WO2015045259A1 - 負極活物質及び蓄電装置 - Google Patents

負極活物質及び蓄電装置 Download PDF

Info

Publication number
WO2015045259A1
WO2015045259A1 PCT/JP2014/004138 JP2014004138W WO2015045259A1 WO 2015045259 A1 WO2015045259 A1 WO 2015045259A1 JP 2014004138 W JP2014004138 W JP 2014004138W WO 2015045259 A1 WO2015045259 A1 WO 2015045259A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
plate
graphite
graphite particles
Prior art date
Application number
PCT/JP2014/004138
Other languages
English (en)
French (fr)
Inventor
佑介 杉山
正孝 仲西
合田 信弘
村瀬 正和
田中 洋充
岡本 浩孝
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to US15/024,252 priority Critical patent/US20160211512A1/en
Publication of WO2015045259A1 publication Critical patent/WO2015045259A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a negative electrode active material used for a power storage device such as a lithium ion secondary battery, and a power storage device such as a secondary battery using the negative electrode active material, an electric double layer capacitor, and a lithium ion capacitor.
  • the lithium ion secondary battery is a secondary battery that has a high charge / discharge capacity and can achieve high output.
  • lithium ion secondary batteries are mainly used as a power source for portable electronic devices, and are further expected as a power source for electric vehicles expected to be widely used in the future.
  • lithium ion secondary batteries metal oxide compounds represented by lithium cobaltate having a large charge / discharge capacity per unit weight at high potential are used, and as a negative electrode active material, lithium is used.
  • the negative electrode active material natural graphite, artificial graphite, low crystalline carbon material, amorphous carbon material, surface-coated carbon material, mesophase pitch carbon fiber, carbon material doped with different elements such as boron, etc. are used It has been Above all, natural graphite was noted for obtaining a high battery capacity, but there was a problem that the cycle life was short because the decomposition reaction of the electrolyte was severe, and its practical use was difficult.
  • the vapor-grown carbon fiber is a fine fibrous substance, which is effective for forming a conductive path between active materials, and in the case of passing a large current, the electric resistance of the electrode can be reduced. It was thought that it would be advantageous to take out.
  • the charge and discharge cycle life even if the expansion and contraction of the active material itself occurs, it is considered that the conductive path can be maintained since its shape is fibrous, so the gas phase method Carbon fiber has been studied.
  • the cycle characteristics are improved by adding 0.5 to 22.5 parts by mass of vapor grown carbon fiber to the scaly graphite or spherical graphite as the negative electrode active material. I am doing it.
  • the vapor-grown carbon fiber is localized, the current is concentrated on the secondary particles, and only the portion is concentrated, so that the cycle characteristics are not sufficiently improved.
  • the fibrous graphite material (B) is made of scaly graphite by using an adhesive (A) made of a carbonaceous material and / or a graphitic material having low crystallinity.
  • a negative electrode material for a lithium ion secondary battery characterized in that the negative electrode material is attached to a granulated graphite material (C) consisting of
  • C granulated graphite material
  • Patent Document 3 natural graphite or artificial graphite is used as the negative electrode active material, and carbon fibers excellent in conductivity are not formed into aggregates of 10 ⁇ m or more in size.
  • a lithium ion secondary battery having this negative electrode has a long cycle life and is excellent in large current characteristics.
  • JP 2000-133267 A Japanese Patent Application Laid-Open No. 2005-019399 JP 2007-042620 A
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to solve a contradiction event of capacity and conductivity while securing the flexibility of the negative electrode active material layer.
  • the characteristics of the negative electrode active material of the present invention for solving the above problems are the first active material powder comprising granular graphite particles and plate-like graphite particles having a thickness of 0.3 nm to 100 nm and a length in the major axis direction of 0.1 ⁇ m to 500 ⁇ m. And a powder mixture of the second active material powder and the second active material powder.
  • the negative electrode active material is a mixture of the first active material powder and the second active material powder composed of plate-like graphite particles.
  • the plate-like graphite particles have a layer structure in which a plurality of graphene single layers are stacked, and function as a negative electrode active material because lithium ions and the like are held between layers. Moreover, since it is a layer structure, it is excellent in strength and flexibility. Therefore, by mixing plate-like graphite particles, the stress acting on the negative electrode active material layer at the time of charge and discharge is alleviated, and the cycle characteristics of the power storage device are improved. Further, since the plate-like graphite particles have high conductivity, mixing the plate-like graphite particles improves the ion conductivity.
  • the following formula (1) -(CH 2- CHX)-(1)
  • X represents a phenyl group, a naphthyl group, an anthracenyl group or a pyrenyl group, and these groups may have a substituent.
  • the aromatic vinyl copolymer containing the vinyl aromatic monomer unit represented by is adsorbed. Since the affinity between the softness and the binder is improved by this adsorptive polymer, the above-mentioned effects can be more largely exhibited, and the capacity can be increased by reducing the amount of the binder.
  • FIG. 5 is an electron micrograph showing the cross-sectional structure of the negative electrode formed in Example 1.
  • FIG. It is an electron micrograph which shows the cross-section of the negative electrode formed by the comparative example 1.
  • FIG. It is an electron micrograph which shows the cross-section of the negative electrode formed by the comparative example 2.
  • FIG. It is a graph which shows the charging curve in 0.3C. It is a graph which shows the rate efficiency in each rate. It is a graph which shows the charge curve in 1C.
  • the first active material powder is composed of granular graphite particles, and natural graphite, artificial graphite, scaly graphite, spherical graphite, granulated graphite, hard carbon, soft carbon and the like can be used.
  • the average particle diameter D 50 of the granular graphite is preferably 300nm or more 20 ⁇ m or less.
  • the average particle diameter D 50 of the first active material powder is 300nm smaller, the specific surface area of the first negative electrode active material powder is increased, the contact area between the powder and the electrolyte of the first negative electrode active material is increased, the electrolyte The decomposition of the solution proceeds and the cycle characteristics deteriorate. Also not preferred because the average particle diameter D 50 is larger secondary particle diameter due to aggregation and 300nm smaller.
  • the average particle diameter D 50 can be measured by particle size distribution measurement method.
  • the average particle diameter D 50 refers to the particle size cumulative value of the volume distribution in the particle size distribution measurement by laser diffraction method is equivalent to 50%. That is, the average particle diameter D 50 refers to the median diameter measured by volume.
  • the crystallite size is calculated from the half width of the diffraction peak obtained by X-ray diffraction (XRD) measurement according to Scheller's equation.
  • the second active material powder comprises plate-like graphite particles having a thickness of 0.3 nm to 100 nm and a length in the major axis direction of 0.1 ⁇ m to 500 ⁇ m.
  • the plate-like graphite particles are obtained, for example, by pulverizing known graphite having a graphite structure, specifically, artificial graphite, scaly graphite, massive graphite, earthy graphite and the like so that the graphite structure is not broken.
  • commercially available graphene can be used as plate-like graphite particles.
  • the plate-like graphite particles are much smaller in thickness than flaky graphite which is natural graphite.
  • the aspect ratio determined by the length / thickness in the long axis direction of the plate-like graphite particles is 10 to 1000, and more preferably 50 to 100.
  • the thickness of the plate-like graphite particles is 0.3 nm to 100 nm, preferably 1 nm to 100 nm.
  • the length of the plate-like graphite particles in the long axis direction is 0.1 ⁇ m to 500 ⁇ m, more preferably 1 ⁇ m to 500 ⁇ m, and the length in the short axis direction is preferably 0.3 ⁇ m to 100 ⁇ m.
  • Such a functional group is carbon of 50% or less, more preferably 20% or less, particularly preferably 10% or less of the total carbon atoms in the vicinity of the surface of the plate-like graphite particle, preferably in the region from the surface to 10 nm deep It is preferable that it is bonded to an atom.
  • the proportion of carbon atoms to which the functional group is bonded is preferably 0.01% or more. When the proportion of carbon atoms to which the functional group is bonded exceeds 50%, the hydrophilicity of the plate-like graphite particles tends to increase and the affinity to organic matter tends to decrease.
  • the functional groups in the vicinity of the surface of the plate-like graphite particles can be quantified by X-ray photoelectron spectroscopy (XPS).
  • the following formula (1) -(CH 2- CHX)-(1) (In formula (1), X represents a phenyl group, a naphthyl group, an anthracenyl group or a pyrenyl group, and these groups may have a substituent.) It is preferable that the aromatic vinyl copolymer containing the vinyl aromatic monomer unit represented by is adsorbed.
  • Plate-like graphite particles can be well dispersed in a solvent or resin.
  • the plate surfaces of the plate-like graphite particles can be easily oriented on the current collector so as to be substantially parallel to the surface of the current collector.
  • the aromatic vinyl copolymer preferably contains a vinyl aromatic monomer unit and a monomer unit other than the vinyl aromatic monomer unit (hereinafter referred to as another monomer unit).
  • the vinyl aromatic monomer unit is easily adsorbed to the plate-like graphite particle, and the other monomer unit is easy to be compatible with the solvent, the resin and the functional group on the surface of the plate-like graphite particle.
  • the adsorption amount to the plate-like graphite particles is increased.
  • the content of the vinyl aromatic monomer unit is preferably 10% by mass to 98% by mass, more preferably 30% by mass to 98% by mass, and particularly preferably 50% by mass to 95% by mass with respect to the whole aromatic vinyl copolymer. preferable.
  • the content of the vinyl aromatic monomer unit is lower than 10% by mass, the amount of the aromatic vinyl copolymer adsorbed onto the plate-like graphite particles is reduced.
  • the content of the vinyl aromatic monomer unit is higher than 98% by mass, the affinity between the plate-like graphite particles and the solvent or resin decreases, and the dispersibility of the plate-like graphite particles in the solvent or in the resin decreases. .
  • Examples of the substituent of the formula (1) include an amino group, a carboxyl group, a carboxylic acid ester group, a hydroxyl group, an amido group, an imino group, a glycidyl group, an alkoxy group, a carbonyl group, an imide group and a phosphoric acid ester group.
  • the substituent is preferably an alkoxy group, and the alkoxy group is preferably a methoxy group.
  • the vinyl aromatic monomer unit examples include a styrene monomer unit, a vinyl naphthalene monomer unit, a vinyl anthracene monomer unit, a vinyl pyrene monomer unit, a vinyl anisole monomer unit, a vinyl benzoate ester monomer unit, and an acetyl styrene monomer unit.
  • styrene monomer units, vinyl naphthalene monomer units, and vinyl anisole monomer units are preferable from the viewpoint of improving the dispersibility of the plate-like graphite particles in the solvent or in the resin.
