WO2015044354A1 - Filtre optique adaptatif pour verre de lunettes - Google Patents

Filtre optique adaptatif pour verre de lunettes Download PDF

Info

Publication number
WO2015044354A1
WO2015044354A1 PCT/EP2014/070631 EP2014070631W WO2015044354A1 WO 2015044354 A1 WO2015044354 A1 WO 2015044354A1 EP 2014070631 W EP2014070631 W EP 2014070631W WO 2015044354 A1 WO2015044354 A1 WO 2015044354A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical filter
adaptive optical
transmission coefficient
light
value
Prior art date
Application number
PCT/EP2014/070631
Other languages
English (en)
Inventor
David Hue
Original Assignee
Valeo Vision
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision filed Critical Valeo Vision
Priority to KR1020167007708A priority Critical patent/KR20160063330A/ko
Priority to EP14777072.1A priority patent/EP3049862A1/fr
Priority to JP2016517294A priority patent/JP6502328B2/ja
Priority to US14/912,235 priority patent/US9915831B2/en
Priority to CN201480053054.2A priority patent/CN105579894A/zh
Publication of WO2015044354A1 publication Critical patent/WO2015044354A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/101Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having an electro-optical light valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/105Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having inhomogeneously distributed colouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • B81B2201/047Optical MEMS not provided for in B81B2201/042 - B81B2201/045
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/18Cellular lens surfaces

Definitions

  • the present invention relates to optical filters, used as optical shutters for controlling the attenuation of a light intensity, adaptively in response to external conditions or to the control of a user.
  • the invention may advantageously be implemented in glare protection devices, such as sunglasses.
  • Such glasses allow the user to adopt a vision position, spontaneously or naturally, allowing vision through the lower zone, and a position of voluntary vision, inclining more or less the head downward, allowing:
  • the vision through the upper zone which strongly attenuates incident or reflected polarized lights from distant sources
  • - the vision through the central zone to modulate at the option of the wearer of glasses the degree of attenuation of the sources situated in a distant field
  • the documents EP 0 341 519, FR 2 693 562 and FR 2 975 792 disclose glasses whose frame comprises a photosensitive sensor and whose glasses comprise a layer of liquid crystals, the sensor emitting a signal increasing function of the luminous intensity which reached, an electronic circuit driving the liquid crystal such that the transmittance of the liquid crystal decreases as the light intensity received by the sensor increases.
  • the document FR 2 781 289 discloses glasses whose frame comprises a photosensitive sensor emitting a signal of increasing power as a function of the light intensity which reaches it, an electronic circuit connected to the sensor and emitting an alternating secondary signal of increasing power with the power of the signal emitted by the sensor, and glasses having an electro-optical screen, the electronic circuit varying the frequency of the secondary signal, the increase in light intensity resulting in a reduction of the transmittance of spectacle lenses .
  • the document WO 2012/036638 discloses ophthalmic glasses with liquid crystals, whose lenses comprise an upper zone for far vision, a lower zone for near vision, and a variable transparency element.
  • near vision mode the lens area for far vision is opacified, and the lens area for near vision is clear or transparent.
  • far vision mode the lens areas for far vision and near vision are clear or transparent.
  • the purpose of these glasses is to encourage the wearer to use the upper area of the lenses for far vision, and the lower area for near vision, instead of accommodating using the upper area, to heal or prevent myopia. Presentation of the invention
  • the present invention is placed in this context and its purpose is to provide an adaptive optical filter, intended in particular to constitute a spectacle lens, capable of having a transmission of almost zero light to prevent glare, and a transmission maximum light, and especially close to 100%, to allow a clear vision in the absence of dazzling source in the field of view, the transition from one transmission state to the other being carried out gradually.
  • the subject of the present invention is an adaptive optical filter for spectacle lens, comprising at least two distinct zones (10_M, 10_S), one being located preferentially above the other, each of the zones being defined. by an instantaneous value of at least one optical property, the optical property being preferably the transmission coefficient of the light.
  • the optical property (CT) of at least one of the areas (10_M, 10_S) of the adaptive optical filter (10) is variable in time between a maximum value (CTMAX) and a minimum value (CTmin).
  • the transmission coefficient of the lower zone is greater than that of the upper zone.
  • the light transmission coefficient of at least one of the zones of the adaptive optical filter is variable according to a modulation of pulse width; at least one of the zones of the adaptive optical filter comprises a liquid crystal cell;
  • the adaptive optical filter comprises a Mioco-Opto-Electromechanical system; the adaptive optical filter comprises two zones whose light transmission coefficient of each of them is variable in time between a maximum value and a minimum value;
  • the light transmission coefficient of one of the zones is a function of the light transmission coefficient of the other zone
  • the light transmission coefficient of at least one of the zones of the adaptive optical filter is a function of the duty cycle of the pulse width modulation cycle
  • the duty cycle of the pulse width modulation cycle of the light transmittance of one of the zones is a function of the duty cycle of the pulse width modulation cycle of the light transmission coefficient of an adjacent area
  • the light transmission coefficient is controlled by a control signal from a photosensitive sensor
  • the photosensitive sensor emits a signal whose value is a function of the luminous intensity which it receives from the scene in front of the spectacle wearer;
  • the light transmission coefficient is controlled by a manual control signal
  • the adaptive optical filter comprises a zone whose light transmittance is constant over time.
  • FIG. 1 schematically a perspective view of an adaptive optical filter made according to the present invention
  • FIGS. 2A and 2B show schematically a pair of glasses, incorporating two filters made according to the present invention, in two operating states;
  • FIGS. 4A and 4B show diagrams of the time evolution of different signals used in the present invention.
  • FIG. 5 shows schematically in perspective, on a very large scale, the filter of Figure 1, according to a second embodiment
  • FIG. 1 Shown in FIG. 1 is a schematic perspective view of an adaptive optical filter made in accordance with the teachings of the present invention.
  • the filter designated as a whole by reference numeral 10, comprises three zones:
  • the lower zone 0 I has a fixed transmission coefficient CT
  • the upper zone 10_S has a transmission coefficient of the time-varying CT S light under the control of an electrical signal.
  • This transmission coefficient CT S can thus take any value between a maximum value CT MAX , for which a maximum quantity of light is transmitted, and a minimum value CT MIN , for which a minimum quantity of light is transmitted.
  • the median zone 10_M has a time-varying coefficient of transmission of the light M M CT, so that its instantaneous value is always between the fixed value CT
  • FIGS. 2A and 2B show a pair of glasses, each of which incorporates at least one filter made according to the present invention, in two operating states. We see :
  • a pair of spectacles each of whose glasses comprises a lower zone 0 I, a median zone 10_M, and an upper zone 10_S, and
