WO2015045588A1 - 車両用反射型光センサ - Google Patents

車両用反射型光センサ Download PDF

Info

Publication number
WO2015045588A1
WO2015045588A1 PCT/JP2014/069300 JP2014069300W WO2015045588A1 WO 2015045588 A1 WO2015045588 A1 WO 2015045588A1 JP 2014069300 W JP2014069300 W JP 2014069300W WO 2015045588 A1 WO2015045588 A1 WO 2015045588A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
detection
optical sensor
threshold
value
Prior art date
Application number
PCT/JP2014/069300
Other languages
English (en)
French (fr)
Inventor
俊 雷
小野 高志
田中 和也
航 平井
Original Assignee
株式会社アルファ
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルファ, 日産自動車株式会社 filed Critical 株式会社アルファ
Priority to JP2015538986A priority Critical patent/JP6232071B2/ja
Priority to MX2016003587A priority patent/MX2016003587A/es
Priority to EP14849471.9A priority patent/EP3051319B1/en
Priority to CN201480052106.4A priority patent/CN105579870B/zh
Priority to US14/917,307 priority patent/US9909350B2/en
Priority to RU2016105528A priority patent/RU2016105528A/ru
Publication of WO2015045588A1 publication Critical patent/WO2015045588A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/70Power-operated mechanisms for wings with automatic actuation
    • E05F15/73Power-operated mechanisms for wings with automatic actuation responsive to movement or presence of persons or objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4873Extracting wanted echo signals, e.g. pulse detection by deriving and controlling a threshold value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver
    • G01V8/14Detecting, e.g. by using light barriers using one transmitter and one receiver using reflectors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/941Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated using an optical detector
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/70Power-operated mechanisms for wings with automatic actuation
    • E05F15/73Power-operated mechanisms for wings with automatic actuation responsive to movement or presence of persons or objects
    • E05F2015/765Power-operated mechanisms for wings with automatic actuation responsive to movement or presence of persons or objects using optical sensors
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/50Application of doors, windows, wings or fittings thereof for vehicles
    • E05Y2900/53Type of wing
    • E05Y2900/531Doors
    • E05Y2900/532Back doors or end doors