  • the other monomer unit is at least one monomer selected from the group consisting of (meth) acrylic acid, (meth) acrylates, (meth) acrylamides, vinylimidazoles, vinylpyridines, maleic anhydride and maleimides Monomer units derived from are preferred.
  • (meth) acrylic acid means both “acrylic acid” and “methacrylic acid”.
  • Plate-like graphite particles can be well dispersed therein.
  • the (meth) acrylates include alkyl (meth) acrylates and substituted alkyl (meth) acrylates.
  • Examples of the substituted alkyl (meth) acrylate include hydroxyalkyl (meth) acrylate and aminoalkyl (meth) acrylate.
  • Examples of (meth) acrylamides include (meth) acrylamide, N-alkyl (meth) acrylamide, and N, N-dialkyl (meth) acrylamide.
  • vinylimidazoles examples include 1-vinylimidazole.
  • vinylpyridines examples include 2-vinylpyridine and 4-vinylpyridine.
  • Maleimides include maleimide, alkyl maleimide and aryl maleimide.
  • alkyl (meth) acrylate hydroxyalkyl (meth) acrylate, aminoalkyl (meth) acrylate, N, N-dialkyl (meth) acrylamide, 2-vinylpyridine, 4-vinylpyridine and arylmaleimide are preferable, hydroxyalkyl (meth) acrylate, N, N-dialkyl (meth) acrylamide, 2-vinylpyridine and arylmaleimide are more preferable, and phenylmaleimide is particularly preferable.
  • aromatic vinyl copolymer examples include, for example, a random copolymer of styrene (ST) and N, N-dimethyl methacrylamide (DMMAA), and a random copolymer of 1-vinylnaphthalene (VN) and DMMAA Combination, random copolymer of 4-vinyl anisole (VA) and DMMAA, random copolymer of ST and N-phenylmaleimide (PM), random copolymer of ST and 1-vinyl imidazole (VI), Random copolymer of ST and 4-vinylpyridine (4VP), random copolymer of ST and N, N-dimethylaminoethyl methacrylate (DMAEMA), random copolymer of ST and methyl methacrylate (MMA), Random copolymer of ST and hydroxyethyl methacrylate (HEMA), random copolymer of ST and 2-vinylpyridine (2VP), block copolymer of ST and 2VP, block copolymer of
  • the number average molecular weight of the aromatic vinyl copolymer is preferably 1,000 to 1,000,000, and more preferably 5,000 to 100,000.
  • the number average molecular weight of the aromatic vinyl copolymer is less than 1,000, the adsorptive capacity to the plate-like graphite particles tends to decrease, and when the number average molecular weight is more than 1,000,000, the solvent or resin of the plate-like graphite particles There is a tendency for the dispersibility in the medium to decrease and for the viscosity to increase significantly, making it difficult to handle.
  • the number average molecular weight of the aromatic vinyl copolymer is measured by gel permeation chromatography (column: Shodex GPC K-805L and Shodex GPC K-800RL (both manufactured by Showa Denko KK), eluent: chloroform) And use the value converted with standard polystyrene.
  • a random copolymer or a block copolymer may be used as the aromatic vinyl copolymer. It is preferable to use a block copolymer from the viewpoint that the dispersibility of the plate-like graphite particles in a solvent or in a resin is improved.
  • the content of the aromatic vinyl copolymer in the plate-like graphite particles having an aromatic vinyl copolymer adsorbed on the surface thereof is preferably 10 ⁇ 7 to 10 ⁇ 1 parts by mass with respect to 100 parts by mass of the plate-like graphite particles, 10 ⁇ 5 to 10 ⁇ 2 parts by mass is more preferable.
  • the content of the aromatic vinyl copolymer is less than 10 -7 parts by mass, the adsorption of the aromatic vinyl copolymer to the plate-like graphite particles is insufficient, so the solvent of the plate-like graphite particles or in the resin
  • the content of the aromatic vinyl copolymer is more than 10 ⁇ 1 parts by mass, an aromatic vinyl copolymer which is not directly adsorbed to the plate-like graphite particles is present. It will be.
  • Plate-like graphite particles in which an aromatic vinyl copolymer is adsorbed on the surface can be produced by the following method. That is, a method for producing plate-like graphite particles in which an aromatic vinyl copolymer is adsorbed on the surface includes raw material graphite particles, an aromatic vinyl copolymer containing a vinyl aromatic monomer unit represented by the above formula (1), The process includes a mixing step of mixing the hydrogen oxide and the solvent, and a grinding step of grinding the mixture obtained in the mixing step.
  • Examples of the raw material graphite particles include known graphite having a graphite structure, such as artificial graphite, scale-like graphite, massive graphite, and earthy graphite.
  • the particle diameter of the raw material graphite particles is preferably 0.01 mm to 5 mm, and more preferably 0.1 mm to 1 mm.
  • hydrogen peroxides include complexes of a compound having a carbonyl group with hydrogen peroxide, quaternary ammonium salts, potassium fluoride, rubidium carbonate, phosphoric acid, uric acid, and other compounds with which hydrogen peroxide is coordinated.
  • the compound having a carbonyl group include urea, carboxylic acid (benzoic acid, salicylic acid and the like), ketones (acetone, methyl ethyl ketone and the like), and carboxylic acid esters (methyl benzoate, ethyl salicylate and the like).
  • a complex of a compound having a carbonyl group and hydrogen peroxide is preferable.
  • Such hydrogen peroxide acts as an oxidizing agent, and facilitates peeling between carbon layers without destroying the graphite structure of the raw material graphite particles. That is, hydrogen peroxide enters into the carbon layer and oxidizes the layer surface while promoting cleavage, and at the same time, the aromatic vinyl copolymer penetrates into the cleaved carbon layer and stabilizes the cleavage surface, resulting in delamination. Promoted. As a result, the aromatic vinyl copolymer is adsorbed on the surface of the plate-like graphite particles.
  • Solvents include dimethylformamide (DMF), chloroform, dichloromethane, chlorobenzene, dichlorobenzene, N-methylpyrrolidone (NMP), hexane, toluene, dioxane, propanol, ⁇ -picoline, acetonitrile, dimethylsulfoxide (DMSO), dimethylacetamide (DMAC Is preferable, and dimethylformamide (DMF), chloroform, dichloromethane, chlorobenzene, dichlorobenzene, N-methylpyrrolidone (NMP), hexane and toluene are more preferable.
  • DMF dimethylformamide
  • NMP N-methylpyrrolidone
  • raw material graphite particles, an aromatic vinyl copolymer, a hydrogen peroxide and a solvent are mixed.
  • the amount of the raw material graphite particles mixed is preferably 0.1 g / L to 500 g / L, and more preferably 10 g / L to 200 g / L, per liter of the solvent.
  • the mixing amount of the raw material graphite particles is less than 0.1 g / L per liter of solvent, the consumption of the solvent increases and it is economically disadvantageous, and when it exceeds 500 g / L per liter of solvent, the viscosity of the solution increases. Handling becomes difficult.
  • the amount of the aromatic vinyl copolymer mixed is preferably 0.1 to 1000 parts by mass, and more preferably 0.1 to 200 parts by mass with respect to 100 parts by mass of the raw material graphite particles.
  • the mixing amount of the aromatic vinyl copolymer is less than 0.1 parts by mass with respect to 100 parts by mass of the raw material graphite particles, the dispersibility of the obtained plate-like graphite particles tends to decrease, and on the other hand, the aromatic vinyl copolymer
  • the mixing amount of the combination exceeds 1000 parts by mass with respect to 100 parts by mass of the raw material graphite particles, the aromatic vinyl copolymer does not dissolve in the solvent, and the viscosity of the solution increases to make the handling difficult.
  • the mixing amount of the hydrogen peroxide is preferably 0.1 to 500 parts by mass, and more preferably 1 to 100 parts by mass with respect to 100 parts by mass of the raw material graphite particles.
  • the mixing amount of the hydrogen peroxide is less than 0.1 parts by mass with respect to 100 parts by mass of the raw material graphite particles, the dispersibility of the obtained plate-like graphite particles tends to decrease, and on the other hand, with respect to 100 parts by mass of the raw material graphite particles. If it exceeds 500 parts by mass, the raw material graphite particles are excessively oxidized, and the conductivity of the obtained plate-like graphite particles tends to be lowered.
  • the mixture obtained in the mixing step is subjected to grinding treatment to grind the raw material graphite particles into plate-like graphite particles.
  • the aromatic vinyl copolymer is adsorbed on the surface of the plate-like graphite particles thus produced.
  • the grinding treatment include ultrasonic treatment, treatment with a ball mill, wet grinding, explosion grinding, and mechanical grinding.
  • the ultrasonic frequency is preferably 15 to 400 kHz as an oscillation frequency, and 500 W or less as an output.
  • ultrasonic treatment or wet grinding treatment is preferable.
  • the plate-like graphite particles can be obtained by pulverizing the material graphite particles without breaking the graphite structure of the material graphite particles.
  • the temperature at the time of the grinding treatment can be, for example, -20 ° C to 100 ° C.
  • the grinding time may be, for example, 0.01 hour to 50 hours.
  • the plate-like graphite particles may be oriented such that the plate surface is substantially parallel to the surface of the current collector, but the orientation is broken due to the presence of the first active material powder Is preferred.
  • the orientation By collapsing the orientation, the surface in the direction intersecting with the plate surface of the plate-like graphite particle is exposed in the direction of movement of the lithium ions, so lithium ions are allowed to enter and exit inside the plate-like graphite particle. Discharge capacity is increased. Therefore, in the negative electrode active material layer, it is preferable that the plate surface of at least a part of plate-like graphite particles intersect the surface of the current collector.
  • the plate-like graphite particles are dispersed without being aggregated in the solvent even when the plate-like graphite particles are put in the solvent.
  • the first active material powder and the second active material powder it is also possible to add at least one powder selected from the group consisting of Si, Si compounds, Sn and Sn compounds to the negative electrode active material. Since Si, Si compounds, Sn and Sn compounds expand and contract during charge and discharge, the crystallite size of Si, Si compounds, Sn and Sn compounds is more preferably 1 nm to 300 nm in order to reduce the expansion and contraction. .
  • Si As Si, it is manufactured by heat treating a layered polysilane represented by a composition formula (SiH) n, which has a structure in which a pulverized product of single crystal Si, vapor-deposited Si, and a plurality of six-membered rings composed of silicon atoms are linked. Alternatively, nanosilicon or the like can be used.
  • Si compound for example, a silicon oxide represented by SiO x (0.3 ⁇ x ⁇ 1.6) is preferable.
  • Each particle of this silicon oxide powder is composed of SiO x decomposed into fine Si and SiO 2 covering Si by disproportionation reaction.
  • x is less than the lower limit value, the Si ratio increases, so that the volume change at the time of charge and discharge becomes too large, and the cycle characteristics deteriorate.
  • x exceeds the upper limit value, the Si ratio is lowered and the energy density is lowered.
  • the range of 0.5 ⁇ x ⁇ 1.5 is preferable, and the range of 0.7 ⁇ x ⁇ 1.2 is more preferable.
  • SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SnSiO 3 , LiSiO, etc. can be used.
  • Sn powder can be used as Sn.
  • SnO w (0 ⁇ w ⁇ 2)
  • SnSiO 3 LiSnO
  • LiSnO LiSnO
  • a tin alloy Cu—Sn alloy, Co—Sn alloy, etc.
  • the content in the negative electrode active material is 50% by mass or less when the total amount of the first active material powder and the second active material powder is 100% by mass. A range is preferred.
  • the total content of the first active material powder and the second active material powder is preferably 100% by mass, preferably 10 to 90% by mass of the second active material powder, and 30 to 70% of the second active material powder. More preferably, it is contained by mass.
  • the amount of the second active material powder is less than 10% by mass, it is difficult to know the expression of the effect, and when it exceeds 90% by mass, the charge and discharge capacity of the power storage device is reduced.