  • FIGS. 2A and 3A clearly show that the lower zone 0 I has a transmission coefficient CT
  • the upper zone 10_S has a transmission coefficient CT S constant over the entire height of this upper zone 10_S, and CT value S less than the value CT, of the transmission coefficient of the lower zone 0 I.
  • CT S of the transmission coefficient of the upper zone 10_S is equal to the minimum value CT min .
  • the median zone 10_M has a variable transmission coefficient CT M , the value of which lies between the values of the transmission coefficients CT
  • CT M the transmission coefficient
  • the instantaneous value of CT M may be equal at any instant to the arithmetic mean of the values CT, and CT S.
  • the transmission coefficients CT S of the upper zone 10_S and CT M of the median zone 10_M are variable in time, so that:
  • the transmission coefficient of the light CT S of the upper zone 10_S is variable in time, and can take any value between maximum value CT MAX , for which a maximum quantity of light is transmitted, and a minimum value CT MIN , for which a minimum quantity of light is transmitted, and
  • the transmission coefficient of the CT M light of the median zone 10_M is constantly between:
  • the transmission coefficient of the light CT M being for example equal to the arithmetic mean of the constant values CT
  • the light transmission coefficient CT S has its maximum value CTMAX, and that
  • the light transmission coefficient CT M is still between the new value CT S of the transmission coefficient of the upper zone 10_S and the constant value CT
  • CT MAX a maximum value permitted by the technology used to vary this transmission coefficient in order to allow the spectacle wearer to observe the far field in the scene in front of him
  • constant, of maximum value, to allow the spectacle wearer to perfectly distinguish the objects in the near field in front of him
  • a light transmission coefficient CT M in its median zone 10_M, a light transmission coefficient CT M , the value of which is at all times between the constant value CT
  • liquid crystal cells as constituent materials of spectacle lenses, controlled by an electrical signal.
  • a liquid crystal cell comprises two polarizing filters, a polarizer and an analyzer, enclosing a layer of liquid crystal.
  • Transparent electrodes are deposited on the faces of the polarizing filters facing the liquid crystal layer, and the application of an electric field between these two electrodes makes it possible to switch the polarization state of the liquid crystal layer, and therefore to modify the coefficient of transmission of light by the cell, between a zero value, for which the cell is opaque, and a maximum value, for which the cell has a maximum transparency.
  • a digital signal that is to say an alternating signal, preferably in PWM pulse width modulation (for the English expression “Pulse Width Modulation"), at a predetermined frequency, in accordance with the diagrams of Figures 4A and 4B.
  • the electrical control signal may be derived from a manual control (not shown), actuated directly by the spectacle wearer, to control the transmission coefficient of the upper zone 10_S.
  • the electrical control signal may be issued from a photosensitive sensor (not shown), emitting a signal whose value is a function of the light intensity it receives from the scene in front of the spectacle wearer, and associated with a circuit which converts this signal into a digital control signal S C encoded in PWM, for automatically controlling the transmission coefficient of the filter comprising a zone of the spectacle lens, and in particular of its upper zone 1 0_S, as a function of the luminosity emanating from the scene in front of the eyeglass wearer.
  • this control signal S C varies between a value S CMAX for a duration t-, and a value S Cm in for a duration t 2 , the sum of the durations t- and t 2 defining the period T of the alternating signal S C , which is further characterized by a duty cycle a.
  • the duty cycle signal S C thus appears as a direct function of either the light intensity received by the photosensitive sensor or the set value set by the spectacle wearer.
  • the control signal S C is represented in FIG. 4A,
  • This control signal S c then drives the transmission coefficient of the upper zone 10_S of spectacle lenses 10.
  • the transmission coefficient CT S varies, in response to the signal S c , between a value CT MAX during the duration t-, and a value CT min during the duration t 2 , with the same duty cycle has the signal S c and the same frequency v.
  • the CT MAX value is that for which the spectacle lenses 10 have their maximum transparency. In most cases, liquid crystal displays have this state in the absence of any electrical excitation, that is to say in the state of rest, and are opaque only under the effect of a field electric. In these cases, the CT MAX value corresponds to a minimum excitation of the liquid crystals constituting the spectacle lenses 10.
  • the state of rest of a liquid crystal screen may be one where they exhibit their maximum opacity, becoming transparent only under the effect of an electric field.
  • the CT MAX value corresponds to a maximum excitation of the liquid crystals constituting the upper zone 10_S of spectacle lenses 10.
  • FIG. 4B thus represents the variation of the transmission coefficient CT S of the upper zone 10_S of spectacle lenses 10, and not the variation of the excitation signal of these spectacle lenses.
  • the spectacle wearer can therefore observe the scene in front of him through glasses glasses 10, whose upper zone 10_S has an adjusted transmission coefficient:
  • the automatic or manual variation of the transmission coefficient CT S of the upper zone 10_S of spectacle lenses 10 is thus obtained by a succession of states of maximum and minimum transparency of these spectacle lenses, at a frequency v and with a duty cycle. at .
  • the frequency v is chosen high enough to avoid any flicker phenomenon for the wearer of glasses.
  • the frequency v will for example be greater than 100 Hz to fully benefit from the phenomenon of retinal persistence.
  • the automatic or manual variation of the transmission coefficient CT M of the median zone 10_M of the spectacle lenses 10 is obtained in the same way, by a succession of states of maximum and minimum transparency of this zone 10_M of the spectacle lenses 10, to the same frequency v.
  • the duty cycle ( CT M ) of the transmission coefficient CT M of the median zone 10_M is a simple function of the cyclic ratio (CT S ) of the transmission coefficient CT S of the median zone 10_S, for example:
  • the lower zone 0 I does not comprise liquid crystals and is constituted for example by a simple transparent glass, the value of the transmission coefficient CT
  • this area can then reach a value close to 100%.
  • adaptive optical filter for spectacle lens comprising at least two zones
  • the transmission coefficient of the adaptive optical filter is adjusted in real time according to the brightness of the scene observed by the wearer of glasses: plus the brightness is higher, the more the adaptive optical filter is obscured, and vice versa.
  • a third zone 10_M in which the light transmission coefficient CT M is variable, its value remaining at any moment between the values of the transmission coefficients. adjacent areas 0 I and 10_S.
  • fixed and minimal, and the upper zone 10_S with variable transmission coefficient CT S each intermediate zone having a light transmission coefficient comprised between the transmission coefficients of the adjacent zones.
  • Micro-Opto-Electromechanical systems also known by the acronym MOEMS or MEMS
  • MOEMS Micro-Opto-Electromechanical systems
  • FIG. 5 Such systems are described, for example, in US Pat. No. 4,248,501 or US Pat. No. 5,784,189, to which reference may be made.
  • Such systems are also controllable by an electronic signal, and their light transmittance can be controlled at frequencies and with cyclic ratios compatible with the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Eyeglasses (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