Definitions

  • the present invention relates to a vehicle reflective optical sensor.
  • Patent Document 1 As a vehicle door opening / closing control device that uses an infrared sensor to control a vehicle door opening / closing operation, a device described in Patent Document 1 is known.
  • the vehicle is equipped with a foot detection sensor that outputs a signal such as infrared rays toward the ground, and the foot detection that is driven after the portable wireless terminal possessed by the user is authenticated.
  • the foot detection sensor When the user is detected by the sensor, the door is opened and closed.
  • the determination of the foot is performed by comparing the amount of light reflected from the foot with a predetermined threshold value for detection determination, but the vehicle is stopped in a different optical environment and Since the brightness of the detection area set in (2) changes depending on the stop position, the amount of light reflected from the foot also increases or decreases, and there is a problem that the detection reliability is extremely lowered.
  • a moving average value of a plurality of reflected light amount data is also compared with a predetermined threshold value for detection determination.
  • a predetermined threshold value for detection determination it is only possible to reduce or eliminate the influence of noise on the observed value, and it cannot prevent a decrease in detection accuracy due to a change in the detection environment.
  • JP 2005-133529 A Japanese Patent Laid-Open No. 2006-245585
  • the present invention has been made to solve the above drawbacks, and an object of the present invention is to provide a vehicle reflective optical sensor with improved control reliability and a vehicle door opening / closing control device using the same.
  • the object is The detection light 3 is projected from the light emitting unit 2 at a predetermined interval from the vehicle outer wall toward the detection region 1 set outside the vehicle, and the amount of light received by the light receiving unit 5 of the reflected light 4 from the detection region 1 is predetermined.
  • Reflective light for vehicles provided with a control unit 6 that outputs a detection confirmation signal when a threshold excess state exceeding the detection determination threshold value is detected and entry of the detection target 10 into the detection region 1 is detected.
  • a sensor The control unit 6 uses, as the detection determination threshold value, an adjustment value composed of a statistical representative value with respect to the reflected light amount of an appropriate number of reflected light 4 preceding the determination target reflected light 4 and a predetermined fixed value. This is accomplished by providing a vehicle reflective optical sensor that uses the summed value.
  • the threshold value for detection determination used for detection of an over-threshold state is an adjustment value obtained by statistically processing an appropriate number of reflected lights 4 preceding the reflected light 4 to be determined. Since it is obtained by adding a fixed value determined in advance, changes in optical properties such as brightness due to the stop position or the passage of time after the stop are reflected in the judgment criteria, so the stop location, time, etc. It becomes possible to maintain high detection accuracy without being affected, and operational reliability is improved.
  • control unit 6 When noise reflected light exceeding a predetermined noise determination threshold is detected in the representative value calculation target, a predetermined number of non-noise lights that do not exceed the predetermined noise determination threshold following the noise reflected light are continuous.
  • the threshold value for detection determination can be calculated using a statistical representative value for the light quantity of the continuous non-noise light group as an adjustment value.
  • a noise check is performed on the reflected light to be determined, and when the noise light is determined, in order to calculate the adjustment value again after waiting for the disappearance of the noise cause, the noise reflected light is used.
  • the influence on the adjustment value can be eliminated, and the determination accuracy becomes higher.
  • a new threshold excess state is calculated by calculating the adjustment value based on the amount of reflected light after the detection confirmation signal is output, even if the cancellation of the threshold excess state is not detected, provided that the predetermined detection restart condition is satisfied. Can be configured to detect.
  • the reflection type optical sensor restarts the detection operation of the threshold excess state again by detecting the cancellation of the threshold excess state.
  • the adjustment value is adjusted by the amount of reflected light after the detection confirmation signal is output, even if the cancellation of the threshold excess state is not detected. And a new over-threshold condition is detected.
  • the detection region 1 is automatically moved into the detection region 1 based on the detection determination threshold value incorporating a new condition.
  • the approach of the detection target 10 can be detected.
  • the detection resumption condition is that a predetermined number of non-noise lights that do not exceed a predetermined noise determination threshold value continue, thereby eliminating an unstable factor due to a transient state after the detection confirmation signal is output. Is possible,
  • the calculation can be simplified as compared with the case where the satisfaction of the condition is individually determined for the plurality of reflected lights 4, thereby reducing the burden on the control unit 6. It becomes possible to do.
  • the detection light 3 of the vehicle door opening / closing control device is Fired as a pulse group consisting of a predetermined number of pulses
  • the reflection type optical sensor can be configured to perform determination of an over-threshold state using a pulse group as a determination unit.
  • the detection light 3 is emitted in units of a pulse group composed of a plurality of pulses, and the determination of an over-threshold state is performed in units of pulse groups, thereby comparing with the case of determining a single pulse as a unit. Noise resistance is improved, and determination accuracy is also improved.
  • the detection of the threshold excess state is carried out by using a difference between the total amount of received light in the light receiving unit 5 during light emission and the total amount of received light in the light receiving unit 5 during non-light emission as a predetermined detection determination threshold. It can be configured to be performed in comparison with the value.
  • the brightness of the detection area 1 varies depending on the stop position, and snowfall, rain, sunshine, etc. constantly change even when the vehicle is stopped at the same position. If only the amount of reflected light at the time of light emission is used as a criterion, the detection reliability is extremely lowered.
  • the present invention by using the difference in the amount of reflected light between light emission and non-light emission as a determination target, it is possible to reliably reduce the determination accuracy due to variations in the reflection characteristics of the background, such as the wall surface of the detection region 1. It becomes possible to prevent.
  • the control unit 6 has, for each pulse group, a deviation square sum equivalent value for a difference between a sum of received light amounts in the light receiving unit 5 during light emission and a sum of received light amounts in the light receiving unit 5 during non-light emission for a predetermined test. It is possible to improve the accuracy by performing a test that uses the effective detection light only when it is equal to or less than the threshold value and adopting only the effective detection light as the determination target reflected light 4.
  • the vehicle door opening / closing control device using these vehicle reflection type optical sensors is A vehicle reflective optical sensor (A);
  • a door control unit 9 that opens the vehicle door 8 by operating the actuator 7 on condition of a detection confirmation signal of the detection target 10 in the vehicle reflection type optical sensor (A) can be configured.
  • the door control unit 9 when the door control unit 9 receives the detection confirmation signal, the door control unit 9 is in a locked state on condition that a predetermined other condition such as that the unlocking operation authority is authenticated by an appropriate authentication unit is satisfied.
  • the release and opening operation signal of the vehicle door 8 is output to the actuator 7, and the opening operation of the door is performed.
  • the door can be opened simply by inserting a load, a hand, etc. into the detection area 1 in a state where the unlocking conditions are satisfied, so that convenience is improved.
  • the control reliability can be improved.
  • FIG. 1 It is a figure which shows the vehicle by which the vehicle door opening / closing control apparatus was used, (a) is a rear view, (b) is a side view, (c) is the 1C-1C sectional view taken on the line of (a).
  • Fig. 1 shows a vehicle using a vehicle door opening / closing control device.
  • the vehicle door opening / closing control device is configured as a back door control device for controlling the opening / closing operation of a power back door driven by an actuator 7 such as a damper device, and is fixed to the back door of the vehicle.
  • the vehicle includes a vehicle reflection type optical sensor and a door control unit 9 for controlling the actuator 7.
  • the reflection type optical sensor (A) is configured to output a detection confirmation signal when detecting the entry of the detection target 10 into the predetermined detection area 1 where the detection light 3 is projected.
  • the license plate finisher 11 is fixed to the ceiling wall portion of the license plate mounting recess.
  • reference numeral 12 denotes a license plate.
  • the optical axis of the detection light 3 is slightly inclined toward the vehicle inner side (angle ⁇ ). .
  • the detection ability outside the concave portion of the license plate is lowered, so that the reflective optical sensor (A) may react inadvertently when a person other than the user, an animal, garbage, or the like approaches the vehicle. Can be prevented.
  • the door control unit 9 first performs authentication of an electronic key possessed by the user, detection of the state of the back door, locking / unlocking operation, etc. After performing the preparatory operation, the actuator 7 is driven.
  • the authentication of the electronic key is performed by communicating with an authentication device (not shown) and authenticating the authentication code output from the electronic key.
  • the back door 8 is in a closed condition on the condition that the back door 8 is in a closed state.
  • the actuator 7 is driven to start the door opening operation.
  • the bag can be moved only by bringing the luggage to be detected 10 close to or in the vicinity of the license plate mounting recess set as the detection area 1. Since the door 8 can be opened, convenience is improved.
  • the reflective optical sensor (A) includes a light emitting unit 2 using an infrared LED as a light source, a light receiving unit 5 including a light receiving circuit including an infrared light receiving element, and a control unit 6.
  • the control unit 6 includes a light emission control unit 6a that controls the light emission timing of the light emission unit 2, a light reception control unit 6b that controls the light reception timing of the light reception unit 5, and a calculation unit 6c that includes a threshold value calculation unit 6d. .