  • the negative electrode active material of the present invention is used for the negative electrode of a power storage device.
  • the negative electrode comprises a current collector and a negative electrode active material layer disposed on the surface of the current collector.
  • the current collector refers to a chemically inactive high electron conductor for keeping current flowing to the electrode during discharge or charge of the power storage device.
  • Examples of the material that can be used for the current collector include metal materials such as stainless steel, titanium, nickel, aluminum, copper and the like, and conductive resins.
  • the current collector can take the form of a foil, a sheet, a film or the like. Therefore, metal foils, such as copper foil, nickel foil, aluminum foil, and stainless steel foil, can be used suitably as a collector, for example.
  • the thickness of the current collector can be 10 ⁇ m to 100 ⁇ m.
  • Conducting assistants such as acetylene black and ketjen black are not necessary, but may be added as needed.
  • the binder is required to bind the active material and the like in a small amount as much as possible, but the addition amount thereof is preferably 0.5% by mass to 50% by mass of the total of the active material and the binder.
  • the binder is less than 0.5% by mass, the formability of the electrode is reduced, and when it is more than 50% by mass, the energy density of the electrode is reduced.
  • Binders include polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyimide (PI), polyamideimide (PAI), carboxymethylcellulose (CMC), polychlorinated Vinyl (PVC), methacrylic resin (PMA), polyacrylonitrile (PAN), modified polyphenylene oxide (PPO), polyethylene oxide (PEO), polyethylene (PE), polypropylene (PP), polyacrylic acid (PAA), etc. are exemplified. Ru.
  • PAI polyamide imide
  • PAA polyacrylic acid
  • a conductive aid is added to enhance the conductivity of the electrode.
  • carbon black fine particles such as carbon black, graphite, acetylene black (AB), ketjen black (KB) (registered trademark), vapor grown carbon fiber (VGCF), etc. alone or Two or more can be added in combination.
  • the amount of the conductive aid used is not particularly limited, but can be, for example, about 0 to 100 parts by mass with respect to 100 parts by mass of the active material. When it exceeds 100 parts by mass, the formability of the electrode is deteriorated and the energy density is lowered.
  • N-methyl-2-pyrrolidone and N-methyl-2-pyrrolidone and ester solvents ethyl acetate, n-butyl acetate, butyl cellosolve acetate, butyl carbitol acetate etc.
  • glyme solvents diglyme, triglyme, tetraglyme etc.
  • lithium may be pre-doped on the negative electrode.
  • an electrode forming method in which a half cell is assembled using metallic lithium as a counter electrode and electrochemically dope lithium can be used.
  • the doping amount of lithium is not particularly limited.
  • the power storage device of the present invention is a lithium ion secondary battery
  • known positive electrodes, electrolytes and separators which are not particularly limited can be used.
  • the positive electrode may be any one that can be used in non-aqueous secondary batteries.
  • the positive electrode has a current collector and a positive electrode active material layer bound on the current collector.
  • the positive electrode active material layer contains a positive electrode active material and a binder, and may further contain a conductive aid.
  • the positive electrode active material, the conductive additive and the binder are not particularly limited as long as they can be used in a non-aqueous secondary battery.
  • the positive electrode active material examples include metal lithium, LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 2 MnO 3 , sulfur and the like.
  • the current collector may be any one commonly used for a positive electrode of a lithium ion secondary battery, such as aluminum, nickel, stainless steel and the like.
  • the conductive additive the same one as described in the above-mentioned negative electrode can be used.
  • the electrolytic solution is one in which a lithium metal salt which is an electrolyte is dissolved in an organic solvent.
  • the electrolyte is not particularly limited.
  • an organic solvent use is made of one or more selected from aprotic organic solvents such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), etc.
  • a lithium metal salt soluble in an organic solvent such as LiPF 6 , LiBF 4 , LiAsF 6 , LiI, LiClO 4 and LiCF 3 SO 3 can be used.
  • lithium metal salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 and the like in an organic solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate or the like at a concentration of about 0.5 mol / L to 1.7 mol / L A dissolved solution can be used.
  • the separator is not particularly limited as long as it can be used for a non-aqueous secondary battery.
  • the separator separates the positive electrode and the negative electrode and holds the electrolytic solution, and a thin microporous film such as polyethylene or polypropylene can be used.
  • the shape thereof is not particularly limited, and various shapes such as a cylindrical shape, a laminated shape, and a coin shape can be adopted.
  • the separator is interposed between the positive electrode and the negative electrode to form an electrode body, and the distance from the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal leading to the outside is for current collection
  • the electrode body is sealed in a battery case together with an electrolytic solution to form a battery.
  • the number average molecular weight (Mn) was measured under the following conditions using gel permeation chromatography ("Shodex GPC101" manufactured by Showa Denko KK). Column: Shodex GPC K-805L and Shodex GPC K-800RL (both manufactured by Showa Denko KK) Eluent: Chloroform Measurement temperature: 25 ° C Sample concentration: 0.1 mg / ml ⁇ Detection means: RI In addition, the number average molecular weight (Mn) showed the value converted by standard polystyrene.
  • Graphite particles (Nippon Graphite Industry Co., Ltd. “EXP-P”, particle diameter 100 to 600 ⁇ m) 20 mg, urea-hydrogen peroxide inclusion complex 80 mg, the above ST-PM (91: 9) random copolymer 20 mg and N Then, 2 ml of N-dimethylformamide (DMF) was mixed and subjected to ultrasonication (output: 250 W) for 5 hours at room temperature to obtain a dispersion of plate-like graphite particles. The dispersion was filtered, and the filtrate was washed with dimethylformamide (DMF) and then vacuum dried to obtain a plate-like graphite powder.
  • DMF N-dimethylformamide
  • the long diameter of the plate-like graphite particles is 10 ⁇ m to 20 ⁇ m
  • the short diameter is 3 ⁇ m to 10 ⁇ m
  • the thickness is 30 nm to 80 nm
  • the copolymer component containing a large amount of vinyl aromatic monomer units in the ST-PM (91: 9) random copolymer component is plate-like. It turned out that it is easy to adsorb
  • oxygen atoms were reduced to about 1 per 100 carbon atoms in the plate-like graphite particles as compared with the raw material graphite particles. From this, it was confirmed that the aromatic vinyl copolymer was adsorbed to the hydroxyl group on the surface of the plate-like graphite particle and was coated.
  • a lithium ion secondary battery (half cell) was produced using the negative electrode produced according to the above procedure as an evaluation electrode.
  • the counter electrode was a metal lithium foil (500 ⁇ m in thickness).
  • the counter electrode was cut into a diameter of 13 mm, and the evaluation electrode was cut into a diameter of 11 mm, and a separator (glass filter made by Hoechst Celanese and celgard 2400) was sandwiched between the two to make an electrode battery.
  • the electrode battery was housed in a battery case (CR2032 coin cell manufactured by Takasen Co., Ltd.).
  • a non-aqueous electrolytic solution in which LiPF 6 is dissolved at a concentration of 1 M in a mixed solvent in which ethylene carbonate and diethyl carbonate are mixed at a ratio of 1: 1 (volume ratio) is injected into the battery case, and the battery case is sealed. , Obtained a lithium ion secondary battery.
  • Comparative Example 1 90 parts by mass of the granulated graphite powder as in Example 1 and 10 parts by mass of polyvinylidene fluoride were dissolved and mixed in NMP to prepare a slurry. The slurry was applied to the surface of an electrolytic copper foil (current collector) with a thickness of 20 ⁇ m using a doctor blade to form a negative electrode active material layer on the copper foil.
  • Example 2 A lithium ion secondary battery was obtained in the same manner as in Example 1 except that this negative electrode was used.
  • Comparative Example 2 90 parts by mass of plate-like graphite powder as in Example 1 and 10 parts by mass of polyvinylidene fluoride were dissolved and mixed in NMP to prepare a slurry. The slurry was applied to the surface of an electrolytic copper foil (current collector) with a thickness of 20 ⁇ m using a doctor blade to form a negative electrode active material layer on the copper foil.
  • Example 2 A lithium ion secondary battery was obtained in the same manner as in Example 1 except that this negative electrode was used.
  • Example 1 The SEM images of the cross sections of the negative electrodes formed in Example 1 and Comparative Examples 1 and 2 are shown in FIGS. As shown in FIG. 3, in Comparative Example 2, it can be seen that the plate-like graphite particles are oriented parallel to the current collector (the lower white plate-like one). However, in Example 1, it can be seen that the plate-like graphite particles having a flat cross-sectional shape exist randomly without being oriented in one direction, and the orientation in one direction is regulated by the granulated graphite particles.
  • the lithium ion secondary battery of Example 1 has an improvement of about 4% in rate efficiency to that of Comparative Example 1, which is an effect of mixing the plate-like graphite powder.
  • Comparative Example 1 which is an effect of mixing the plate-like graphite powder.
  • the orientation of the plate-like graphite particles is random, and there is a probability that the surface cut in the plane intersecting with the stacking direction of the graphene is exposed in the traveling direction of lithium ions. This is considered to be due to the fact that lithium ions easily enter and leave the plate-like graphite particles.
  • a negative electrode active material layer was formed in the same manner as in Example 1 except that the same amount of hard carbon powder (manufactured by Kureha D 50 average particle diameter 8 ⁇ m) was used instead of granulated graphite powder, and the same as Example 1
  • the lithium ion secondary battery was manufactured.
  • Comparative Example 3 A negative electrode active material layer was formed in the same manner as in Comparative Example 2 except that 90 parts by mass of hard carbon powder as in Example 2 was used instead of the plate-like graphite powder, and lithium ion 2 was prepared in the same manner as in Example 1. The following battery was produced.
  • a lithium ion secondary battery using hard carbon as a negative electrode active material has good output characteristics but small capacity. Although there is a means such as adding natural graphite to increase the capacity, there is a trade-off that the output is reduced.
  • the addition of the plate-like graphite powder can suppress the decrease in output while maintaining the rate efficiency. That is, by adding plate-like graphite powder, it is possible to solve the contradiction event of volume and output.
  • the power storage device of the present invention can be used as a secondary battery, an electric double layer capacitor, a lithium ion capacitor, and the like.
  • it is useful as a non-aqueous secondary battery used for motor drive of electric vehicles and hybrid vehicles, personal computers, mobile communication devices, home appliances, office devices, industrial devices, etc. Especially, a large capacity and a large output are required. It can be suitably used for driving a motor of an electric car or a hybrid car.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 粒状黒鉛粒子からなる第一活物質粉末と、厚みが0.3nm~100nm、長軸方向の長さが0.1μm~500μmの板状黒鉛粒子からなる第二活物質粉末と、の混合粉末を含む負極活物質。板状黒鉛粒子は層構造であるので強度と柔軟性に優れ、かつ層間にリチウムイオンが出入するので負極活物質として機能する。したがって負極活物質層の柔軟性を確保しつつ、容量と導電性との背反事象が解決される。