L'invention concerne un filtre optique adaptatif (10) pour verre de lunette, comprenant au moins deux zones distinctes (10_M, 10_S), chacune étant définie par une valeur instantanée d'au moins une propriété optique. Selon l'invention, la propriété optique (CT) d'au moins une des zones (10_M, 10_S) du filtre optique adaptatif (10) est variable dans le temps entre une valeur maximale (CTMAX) et une valeur minimale (CTmin).

Description

Filtre optique adaptatif pour verre de lunettes
Domaine de l'invention La présente invention concerne des filtres optiques, utilisés comme obturateurs optiques pour commander l'atténuation d'une intensité lumineuse, de manière adaptative en réponse à des conditions extérieures ou à la commande d'un utilisateur.
L'invention peut avantageusement être mise en œuvre dans des dispositifs de pro- tection contre les éblouissements, du type lunettes de soleil.
État de la technique
On connaît déjà de nombreux types de lunettes de soleil, utilisant :
- de simples verres teintés, de couleur uniforme ou présentant un gradient de coloration,
- des verres photochromiques qui se teintent en fonction de la quantité de rayons ultraviolets à laquelle ils sont soumis, et qui retrouvent graduellement leur état clair lorsque l'exposition aux ultraviolets cesse.
Les documents FR 2 722 581 et WO 98/27452 divulguent des lunettes dont les verres présentent, dans le sens vertical :
- une zone supérieure polarisée,
- une zone inférieure neutre en polarisation, et
- une zone médiane continûment dégradée en polarisation, de la zone supérieure à la zone inférieure.
De telles lunettes permettent à leur utilisateur d'adopter une position de vision, spontanément ou naturellement, autorisant la vision à travers la zone inférieure, et une position de vision volontaire, en inclinant plus ou moins la tête vers le bas, auto- risant :
- soit la vision à travers la zone supérieure, qui atténue fortement les lumières polarisées incidentes ou réfléchies des sources éloignées, - soit la vision à travers la zone médiane, pour moduler au gré du porteur de lunettes le degré d'atténuation des sources situées en champ éloigné,
- soit la vision à travers la zone inférieure, qui ne présente aucune atténuation pour l'observation du champ proche.
Les documents EP 0 341 519, FR 2 693 562 et FR 2 975 792 divulguent des lunettes dont la monture comprend un capteur photosensible et dont les verres comportent une couche de cristaux liquides, le capteur émettant un signal fonction croissante de l'intensité lumineuse qui l'atteint, un circuit électronique pilotant les cristaux liquides de telle manière que la transmittance des cristaux liquides diminue quand l'intensité lumineuse reçue par le capteur augmente.
Le document FR 2 781 289 divulgue des lunettes dont la monture comprend un capteur photosensible émettant un signal de puissance croissante en fonction de l'intensité lumineuse qui l'atteint, un circuit électronique relié au capteur et émettant un signal secondaire alternatif de puissance croissante avec la puissance du signal émis par le capteur, et des verres comportant un écran électro-optique, le circuit électronique faisant varier la fréquence du signal secondaire, l'augmentation de l'intensité lumineuse se traduisant par une réduction de la transmittance des verres de lunettes.
Enfin, le document WO 2012/036638 divulgue des lunettes ophtalmiques à cristaux liquides, dont les verres comportent une zone supérieure pour la vision de loin, une zone inférieure pour la vision de près, et un élément à transparence variable. En mode de vision de près, la zone de lentille pour la vision de loin est opacifiée, et la zone de lentille pour la vision de près est claire ou transparente. En mode de vision de loin, les zones de lentille pour la vision de loin et pour la vision de près sont claires ou transparentes. Le but de ces lunettes est d'encourager le porteur à utiliser la zone supérieure des verres pour la vision de loin, et la zone inférieure pour la vision de près, au lieu d'accommoder en utilisant la zone supérieure, afin de soigner ou prévenir la myopie. Exposé de l'invention
La présente invention se place dans ce contexte et elle a pour but de proposer un filtre optique adaptatif, destiné notamment à constituer un verre de lunette, capable de présenter une transmission de lumière quasiment nulle afin de permettre d'éviter les éblouissements, et une transmission de lumière maximale, et notamment voisine de 100 %, afin de permettre une vision claire en l'absence de source éblouissante dans le champ de vision, le passage d'un état de transmission à l'autre s'effectuant de manière progressive.
Dans ce but, la présente invention a pour objet un filtre optique adaptatif pour verre de lunette, comprenant au moins deux zones distinctes (10_M, 10_S), l'une étant située préférentiellement au-dessus de l'autre, chacune des zones étant définie par une valeur instantanée d'au moins une propriété optique , la propriété optique étant préférentiellement le coefficient de transmission de la lumière. Selon l'invention, la propriété optique (CT) d'au moins une des zones (10_M, 10_S) du filtre optique adaptatif (10) est variable dans le temps entre une valeur maximale (CTMAX) et une valeur minimale (CTmin).
Préférentiellement, le coefficient de transmission de la zone inférieure est supérieur à celui de la zone supérieure.
Selon d'autres caractéristiques de l'invention, considérées séparément ou en combinaison :
- le coefficient de transmission de la lumière d'au moins une des zones du filtre optique adaptatif est variable selon une modulation de largeur d'impulsions ; - au moins une des zones du filtre optique adaptatif comporte une cellule à cristaux liquides ;
- au moins une des zones du filtre optique adaptatif comporte un système Mi- cro-Opto-Electro-Mécanique ; - le filtre optique adaptatif comporte deux zones dont le coefficient de transmission de la lumière de chacune d'elles est variable dans le temps entre une valeur maximale et une valeur minimale ;
- le coefficient de transmission de la lumière d'une des zones est fonction du coefficient de transmission de la lumière de l'autre zone ;
- le coefficient de transmission de la lumière d'au moins une des zones du filtre optique adaptatif est fonction du rapport cyclique du cycle de modulation de largeur d'impulsions ;
- le rapport cyclique du cycle de modulation de largeur d'impulsions du coeffi- cient de transmission de la lumière d'une des zones est fonction du rapport cyclique du cycle de modulation de largeur d'impulsions du coefficient de transmission de la lumière d'une zone adjacente ;
- le coefficient de transmission de la lumière est commandé par un signal de commande issu d'un capteur photosensible ;
- le capteur photosensible émet un signal dont la valeur est fonction de l'intensité lumineuse qu'il reçoit de la scène devant le porteur de lunettes ;
- le coefficient de transmission de la lumière est commandé par un signal de commande manuelle ;
- le filtre optique adaptatif comprend une zone dont le coefficient de transmis- sion de la lumière est constant dans le temps.
Brève description des Figures
D'autres buts, caractéristiques et avantages de la présente invention ressortiront clairement de la description qui va maintenant être faite d'un exemple de réalisation donné à titre non limitatif en référence aux dessins annexés sur lesquels :
- La Figure 1 schématiquement une vue en perspective d'un filtre optique adaptatif réalisé conformément à la présente invention ;
- Les Figures 2A et 2B représentent schématiquement une paire de lunettes, incorporant deux filtres réalisés selon la présente invention, dans deux états de fonctionnement ;
- Les Figures 3A et 3B représentent des diagrammes de fonctionnement expliquant les états représentés sur les Figures 2A et 2B ; - Les Figures 4A et 4B représentent des diagrammes de l'évolution temporelle de différents signaux utilisés dans la présente invention, et