  • the light-emitting unit 2 is controlled by the light-emission control unit 6a, and detects the detection light 3 in units of a pulse group (PLS) composed of an appropriate number (eight in this example) of pulses (pls). Fire at predetermined intervals (T1, T2 in FIG. 3).
  • PLS pulse group
  • the light receiving control unit 6b activates the light receiving circuit from the sleep state in accordance with the light emission timing of the pulse group (PLS) in the light emitting unit 2 for power saving, and at the time of light emission and no light emission for each light emission pulse (pls).
  • the amount of received light in the light receiving unit 5 is acquired.
  • the acquisition of the amount of light received at the time of light emission with respect to the light emission pulse (pls) takes into account the delay time until the light emission is started after the light emission control unit 6a sends the light emission request of each pulse (pls) to the light emission unit 2.
  • the reflected light 4 for each light emission pulse (pls) is obtained at the timing when it reaches the peak, and the value is acquired as the light reception light amount (H) during light emission.
  • the received light amount when no light is emitted is acquired at the timing when the light emitting unit 2 transitions from the light emitting state to the non-light emitting state and the afterglow at the time of light emission disappears, and the value is set as the received light amount when not emitting light (L).
  • the calculation unit 6 c calculates the reflected light amount in units of pulse groups (PLS) based on the received light amount in the light receiving unit 5.
  • the reflected light amount (P) of the pulse group (PLS) is
  • the inclusion of the received light amount (H 1 , L 1 ) for the first pulse and the received light amount (H 8 , L 8 ) for the last pulse should be excluded. This eliminates instability in the transient state.
  • the effectiveness of the reflected light 4 of each pulse group obtained as described above is determined by the calculation unit 6c. Effectiveness is the evaluation of the presence of disturbance elements based on the homogeneity of the amount of reflected light within the same pulse group.
  • the variation of each pulse within the pulse group, specifically, the value equivalent to the deviation sum of squares is the predetermined effectiveness. When it is larger than the verification threshold (Th val ), it is regarded as invalid data.
  • the deviation sum of squares equivalent value is a so-called deviation sum of squares given as the sum of the squares of the difference between the received light amount (P) for each pulse light and the average value, or a variance obtained by dividing the deviation square sum by the number of data. Furthermore, it is possible to use a standard deviation or the like obtained as the square root of the variance. In this example, as shown in the equation (2), the absolute value of the difference between the received light amount of each pulse and the average value is used. The total of the values is substituted and the burden on the control unit 6 is reduced.
  • the calculation unit 6c compares the amount of reflected light of the above-described pulse group with a predetermined threshold value for detection determination (Th on ) to detect a threshold value excess state, detect the threshold value excess state, Determines the entry of the detection target 10 into the detection area 1 and outputs the detection confirmation signal for a predetermined time when the detection object 10 enters the detection area 1 is detected, and further outputs the detection confirmation signal.
  • a confirmation signal output flag indicating this is set.
  • This confirmation signal output flag satisfies a predetermined cancellation condition when a threshold exceeding state is detected within a predetermined period after the confirmation signal is output and when a threshold exceeding state is not detected within a predetermined period.
  • the calculation unit 6c executes the threshold value excess state detection step.
  • the threshold value for detection determination (Th on ), which is a criterion for determining the above threshold excess state, is obtained as the sum of a preset fixed value (Th onfix ) and an adjustment value (Th cal ).
  • the fixed value (Th onfix ) is set to about 20 to 30 percent of the validity test threshold value (Th val ).
  • the adjustment value (Th cal ) is an average value of the received light quantity of a predetermined number (10 in this example) preceding the determination target pulse group (P n ), as shown in FIGS. 4 and (3). And is calculated by the threshold value calculation unit 6d in the calculation unit 6c.
  • the adjustment value (Th cal ) is shown by the arithmetic average of the appropriate number of received light amounts, but if it is a statistical representative value, for example, the mode value, the median value, etc. Can be used.
  • the calculation unit 6c performs noise determination using the adjustment value (Th cal ), and when noise is detected, transmits it to the threshold value calculation unit 6d. To do.
  • the noise determination is performed by calculating the difference between the received light amount (P n ) of the noise determination target pulse group and the average value of the ten received light amounts preceding the received light amount (P n ), that is, the adjustment value (Th cal ). This is performed by comparing with a predetermined noise determination threshold value (Th nz ), and is determined as noise light by satisfying either of the expressions (4) and (5).
  • the noise determination threshold (Th nz ) is set to about 5 to 8 percent of Th onfix .
  • the threshold value calculation unit 6d notified of the occurrence of noise observes the received light amount thereafter and determines the stability of the received light amount. Whether or not the stability is determined satisfies (6) with respect to an appropriate number (20 in this example) following the noise pulse group, that is, the reflected light amount is the noise determination threshold value (Th nz ), It is determined whether or not it is non-noise light that falls within the range, and when the expression (6) is satisfied, it is determined that the subsequent pulse group is stable.
  • the threshold value calculation unit 6d determines that there is stability with respect to the subsequent pulse group, as shown in the equation (7), the ten light receptions preceding the determination target pulse group (P n + 21 ). If it is determined that there is no stability using the average light intensity as the adjustment value (Th cal ), the average of the 10 received light quantities preceding the noise pulse group (P n ) is adjusted as shown in equation (8). A threshold value for detection determination (Th on ) is determined as a value (Th cal ).
  • the operation of the control unit 6 is shown in FIG. First, when the door control unit 9 or a control device such as an in-vehicle computer (not shown) detects that the start condition of the detection operation by the optical sensor (A) is satisfied, the door control unit 9 or the like detects the optical sensor (A). A drive signal is output and the optical sensor (A) is powered on.
  • the detection start condition of the optical sensor (A) is set as appropriate, for example, the stop of the vehicle detected by the shift lever position of the vehicle.
  • the CPU of the control unit 6 is initialized for a predetermined time (step S1), and then calibration initialization is performed by the threshold value calculation unit 6d (step S2). During the initialization of the calibration, the light emission control unit 6a maintains the pulse group emission interval (T1) at about 15 (ms).
  • a predetermined number of pulse groups (10 in this example) are fired to obtain the reflected light quantity (P 1 , P 2... P 10 ) for each pulse group, and the average value is initialized.
  • the adjustment value (Th cal ) is used.
  • the calculation unit 6c shifts to the threshold excess state in a state where the light emission control unit 6a maintains the light emission interval of the detection light 3 in the intermittent mode with a long period of about 117 (ms). Is monitored (step S3).
  • an over-state verification process is then executed (step S5).
  • the verification process is for knowing whether or not the detected threshold excess state is an intentional entry operation of the detection target 10 by the user to the detection region 1, and includes a predetermined state including detection of the excess state. Whether or not the threshold value for detection determination (Th on ) has been exceeded continuously (four times in this example) is used as a test pass / fail criterion.
  • the threshold value for detection determination (Th on ) in this verification process is the one used when a threshold excess condition is detected to prevent a decrease in verification accuracy due to a change in the adjustment value (Th cal ) during verification. Therefore, satisfying all of the following formulas (10) to (13) is a condition for passing the test.
  • step S6 If it is determined that the test is passed as the intended operation satisfying the above conditions (step S6), after setting the confirmation signal output flag, the detection confirmation signal is output for a predetermined time (T4) (about 150 msec) (step S7). ).
  • the light emission control unit 6a sets the pulse group (P n + 1 ) immediately after the detection pulse group (P n ) to the long cycle mode with the interval (T2). (Step S51), the light emission interval (T3) is shifted to the short cycle mode shortened to about 20 (msec) (step S52), and after waiting for the output of the detection confirmation signal, the excess state canceling detection mode is set. Transition is made (step S8).
  • the excess state elimination detection mode monitors the elimination of the excess state while emitting a pulse group in the long period mode.
  • Th offfix is set to about 5 to 8 percent of Th onfix , similarly to Th nz .
  • step S8 When the excess state cancellation is detected in step S8 (step S80), the calculation unit 6c resets the confirmation signal output flag and returns to the excess state detection mode to prepare for the detection of the excess state (step S3).
  • the threshold value for detection determination (Th on ) in step S3 the subsequent pulse group (P m + 4 , P m + 5 7) Whose initial value is the adjustment value used in the excess state elimination detection mode is used. The average value is used.
  • the calculation unit 6c cancels the threshold excess state on condition that the detection restart condition is satisfied.
  • the detection restart condition is that a predetermined number (20 in this example) of non-noise light defined by the equation (6) continues, and a confirmation signal is output by eliminating the threshold excess state due to the satisfaction of the detection restart condition.
  • the flag is reset and returns to the excess state detection mode again to prepare for the detection of a new threshold excess state (step S9).
  • the adjustment value (Th cal ) of the threshold value for detection determination (Th on ) in step S9 the value obtained by the equation (7) is used.
  • the detection restart condition can be determined for each single pulse group, but in this example, in order to reduce the burden on the system, as shown in equation (18), 20 Continuous condition matching can be inferred by evaluating the entire pulse group.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Lock And Its Accessories (AREA)
  • Power-Operated Mechanisms For Wings (AREA)