Description

負極活物質及び蓄電装置
 本発明は、リチウムイオン二次電池などの蓄電装置に用いられる負極活物質と、その負極活物質を用いた二次電池、電気二重層コンデンサ、リチウムイオンキャパシタなどの蓄電装置に関するものである。
 リチウムイオン二次電池は、充放電容量が高く、高出力化が可能な二次電池である。現在リチウムイオン二次電池は、主として携帯電子機器用の電源として用いられており、更に、今後普及が予想される電気自動車用の電源として期待されている。
 これらリチウムイオン二次電池に用いられる正極活物質としては、高電位での単位重量あたりの充放電容量が大きいコバルト酸リチウムに代表される金属酸化物系化合物が使用され、負極活物質としてはリチウム(Li)に近い卑な電位で単位重量あたりの充放電容量が大きい黒鉛に代表される炭素材料が用いられている。
 例えば負極活物質としては天然黒鉛、人造黒鉛、低結晶性炭素材料、非晶質炭素材料、表面被覆炭素材料、メソフェーズピッチ系炭素繊維、及びホウ素等の異種元素をドーピングさせた炭素材料等が用いられてきた。中でも天然黒鉛は、高い電池容量が得られることで注目されたが、電解液の分解反応が激しいためにサイクル寿命が短いという問題があり、実用化が難しかった。
 一方、コークス等を原料として熱処理することにより得られる人造黒鉛は、比較的サイクル特性が良好なため、現在負極活物質として広く使用されている。そして容量とサイクル特性をさらに向上させるために、負極活物質の開発が現在でも盛んに検討されている。例えば、結晶性の高い黒鉛質材料に機械的処理を行うことで造粒、若しくは球状に加工した粒状黒鉛、負極活物質表面の反応性を抑制するために、表面をピッチや樹脂で被覆し、熱処理を施した処理黒鉛などが検討されている。
 また、負極には、負極活物質どうし間の導電性を維持・向上させるために、カーボンブラック、黒鉛微粉、炭素繊維、気相法炭素繊維などの導電助剤の添加が有効である。特に気相法炭素繊維は微細な繊維状物質であることから、活物質間の導電パス形成に有効であり、大電流を流す場合では、電極の電気抵抗を小さくすることができるため、大きなエネルギーを取り出すのに有利であろうと考えられてきた。また、充電放電サイクル寿命については、活物質自身の膨張収縮が起こってもなお、その形状が繊維状であることから導電パスを維持できると考えられるため、サイクル寿命の向上という視点でも気相法炭素繊維の検討が行われてきた。
 例えば特開2000-133267号公報(特許文献1)では、負極活物質としての鱗片状黒鉛又は球状黒鉛に対して、気相法炭素繊維を0.5~22.5質量部添加することにより、サイクル特性を向上させている。しかし、気相法炭素繊維が局在していると、電流がその二次粒子に集中してしまい、その部分のみが集中的に劣化するためサイクル特性の向上が不十分であった。
 そこで特開2005-019399号公報(特許文献2)には、炭素質材料及び/または結晶性が低い黒鉛質材料からなる付着剤(A)により、繊維状黒鉛材料(B)が、鱗片状黒鉛からなる造粒黒鉛質材料(C)に付着していることを特徴とするリチウムイオン二次電池用負極材料が提案されている。このように柔軟性を担保する繊維状黒鉛材料と非晶質炭素を造粒黒鉛質材料に添加することで、リチウムイオンの入出力特性が改善され、この負極を用いて作製したリチウムイオン二次電池は、高い急速充放電効率を有し、初期充放電効率およびサイクル特性にも優れ、かつ放電容量にも優れるばかりでなく、負極材料自体の製造コストも低い。
 また特開2007-042620号公報(特許文献3)には、天然黒鉛や人造黒鉛を負極活物質に使用し、導電性に優れた炭素繊維を10μm以上の大きさの凝集体を形成することなく負極中に0.1~10質量%の濃度で均一に分散させたリチウム二次電池用負極が提案されている。この負極をもつリチウムイオン二次電池は、長いサイクル寿命をもち、かつ大電流特性に優れている。
 ところが炭素繊維は主として導電助剤として機能するものであり、その添加量が多くなるほど導電性は向上するものの黒鉛濃度が相対的に減少するとともに負極の動作電位が上昇し、電池セル全体として容量が低下するという問題があった。
特開2000-133267号公報 特開2005-019399号公報 特開2007-042620号公報
 本発明は上記した事情に鑑みてなされたものであり、負極活物質層の柔軟性を確保しつつ容量と導電性の背反事象を解決することを解決すべき課題とする。
 上記課題を解決する本発明の負極活物質の特徴は、粒状黒鉛粒子からなる第一活物質粉末と、厚みが0.3nm~100nm、長軸方向の長さが0.1μm~500μmの板状黒鉛粒子からなる第二活物質粉末と、の混合粉末を含むことにある。
 本発明では、第一活物質粉末と板状黒鉛粒子からなる第二活物質粉末とが混合された負極活物質としている。この板状黒鉛粒子はグラフェン単層が複数枚積層された層構造をなし、層間にリチウムイオンなどを保持するため負極活物質として機能する。また層構造であるので強度と柔軟性に優れている。したがって板状黒鉛粒子を混合することで、充放電時に負極活物質層に作用する応力が緩和され、蓄電装置のサイクル特性が向上する。また板状黒鉛粒子は導電性も高いため、板状黒鉛粒子を混合することでイオン導電性が向上する。
 さらに板状黒鉛粒子の表面には下記式(1):
 -(CH-CHX)-   (1)
 (式(1)中、Xはフェニル基、ナフチル基、アントラセニル基またはピレニル基を表し、これらの基は置換基を有していてもよい。)
 で表されるビニル芳香族モノマー単位を含有する芳香族ビニル共重合体が吸着していることが好ましい。この吸着ポリマーによって柔軟性とバインダーとの親和性が向上するため、上記した効果がさらに大きく発現され、バインダー量の低減による高容量化を図ることもできる。
実施例1で形成した負極の断面構造を示す電子顕微鏡写真である。 比較例1で形成した負極の断面構造を示す電子顕微鏡写真である。 比較例2で形成した負極の断面構造を示す電子顕微鏡写真である。 0.3Cでの充電曲線を示すグラフである。 各レートにおけるレート効率を示すグラフである。 1Cでの充電曲線を示すグラフである。
<第一活物質粉末>
 第一活物質粉末は粒状黒鉛粒子からなるものであり、天然黒鉛、人造黒鉛、鱗片状黒鉛、球状黒鉛、造粒黒鉛、ハードカーボン、ソフトカーボンなどを用いることができる。粒状黒鉛の平均粒径D50は300nm以上20μm以下であることが好ましい。第一活物質粉末の平均粒径D50が300nmより小さいと、第一負極活物質粉末の比表面積が大きくなり、第一負極活物質の粉末と電解液との接触面積が大きくなって、電解液の分解が進んでしまい、サイクル特性が悪くなる。また平均粒径D50が300nmより小さいと凝集により二次粒径が大きくなるため好ましくない。
 平均粒径D50は、粒度分布測定法によって計測できる。平均粒径D50とはレーザー回析法による粒度分布測定における体積分布の積算値が50%に相当する粒子径を指す。つまり、平均粒径D50とは、体積基準で測定したメディアン径を指す。結晶子サイズはX線回折(XRD)測定で得られる回折ピークの半値幅からシェラーの式より算出される。
<第二活物質粉末>
 第二活物質粉末は、厚みが0.3nm~100nm、長軸方向の長さが0.1μm~500μmの板状黒鉛粒子からなる。この板状黒鉛粒子は、例えば、グラファイト構造を有する公知の黒鉛、具体的には人造黒鉛、鱗片状黒鉛、塊状黒鉛、土状黒鉛などをグラファイト構造が破壊されないように粉砕することによって得られる。また板状黒鉛粒子として市販のグラフェンを用いることができる。
 板状黒鉛粒子は、天然黒鉛である鱗片状黒鉛と比べても厚みが大幅に小さいものである。板状黒鉛粒子の長軸方向の長さ/厚みで求めるアスペクト比は10~1000であり、さらに望ましくは50~100である。
 板状黒鉛粒子の厚みは、0.3nm~100nmであり、さらに1nm~100nmが好ましい。板状黒鉛粒子の長軸方向の長さは、0.1μm~500μmであり、さらに1μm~500μmが好ましく、短軸方向の長さは、0.3μm~100μmが好ましい。
 板状黒鉛粒子の表面には、水酸基、カルボキシル基、エポキシ基などの官能基が結合していることが好ましい。板状黒鉛粒子の表面に官能基が結合することにより、板状黒鉛粒子と溶媒やポリマーなどの他の有機物との親和性が増す。
 このような官能基は、板状黒鉛粒子の表面近傍、好ましくは表面から深さ10nmまでの領域にある全炭素原子の50%以下、より好ましくは20%以下、特に好ましくは10%以下の炭素原子に結合していることが好ましい。また官能基が結合している炭素原子の割合は0.01%以上が好ましい。官能基が結合している炭素原子の割合が50%を超えると、板状黒鉛粒子の親水性が増大し、有機物との親和性が低下する傾向がある。なお板状黒鉛粒子の表面近傍の官能基はX線光電子分光法(XPS)により定量することができる。
 また板状黒鉛粒子の表面には、下記式(1):
 -(CH-CHX)-   (1)
 (式(1)中、Xはフェニル基、ナフチル基、アントラセニル基またはピレニル基を表し、これらの基は置換基を有していてもよい。)
 で表されるビニル芳香族モノマー単位を含有する芳香族ビニル共重合体が吸着していることが好ましい。
 板状黒鉛粒子の表面に芳香族ビニル共重合体が吸着していると、板状黒鉛粒子同士の凝集力が低下し、また、板状黒鉛粒子と溶媒や樹脂との親和性が増加するので、板状黒鉛粒子を溶媒中や樹脂中に良好に分散させることができる。板状黒鉛粒子を溶媒中に高度に分散させることができると、集電体上に板状黒鉛粒子の板面が集電体の表面に略平行になるように配向させやすい。
 芳香族ビニル共重合体はビニル芳香族モノマー単位とビニル芳香族モノマー単位以外のモノマー単位(以下、他のモノマー単位と称する)を含有することが好ましい。芳香族ビニル共重合体において、ビニル芳香族モノマー単位は板状黒鉛粒子に吸着しやすく、他のモノマー単位は溶媒や樹脂及び板状黒鉛粒子の表面の官能基と親和しやすい。