- La Figure 5 représente schématiquement en perspective, à très grande échelle, le filtre de la Figure 1 , selon un deuxième mode de réalisation ;
Description détaillée de modes de réalisation de l'invention
On a représenté sur la Figure 1 une vue schématique en perspective d'un filtre op- tique adaptatif réalisé selon les enseignements de la présente invention. Dans l'exemple non limitatif représenté sur cette Figure, le filtre, désigné dans son ensemble par la référence 10, comporte trois zones :
- une zone inférieure 0 I ,
- une zone médiane 10_M, et
- une zone supérieure 10_S.
La zone inférieure 0 I a un coefficient de transmission fixe CT|, de valeur maximale,. En d'autres termes, la zone inférieure 0 I se laisse traverser par un maximum de lumière.
La zone supérieure 10_S a un coefficient de transmission de la lumière CTS variable dans le temps, sous la commande d'un signal électrique. Ce coefficient de transmission CTS peut ainsi prendre toute valeur entre une valeur maximale CTMAX, pour laquelle une quantité maximale de lumière est transmise, et une valeur minimale CTMIN, pour laquelle une quantité minimale de lumière est transmise.
La zone médiane 10_M a un coefficient de transmission de la lumière CTM variable dans le temps, de manière à ce que sa valeur instantannée soit toujours comprise entre la valeur fixe CT| et la valeur variable CTS.
Le filtre de la figure 1 est destiné à équiper une paire de lunettes, comme on a représenté sur les Figures 2A - 2B et 3A - 3B. On voit sur les Figures 2A et 2B une paire de lunettes, dont chacun des verres incorpore au moins un filtre réalisé selon la présente invention, dans deux états de fonctionnement. On voit :
- sur la Figure 2A une paire de lunettes, dont chacun des verres comporte une zone inférieure 0 I , une zone médiane 10_M, et une zone supérieure 10_S, et
- sur la Figure 3A l'évolution du coefficient de transmission de ces verres de lunettes selon la ligne ιιι-ιιι de la Figure 2A, les abscisses étant prises le long de cette ligne verticale.
Les Figures 2A et 3A montrent bien que la zone inférieure 0 I possède un coefficient de transmission CT| constant sur toute la hauteur de cette zone inférieure 0 I , et d'une valeur maximale.
De même, la zone supérieure 10_S possède un coefficient de transmission CTS constant sur toute la hauteur de cette zone supérieure 10_S, et de valeur CTS inférieure à la valeur CT, du coefficient de transmission de la zone inférieure 0 I . Dans l'exemple représenté, la valeur CTS du coefficient de transmission de la zone supérieure 10_S est égale à la valeur minimale CTmin.
La zone médiane 10_M possède un coefficient de transmission CTM variable, et dont la valeur est comprise entre les valeurs des coefficients de transmission CT| et CTS des zones inférieure et supérieure 0 I et 10_S adjacentes. Par exemple, la valeur instantannée de CTM pourra être égale à tout instant à la moyenne arithmétique des valeurs CT, et CTS.
Conformément à la présente invention, et comme on l'a déjà mentionné plus haut, les coefficients de transmission CTS de la zone supérieure 10_S et CTM de la zone médiane 10_M sont variables dans le temps, de telle sorte que :
- le coefficient de transmission de la lumière CTS de la zone supérieure 10_S est variable dans le temps, et peut prendre toute valeur comprise entre une valeur maximale CTMAX, pour laquelle une quantité maximale de lumière est transmise, et une valeur minimale CTMIN, pour laquelle une quantité minimale de lumière est transmise, et
- le coefficient de transmission de la lumière CTM de la zone médiane 10_M est constamment compris entre :
o la valeur instantannée variable CTS du coefficient de transmission de lumière de la zone supérieure 10_S, et
o la valeur maximale fixe CT, du coefficient de transmission de lumière de la zone inférieure 0 I .
- le coefficient de transmission de la lumière CTM étant par exemple égal à la moyenne arithmétique des valeurs constante CT| et variable CTS
C'est bien ce que l'on peut voir sur les Figures 2B et 3B, d'où il ressort que :
- le coefficient de transmission de lumière CTS a pris sa valeur maximale CTMAX, et que
- le coefficient de transmission de lumière CTM est encore compris entre la nouvelle valeur CTS du coefficient de transmission de la zone supérieure 10_S et la valeur constante CT| du coefficient de transmission de la zone inférieure 0 I .
On a donc bien réalisé selon l'invention un verre de lunettes à filtre optique adaptatif, capable de présenter :
- dans sa zone supérieure 10_S, un coefficient de transmission de lumière CTS variable entre :
o une valeur minimale CTMIN quasiment nulle afin d'éviter les éblouisse- ments par des sources lumineuses dans le champ de vision du porteur de lunettes, et
o une valeur maximale CTMAX permise par la technologie utilisée pour faire varier ce coefficient de transmission afin de permettre au porteur de lunettes d'observer le champ lointain dans la scène devant lui,
- dans sa zone inférieure 0 I , un coefficient de transmission de lumière CT| constant, de valeur maximale, afin de permettre au porteur de lunettes de distinguer parfaitement les objets dans le champ proche devant lui, et - dans sa zone médiane 10_M, un coefficient de transmission de lumière CTM, dont la valeur est à tout instant comprise entre la valeur constante CT| du coefficient de transmission de la zone inférieure 0 I et la valeur variable CTS du coefficient de transmission de la zone supérieure 10_S, afin d'éviter au porteur de lunettes une variation brusque de l'atténuation procurée par les zones inférieure 0 I et supérieure 10_S, quelle que soit l'atténuation apportée par cette dernière.
Diverses technologies permettent de réaliser filtres, parexemple pour réaliser des verres de lunettes, à coefficient de transmission variable dans le temps pour mettre en œuvre l'invention qui vient d'être décrite.
Selon un premier mode de réalisation, on pourra utiliser des cellules à cristaux liquides comme matériaux constituants des verres de lunettes, commandés par un signal électrique.
De façon classique, une cellule à cristaux liquides comporte deux filtres polarisants, un polariseur et un analyseur, enfermant une couche de cristal liquide. Des électrodes transparentes sont déposées sur les faces des filtres polarisants tournées vers la couche de cristal liquide, et l'application d'un champ électrique entre ces deux électrodes permet de faire basculer l'état de polarisation de la couche de cristal liquide, et donc de modifier le coefficient de transmission de la lumière par la cellule, entre une valeur nulle, pour laquelle la cellule est opaque, et une valeur maximale, pour laquelle la cellule a une transparence maximale.
De préférence, on utilisera pour le signal électrique de commande du coefficient de transmission du cristal liquide 16s ou 16M un signal numérique, c'est-à-dire alternatif, de préférence en modulation de largeur d'impulsions PWM (pour l'expression anglo-saxonne « Puise Width Modulation »), à une fréquence prédéterminée, con- formément aux diagrammes des Figures 4A et 4B.
Dans la description qui suit, on ne décrira que la commande du coefficient de transmission CTS de la zone supérieure 10_S. Ces explications seront facilement trans- posables à la commande du coefficient de transmission CTM de la zone médiane 1 0 M .
Le signal électrique de commande pourra être issu d'une commande manuelle (non représentée), actionnée directement par le porteur de lunettes, pour commander le coefficient de transmission de la zone supérieure 1 0_S.