Abstract

 制御信頼性を向上させた車両用反射型光センサの提供を目的とする。 車両外壁部から車両外部に設定される検出領域1に向けて所定間隔をおいて発光部2から検出光3を投光し、検出領域1からの反射光4の受光部5における受光光量が所定の検出判定用しきい値を超えるしきい値超過状態を検定して検出領域1への検出対象の進入を検出した際に検出確認信号を出力する制御部6を備えた車両用反射型光センサであって、 前記制御部6は、検出判定用しきい値として、判定対象反射光4に先行する適数の反射光4の反射光量に対する統計的な代表値からなる調整値と予め決定された固定値との加算値を使用する。

Description

車両用反射型光センサ
 本発明は、車両用反射型光センサに関するものである。
 赤外線センサーを使用して車両のドア開閉操作を制御する車両ドア開閉制御装置としては、特許文献1に記載のものが知られている。この従来例において、車両には地面に向けて赤外線等の信号を出力する足部検出センサが搭載されており、利用者が所持する携帯型無線端末が認証された後、駆動される足部検出センサにより利用者が検出されるとドアの開閉操作が行われる。
 しかし、上述した従来例において、足部の判定は、足部からの反射光量を所定の検出判定用しきい値と比較して行われるが、車両は異なった光学的環境に停車され、車両外部に設定した検出領域の明るさ等が停車位置により変わるために、足部からの反射光量も増減し、検出信頼性が極めて低下するという問題がある。
 また、検出精度を高めるために、特許文献2に示すように、複数の反射光量データの移動平均値を所定の検出判定用しきい値と比較することも行われているが、この場合であっても、観測値に対するノイズの影響を低くしたり、あるいは排除することが可能なだけで、検出環境の変化による検出精度の低下を防止することはできない。
特開2005-133529号公報 特開2006-245685号公報
 本発明は、以上の欠点を解消すべくなされたものであって、制御信頼性を向上させた車両用反射型光センサ、およびこれを使用した車両ドア開閉制御装置の提供を目的とする。
 本発明によれば上記目的は、
 車両外壁部から車両外部に設定される検出領域1に向けて所定間隔をおいて発光部2から検出光3を投光し、検出領域1からの反射光4の受光部5における受光光量が所定の検出判定用しきい値を超えるしきい値超過状態を検定して検出領域1への検出対象10の進入を検出した際に検出確認信号を出力する制御部6を備えた車両用反射型光センサであって、
 前記制御部6は、検出判定用しきい値として、判定対象反射光4に先行する適数の反射光4の反射光量に対する統計的な代表値からなる調整値と予め決定された固定値との加算値を使用する車両用反射型光センサを提供することにより達成される。
 本発明において、しきい値超過状態の検出に使用する検出判定用しきい値は、判定対象の反射光4に先行する適数の反射光4を統計的に処理して得られた調整値に予め決定された固定値を加えて得られるために、停車位置、あるいは停車後の時間経過による明るさ等の光学的特性の変化が判定基準に反映されているために、停車場所、時間等の影響を受けることなく高い検出精度を維持することが可能になり、動作信頼性が向上する。
 また、制御部6は、
 前記代表値算定対象に所定のノイズ判定しきい値を超えるノイズ反射光を検出した際、ノイズ反射光に続く所定のノイズ判定しきい値を超えない非ノイズ光が所定数連続することを条件に、該連続非ノイズ光群の光量に対する統計的な代表値を調整値として検出判定用しきい値を算出するように構成することができる。
 本発明においては、判定対象の反射光に対してノイズチェックを行い、かつ、ノイズ光と判定された際には、ノイズ原因の消失を待って再び調整値を算出するために、ノイズ反射光による調整値への影響の排除が可能になり、判定精度がより高くなる。
 さらに、制御部6は、
 検出確認信号出力後、所定の検出再開条件の充足を条件に、しきい値超過状態の解消が検出されなくとも検出確認信号出力後の反射光量により調整値を算出して新たなしきい値超過状態を検出するように構成することができる。
 反射型光センサは、検出確認信号が出力された後、しきい値超過状態解消の検出により再びしきい値超過状態の検出動作を再開する。
 本発明においては、検出確認信号出力後に所定の検出再開条件が充足されると、しきい値超過状態の解消が検出されなかった場合であっても、検出確認信号出力後の反射光量により調整値を算出し、新たなしきい値超過状態が検出される。
 したがって本発明によれば、光学的環境の変化等によって検出確認信号が出力された場合であっても、自動的に新たな条件を組み込んだ検出判定用しきい値に基づく検出領域1内への検出対象10の進入を検出することができる。
 また、前記検出再開条件は、所定のノイズ判定しきい値を超えない非ノイズ光が所定数連続することを条件とすることにより検出確認信号出力後の過渡状態による不安定要因を排除することが可能になるが、
Figure JPOXMLDOC01-appb-M000002