 ビニル芳香族モノマー単位の含有率が高い芳香族ビニル共重合体ほど、板状黒鉛粒子への吸着量が増大する。ビニル芳香族モノマー単位の含有率は、芳香族ビニル共重合体全体に対して10質量%~98質量%が好ましく、30質量%~98質量%がより好ましく、50質量%~95質量%が特に好ましい。ビニル芳香族モノマー単位の含有率が10質量%より低くなると、芳香族ビニル共重合体の板状黒鉛粒子への吸着量が低下する。ビニル芳香族モノマー単位の含有率が98質量%より高くなると、板状黒鉛粒子と溶媒や樹脂との親和性が低くなって、板状黒鉛粒子の溶媒中や樹脂中への分散性が低下する。
 式(1)の置換基としては、例えば、アミノ基、カルボキシル基、カルボン酸エステル基、水酸基、アミド基、イミノ基、グリシジル基、アルコキシ基、カルボニル基、イミド基、リン酸エステル基が挙げられる。板状黒鉛粒子の溶媒中や樹脂中への分散性を高くするには、置換基は、アルコキシ基が好ましく、アルコキシ基は、メトキシ基が好ましい。
 ビニル芳香族モノマー単位としては、例えば、スチレンモノマー単位、ビニルナフタレンモノマー単位、ビニルアントラセンモノマー単位、ビニルピレンモノマー単位、ビニルアニソールモノマー単位、ビニル安息香酸エステルモノマー単位、アセチルスチレンモノマー単位が挙げられる。中でも板状黒鉛粒子の溶媒中や樹脂中への分散性が向上するという観点からは、スチレンモノマー単位、ビニルナフタレンモノマー単位、ビニルアニソールモノマー単位が好ましい。
 他のモノマー単位は、(メタ)アクリル酸、(メタ)アクリレート類、(メタ)アクリルアミド類、ビニルイミダゾール類、ビニルピリジン類、無水マレイン酸及びマレイミド類からなる群から選択される少なくとも1種のモノマーから誘導されるモノマー単位が好ましい。なお本明細書において、例えば、「(メタ)アクリル酸」とは、「アクリル酸」および「メタクリル酸」の双方を意味する。
 このような他のモノマー単位を含む芳香族ビニル共重合体が板状黒鉛粒子の表面に吸着していることによって、板状黒鉛粒子と溶媒や樹脂との親和性が向上し、溶媒中や樹脂中に板状黒鉛粒子を良好に分散させることができる。
 (メタ)アクリレート類としては、アルキル(メタ)アクリレート、置換アルキル(メタ)アクリレートが挙げられる。置換アルキル(メタ)アクリレートとしては、例えば、ヒドロキシアルキル(メタ)アクリレート、アミノアルキル(メタ)アクリレートが挙げられる。
 (メタ)アクリルアミド類としては、(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミドが挙げられる。
 ビニルイミダゾール類としては、1-ビニルイミダゾールが挙げられる。
 ビニルピリジン類としては、2-ビニルピリジン、4-ビニルピリジンが挙げられる。
 マレイミド類としては、マレイミド、アルキルマレイミド、アリールマレイミドが挙げられる。
 板状黒鉛粒子の分散性が向上するという観点から、他のモノマー単位は、アルキル(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アミノアルキル(メタ)アクリレート、N,N-ジアルキル(メタ)アクリルアミド、2-ビニルピリジン、4-ビニルピリジン、アリールマレイミドが好ましく、ヒドロキシアルキル(メタ)アクリレート、N,N-ジアルキル(メタ)アクリルアミド、2-ビニルピリジン、アリールマレイミドがより好ましく、フェニルマレイミドが特に好ましい。
 上記芳香族ビニル共重合体の例としては、例えば、スチレン(ST)とN,N-ジメチルメタクリルアミド(DMMAA)とのランダム共重合体、1-ビニルナフタレン(VN)とDMMAAとのランダム共重合体、4-ビニルアニソール(VA)とDMMAAとのランダム共重合体、STとN-フェニルマレイミド(PM)とのランダム共重合体、STと1-ビニルイミダゾール(VI)とのランダム共重合体、STと4-ビニルピリジン(4VP)とのランダム共重合体、STとN,N-ジメチルアミノエチルメタクリレート(DMAEMA)とのランダム共重合体、STとメチルメタクリレート(MMA)とのランダム共重合体、STとヒドロキシエチルメタクリレート(HEMA)とのランダム共重合体、STと2-ビニルピリジン(2VP)とのランダム共重合体、STと2VPとのブロック共重合体、STとMMAとのブロック共重合体、STとポリエチレンオキシド(PEO)とのブロック共重合体が挙げられる。
 芳香族ビニル共重合体の数平均分子量としては、1,000~1,000,000が好ましく、5,000~100,000がより好ましい。芳香族ビニル共重合体の数平均分子量が1,000未満になると、板状黒鉛粒子に対する吸着能が低下する傾向にあり、他方、数平均分子量が1,000,000より大きくなると、板状黒鉛粒子の溶媒中や樹脂中への分散性が低下したり、粘度が著しく上昇して取り扱いが困難になる傾向にある。なお、芳香族ビニル共重合体の数平均分子量は、ゲルパーミエーションクロマトグラフィ(カラム:Shodex GPC K-805LおよびShodex GPC K-800RL(ともに、昭和電工(株)製)、溶離液:クロロホルム)により測定し、標準ポリスチレンで換算した値を用いる。
 芳香族ビニル共重合体としてランダム共重合体を用いても、ブロック共重合体を用いてもよい。板状黒鉛粒子の溶媒中や樹脂中への分散性が向上するという観点から、ブロック共重合体を用いることが好ましい。
 芳香族ビニル共重合体が表面に吸着した板状黒鉛粒子における芳香族ビニル共重合体の含有量としては、板状黒鉛粒子100質量部に対して10-7~10-1質量部が好ましく、10-5~10-2質量部がより好ましい。芳香族ビニル共重合体の含有量が10-7質量部未満になると、板状黒鉛粒子への芳香族ビニル共重合体の吸着が不十分なため、板状黒鉛粒子の溶媒中や樹脂中への分散性が低下する傾向にあり、他方、芳香族ビニル共重合体の含有量が10-1質量部より多くなると、板状黒鉛粒子に直接吸着していない芳香族ビニル共重合体が存在するようになる。
 芳香族ビニル共重合体が表面に吸着した板状黒鉛粒子は、下記の方法で製造できる。すなわち芳香族ビニル共重合体が表面に吸着した板状黒鉛粒子の製造方法は、原料黒鉛粒子、前記式(1)で表されるビニル芳香族モノマー単位を含有する芳香族ビニル共重合体、過酸化水素化物、および溶媒を混合する混合工程と、混合工程で得られた混合物に粉砕処理を施す粉砕工程とを含む。
 原料黒鉛粒子としては、グラファイト構造を有する公知の黒鉛、例えば人造黒鉛、鱗片状黒鉛、塊状黒鉛、土状黒鉛が挙げられる。原料黒鉛粒子の粒子径としては、0.01mm~5mmが好ましく、0.1mm~1mmがより好ましい。
 芳香族ビニル共重合体は上記で説明したものと同様のものが使用できる。
 過酸化水素化物としては、カルボニル基を有する化合物と過酸化水素との錯体、四級アンモニウム塩、フッ化カリウム、炭酸ルビジウム、リン酸、尿酸などの化合物に過酸化水素が配位したものが挙げられる。カルボニル基を有する化合物は、例えば、ウレア、カルボン酸(安息香酸、サリチル酸など)、ケトン(アセトン、メチルエチルケトンなど)、カルボン酸エステル(安息香酸メチル、サリチル酸エチルなど)が挙げられる。過酸化水素化物としては、カルボニル基を有する化合物と過酸化水素との錯体が好ましい。
 このような過酸化水素化物は、酸化剤として作用し、原料黒鉛粒子のグラファイト構造を破壊せずに、炭素層間の剥離を容易にするものである。すなわち、過酸化水素化物が炭素層間に侵入して層表面を酸化しながら劈開を進行させ、同時に芳香族ビニル共重合体が劈開した炭素層間に侵入して劈開面を安定化させ、層間剥離が促進される。その結果、板状黒鉛粒子の表面に芳香族ビニル共重合体が吸着する。
 溶媒は、ジメチルホルムアミド(DMF)、クロロホルム、ジクロロメタン、クロロベンゼン、ジクロロベンゼン、N-メチルピロリドン(NMP)、ヘキサン、トルエン、ジオキサン、プロパノール、γ-ピコリン、アセトニトリル、ジメチルスルホキシド(DMSO)、ジメチルアセトアミド(DMAC)が好ましく、ジメチルホルムアミド(DMF)、クロロホルム、ジクロロメタン、クロロベンゼン、ジクロロベンゼン、N-メチルピロリドン(NMP)、ヘキサン、トルエンがより好ましい。
 混合工程において、原料黒鉛粒子と芳香族ビニル共重合体と過酸化水素化物と溶媒とを混合する。原料黒鉛粒子の混合量としては、溶媒1L当たり0.1g/L~500g/Lが好ましく、10g/L~200g/Lがより好ましい。原料黒鉛粒子の混合量が溶媒1L当たり0.1g/L未満になると、溶媒の消費量が増大し、経済的に不利となり、他方、溶媒1L当たり500g/Lを超えると、液の粘度が上昇して取り扱いが困難になる。
 また、芳香族ビニル共重合体の混合量としては、原料黒鉛粒子100質量部に対して0.1質量部~1000質量部が好ましく、0.1質量部~200質量部がより好ましい。芳香族ビニル共重合体の混合量が、原料黒鉛粒子100質量部に対して0.1質量部未満になると、得られる板状黒鉛粒子の分散性が低下する傾向にあり、他方、芳香族ビニル共重合体の混合量が、原料黒鉛粒子100質量部に対して1000質量部を超えると、芳香族ビニル共重合体が溶媒に溶解しなくなるとともに、液の粘度が上昇して取り扱いが困難となる。
 過酸化水素化物の混合量としては、原料黒鉛粒子100質量部に対して0.1質量部~500質量部が好ましく、1質量部~100質量部がより好ましい。過酸化水素化物の混合量が原料黒鉛粒子100質量部に対して0.1質量部未満になると、得られる板状黒鉛粒子の分散性が低下する傾向にあり、他方、原料黒鉛粒子100質量部に対して500質量部を超えると、原料黒鉛粒子が過剰に酸化され、得られる板状黒鉛粒子の導電性が低下する傾向にある。