De préférence, le signal électrique de commande pourra être issu d'un capteur photosensible (non représenté), émettant un signal dont la valeur est fonction de l'intensité lumineuse qu'il reçoit de la scène devant le porteur de lunettes, et associé à un circuit qui transforme ce signal en un signal numérique de commande SC codé en PWM, pour commander automatiquement le coefficient de transmission du filtre composant une zone du verre de lunette, et en particulier de sa zone supérieure 1 0_S, en fonction de la luminosité émanant de la scène située devant le porteur de lunettes.
Comme on le voit sur la Figure 4A, ce signal de commande SC varie entre une valeur SCMAX pendant une durée t-, et une valeur SCmin pendant une durée t2, la somme des durées t-, et t2 définissant la période T du signal alternatif SC, qui est de plus caracté- risé par un rapport cyclique a.
On rappelle que le rapport cyclique a du signal SC est déterminé par le ratio entre la durée t-, pendant laquelle le signal est maximal, et la durée T de la période, et varie donc de 0 à 1 00 % : a = *
T
Le rapport cyclique a du signal SC apparaît ainsi comme une fonction directe soit de l'intensité lumineuse reçue par le capteur photosensible, soit de la valeur de consigne fixée par le porteur de lunettes. Le signal de commande SC est représenté sur la Figure 4A,
- modulé en modulation de largeur d'impulsions PWM, - à une fréquence prédéterminée v =— et
- avec un rapport cyclique a , conformément au diagramme de la Figure 4A.
Ce signal de commande Sc pilote alors le coefficient de transmission de la zone su- périeure 10_S des verres de lunettes 10.
Comme on l'a représenté sur la Figure 4B, le coefficient de transmission CTS varie, en réponse au signal Sc, entre une valeur CTMAX pendant la durée t-, et une valeur CTmin pendant la durée t2, avec le même rapport cyclique a que le signal Sc et la même fréquence v .
La valeur CTMAX est celle pour laquelle les verres de lunettes 10 ont leur transparence maximale. Dans la plupart des cas, des écrans à cristaux liquides ont cet état en l'absence de toute excitation électrique, c'est-à-dire à l'état de repos, et ne sont opaques que sous l'effet d'un champ électrique. Dans ces cas, la valeur CTMAX correspond à une excitation minimale des cristaux liquides constituant les verres de lunettes 10.
Dans certains cas, l'état de repos d'un écran à cristaux liquides pourra être celui où ils présentent leur opacité maximale, ne devenant transparents que sous l'effet d'un champ électrique. Dans cette éventualité, la valeur CTMAX correspond à une excitation maximale des cristaux liquides constituant la zone supérieure 10_S des verres de lunettes 10. Les explications qui précèdent s'appliquent, mutatis mutandis, à la valeur CTmin du coefficient de transmission des verres de lunettes 10.
Le diagramme de la Figure 4B représente ainsi la variation du coefficient de transmission CTS de la zone supérieure 10_S des verres de lunettes 10, et non la varia- tion du signal d'excitation de ces verres de lunettes. Le porteur de lunettes peut donc observer la scène devant lui au travers des verres de lunettes 10, dont la zone supérieure 10_S a un coefficient de transmission ajusté :
- soit en temps réel en fonction de la luminosité de la scène : plus cette scène est lumineuse, plus les zones supérieures 10_S des verres de lunettes à transmission variable atténuent la lumière parvenant au porteur de lunettes,
- soit selon la valeur de consigne imposée par le porteur de lunettes, en fonction de l'atténuation qu'il désire voir apportée par la zone supérieure 10_S des verres 10.
La variation automatique ou manuelle du coefficient de transmission CTS de la zone supérieure 10_S des verres de lunettes 10 est ainsi obtenue par une succession d'états de transparence maximale et minimale de ces verres de lunettes, à une fréquence v et avec un rapport cyclique a . La fréquence v est choisie suffisamment élevée pour éviter tout phénomène de scintillement pour le porteur de lunettes. La fréquence v sera par exemple supérieure à 100 Hz pour bénéficier pleinement du phénomène de persistance rétinienne.
Il en résulte que le coefficient de transmission moyen, perçu par le porteur de lu- nettes, pourra varier entre CTmin pour a =0 et CTMAX pour a =100.
La variation automatique ou manuelle du coefficient de transmission CTM de la zone médiane 10_M des verres de lunettes 10 est obtenue de la même manière, par une succession d'états de transparence maximale et minimale de cette zone 10_M des verres de lunettes 10, à la même fréquence v .
Pour obtenir un coefficient de tansmission CTM de la zone 10_M dont la valeur soit toujours comprise entre les valeurs des coefficients de transmission des zones adjacentes 0 I et 10_S, selon un exemple de réalisation, on pourra faire en sorte que le rapport cyclique a (CTM) du coefficient de transmission CTM de la zone médiane 10_M soit une fonction simple du rapport cycliquea (CTS) du coefficient de transmission CTS de la zone médiane 10_S, par exemple :
Figure imgf000014_0001
Selon une variante de réalisation, la zone inférieure 0 I ne comporte pas de cristaux liquides et est constituée par exemple par un simple verre transparent, la valeur du coefficient de transmission CT| de cette zone pouvant alors atteindre une valeur proche de 100 %.
On a donc bien réalisé selon l'invention filtre optique adaptatif pour verre de lunettes, comprenant au moins deux zones,
- une zone 0 I dans laquelle le coefficient de transmission de lumière CT| est constant, de valeur maximale, de préférence voisine de 100%, afin de permettre au porteur de lunettes de distinguer parfaitement les objets dans le champ proche devant lui, et
- une zone 10_S dans laquelle le coefficient de transmission de lumière CTS est variable entre :
o une valeur minimale CTMIN quasiment nulle afin d'éviter les éblouisse- ments par des sources lumineuses dans le champ de vision lointain du porteur de lunettes, et
o une valeur maximale CTMAX permise par la technologie utilisée pour faire varier ce coefficient de transmission afin de permettre au porteur de lunettes d'observer le champ lointain dans la scène devant lui.
Si le signal de commande du coefficient de transmission est issu d'un capteur de luminosité, le coefficient de transmission du filtre optique adaptatif est ajusté en temps réel en fonction de la luminosité de la scène observée par le porteur de lu- nettes : plus la luminosité est élevée, plus le filtre optique adaptatif est obscurci, et inversement.
Pour le confort du porteur de lunettes, il est possible selon la présente invention d'ajouter une troisième zone 10_M, dans laquelle le coefficient de transmission de lumière CTM est variable, sa valeur restant à tout instant comprise entre les valeurs des coefficients de transmission des zones adjacentes 0 I et 10_S. Pour un confort encore meilleur du porteur de lunettes, on pourra multiplier le nombre de zones intermédiaires, entre la zone inférieure 0 I à coefficent de transmission CT| fixe et minimal, et la zone supérieure 10_S à coefficient de transmission CTS variable, chaque zone intermédiaire ayant un coefficient de transmission de la lumière compris entre les coefficients de transmission des zones adjacentes.
D'autres modes de réalisation de l'invention peuvent être envisagés pour obtenir le même résultat. Au lieu d'utiliser des cellules à cristaux liquides comme matériaux à coefficent de transmission varriable, on pourra utiliser des systèmes Micro-Opto-Electro- Mécaniques (aussi connus sous l'acronyme MOEMS ou MEMS), tels que celui qui est schématisé sur la figure 5. De tels systèmes sont décrits par exemple dans les documents US 4 248 501 ou US 5 784 189 auxquels on pourra se reporter.
De tels systèmes sont également commandables par un signal électronique, et leur coefficient de transmission de la lumière peut être commandé à des fréquences et avec des rapports cycliques compatibles avec la présente invention.
Bien entendu, la présente invention n'est pas limitée aux modes de réalisation qui ont été décrits, mais l'homme du métier pourra au contraire lui apporter de nombreuses modifications qui rentrent dans son cadre.