 を検出再開条件とした場合には、複数の反射光4に対して個別に条件充足を判定する場合に比して、演算を簡略にすることができるために、制御部6への負担を軽減することが可能になる。
 また、車両ドア開閉制御装置の検出光3は、
 所定数のパルスからなるパルス群として発射され、
 反射型光センサは、パルス群を判定単位としてしきい値超過状態の判定を行うように構成することができる。
 本発明において、検出光3を複数のパルスから構成されるパルス群単位で発射し、パルス群単位でしきい値超過状態の判定を行うことにより、単発のパルスを単位として判定する場合に比してノイズ耐性が向上し、判定精度も向上する。
 この場合、
 前記しきい値超過状態の検出は、各パルス群における発光時の受光部5における受光光量の総和と、非発光時における受光部5における受光光量の総和との差分を所定の検出判定用しきい値と比較して行われるように構成することができる。
 車両は停車位置の光学的環境が特定せず、検出領域1の明るさ等が停車位置により変わる上に、同一位置でも屋外停車の場合には、降雪、降雨、日照等が常に変化するために、発光時における反射光量のみを判定基準とすると、検出信頼性が極めて低下する。
 これに対し、本発明のように、発光時と非発光時の反射光量の差分を判定対象とすることにより、検出領域1の壁面等、背景の反射特性のばらつきによる判定精度の低下を確実に防止することが可能になる。
 さらに、
 前記制御部6は、前記各パルス群に対し、発光時の受光部5における受光光量の総和と非発光時における受光部5における受光光量の総和の差分に対する偏差平方和相当値が所定の検定用しきい値以下である場合にのみ有効検出光とする検定を実行し、有効検出光のみを判定対象反射光4として採用するように構成すると、より精度を高めることが可能になる。
 また、これら車両用反射型光センサを使用した車両ドア開閉制御装置は、
 車両用反射型光センサ(A)と、
 車両用反射型光センサ(A)における検出対象10の検出確認信号を条件としてアクチュエータ7を作動させて車両ドア8を開放操作するドア制御部9とを有して構成することができる。
 本発明において、ドア制御部9は検出確認信号を受領すると、適宜の認証手段により解錠操作権限が認証されていること等の所定の他の条件が充足していることを条件に施錠状態の解除、および車両ドア8の開放操作信号をアクチュエータ7に出力し、ドアの開放操作が行われる。この結果、解錠条件が充足した状態で荷物、手等を検出領域1に差し出すだけで、ドアを開放することができるために、利便性が向上する。
 本発明によれば、判定しきい値を状況に応じて変化させるために、制御信頼性を向上させることができる。
車両ドア開閉制御装置が使用された車両を示す図で、(a)は背面図、(b)は側面図、(c)は(a)の1C-1C線断面図である。 反射型光センサのブロック図である。 制御部の動作を示すタイミングチャートである。 しきい値超過状態の検出タイミングを示すタイミングチャートである。 しきい値超過状態解消の検出タイミングを示すタイミングチャートである。 検定再開条件を説明するタイミングチャートである。
 図1に車両ドア開閉制御装置が使用された車両を示す。本例において車両ドア開閉制御装置は、ダンパ装置等のアクチュエータ7により駆動されるパワーバックドアの開閉動作を制御するためのバックドア制御装置として構成されるもので、車両のバックドアに固定される車両用反射型光センサと、アクチュエータ7を制御するためのドア制御部9とを有する。
 後述するように、反射型光センサ(A)は、検出光3が投光される所定の検出領域1内への検出対象10の進入を検出すると、検出確認信号を出力するように構成されており、ライセンスプレートフィニッシャ11に囲まれたライセンスプレート取り付け凹部の天井壁部に固定される。なお、図1において12はライセンスプレートを示す。
 また、本例において、反射型光センサ(A)の検出領域1の中心をライセンスプレート取り付け凹部内に位置させるために、検出光3の光軸はやや車両内方側に傾けられる(角度θ)。これにより、ライセンスプレート取り付け凹部外での検出能が低下するために、車両に利用者以外のヒト、動物、ゴミ等が接近した状態で反射型光センサ(A)が不用意に反応することが防止できる。
 本例においてドア制御部9は、上記反射型光センサ(A)から検出確認信号が出力されると、まず、利用者が所持する電子キーの認証、バックドアの状態検出、施解錠動作等の準備動作を行った後、アクチュエータ7を駆動させる。電子キーの認証は、図外の認証装置と交信して電子キーから出力される認証コードを認証することにより行われ、認証が成立すると、バックドア8が閉扉状態にあることを条件にバックドア8を解錠操作した後、アクチュエータ7を駆動させて開扉動作が開始される。
 したがってこの実施の形態において、荷物等で手がふさがっている状態であっても、検出領域1として設定されたライセンスプレート取り付け凹部内、あるいはその近傍に検出対象10となる荷物等を近付けるだけでバックドア8の開放操作が行えるために、利便性が向上する。
 図2に示すように、反射型光センサ(A)は、赤外線LEDを発光源とする発光部2と、赤外線受光素子を含む受光回路を備える受光部5と、制御部6とを有し、制御部6には、発光部2の発光タイミングを制御する発光制御部6a、受光部5での受光タイミングを制御する受光制御部6b、およびしきい値演算部6dを備える演算部6cが含まれる。
 図3に示すように、発光部2は発光制御部6aに制御されて、適数(本例においては8発)のパルス(pls)からなるパルス群(PLS)を単位とする検出光3を所定の間隔(図3においてはT1、T2)で発射する。
 受光制御部6bは、省電力のために、発光部2におけるパルス群(PLS)の発光タイミングに合わせて受光回路をスリープ状態から活性化させ、各発光パルス(pls)に対する発光時と非発光時の受光部5における受光光量を取得する。発光パルス(pls)に対する発光時の受光光量の取得は、発光制御部6aが各パルス(pls)の発光要求を発光部2に送出してから発光が開始されるまでの遅延時間等を考慮して各発光パルス(pls)に対する反射光4がピークに達するタイミングで行われ、その値が発光時受光光量(H)として取得される。
 また、非発光時の受光光量は、発光部2が発光状態から非発光状態に遷移し、発光時の残光が消失したタイミングで取得され、その値が非発光時受光光量(L)とされる。
 一方、演算部6cは、受光部5での受光光量に基いて、パルス群(PLS)を単位とする反射光量を演算する。パルス群(PLS)の反射光量(P)は、
Figure JPOXMLDOC01-appb-M000003



 で与えられる。
 なお、(1)式に示されるように、反射光量の算出に際し、先頭パルスに対する受光量(H1、L1)と最後尾パルスに対する受光量(H8、L8)の算入を排除することにより、過渡状態における不安定性が排除される。
 以上のようにして求められた各パルス群の反射光4は、演算部6cにおいて有効性が判定される。有効性は、同一パルス群内での反射光量の均質性により外乱要素の混入を評価するもので、パルス群内の各パルスのバラつき、具体的には、偏差平方和相当値が所定の有効性検定しきい値(Thval)より大きな場合には、無効データとされる。
 偏差平方和相当値には、各パルス光に対する受光量(P)と平均値との差の2乗の合計値として与えられるいわゆる偏差平方和、あるいは偏差平方和をデータ数で割って求められる分散、さらには、分散の平方根として求められる標準偏差等を使用することが可能であるが、本例においては、(2)式に示すように、各パルスの受光量と平均値との差の絶対値の総和により代用され、制御部6への負担を軽減している。
Figure JPOXMLDOC01-appb-M000004



 また、演算部6cは、上述したパルス群の反射光量を所定の検出判定用しきい値(Thon)と比較して、しきい値超過状態の検出、しきい値超過状態の解消検出、さらには、検出領域1への検出対象10の進入を判定し、検出領域1への検出対象10の進入が検出された際には、検出確認信号を所定時間出力し、さらに検出確認信号が出力されたことを示す確認信号出力フラグがセットされる。
 この確認信号出力フラグは、確認信号出力後、所定期間内にしきい値超過状態解消が検出された場合、および所定期間内にしきい値超過状態が検出されなかった場合で、所定の解消条件が成立した場合にリセットされ、演算部6cは、当該確認信号出力フラグがリセット状態にあるときにのみしきい値超過状態の検出ステップを実行する。
 上記しきい値超過状態の判定基準となる検出判定用しきい値(Thon)は、予め設定された固定値(Thonfix)と、調整値(Thcal)との和として求められ、本例において、固定値(Thonfix)は、有効性検定しきい値(Thval)の20ないし30パーセント程度に設定される。
 また、調整値(Thcal)は、図4、および(3)式に示すように、判定対象パルス群(Pn)に先行する所定数(本例においては10個)の受光光量の平均値として与えられ、演算部6c内のしきい値演算部6dにおいて算出される。
Figure JPOXMLDOC01-appb-M000005



 なお、本例において、調整値(Thcal)は先行する適数の受光光量の算術平均により与える場合を示したが、統計的な代表値であれば、例えば、最頻値、中央値等適宜のものを使用することができる。
 また、上記演算部6cは、各パルス群に対する有効性検定に加え、上記調整値(Thcal)を使用したノイズ判定を実行し、ノイズが検出された際に、しきい値演算部6dに伝達する。
 ノイズ判定は、ノイズ判定対象のパルス群の受光光量(Pn)と、当該受光光量(Pn)に先行する10個の受光光量の平均値、すなわち、調整値(Thcal)との差分と所定のノイズ判定しきい値(Thnz)とを比較して行われ、(4)、(5)式のいずれかを充足することによりノイズ光と判定される。本例において、ノイズ判定しきい値(Thnz)は、Thonfixの5ないし8パーセント程度に設定される。
Figure JPOXMLDOC01-appb-M000006



 ノイズの発生を通知されたしきい値演算部6dは、それ以後の受光光量を観察して受光光量の安定性を判定する。安定性の判定は、ノイズパルス群に後続する適数個(本例においては20個)に対して(6)式を充足するか否か、すなわち、反射光量がノイズ判定しきい値(Thnz)内に収まる非ノイズ光であるか否かを判定し、(6)式を充足する場合には後続パルス群に対して安定性ありと判定する。
Figure JPOXMLDOC01-appb-M000007