 粉砕工程において、混合工程で得られた混合物に粉砕処理を施して原料黒鉛粒子を板状黒鉛粒子に粉砕する。これにより生成した板状黒鉛粒子の表面に芳香族ビニル共重合体が吸着する。粉砕処理としては、例えば、超音波処理、ボールミルによる処理、湿式粉砕、爆砕、機械式粉砕が挙げられる。超音波処理は、発振周波数としては15~400kHzが好ましく、出力としては500W以下が好ましい。粉砕処理としては、超音波処理または湿式粉砕処理が好ましい。粉砕工程では、原料黒鉛粒子のグラファイト構造を破壊させずに原料黒鉛粒子を粉砕して板状黒鉛粒子を得ることができる。また、粉砕処理時の温度としては、例えば、-20℃~100℃とすることができる。また、粉砕処理時間としては、例えば、0.01時間~50時間とすることができる。
 負極活物質層において、少なくとも一部の板状黒鉛粒子がその板面が集電体の表面に略平行になるように配向していてもよいが、第一活物質粉末の存在によって配向が崩れているのが好ましい。配向が崩れることで、板状黒鉛粒子の板面に対して交差する方向の表面がリチウムイオンの進行方向に表出するため、リチウムイオンが板状黒鉛粒子内部にも出入するようになり、充放電容量が大きくなる。したがって、負極活物質層において、少なくとも一部の板状黒鉛粒子の板面が集電体の表面に対して交差していることが好ましい。
 また板状黒鉛粒子の表面に上記した芳香族ビニル共重合体が吸着している場合は、溶媒に板状黒鉛粒子を入れた状態でも板状黒鉛粒子が溶媒中で凝集せずに分散するため、沈殿が生じにくく均一な負極活物質層を形成することができる。
 負極活物質には、第一活物質粉末と第二活物質粉末に加えてSi、Si化合物、Sn及びSn化合物からなる群から選ばれる少なくとも一種からなる粉末を添加することもできる。Si、Si化合物、Sn及びSn化合物は充放電時に膨張収縮するので、この膨張収縮を小さくするためにSi、Si化合物、Sn及びSn化合物の結晶子サイズは、1nm~300nmであることがより好ましい。
 Siとしては、単結晶Siの粉砕品、気相蒸着Si、ケイ素原子で構成された六員環が複数連なった構造をなし組成式(SiH)で示される層状ポリシランを熱処理することで製造された、ナノシリコンなどを用いることができる。
 Si化合物としては、例えばSiO(0.3≦x≦1.6)で表されるケイ素酸化物が好ましい。このケイ素酸化物粉末の各粒子は、不均化反応によって微細なSiと、Siを覆うSiOとに分解したSiOからなる。xが下限値未満であると、Si比率が高くなるため充放電時の体積変化が大きくなりすぎてサイクル特性が低下する。またxが上限値を超えると、Si比率が低下してエネルギー密度が低下するようになる。0.5≦x≦1.5の範囲が好ましく、0.7≦x≦1.2の範囲がさらに望ましい。
 また他のSi化合物としては、例えば、SiB、SiB、MgSi、MgSn、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、SiN、SiNO、SnSiO、LiSiOなどが使用できる。
 Snとしては、市販のSn粉末が使用できる。Sn化合物としては、例えば、SnO(0<w≦2)、SnSiO、LiSnO、スズ合金(Cu-Sn合金、Co-Sn合金等)が使用できる。
 Si、Si化合物、Sn化合物は導電性が低いので、負極活物質中の含有量は、第一活物質粉末と第二活物質粉末の合計量を100質量%としたときに50質量%以下の範囲が好ましい。
<混合比>
 第一活物質粉末と第二活物質粉末の合計を100質量%としたときに、第二活物質粉末が10~90質量%含まれていることが好ましく、第二活物質粉末が30~70質量%含まれていることがさらに好ましい。第二活物質粉末が10質量%未満では効果の発現がわかりにくく、90質量%を超えると蓄電装置の充放電容量が低下する。
<負極>
 本発明の負極活物質は、蓄電装置の負極に用いられる。負極は、集電体と、集電体表面に配置された負極活物質層とからなる。集電体は蓄電装置の放電または充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。集電体に用いることのできる材料として、例えばステンレス鋼、チタン、ニッケル、アルミニウム、銅などの金属材料または導電性樹脂を挙げることができる。また集電体は、箔、シート、フィルムなどの形態をとることができる。そのため、集電体として、例えば銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体の厚みは、10μm~100μmとすることができる。
 本発明の負極活物質を用いて、例えば非水系二次電池の負極の負極活物質層を形成するには、第一活物質粉末と、第二活物質粉末と、バインダーと、適量の有機溶剤を加えて混合しスラリーにしたものを、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの方法で集電体上に塗布し、バインダーを乾燥あるいは硬化させることによって作製することができる。アセチレンブラック、ケッチェンブラックなどの導電助剤は不要であるが、必要に応じて添加してもよい。
 バインダーは、なるべく少ない量で活物質等を結着させることが求められるが、その添加量は活物質とバインダーを合計したものの0.5質量%~50質量%が望ましい。バインダーが0.5質量%未満では電極の成形性が低下し、50質量%を超えると電極のエネルギー密度が低くなる。
 バインダーには、ポリフッ化ビニリデン(PolyVinylidene DiFluoride:PVdF)、ポリ四フッ化エチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリイミド(PI)、ポリアミドイミド(PAI)、カルボキシメチルセルロース(CMC)、ポリ塩化ビニル(PVC)、メタクリル樹脂(PMA)、ポリアクリロニトリル(PAN)、変性ポリフェニレンオキシド(PPO)、ポリエチレンオキシド(PEO)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアクリル酸(PAA)等が例示される。
 バインダーとしてポリフッ化ビニリデンを用いると負極の電位を下げることができ蓄電装置の電圧向上が可能となる。またバインダーとしてポリアミドイミド(PAI)又はポリアクリル酸(PAA)を用いることで初期効率と放電容量が向上する。
 導電助剤は、電極の導電性を高めるために添加される。導電助剤として、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック(AB)、ケッチェンブラック(KB)(登録商標)、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)等を単独でまたは二種以上組み合わせて添加することができる。導電助剤の使用量については、特に限定的ではないが、例えば、活物質100質量部に対して、0~100質量部程度とすることができる。100質量部を超えると電極の成形性が悪化するとともにエネルギー密度が低くなる。
 有機溶剤には特に制限はなく、複数の溶剤の混合物でも構わない。N-メチル-2-ピロリドン及びN-メチル-2-ピロリドンとエステル系溶媒(酢酸エチル、酢酸n-ブチル、ブチルセロソルブアセテート、ブチルカルビトールアセテート等)あるいはグライム系溶媒(ジグライム、トリグライム、テトラグライム等)の混合溶媒が特に好ましい。
<蓄電装置>
 本発明の蓄電装置がリチウムイオン二次電池の場合、負極には、リチウムがプリドーピングされていることもできる。負極にリチウムをドープするには、例えば対極に金属リチウムを用いて半電池を組み、電気化学的にリチウムをドープする電極化成法などを利用することができる。リチウムのドープ量は特に制約されない。
 本発明の蓄電装置がリチウムイオン二次電池の場合、特に限定されない公知の正極、電解液、セパレータを用いることができる。正極は、非水系二次電池で使用可能なものであればよい。正極は、集電体と、集電体上に結着された正極活物質層とを有する。正極活物質層は、正極活物質と、バインダーとを含み、さらには導電助剤を含んでも良い。正極活物質、導電助材およびバインダーは、特に限定はなく、非水系二次電池で使用可能なものであればよい。
 正極活物質としては、金属リチウム、LiCoO、LiNi1/3Co1/3Mn1/3O、LiMnO、硫黄などが挙げられる。集電体は、アルミニウム、ニッケル、ステンレス鋼など、リチウムイオン二次電池の正極に一般的に使用されるものであればよい。導電助剤は上記の負極で記載したものと同様のものが使用できる。
 電解液は、有機溶媒に電解質であるリチウム金属塩を溶解させたものである。電解液は、特に限定されない。有機溶媒として、非プロトン性有機溶媒、たとえばプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等から選ばれる一種以上を用いることができる。また、溶解させる電解質としては、LiPF、LiBF、LiAsF、LiI、LiClO、LiCFSO等の有機溶媒に可溶なリチウム金属塩を用いることができる。
 例えば、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの有機溶媒にLiClO、LiPF、LiBF、LiCFSO等のリチウム金属塩を0.5mol/Lから1.7mol/L程度の濃度で溶解させた溶液を使用することができる。
 セパレータは、非水系二次電池に使用されることができるものであれば特に限定されない。セパレータは、正極と負極とを分離し電解液を保持するものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。
 本発明の蓄電装置が非水系二次電池である場合、その形状に特に限定はなく、円筒型、積層型、コイン型等、種々の形状を採用することができる。いずれの形状を採る場合であっても、正極および負極にセパレータを挟装させ電極体とし、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後、この電極体を電解液とともに電池ケースに密閉して電池となる。