Claims

REVENDICATIONS
1 - Filtre optique adaptatif (10) pour verre de lunette, comprenant au moins deux zones distinctes (10_M, 10_S), chacune étant définie par une valeur instantanée d'au moins une propriété optique,
caractérisé en ce que la propriété optique (CT) d'au moins une des zones (10_M, 10_S) du filtre optique adaptatif (10) est variable dans le temps entre une valeur maximale (CTMAX) et une valeur minimale (CTMIN). 2 - Filtre optique adaptatif (10) selon la revendication 1 , caractérisé en ce que la propriété optique est le coefficient de transmission (CT) de la lumière
3 - Filtre optique adaptatif selon la revendication 2, caractérisé en ce que le coefficient de transmission (CT) de la lumière d'au moins une des zones (10_M, 10_S) du filtre optique adaptatif (10) est variable selon une modulation de largeur d'impulsions (PWM).
4 - Filtre optique adaptatif selon la revendication 2, caractérisé en ce que au moins une des zones (10_M, 10_S) du filtre optique adaptatif (10) comporte une cellule à cristaux liquides.
5 - Filtre optique adaptatif selon la revendication 2, caractérisé en ce que au moins une des zones (10_M, 10_S) du filtre optique adaptatif (10) comporte un système Micro-Opto-Electro-Mécanique (MEMS).
6 - Filtre optique adaptatif selon la revendication 2, caractérisé en ce qu'il comporte deux zones (10_M, 10_S) dont le coefficient de transmission (CT) de la lumière de chacune d'elles (10_M, 10_S) est variable dans le temps entre une valeur maximale (CTMAX) et une valeur minimale (CTMIN).
7 - Filtre optique adaptatif selon la revendication précédente, caractérisé en ce que le coefficient de transmission (CT) de la lumière d'une des zones (10_M) est fonction du coefficient de transmission (CT) de la lumière de l'autre zone (10_S). 8 - Filtre optique adaptatif selon la revendication 3, caractérisé en ce que le coefficient de transmission (CT) de la lumière d'au moins une des zones (10_M, 10_S) du filtre optique adaptatif (10) est fonction du rapport cyclique (a) du cycle de modula- tion de largeur d'impulsions (PWM).
9 - Filtre optique adaptatif selon les revendications 7 et 8, caractérisé en ce que le rapport cyclique (a) du cycle de modulation de largeur d'impulsions (PWM) du coefficient de transmission (CT) de la lumière d'une des zones (10_M) est fonction du rapport cyclique (a) du cycle de modulation de largeur d'impulsions (PWM) du coefficient de transmission (CT) de la lumière d'une zone adjacente (10_S)
10 - Filtre optique adaptatif selon l'une quelconque des revendications précédentes, caractérisé en ce que le coefficient de transmission de la lumière est commandé par un signal de commande issu d'un capteur photosensible.
1 1 - Filtre optique adaptatif selon la revendication précédente, caractérisé en ce que le capteur photosensible émet un signal dont la valeur est fonction de l'intensité lumineuse qu'il reçoit de la scène devant le porteur de lunettes.
12 - Filtre optique adaptatif l'une quelconque des revendications 1 à 9, caractérisé en ce que le coefficient de transmission de la lumière est commandé par un signal de commande manuelle. 13 - Filtre optique adaptatif selon l'une quelconque des revendications précédentes, caractérisé en qu'il comprend une zone ( 0 I ) dont le coefficient de transmission de la lumière (CT|) est constant dans le temps.
PCT/EP2014/070631 2013-09-26 2014-09-26 Filtre optique adaptatif pour verre de lunettes WO2015044354A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167007708A KR20160063330A (ko) 2013-09-26 2014-09-26 안경 렌즈용 적응형 광학 필터
EP14777072.1A EP3049862A1 (fr) 2013-09-26 2014-09-26 Filtre optique adaptatif pour verre de lunettes
JP2016517294A JP6502328B2 (ja) 2013-09-26 2014-09-26 眼鏡レンズおよび眼鏡レンズシステム
US14/912,235 US9915831B2 (en) 2013-09-26 2014-09-26 Adaptive optical filter for spectacle lenses
CN201480053054.2A CN105579894A (zh) 2013-09-26 2014-09-26 用于眼镜镜片的自适应光学滤波器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1359258 2013-09-26
FR1359258A FR3011095B1 (fr) 2013-09-26 2013-09-26 Filtre optique adaptatif pour verre de lunettes

Publications (1)

Publication Number Publication Date
WO2015044354A1 true WO2015044354A1 (fr) 2015-04-02

Family

ID=49551683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/070631 WO2015044354A1 (fr) 2013-09-26 2014-09-26 Filtre optique adaptatif pour verre de lunettes

Country Status (7)

Country Link
US (1) US9915831B2 (fr)
EP (1) EP3049862A1 (fr)
JP (1) JP6502328B2 (fr)
KR (1) KR20160063330A (fr)
CN (1) CN105579894A (fr)
FR (1) FR3011095B1 (fr)
WO (1) WO2015044354A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155653A1 (fr) * 2016-03-07 2017-09-14 Sergio Maggi Appareil pour améliorer l'acuité visuelle dans des points d'intérêt du champ visuel