 しきい値演算部6dは、後続パルス群に対して安定性ありと判定した場合には、(7)式に示すように、判定対象パルス群(Pn+21)に先行する10個の受光光量の平均を調整値(Thcal)とし、安定性なしと判定した場合には、(8)式に示すように、ノイズパルス群(Pn)に先行する10個の受光光量の平均を調整値(Thcal)として検出判定用しきい値(Thon)を決定する。
Figure JPOXMLDOC01-appb-M000008



 図3以下に制御部6での動作を示す。まず、ドア制御部9、あるいは図外の車載コンピュータ等の制御装置が光センサ(A)による検出動作の開始条件が充足されたことを検知すると、ドア制御部9等から光センサ(A)の駆動信号が出力され、光センサ(A)の電源が投入される。光センサ(A)の検出開始条件は、例えば、車両のシフトレバー位置等による検出される車両の停車等、適宜に設定される。
 光センサ(A)の電源が投入されると、所定時間、制御部6のCPUが初期化された後(ステップS1)、しきい値演算部6dによるキャリブレーション初期化が実施され(ステップS2)、キャリブレーション初期化中、発光制御部6aは、パルス群の発射間隔(T1)を15(ms)程度に維持する。
 キャリブレーション初期化は、パルス群を所定数(本例においては10発)発射して各パルス群に対する反射光量(P1、P2・・・・10)を取得し、その平均値を初期の調整値(Thcal)とすることにより行われる。
 キャリブレーション初期化工程が終了すると、演算部6cは、発光制御部6aにより検出光3の発光間隔を117(ms)程度の長周期の間欠モードに維持した状態でしきい値超過状態への移行を監視する(ステップS3)。
 図4に示すように、超過状態検出モードにおいて演算部6cは上述したように、検出判定用しきい値(Thon)と反射光量(P)を比較し、
 Pn => Thon
    =Thonfix+Thcal ・・・・(9)
 を充足するとき、しきい値超過状態と判定する。
 演算部6cがしきい値超過状態を検出すると(ステップS4)、次いで、超過状態の検定工程を実行する(ステップS5)。検定工程は、上記検出されたしきい値超過状態が検出領域1への利用者による意図的な検出対象10の進入操作であるか否かを知るためのもので、超過状態の検出を含め所定回数(本例においては4回)連続して検出判定用しきい値(Thon)を超えたか否かを検定合否基準とする。
 この検定工程における検出判定用しきい値(Thon)には、検定中における調整値(Thcal)の変化による検定精度の低下を防止するために、しきい値超過状態検出時のものが使用され、以下(10)から(13)式のすべてを充足することが検定合格条件となる。
Figure JPOXMLDOC01-appb-M000009



 上記条件を充足して意図された操作として検定合格と判定されると(ステップS6)、確認信号出力フラグをセットした後、検出確認信号を所定時間(T4)(150msec程度)出力する(ステップS7)。
 一方、検定工程において、条件合致前に(2)式に基づく、検定用しきい値(Thv)を超える無効な受光光が観測された場合には、検定工程を終了して監視モードに復帰する。
 また、発光制御部6aは、上記検定工程においてしきい値超過状態が検出されると、検出パルス群(Pn)の直後のパルス群(Pn+1)を間隔(T2)の長周期モードで発生させた後(ステップS51)、発光間隔(T3)が20(msec)程度に短縮された短周期モードに移行し(ステップS52)、検出確認信号の出力を待って超過状態解消検出モードに移行する(ステップS8)。
 図5に示すように、超過状態解消検出モードは、長周期モードでパルス群を発射しながら、超過状態の解消を監視する。超過状態解消の判定は、パルス群に対する反射光量が所定回数(本例においては4回)連続して検出解消判定用しきい値(Toff=Thofffix+Thcal)を下回ったこと、すなわち、(14)から(17)式のすべてを充足することが条件とされる。本例においてThofffixは、Thnzと同様に、Thonfixの5ないし8パーセント程度に設定される。
Figure JPOXMLDOC01-appb-M000010



 ステップS8において超過状態解消が検出されると(ステップS80)、演算部6cは確認信号出力フラグをリセットし、再び超過状態検出モードに復帰して超過状態の検出に備える(ステップS3)。ステップS3における検出判定用しきい値(Thon)には、上記超過状態解消検出モードにおいて使用した調整値を初期値とした後続パルス群(Pm+4、Pm+5・・・)の平均値が使用される。
 これに対し、図6に示すように、ステップS8において超過状態解消が検出されなかった場合、演算部6cは検出再開条件の充足を条件にしきい値超過状態を解消させる。検出再開条件は、(6)式により定義される非ノイズ光が所定数(本例においては20)連続することであり、検出再開条件の充足によるしきい値超過状態の解消により、確認信号出力フラグはリセットされて再び超過状態検出モードに復帰し、新たなしきい値超過状態の検出に備える(ステップS9)。ステップS9における検出判定用しきい値(Thon)の調整値(Thcal)は、(7)式により求められた値が使用される。
 なお、上記検出再開条件の判定は、単一のパルス群ごとに行うことも可能であるが、本例においては、システムへの負担を軽減するために、(18)式のように、20個のパルス群全体を評価することにより連続的な条件合致が類推される。
Figure JPOXMLDOC01-appb-M000011



 1    検出領域
 2    発光部
 3    検出光
 4    反射光
 5    受光部
 6    制御部
 7    アクチュエータ
 8    車両ドア
 9    ドア制御部
 10   検出対象
 A    車両用反射型光センサ

Claims (10)

  1.  車両外壁部から車両外部に設定される検出領域に向けて所定間隔をおいて発光部から検出光を投光し、検出領域からの反射光の受光部における受光光量が所定の検出判定用しきい値を超えるしきい値超過状態を検定して検出領域への検出対象の進入を検出した際に検出確認信号を出力する制御部を備えた車両用反射型光センサであって、
     前記制御部は、検出判定用しきい値として、判定対象反射光に先行する適数の反射光の反射光量に対する統計的な代表値からなる調整値と予め決定された固定値との加算値を使用する車両用反射型光センサ。
  2.  前記制御部は、前記代表値算定対象に所定のノイズ判定しきい値を超えるノイズ反射光を検出した際、ノイズ反射光に続く所定のノイズ判定しきい値を超えない非ノイズ光が所定数連続することを条件に、該連続非ノイズ光群の光量に対する統計的な代表値を調整値として検出判定用しきい値を算出する請求項1記載の車両用反射型光センサ。
  3.  前記制御部は、検出確認信号出力後、所定の検出再開条件の充足を条件に、しきい値超過状態の解消が検出されなくとも検出確認信号出力後の反射光量により調整値を算出して新たなしきい値超過状態を検出する請求項1記載の車両用反射型光センサ。
  4.  前記検出再開条件は、
    Figure JPOXMLDOC01-appb-M000001