 以下、実施例及び比較例により本発明の実施態様を具体的に説明する。
<板状黒鉛粒子の作成>
 スチレン(ST)1.82g、N-フェニルマレイミド(PM)0.18g、アゾビスイソブチロニトリル(AIBN)10mgおよびトルエン5mlを混合し、窒素雰囲気下、60℃で6時間重合反応を行なった。放冷後、クロロホルム-エーテルを用いて再沈殿により精製し、0.66gのST-PM(91:9)ランダム共重合体を得た。このST-PM(91:9)ランダム共重合体の数平均分子量(Mn)は、58,000であった。
 ここで、数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィ(昭和電工(株)製「Shodex GPC101」)を用いて以下の条件で測定した。
・カラム:Shodex GPC K-805LおよびShodex GPC K-800RL(ともに、昭和電工(株)製)
・溶離液:クロロホルム
・測定温度:25℃
・サンプル濃度:0.1mg/ml
・検出手段:RI
 なお、数平均分子量(Mn)は、標準ポリスチレンで換算した値を示した。
 黒鉛粒子(日本黒鉛工業(株)製「EXP-P」、粒子径100~600μm)20mg、ウレア-過酸化水素包接錯体80mg、上記ST-PM(91:9)ランダム共重合体20mgおよびN,N-ジメチルホルムアミド(DMF)2mlを混合し、室温で5時間超音波処理(出力:250W)を施して板状黒鉛粒子の分散液を得た。この分散液から濾過し、濾過物をジメチルホルムアミド(DMF)洗浄した後、真空乾燥して、板状黒鉛粉末を得た。この板状黒鉛粉末を構成する板状黒鉛粒子を走査型電子顕微鏡(SEM)で観察したところ、板状黒鉛粒子の長径は10μm~20μm、短径は3μm~10μm、厚みは30nm~80nmであった。
<板状黒鉛粒子の表面分析>
 上記板状黒鉛粒子分散液(ST-PM(91:9)ランダム共重合体添加)をインジウム箔上に塗布して乾燥させ、板状黒鉛粒子塗膜を作製した。板状黒鉛粒子塗膜について飛行時間型二次イオン質量分析(TOF-SIMS、正イオン:m/z 0-250)を行い、板状黒鉛粒子塗膜の表面に存在する分子を分析した。その結果、板状黒鉛粒子塗膜の表面にはST-PM(91:9)ランダム共重合体が吸着していることがわかった。またST-PM(91:9)ランダム共重合体のフラグメントパターンから、ST-PM(91:9)ランダム共重合体成分のうち、ビニル芳香族モノマー単位を多く含有する共重合体成分が板状黒鉛粒子の表面に吸着しやすいことがわかった。
 また、得られた板状黒鉛粒子塗膜についてX線光電子分光(XPS)測定を行なったところ、塗膜表面近傍(表面から深さ10nmの領域)の炭素原子に水酸基が結合していることが確認された。さらに、塗膜表面近傍の炭素量および酸素量を測定し、炭素と酸素との原子比を求めた。その結果、炭素原子100に対し酸素原子は1.13であった。また原料である黒鉛粒子においては炭素原子100に対して酸素原子が約2であった。
 従って原料黒鉛粒子と比較すると板状黒鉛粒子においては炭素原子100に対して酸素原子が約1に低下した。このことから、芳香族ビニル共重合体は板状黒鉛粒子表面の水酸基に吸着して被覆していることが確認された。
<負極の形成>
 造粒黒鉛粉末(日本黒鉛工業(株)社製、D50平均粒径300μm)45質量部と、上記板状黒鉛粉末45質量部と、バインダとしてポリフッ化ビニリデン10質量部とをN-メチル-2-ピロリドン(NMP)に溶解・混合し、スラリーを調製した。このスラリーを、厚さ20μmの電解銅箔(集電体)の表面にドクターブレードを用いて塗布し、銅箔上に負極活物質層を形成した。
 その後、80℃で20分間乾燥し、負極活物質層からNMPを揮発させて除去した。乾燥後、ロールプレス機により、集電体と負極活物質層を強固に密着接合させた。これを100℃で2時間真空加熱し、活物質層の厚さが30μm程度の負極を形成した。
<リチウムイオン二次電池の作製>
 上記の手順で作製した負極を評価極として用い、リチウムイオン二次電池(ハーフセル)を作製した。対極は、金属リチウム箔(厚さ500μm)とした。
 対極をφ13mm、評価極をφ11mmに裁断し、セパレータ(ヘキストセラニーズ社製ガラスフィルターおよびcelgard2400)を両者の間に挟装して電極体電池とした。この電極体電池を電池ケース(宝泉株式会社製CR2032コインセル)に収容した。また、電池ケースには、エチレンカーボネートとジエチルカーボネートとを1:1(体積比)で混合した混合溶媒にLiPFを1Mの濃度で溶解した非水電解液を注入し、電池ケースを密閉して、リチウムイオン二次電池を得た。
[比較例1]
 実施例1と同様の造粒黒鉛粉末90質量部と、ポリフッ化ビニリデン10質量部とをNMPに溶解・混合し、スラリーを調製した。このスラリーを、厚さ20μmの電解銅箔(集電体)の表面にドクターブレードを用いて塗布し、銅箔上に負極活物質層を形成した。
 その後、80℃で20分間乾燥し、負極活物質層からNMPを揮発させて除去した。乾燥後、ロールプレス機により、集電体と負極活物質層を強固に密着接合させた。これを100℃で2時間真空加熱し、活物質層の厚さが30μm程度の負極を形成した。
 この負極を用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を得た。
[比較例2]
 実施例1と同様の板状黒鉛粉末90質量部と、ポリフッ化ビニリデン10質量部とをNMPに溶解・混合し、スラリーを調製した。このスラリーを、厚さ20μmの電解銅箔(集電体)の表面にドクターブレードを用いて塗布し、銅箔上に負極活物質層を形成した。
 その後、80℃で20分間乾燥し、負極活物質層からNMPを揮発させて除去した。乾燥後、ロールプレス機により、集電体と負極活物質層を強固に密着接合させた。これを100℃で2時間真空加熱し、活物質層の厚さが30μm程度の負極を形成した。
 この負極を用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を得た。
<評価試験1>
 実施例1、比較例1,2で形成した負極の断面のSEM像を図1~3に示す。図3に示すように、比較例2では板状黒鉛粒子が集電体(下部の白い板状のもの)に対して平行に配向しているのがわかる。しかし実施例1では、断面扁平形状の板状黒鉛粒子が一方向に配向することなくランダムに存在し、造粒黒鉛粒子によって一方向への配向が規制されていることがわかる。
<評価試験2>
 実施例1、比較例1,2のリチウムイオン二次電池を用いて電池性能を比較した。先ず、0.3Cでの充電曲線を図4に示す。いずれも動作電圧が0.5V以下で95%以上の容量を示していることから、造粒黒鉛粉末と板状黒鉛粉末を混合してなる負極活物質を有する実施例1のリチウムイオン二次電池は、造粒黒鉛粉末のみからなる負極活物質を有する比較例1とほぼ同等の電池性能であることがわかる。
 次に1Cから10Cまで電流値を変化させて容量を測定し、1C容量に対する各容量の比を算出した。レート効率のグラフを図5に、1C容量に対する10C容量の値(レート効率)を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1のリチウムイオン二次電池は、比較例1に対してレート効率が約4%改善され、これは板状黒鉛粉末を混合したことによる効果である。図1~3を参酌すると、実施例1では板状黒鉛粒子の配向がランダムであり、グラフェンの積層方向に対して交差する平面で切断した表面がリチウムイオンの進行方向に表出している確率が高く、板状黒鉛粒子内部にもリチウムイオンが出入しやすいためと考えられる。
 造粒黒鉛粉末に代えてハードカーボン粉末(クレハ社製、D50平均粒径8μm)を同量用いたこと以外は実施例1と同様にして負極活物質層を形成し、実施例1と同様にしてリチウムイオン二次電池を作製した。
[比較例3]
 板状黒鉛粉末に代えて実施例2と同様のハードカーボン粉末90質量部を用いたこと以外は比較例2と同様にして負極活物質層を形成し、実施例1と同様にしてリチウムイオン二次電池を作製した。
<評価試験3>
 実施例2、比較例3のリチウムイオン二次電池を用いて電池性能を比較した。先ず、1Cでの充電曲線を図6に示す。ハードカーボン粉末と板状黒鉛粉末を混合してなる負極活物質を有する実施例2のリチウムイオン二次電池は、ハードカーボン粉末のみからなる負極活物質を有する比較例3に比べて電池特性が改善されていることが明らかである。また動作電圧が0.5V以下で全体の90%以上の容量を示すことから、低電圧化の効果が確認できる。
 次に評価試験2と同様にしてレート効率を測定し、1C容量に対する10C容量の値を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 ハードカーボンを負極活物質としたリチウムイオン二次電池は、出力特性は良好であるものの容量が小さいことがわかっている。容量を大きくするには、天然黒鉛を添加するなどの手段があるものの、そうすると出力が低下するという背反がある。しかし表2からわかるように、板状黒鉛粉末を添加すれば、レート効率を維持しつつ出力低下を抑制することができる。すなわち板状黒鉛粉末を添加することで、容量と出力の背反事象を解決することができる。
 本発明の蓄電装置は、二次電池、電気二重層コンデンサ、リチウムイオンキャパシタなどに利用できる。また電気自動車やハイブリッド自動車のモータ駆動用、パソコン、携帯通信機器、家電製品、オフィス機器、産業機器などに利用される非水系二次電池として有用であり、特に、大容量、大出力が必要な電気自動車やハイブリッド自動車のモータ駆動用に好適に用いることができる。