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60121229T2 (de) 2001-04-06 2007-05-24 Sherwood Services Ag Vorrichtung zum abdichten und teilen eines gefässes mit nichtleitendem endanschlag
US10849681B2 (en) 2001-04-06 2020-12-01 Covidien Ag Vessel sealer and divider
US7276068B2 (en) 2002-10-04 2007-10-02 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
USD956973S1 (en) 2003-06-13 2022-07-05 Covidien Ag Movable handle for endoscopic vessel sealer and divider
US7156846B2 (en) 2003-06-13 2007-01-02 Sherwood Services Ag Vessel sealer and divider for use with small trocars and cannulas
US8112871B2 (en) 2009-09-28 2012-02-14 Tyco Healthcare Group Lp Method for manufacturing electrosurgical seal plates
US8439913B2 (en) 2010-04-29 2013-05-14 Covidien Lp Pressure sensing sealing plate
US8430877B2 (en) 2010-06-02 2013-04-30 Covidien Lp Apparatus for performing an electrosurgical procedure
US8469991B2 (en) 2010-06-02 2013-06-25 Covidien Lp Apparatus for performing an electrosurgical procedure
US8409246B2 (en) 2010-06-02 2013-04-02 Covidien Lp Apparatus for performing an electrosurgical procedure
US8491624B2 (en) 2010-06-02 2013-07-23 Covidien Lp Apparatus for performing an electrosurgical procedure
US8814864B2 (en) 2010-08-23 2014-08-26 Covidien Lp Method of manufacturing tissue sealing electrodes
US9017372B2 (en) 2010-10-01 2015-04-28 Covidien Lp Blade deployment mechanisms for surgical forceps
US9655672B2 (en) 2010-10-04 2017-05-23 Covidien Lp Vessel sealing instrument
US9113940B2 (en) 2011-01-14 2015-08-25 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US8968283B2 (en) 2011-05-19 2015-03-03 Covidien Lp Ultrasound device for precise tissue sealing and blade-less cutting
US8852185B2 (en) 2011-05-19 2014-10-07 Covidien Lp Apparatus for performing an electrosurgical procedure
US9161807B2 (en) 2011-05-23 2015-10-20 Covidien Lp Apparatus for performing an electrosurgical procedure
US9615877B2 (en) 2011-06-17 2017-04-11 Covidien Lp Tissue sealing forceps
US9039732B2 (en) 2011-07-11 2015-05-26 Covidien Lp Surgical forceps
US8864795B2 (en) 2011-10-03 2014-10-21 Covidien Lp Surgical forceps
US9492221B2 (en) 2011-10-20 2016-11-15 Covidien Lp Dissection scissors on surgical device
US8968310B2 (en) 2011-11-30 2015-03-03 Covidien Lp Electrosurgical instrument with a knife blade lockout mechanism
US9113897B2 (en) 2012-01-23 2015-08-25 Covidien Lp Partitioned surgical instrument
US8968360B2 (en) 2012-01-25 2015-03-03 Covidien Lp Surgical instrument with resilient driving member and related methods of use
US9375282B2 (en) 2012-03-26 2016-06-28 Covidien Lp Light energy sealing, cutting and sensing surgical device
US9265569B2 (en) 2012-03-29 2016-02-23 Covidien Lp Method of manufacturing an electrosurgical forceps
US8968311B2 (en) 2012-05-01 2015-03-03 Covidien Lp Surgical instrument with stamped double-flag jaws and actuation mechanism
US9820765B2 (en) 2012-05-01 2017-11-21 Covidien Lp Surgical instrument with stamped double-flange jaws
US9039691B2 (en) 2012-06-29 2015-05-26 Covidien Lp Surgical forceps
US10368945B2 (en) 2012-07-17 2019-08-06 Covidien Lp Surgical instrument for energy-based tissue treatment
US9681908B2 (en) 2012-10-08 2017-06-20 Covidien Lp Jaw assemblies for electrosurgical instruments and methods of manufacturing jaw assemblies
US9526564B2 (en) 2012-10-08 2016-12-27 Covidien Lp Electric stapler device
US9549749B2 (en) 2012-10-08 2017-01-24 Covidien Lp Surgical forceps
US10206583B2 (en) 2012-10-31 2019-02-19 Covidien Lp Surgical devices and methods utilizing optical coherence tomography (OCT) to monitor and control tissue sealing
US10772674B2 (en) 2012-11-15 2020-09-15 Covidien Lp Deployment mechanisms for surgical instruments
US9498281B2 (en) 2012-11-27 2016-11-22 Covidien Lp Surgical apparatus
US9713491B2 (en) 2013-02-19 2017-07-25 Covidien Lp Method for manufacturing an electrode assembly configured for use with an electrosurigcal instrument
US9456863B2 (en) 2013-03-11 2016-10-04 Covidien Lp Surgical instrument with switch activation control
US10070916B2 (en) 2013-03-11 2018-09-11 Covidien Lp Surgical instrument with system and method for springing open jaw members
US9655673B2 (en) 2013-03-11 2017-05-23 Covidien Lp Surgical instrument
WO2014194317A1 (fr) 2013-05-31 2014-12-04 Covidien Lp Dispositif chirurgical avec un ensemble effecteur terminal et système de suivi d'un tissu pendant une intervention chirurgicale
JP6099231B2 (ja) 2013-08-07 2017-03-22 コヴィディエン リミテッド パートナーシップ 双極外科手術器具
EP3030177A4 (fr) 2013-08-07 2017-04-26 Covidien LP Instrument chirurgical bipolaire
WO2015017994A1 (fr) 2013-08-07 2015-02-12 Covidien Lp Instrument chirurgical bipolaire
US9943357B2 (en) 2013-09-16 2018-04-17 Covidien Lp Split electrode for use in a bipolar electrosurgical instrument
US9445865B2 (en) 2013-09-16 2016-09-20 Covidien Lp Electrosurgical instrument with end-effector assembly including electrically-conductive, tissue-engaging surfaces and switchable bipolar electrodes
US10610289B2 (en) 2013-09-25 2020-04-07 Covidien Lp Devices, systems, and methods for grasping, treating, and dividing tissue
FR3010941B1 (fr) * 2013-09-26 2017-01-13 Valeo Vision Dispositif et procede d'aide a la conduite
US9974601B2 (en) 2013-11-19 2018-05-22 Covidien Lp Vessel sealing instrument with suction system
US10231776B2 (en) 2014-01-29 2019-03-19 Covidien Lp Tissue sealing instrument with tissue-dissecting electrode
US10058377B2 (en) 2014-04-02 2018-08-28 Covidien Lp Electrosurgical devices including transverse electrode configurations
US9687295B2 (en) 2014-04-17 2017-06-27 Covidien Lp Methods of manufacturing a pair of jaw members of an end-effector assembly for a surgical instrument
US20150324317A1 (en) 2014-05-07 2015-11-12 Covidien Lp Authentication and information system for reusable surgical instruments
US10045812B2 (en) 2014-08-11 2018-08-14 Covidien Lp Surgical instruments and methods for performing tonsillectomy and adenoidectomy procedures
US10820939B2 (en) 2014-09-15 2020-11-03 Covidien Lp Vessel-sealing device including force-balance interface and electrosurgical system including same
US9877777B2 (en) 2014-09-17 2018-01-30 Covidien Lp Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly
US10080606B2 (en) 2014-09-17 2018-09-25 Covidien Lp Method of forming a member of an end effector
US10039592B2 (en) 2014-09-17 2018-08-07 Covidien Lp Deployment mechanisms for surgical instruments
US10653476B2 (en) 2015-03-12 2020-05-19 Covidien Lp Mapping vessels for resecting body tissue
US10758257B2 (en) 2015-04-24 2020-09-01 Covidien Lp Vessel sealing device with fine dissection function
US9956022B2 (en) 2015-05-27 2018-05-01 Covidien Lp Surgical forceps and methods of manufacturing the same
US10226269B2 (en) 2015-05-27 2019-03-12 Covidien Lp Surgical forceps
US10695123B2 (en) 2016-01-29 2020-06-30 Covidien Lp Surgical instrument with sensor
US10864003B2 (en) 2016-02-05 2020-12-15 Covidien Lp Articulation assemblies for use with endoscopic surgical instruments
USD819815S1 (en) 2016-03-09 2018-06-05 Covidien Lp L-shaped blade trigger for an electrosurgical instrument
US10631887B2 (en) 2016-08-15 2020-04-28 Covidien Lp Electrosurgical forceps for video assisted thoracoscopic surgery and other surgical procedures
US10813695B2 (en) 2017-01-27 2020-10-27 Covidien Lp Reflectors for optical-based vessel sealing
EP3595561B1 (fr) 2017-03-13 2021-12-01 Covidien LP Instrument électrochirurgical doté d'une fonction de coupe entraînée par un déclencheur
US11172980B2 (en) 2017-05-12 2021-11-16 Covidien Lp Electrosurgical forceps for grasping, treating, and/or dividing tissue
US11166759B2 (en) 2017-05-16 2021-11-09 Covidien Lp Surgical forceps
US11154348B2 (en) 2017-08-29 2021-10-26 Covidien Lp Surgical instruments and methods of assembling surgical instruments
US11123132B2 (en) 2018-04-09 2021-09-21 Covidien Lp Multi-function surgical instruments and assemblies therefor
US10828756B2 (en) 2018-04-24 2020-11-10 Covidien Lp Disassembly methods facilitating reprocessing of multi-function surgical instruments
US10780544B2 (en) 2018-04-24 2020-09-22 Covidien Lp Systems and methods facilitating reprocessing of surgical instruments
US11033289B2 (en) 2018-05-02 2021-06-15 Covidien Lp Jaw guard for surgical forceps
US11109930B2 (en) 2018-06-08 2021-09-07 Covidien Lp Enhanced haptic feedback system
US11896291B2 (en) 2018-07-02 2024-02-13 Covidien Lp Electrically-insulative shafts, methods of manufacturing electrically-insulative shafts, and energy-based surgical instruments incorporating electrically-insulative shafts
US11612403B2 (en) 2018-10-03 2023-03-28 Covidien Lp Multi-function surgical transection instrument
US11376062B2 (en) 2018-10-12 2022-07-05 Covidien Lp Electrosurgical forceps
US11471211B2 (en) 2018-10-12 2022-10-18 Covidien Lp Electrosurgical forceps
US10881452B2 (en) 2018-10-16 2021-01-05 Covidien Lp Method of assembling an end effector for a surgical instrument
US11350982B2 (en) 2018-12-05 2022-06-07 Covidien Lp Electrosurgical forceps
US11246648B2 (en) 2018-12-10 2022-02-15 Covidien Lp Surgical forceps with bilateral and unilateral jaw members
US11147613B2 (en) 2019-03-15 2021-10-19 Covidien Lp Surgical instrument with increased lever stroke
US11523861B2 (en) 2019-03-22 2022-12-13 Covidien Lp Methods for manufacturing a jaw assembly for an electrosurgical forceps
US11490916B2 (en) 2019-03-29 2022-11-08 Covidien Lp Engagement features and methods for attaching a drive rod to a knife blade in an articulating surgical instrument
US11576696B2 (en) 2019-03-29 2023-02-14 Covidien Lp Engagement features and methods for attaching a drive rod to a knife blade in an articulating surgical instrument
US11490917B2 (en) 2019-03-29 2022-11-08 Covidien Lp Drive rod and knife blade for an articulating surgical instrument
US11607267B2 (en) 2019-06-10 2023-03-21 Covidien Lp Electrosurgical forceps
US11376030B2 (en) 2020-02-10 2022-07-05 Covidien Lp Devices and methods facilitating the manufacture of surgical instruments
US11617612B2 (en) 2020-03-16 2023-04-04 Covidien Lp Forceps with linear trigger mechanism
US11844562B2 (en) 2020-03-23 2023-12-19 Covidien Lp Electrosurgical forceps for grasping, treating, and/or dividing tissue