     ただし、Thnzはノイズ判定しきい値(定数)、
     Prは検出再開判定対象の反射光の反射光量、
     sはPrに先行する反射光の個数(定数)である。
     で与えられる請求項3記載の車両用反射型光センサ。
  5.  前記検出光は、所定数のパルスからなるパルス群として発射され、パルス群を判定単位としてしきい値超過状態の判定を行う請求項1記載の車両用反射型光センサ。
  6.  前記しきい値超過状態の検出は、各パルス群における発光時の受光部における受光光量の総和と、非発光時における受光部における受光光量の総和との差分を所定の検出判定用しきい値と比較して行われる請求項5記載の車両用反射型光センサ。
  7.  前記制御部は、各パルス群に対し、発光時の受光部における受光光量の総和と非発光時における受光部における受光光量の総和の差分に対する偏差平方和相当値が所定の検定用しきい値以下である場合にのみ有効検出光とする検定を実行し、有効検出光のみを判定対象反射光として採用する請求項5記載の車両用反射型光センサ。
  8.  前記しきい値超過状態の検出は、発光時における受光光量と、当該発光光に続く非発光時における受光光量の差分を所定の検出判定用しきい値と比較して行われる請求項1記載の車両用反射型光センサ。
  9.  前記統計的な代表値として算術平均値が使用される請求項1記載の車両用反射型光センサ。
  10.  請求項1記載の車両用反射型光センサと、
     車両用反射型光センサにおける検出対象の検出確認信号を条件としてアクチュエータを作動させて車両ドアを開放操作するドア制御部とを有する車両ドア開閉制御装置。
PCT/JP2014/069300 2013-09-24 2014-07-22 車両用反射型光センサ WO2015045588A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015538986A JP6232071B2 (ja) 2013-09-24 2014-07-22 車両用反射型光センサ
MX2016003587A MX2016003587A (es) 2013-09-24 2014-07-22 Sensor optico reflexivo vehicular.
EP14849471.9A EP3051319B1 (en) 2013-09-24 2014-07-22 Vehicular reflective optical sensor
CN201480052106.4A CN105579870B (zh) 2013-09-24 2014-07-22 车辆用反射型光传感器以及车辆车门开闭控制装置
US14/917,307 US9909350B2 (en) 2013-09-24 2014-07-22 Vehicular reflective optical sensor
RU2016105528A RU2016105528A (ru) 2013-09-24 2014-07-22 Автомобильный рефлекторный оптический датчик

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-196897 2013-09-24
JP2013196897 2013-09-24

Publications (1)

Publication Number Publication Date
WO2015045588A1 true WO2015045588A1 (ja) 2015-04-02

Family

ID=52742745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069300 WO2015045588A1 (ja) 2013-09-24 2014-07-22 車両用反射型光センサ

Country Status (7)