Claims (7)

  1.  粒状黒鉛粒子からなる第一活物質粉末と、
     厚みが0.3nm~100nm、長軸方向の長さが0.1μm~500μmの板状黒鉛粒子からなる第二活物質粉末と、の混合粉末を含むことを特徴とする負極活物質。
  2.  前記板状黒鉛粒子の表面には下記式(1):
     -(CH-CHX)-   (1)
     (式(1)中、Xはフェニル基、ナフチル基、アントラセニル基またはピレニル基を表し、これらの基は置換基を有していてもよい。)
     で表されるビニル芳香族モノマー単位を含有する芳香族ビニル共重合体が吸着している請求項1に記載の負極活物質。
  3.  前記第一活物質粉末と前記第二活物質粉末の合計を100質量%としたときに前記第二活物質粉末が10~90質量%含まれている請求項1又は請求項2に記載の負極活物質。
  4.  前記第一活物質粉末と前記第二活物質粉末の合計を100質量%としたときに前記第二活物質粉末が30~70質量%含まれている請求項3に記載の負極活物質。
  5.  集電体と、該集電体の表面に配置され請求項1~4のいずれかに記載の負極活物質を含む負極活物質層と、よりなる負極を有することを特徴とする蓄電装置。
  6.  前記負極活物質層には、少なくとも一部の前記板状黒鉛粒子の板面が前記集電体の表面に対して交差するように含まれている請求項5に記載の蓄電装置。
  7.  リチウムイオン二次電池である請求項5又は請求項6のいずれかに記載の蓄電装置。
PCT/JP2014/004138 2013-09-24 2014-08-08 負極活物質及び蓄電装置 WO2015045259A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/024,252 US20160211512A1 (en) 2013-09-24 2014-08-08 Negative-electrode active material and electric storage apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013196605A JP5806271B2 (ja) 2013-09-24 2013-09-24 負極活物質及び蓄電装置
JP2013-196605 2013-09-24

Publications (1)

Publication Number Publication Date
WO2015045259A1 true WO2015045259A1 (ja) 2015-04-02

Family

ID=52742439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004138 WO2015045259A1 (ja) 2013-09-24 2014-08-08 負極活物質及び蓄電装置

Country Status (3)

Country Link
US (1) US20160211512A1 (ja)
JP (1) JP5806271B2 (ja)
WO (1) WO2015045259A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107342392A (zh) * 2016-01-18 2017-11-10 皓智环球有限公司 制备电池电极的方法
CN110957145A (zh) * 2019-12-17 2020-04-03 苏州盟维动力科技有限公司 柔性全固态非对称纤维状储能器件及其制作方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811718B (zh) * 2014-02-20 2016-08-17 深圳市贝特瑞新能源材料股份有限公司 一种石墨烯基复合负极材料的制备方法及制得的负极材料和锂离子电池
WO2016174862A1 (ja) * 2015-04-28 2016-11-03 株式会社Gsユアサ 非水電解質蓄電素子用負極
KR102542649B1 (ko) * 2015-06-30 2023-06-09 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
JP2017103322A (ja) * 2015-12-01 2017-06-08 積水化学工業株式会社 電極シート及び電気二重層キャパシタ
JP6919646B2 (ja) * 2016-03-10 2021-08-18 日本電気株式会社 リチウムイオン二次電池
JP2017228412A (ja) * 2016-06-22 2017-12-28 関西ペイント株式会社 リチウムイオン電池正極用導電ペースト及びリチウムイオン電池正極用合材ペースト
JP2017228413A (ja) * 2016-06-22 2017-12-28 関西ペイント株式会社 リチウムイオン電池正極用導電ペースト及びリチウムイオン電池正極用合材ペースト
JP6908261B2 (ja) * 2017-03-16 2021-07-21 エリーパワー株式会社 密閉型電池、組電池及びエンジン始動用電池
JP6543428B1 (ja) * 2017-08-08 2019-07-10 昭和電工株式会社 二次電池用負極活物質および二次電池
KR102546827B1 (ko) * 2018-04-24 2023-06-21 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
GB2609985A (en) * 2021-08-20 2023-02-22 Amte Power Plc Electrode
CN115602942B (zh) * 2022-12-12 2023-04-07 深圳大学 负极极片、二次电池和用电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004227988A (ja) * 2003-01-24 2004-08-12 Mitsubishi Materials Corp 負極材料及びこれを用いた負極、並びにこの負極を用いたリチウムイオン電池及びリチウムポリマー電池
JP2012022933A (ja) * 2010-07-15 2012-02-02 Jfe Chemical Corp 二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2012129169A (ja) * 2010-12-17 2012-07-05 Eliiy Power Co Ltd 非水電解液二次電池用負極および非水電解液二次電池
JP2012129167A (ja) * 2010-12-17 2012-07-05 Eliiy Power Co Ltd 非水電解液二次電池用負極、非水電解液二次電池および非水電解液二次電池用負極の製造方法
JP2012216532A (ja) * 2011-03-29 2012-11-08 Mitsubishi Chemicals Corp 非水系二次電池用負極材料、これを用いた負極及び非水系二次電池
JP2014165018A (ja) * 2013-02-25 2014-09-08 Mitsubishi Chemicals Corp 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004227988A (ja) * 2003-01-24 2004-08-12 Mitsubishi Materials Corp 負極材料及びこれを用いた負極、並びにこの負極を用いたリチウムイオン電池及びリチウムポリマー電池
JP2012022933A (ja) * 2010-07-15 2012-02-02 Jfe Chemical Corp 二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2012129169A (ja) * 2010-12-17 2012-07-05 Eliiy Power Co Ltd 非水電解液二次電池用負極および非水電解液二次電池
JP2012129167A (ja) * 2010-12-17 2012-07-05 Eliiy Power Co Ltd 非水電解液二次電池用負極、非水電解液二次電池および非水電解液二次電池用負極の製造方法
JP2012216532A (ja) * 2011-03-29 2012-11-08 Mitsubishi Chemicals Corp 非水系二次電池用負極材料、これを用いた負極及び非水系二次電池
JP2014165018A (ja) * 2013-02-25 2014-09-08 Mitsubishi Chemicals Corp 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107342392A (zh) * 2016-01-18 2017-11-10 皓智环球有限公司 制备电池电极的方法
TWI678834B (zh) * 2016-01-18 2019-12-01 香港商皓智環球有限公司 製備電池電極的方法
CN110957145A (zh) * 2019-12-17 2020-04-03 苏州盟维动力科技有限公司 柔性全固态非对称纤维状储能器件及其制作方法

Also Published As

Publication number Publication date
JP2015064936A (ja) 2015-04-09
US20160211512A1 (en) 2016-07-21
JP5806271B2 (ja) 2015-11-10

Similar Documents

Publication Publication Date Title
JP5806271B2 (ja) 負極活物質及び蓄電装置
US10476081B2 (en) Positive electrode material mixture and secondary battery including the same
EP3678228B1 (en) Negative electrode and secondary battery including the same
JP6055729B2 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6385749B2 (ja) 負極活物質及び蓄電装置
JP5757148B2 (ja) リチウムイオン二次電池用負極活物質及びその負極活物質を用いたリチウムイオン二次電池
KR101718055B1 (ko) 음극 활물질 및 이를 포함하는 리튬 전지
JP2020515014A (ja) 正極活物質プレ分散体組成物、二次電池用正極、およびそれを含むリチウム二次電池
KR20160037006A (ko) 음극 활물질 및 이를 채용한 리튬 전지, 및 상기 음극 활물질의 제조방법
Maroni et al. High cycling stability of anodes for lithium-ion batteries based on Fe3O4 nanoparticles and poly (acrylic acid) binder
JP5806035B2 (ja) リチウムイオン二次電池の負極用バインダ及びその負極用バインダを用いたリチウムイオン二次電池
WO2012144177A1 (ja) リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池
JP6534835B2 (ja) 負極活物質層及びその負極活物質層を具備する蓄電装置
CN111316475A (zh) 锂二次电池用负极浆料组合物和其制造方法
JP2020155223A (ja) リチウムイオン二次電池用正極材料、リチウムイオン二次電池、リチウムイオン二次電池用正極の製造方法、及びリチウムイオン二次電池の製造方法
JP2013065493A (ja) リチウムイオン二次電池の負極用バインダ及びその負極用バインダを用いたリチウムイオン二次電池
KR101753943B1 (ko) 리튬이차전지의 음극 형성용 조성물, 이의 제조방법, 및 이를 이용하여 제조한 음극을 포함하는 리튬이차전지
JP6522326B2 (ja) 黒鉛粒子組成物およびその製造方法、負極ならびに蓄電装置
JP2013065494A (ja) リチウムイオン二次電池の負極用バインダとその製造方法及びその負極用バインダを用いたリチウムイオン二次電池
JP5668667B2 (ja) リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池
CN110892560A (zh) 用于锂二次电池的负极和包括该负极的锂二次电池
WO2017213083A1 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
Yuan et al. Reduced graphene oxide wrapped sulfur/polypyrrole composite cathode with enhanced cycling and rate performance for lithium/sulfur batteries
CN115336040A (zh) 负极和包含所述负极的二次电池
JP2011029136A (ja) 二次電池用電極、二次電池、及び二次電池用電極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849830

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15024252

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849830

Country of ref document: EP

Kind code of ref document: A1