃料ガスの水蒸気改質反応
に対して触媒活性を有しない材料が適しており、一例と
してYSZ を挙げることができる。燃料電極1への燃料ガ
スの到達量は、ガス拡散層の厚さを調節することによっ
て制御した。なお、本発明の実施例以外に、ガス拡散層
の細孔径を調節しても燃料ガス到達量を制御することが
可能である。燃料電極1の燃料ガス入口では温度低下の
原因となる水蒸気改質反応が起り易いので、ガス拡散層
6の厚さを厚くして燃料電極1に到達する燃料ガス量を
減少させ、燃料ガス出口に近づくにつれて未反応の燃料
ガスが減少するのでガス拡散層を薄くして燃料電極1に
燃料ガスが到達し易いようにすることが、水蒸気改質反
応を均一に行わせ、燃料電極1での温度分布の発生を抑
制するのに効果的である。
As a material of the gas diffusion layer 6, a material having a thermal expansion coefficient close to that of other constituent members of the cell and having no catalytic activity for the steam reforming reaction of the fuel gas is suitable. As an example, YSZ is used. Can be mentioned. The amount of the fuel gas reaching the fuel electrode 1 was controlled by adjusting the thickness of the gas diffusion layer. In addition to the examples of the present invention, the amount of fuel gas reaching can be controlled by adjusting the pore size of the gas diffusion layer. At the fuel gas inlet of the fuel electrode 1, a steam reforming reaction that causes a temperature decrease is likely to occur. Therefore, the thickness of the gas diffusion layer 6 is increased to reduce the amount of fuel gas reaching the fuel electrode 1 and reduce the fuel gas outlet. Since the unreacted fuel gas decreases as the fuel electrode 1 approaches, it is necessary to make the gas diffusion layer thin so that the fuel gas can easily reach the fuel electrode 1 so that the steam reforming reaction is performed uniformly and It is effective in suppressing the occurrence of temperature distribution.

【0014】なお、本発明固体電解質型燃料電池に用い
るガス拡散層は、燃料電極、酸化剤電極、固体電解質の
従来の製造技術であるスパッタ、溶射、グリーンシート
による一体焼結等の方法を用いることによって、容易に
燃料電極表面に作成することができる。
For the gas diffusion layer used in the solid oxide fuel cell of the present invention, the conventional manufacturing techniques of fuel electrode, oxidizer electrode, and solid electrolyte, such as sputtering, thermal spraying, and integral sintering with a green sheet, are used. By doing so, it can be easily formed on the fuel electrode surface.

【0015】[0015]

【発明の効果】以上述べてきたように、固体電解質型燃
料電池を本発明構成の燃料電池とすることによって、従
来技術の有していた課題を解決して、内部改質が可能で
あり、しかも温度分布の発生によるセルの劣化や電池特
性の低下を生じることのない優れた特性を示す固体電解
質型燃料電池を提供することができた。
As described above, by using a solid oxide fuel cell as a fuel cell having the constitution of the present invention, it is possible to solve the problems of the prior art and to perform internal reforming. Moreover, it was possible to provide a solid oxide fuel cell having excellent characteristics without causing deterioration of cells and deterioration of cell characteristics due to generation of temperature distribution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明固体電解質型燃料電池の一実施例のセル
構成を示す概略断面図。
FIG. 1 is a schematic cross-sectional view showing a cell structure of an embodiment of a solid oxide fuel cell of the present invention.

【図2】本発明固体電解質型燃料電池の燃料ガス入口と
出口の間におけるセル内部の温度分布を示す図。
FIG. 2 is a diagram showing the temperature distribution inside the cell between the fuel gas inlet and outlet of the solid oxide fuel cell of the present invention.

【図3】従来の固体電解質型燃料電池のセル構成を示す
概略断面図。
FIG. 3 is a schematic cross-sectional view showing a cell configuration of a conventional solid oxide fuel cell.

【図4】従来の固体電解質型燃料電池の燃料ガス入口と
出口の間におけるセル内部の温度分布を示す図。
FIG. 4 is a view showing a temperature distribution inside a cell between a fuel gas inlet and an outlet of a conventional solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