Country Link
US (1) US9909350B2 (ja)
EP (1) EP3051319B1 (ja)
JP (1) JP6232071B2 (ja)
CN (1) CN105579870B (ja)
MX (1) MX2016003587A (ja)
RU (1) RU2016105528A (ja)
WO (1) WO2015045588A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017227592A (ja) * 2016-06-24 2017-12-28 旭化成エレクトロニクス株式会社 プログラム、コンピュータ可読媒体、端末装置、推定装置および推定方法
JP2019095278A (ja) * 2017-11-22 2019-06-20 古野電気株式会社 解析データ処理装置、解析データ処理方法、および、解析データ処理プログラム
WO2020203081A1 (ja) * 2019-03-29 2020-10-08 パナソニックセミコンダクターソリューションズ株式会社 撮像装置及びバラつき情報算出方法
JP2021505893A (ja) * 2017-12-08 2021-02-18 ベロダイン ライダー, インク. 光測距及び検出システムにおける戻り信号の検出を改善するためのシステム及び方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7093648B2 (ja) * 2018-02-27 2022-06-30 株式会社ホンダアクセス 超音波センサの取付構造
WO2020022185A1 (ja) * 2018-07-25 2020-01-30 株式会社小糸製作所 センサシステム
US11847833B2 (en) 2020-02-12 2023-12-19 Strattec Security Corporation Broad coverage non-contact obstacle detection
US11640011B1 (en) * 2021-10-08 2023-05-02 L3Harris Technologies, Inc. Sacrificial anode optical monitory system
CN114578971B (zh) * 2022-03-29 2023-12-05 广东万和电气有限公司 红外感应检测系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1095274A (ja) * 1996-09-20 1998-04-14 Fuji Electric Co Ltd 像形成用光学センサにおける迷光除去方式
JP2005133529A (ja) 2003-02-12 2005-05-26 Nissan Motor Co Ltd 車両用開閉体作動装置
JP2006245685A (ja) 2005-02-28 2006-09-14 Sunx Ltd 光電センサ
JP2008092218A (ja) * 2006-09-29 2008-04-17 Sunx Ltd 光電センサ
JP2012162908A (ja) * 2011-02-07 2012-08-30 Alpha Corp 車両の扉体制御装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209652A (ja) * 1996-01-31 1997-08-12 Nabco Ltd スイングドア用センサ
US5955852A (en) * 1996-07-31 1999-09-21 Dorma Gmbh + Co. Kg Door having a door maneuvering mechanism having a slide rail with a sensor in the slide rail
US6116640A (en) 1997-04-01 2000-09-12 Fuji Electric Co., Ltd. Apparatus for detecting occupant's posture
US5925858A (en) * 1997-06-23 1999-07-20 Otis Elevator Company Safety system for detecting small objects approaching closing doors
US6678999B2 (en) * 2000-09-28 2004-01-20 Nabco Limited Object sensing system for use with automatic swing door
US6515740B2 (en) * 2000-11-09 2003-02-04 Canesta, Inc. Methods for CMOS-compatible three-dimensional image sensing using quantum efficiency modulation
US6906793B2 (en) * 2000-12-11 2005-06-14 Canesta, Inc. Methods and devices for charge management for three-dimensional sensing
US6580496B2 (en) * 2000-11-09 2003-06-17 Canesta, Inc. Systems for CMOS-compatible three-dimensional image sensing using quantum efficiency modulation
JP4639293B2 (ja) * 2001-02-27 2011-02-23 オプテックス株式会社 自動ドアセンサ
WO2002086270A2 (en) * 2001-04-25 2002-10-31 The Chamberlain Group, Inc. Method and apparatus for facilitating control of a movable barrier operator
JP3684573B2 (ja) * 2001-09-12 2005-08-17 オムロン株式会社 光電センサ
JP3855234B2 (ja) * 2002-07-09 2006-12-06 オプテックス株式会社 ドアセンサ及びそのドアセンサを備えたドア
DE10232413A1 (de) * 2002-07-17 2004-02-19 Webasto Vehicle Systems International Gmbh Verfahren und Vorrichtung zum Verstellen eines bewegbaren Fahrzeugteils
FR2845113B1 (fr) * 2002-09-26 2005-07-15 Arvinmeritor Light Vehicle Sys Detecteur d'obstacle direct et indirect pour ouvrant de vehicule automobile
US20050093684A1 (en) * 2003-10-30 2005-05-05 Cunnien Cole J. Frame assembly for a license plate
US7151350B2 (en) * 2004-02-11 2006-12-19 Delphi Technologies, Inc. Powered door object detection system and method
US20060162254A1 (en) * 2005-01-21 2006-07-27 Optex Co., Ltd. Sensor device for automatic door assembly
US7375613B2 (en) * 2005-04-15 2008-05-20 Honeywell International Inc. Passive entry sensor system
WO2006120824A1 (ja) * 2005-05-13 2006-11-16 Murata Manufacturing Co., Ltd. レーダ
JP2006328853A (ja) * 2005-05-27 2006-12-07 Nabtesco Corp 扉用複合センサ及び自動ドアシステム
US7592762B2 (en) * 2006-06-21 2009-09-22 Flextronics Automotive Inc. System and method for establishing a reference angle for controlling a vehicle rotational closure system
US7586280B2 (en) * 2006-06-21 2009-09-08 Flextronics Automotive Inc. System and method for establishing a reference angle for controlling a vehicle rotational closure system
US7423400B2 (en) * 2006-06-21 2008-09-09 Flextronics Automotive Inc. System and method for controlling velocity and detecting obstructions of a vehicle lift gate
US8589033B2 (en) * 2007-01-11 2013-11-19 Microsoft Corporation Contactless obstacle detection for power doors and the like
JP5128329B2 (ja) * 2008-03-13 2013-01-23 アズビル株式会社 光電センサおよびその調整方法
US8788152B2 (en) 2008-04-29 2014-07-22 Volkswagen Ag Method and device for actuating a door or a flap of a vehicle
DE102008063366B4 (de) 2008-12-30 2022-04-28 Huf Hülsbeck & Fürst Gmbh & Co. Kg Einrichtung zum berührungslosen Betätigen einer Heckklappe eines Kraftfahrzeugs sowie Verfahren zum Betätigen einer Heckklappe eines Kraftfahrzeuges und Kraftfahrzeug
DE202009018205U1 (de) * 2009-06-02 2011-05-05 Volkswagen Ag Vorrichtung zur Betätigung eines Schließelements eines Fahrzeugs
JP5382050B2 (ja) * 2011-04-06 2014-01-08 アイシン精機株式会社 車両用開閉体作動装置
US8994229B2 (en) * 2011-12-14 2015-03-31 Optex Inc. Wireless non-contact switch for automatic doors
MX2014011718A (es) 2012-03-30 2015-02-04 Alpha Corp Estructura de control de vehiculo.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1095274A (ja) * 1996-09-20 1998-04-14 Fuji Electric Co Ltd 像形成用光学センサにおける迷光除去方式
JP2005133529A (ja) 2003-02-12 2005-05-26 Nissan Motor Co Ltd 車両用開閉体作動装置
JP2006245685A (ja) 2005-02-28 2006-09-14 Sunx Ltd 光電センサ
JP2008092218A (ja) * 2006-09-29 2008-04-17 Sunx Ltd 光電センサ
JP2012162908A (ja) * 2011-02-07 2012-08-30 Alpha Corp 車両の扉体制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3051319A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017227592A (ja) * 2016-06-24 2017-12-28 旭化成エレクトロニクス株式会社 プログラム、コンピュータ可読媒体、端末装置、推定装置および推定方法
JP2019095278A (ja) * 2017-11-22 2019-06-20 古野電気株式会社 解析データ処理装置、解析データ処理方法、および、解析データ処理プログラム
JP7180972B2 (ja) 2017-11-22 2022-11-30 古野電気株式会社 解析データ処理装置、解析データ処理方法、および、解析データ処理プログラム
JP7467572B2 (ja) 2017-11-22 2024-04-15 古野電気株式会社 解析データ処理装置、解析データ処理方法、および、解析データ処理プログラム
JP2021505893A (ja) * 2017-12-08 2021-02-18 ベロダイン ライダー, インク. 光測距及び検出システムにおける戻り信号の検出を改善するためのシステム及び方法
US11885916B2 (en) 2017-12-08 2024-01-30 Velodyne Lidar Usa, Inc. Systems and methods for improving detection of a return signal in a light ranging and detection system
WO2020203081A1 (ja) * 2019-03-29 2020-10-08 パナソニックセミコンダクターソリューションズ株式会社 撮像装置及びバラつき情報算出方法
JP7478723B2 (ja) 2019-03-29 2024-05-07 ヌヴォトンテクノロジージャパン株式会社 撮像装置及びバラつき情報算出方法

Also Published As

Publication number Publication date
EP3051319A4 (en) 2017-05-03
EP3051319A1 (en) 2016-08-03
US20160222714A1 (en) 2016-08-04
CN105579870A (zh) 2016-05-11
JPWO2015045588A1 (ja) 2017-03-09
MX2016003587A (es) 2016-06-02
US9909350B2 (en) 2018-03-06
EP3051319B1 (en) 2020-06-10
RU2016105528A (ru) 2017-10-30
CN105579870B (zh) 2018-09-25
JP6232071B2 (ja) 2017-11-22

Similar Documents

Publication Publication Date Title
JP6232071B2 (ja) 車両用反射型光センサ
JP4059224B2 (ja) 運転者の外観認識システム
US9485840B2 (en) Sensing within a region
US20030218919A1 (en) Distance measuring apparatus
US20100228448A1 (en) Vehicle door opening angle control system
EP2077368B1 (en) Method of controlling an automatic door system
US20060238337A1 (en) Security system with remote control and proximity detector
JP6163481B2 (ja) 車両の制御構造
CN109140718A (zh) 一种空调智能控制睡眠方法及其空调器
US6452288B1 (en) Method and device for sensing and object or a person in the interior of a vehicle
WO2015045587A1 (ja) 車両用反射型光センサ
US8963711B2 (en) Presence decision apparatus, presence decision method, and program
CN109539509A (zh) 一种空调及其人体检测方法、控制方法
KR102665214B1 (ko) 모니터링 영역을 모니터링하기 위한 레이저 스캐너
JP2002187685A (ja) エレベータドアの安全装置
JP6926359B2 (ja) 検知装置
KR102463707B1 (ko) 차량의 주차위치 알림 시스템 및 방법
JP2001229471A (ja) 侵入検知装置
EP4304299A1 (en) Sensor combination for ultraviolet light system occupancy detection
JP6208511B2 (ja) 車両用光センサ
KR20200068820A (ko) 정확성을 높인 피플 카운터
KR102504414B1 (ko) 오감지 방지 기능을 갖는 차량 실내 감지장치 및 방법
KR101963364B1 (ko) 온도센서를 이용한 차량 실내 침입 감지 시스템 및 방법
US20240092610A1 (en) Method and controller for determining information about a current location of a car in a shaft of an elevator
US20240231464A1 (en) Human presence detection

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480052106.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849471

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: IDP00201600466

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 14917307

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015538986

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/003587

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014849471

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014849471

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016105528

Country of ref document: RU

Kind code of ref document: A