1…燃料電極、2…固体電解質、3…酸化剤電極、4…
燃料ガス流路、5…酸化剤ガス流路、6…ガス拡散層、
7…燃料と水蒸気の混合ガス、8…燃料電極排ガス、9
…酸化剤ガス、10…酸化剤電極排ガス。
1 ... Fuel electrode, 2 ... Solid electrolyte, 3 ... Oxidizer electrode, 4 ...
Fuel gas channel, 5 ... Oxidant gas channel, 6 ... Gas diffusion layer,
7 ... mixed gas of fuel and water vapor, 8 ... fuel electrode exhaust gas, 9
… Oxidizer gas, 10… Oxidizer electrode exhaust gas.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酸化剤電極と燃料電極とを電解質を介して
配置し、燃料ガスと酸化剤ガスを供給することによって
発電する固体電解質型燃料電池において、燃料ガスと接
する燃料電極の表面の一部もしくは全部を燃料ガスの水
蒸気改質反応に対して触媒活性を有しない物質から構成
されるガス拡散層で覆ったことを特徴とする固体電解質
型燃料電池。
1. A solid oxide fuel cell in which an oxidant electrode and a fuel electrode are disposed with an electrolyte interposed between them, and a fuel gas and an oxidant gas are supplied to generate electric power. A solid oxide fuel cell, characterized in that a part or all thereof is covered with a gas diffusion layer composed of a substance having no catalytic activity for a steam reforming reaction of fuel gas.
【請求項2】上記燃料電極表面のガス拡散層の厚さを、
燃料ガス入口側で厚く、燃料ガス出口に近づくにつれて
薄くしたことを特徴とする請求項1記載の固体電解質型
燃料電池。
2. The thickness of the gas diffusion layer on the surface of the fuel electrode is
2. The solid oxide fuel cell according to claim 1, wherein the solid electrolyte fuel cell is thicker on the fuel gas inlet side and thinner toward the fuel gas outlet side.
【請求項3】上記ガス拡散層が電解質と同じセラミック
ス、もしくは電解質、燃料電極あるいは酸化剤電極と熱
膨張率が等しいセラミックスから構成されていることを
特徴とする請求項1記載の固体電解質型燃料電池。
3. The solid electrolyte fuel according to claim 1, wherein the gas diffusion layer is made of the same ceramics as the electrolyte or a ceramic having the same coefficient of thermal expansion as the electrolyte, the fuel electrode or the oxidizer electrode. battery.
JP5141655A 1993-06-14 1993-06-14 Solid electrolyte type fuel cell Pending JPH06349504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5141655A JPH06349504A (en) 1993-06-14 1993-06-14 Solid electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5141655A JPH06349504A (en) 1993-06-14 1993-06-14 Solid electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH06349504A true JPH06349504A (en) 1994-12-22

Family

ID=15297100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5141655A Pending JPH06349504A (en) 1993-06-14 1993-06-14 Solid electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH06349504A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008509530A (en) * 2004-08-04 2008-03-27 コーニング インコーポレイテッド Variable resistance electrode structure
JP2008305692A (en) * 2007-06-08 2008-12-18 Kansai Electric Power Co Inc:The Structure for fuel cell, fuel cell, and electrode layer precursor green sheet
JP2012054015A (en) * 2010-08-31 2012-03-15 Kyocera Corp Solid oxide fuel battery cell and fuel battery
CN102687324A (en) * 2009-12-28 2012-09-19 Posco公司 Composite ceramic material and method for manufacturing the same
WO2015045682A1 (en) * 2013-09-25 2015-04-02 株式会社デンソー Fuel-cell anode and fuel cell
JP2018098081A (en) * 2016-12-14 2018-06-21 Toto株式会社 Solid oxide fuel cell stack
EP4152446A1 (en) * 2021-09-17 2023-03-22 Airbus SAS Fuel cell with increased gravimetric power density

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008509530A (en) * 2004-08-04 2008-03-27 コーニング インコーポレイテッド Variable resistance electrode structure
JP2008305692A (en) * 2007-06-08 2008-12-18 Kansai Electric Power Co Inc:The Structure for fuel cell, fuel cell, and electrode layer precursor green sheet
CN102687324A (en) * 2009-12-28 2012-09-19 Posco公司 Composite ceramic material and method for manufacturing the same
JP2013515669A (en) * 2009-12-28 2013-05-09 ポスコ Composite ceramic material and method for producing the same
US9871259B2 (en) 2009-12-28 2018-01-16 Posco Method for manufacturing composite ceramic material
JP2012054015A (en) * 2010-08-31 2012-03-15 Kyocera Corp Solid oxide fuel battery cell and fuel battery
WO2015045682A1 (en) * 2013-09-25 2015-04-02 株式会社デンソー Fuel-cell anode and fuel cell
JP2015065013A (en) * 2013-09-25 2015-04-09 株式会社日本自動車部品総合研究所 Anode for fuel cell and single fuel cell
JP2018098081A (en) * 2016-12-14 2018-06-21 Toto株式会社 Solid oxide fuel cell stack
EP4152446A1 (en) * 2021-09-17 2023-03-22 Airbus SAS Fuel cell with increased gravimetric power density

Similar Documents

Publication Publication Date Title
JP3731650B2 (en) Fuel cell
KR0130905B1 (en) Solid electrolyte fuel cell
US7998635B2 (en) Fuel cell structure for gas supply
JPH04345762A (en) Gas separating film type fuel cell
JP4956946B2 (en) Fuel cell
KR101148438B1 (en) Fuel cell device and electronic equipment using fuel cell device
JP4432384B2 (en) Solid oxide fuel cell
JP4682511B2 (en) Solid oxide fuel cell
JP2004335163A (en) Solid oxide type fuel cell and its operation method
US7014929B2 (en) Fuel cell
JP5057634B2 (en) Fuel cell structure
JPH10270057A (en) Solid high molecular fuel cell
JPH06349504A (en) Solid electrolyte type fuel cell
KR101011622B1 (en) Fuel cell unit and electronic device
JP3999934B2 (en) Solid oxide fuel cell
KR100649737B1 (en) Hydrogen fuel cells having thin film multi-layers
JPH06342663A (en) Solid electrolyte fuel cell
JP2004362800A (en) Fuel cell
JP2005085521A (en) Solid oxide fuel cell
KR100665123B1 (en) Micro Reforming Apparatus for Fuel Cell
KR101281772B1 (en) Solid oxide fuel cell and method of fabricating the same
JPH06267562A (en) Solid high polymer electrolyte fuel cell
JP3058012B2 (en) Single cell of internal reforming high temperature solid oxide fuel cell
JP6624361B2 (en) Solid oxide fuel cell
JP2005294152A (en) Solid oxide fuel cell