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248501A (en) 1978-06-16 1981-02-03 Bos-Knox, Ltd. Light control device
US4311368A (en) * 1978-06-08 1982-01-19 Toray Industries, Inc. Light shielding material
EP0341519A2 (fr) 1988-05-11 1989-11-15 Seiko Epson Corporation Lunettes solaires électroniques
WO1992010130A1 (fr) * 1990-12-14 1992-06-25 Humphrey Engineering, Inc. Procede et appareil permettant de commander la luminosite perçue a l'aide d'un obturateur faisant varier la duree
EP0498143A1 (fr) * 1991-02-08 1992-08-12 Alberto Agostini Dispositif anti-éblouissement actif pour conducteur de voiture automobile et autre véhicule
FR2693562A1 (fr) 1992-07-10 1994-01-14 Dynaprog Sarl Lunettes solaires à filtres électro-optiques.
FR2722581A1 (fr) 1994-07-13 1996-01-19 Delanoe Christophe Dispositif de vision polarise, type lunettes, son utilisation, et son procede d'obtention
WO1998027452A1 (fr) 1996-12-17 1998-06-25 Christophe Delanoe Lunette avec un degrade en polarisation
US5784189A (en) 1991-03-06 1998-07-21 Massachusetts Institute Of Technology Spatial light modulator
FR2781289A1 (fr) 1998-07-17 2000-01-21 Jean Claude Dumas Dispositif optique a filtre electro-optique commande automatiquement en fonction de la lumiere qui l'atteint
WO2012036638A1 (fr) 2010-09-16 2012-03-22 Ceepro Pte. Ltd. Lunettes ophtalmologiques électroactives et leur procédé de réalisation
US20120180204A1 (en) * 2011-01-13 2012-07-19 Hawkins Victor J Gradient tinted shield
FR2975792A1 (fr) 2011-05-25 2012-11-30 Evelyne Casbi Filtre optique adaptatif

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1344878A (fr) 1962-02-19 1963-12-06 Procédé et dispositif destinés à supprimer l'éblouissement provoqué, notamment, par les phares de véhicules
DE2001086C3 (de) 1970-01-12 1980-11-06 Siemens Ag, 1000 Berlin U. 8000 Muenchen Vorrichtung zur blendungsfreien Fahrzeugbeleuchtung
US3961181A (en) 1975-02-18 1976-06-01 Golden Eddie R Eye-shading means for automotive vehicle operators
US4286308A (en) 1979-09-04 1981-08-25 Polaroid Corporation Apparatus and method for reducing headlight glare
US4848890A (en) 1987-08-27 1989-07-18 Grumman Aerospace Corporation Visor with point sun blocking
DE3836095A1 (de) 1988-10-22 1990-04-26 Bosch Gmbh Robert Vorrichtung zur blendungsfreien fuehrung von fahrzeugen im verkehr
IL94597A0 (en) 1990-06-01 1991-04-15 Ofek A T Technologies Ltd Anti-dazzle apparatus
FR2672850B1 (fr) 1991-02-19 1995-01-06 Thomson Csf Systeme anti-eblouissement pour vehicules.
US5486938A (en) 1991-02-19 1996-01-23 Thomson-Csf Anti-dazzle system for vehicles
FR2684770B1 (fr) 1991-12-05 1994-09-16 Essilor Int Monture de lunettes equipee de verres a cristaux liquides.
GB9211427D0 (en) * 1992-05-29 1992-07-15 Crystalens Ltd Liquid crystal lens circuit
DE69323330T2 (de) * 1993-07-02 1999-08-26 Massachusetts Inst Technology Raeumlicher lichtmodulator
CN1059631C (zh) 1993-11-02 2000-12-20 陈友苏 行车防眩照明的方法及装置
US5544268A (en) 1994-09-09 1996-08-06 Deacon Research Display panel with electrically-controlled waveguide-routing
US5911018A (en) 1994-09-09 1999-06-08 Gemfire Corporation Low loss optical switch with inducible refractive index boundary and spaced output target
US5835458A (en) 1994-09-09 1998-11-10 Gemfire Corporation Solid state optical data reader using an electric field for routing control
AU1385495A (en) 1995-01-04 1996-07-24 Baleani, Piergiorgio Method and device for forming luminous fluxes acting on the organ of sight of a transport vehicle driver
US5671035A (en) 1995-06-07 1997-09-23 Barnes; Elwood E. Light intensity reduction apparatus and method
US5859735A (en) 1996-03-14 1999-01-12 U.S. Philips Corporation Optical element and display device provided with said optical element
US6039390A (en) 1996-08-20 2000-03-21 Donnelly Corporation Chromogenic window assembly construction and other chromogenic devices
US6204974B1 (en) 1996-10-08 2001-03-20 The Microoptical Corporation Compact image display system for eyeglasses or other head-borne frames
JP3271565B2 (ja) 1997-02-24 2002-04-02 三菱電機株式会社 カラー陰極線管パネル
US6587573B1 (en) 2000-03-20 2003-07-01 Gentex Corporation System for controlling exterior vehicle lights
US6626532B1 (en) * 1997-06-10 2003-09-30 Olympus Optical Co., Ltd. Vari-focal spectacles
JPH1184817A (ja) * 1997-09-03 1999-03-30 Matsushita Electric Ind Co Ltd コロナ放電装置
US6313587B1 (en) 1998-01-13 2001-11-06 Fusion Lighting, Inc. High frequency inductive lamp and power oscillator
CN2325793Y (zh) * 1998-02-18 1999-06-23 黄加玉 防强光驾驶镜
DE69800030T2 (de) 1998-02-19 2000-05-31 Edmund Szybicki Elektronische Beleuchtungssteuerung für Kraftfahrzeuge mit selektiver Lichtabblendung des entgegenkommenden Verkehrs für den Fahrer
US6424448B1 (en) 1999-07-20 2002-07-23 George Samuel Levy Antiglare optical device
DE19941125A1 (de) 1999-08-25 2001-03-08 Uwe Peter Braun Optischer Blendungsbegrenzer
US7450618B2 (en) 2001-01-30 2008-11-11 Board Of Trustees Operating Michigan State University Laser system using ultrashort laser pulses
US6624564B2 (en) 2001-05-25 2003-09-23 Chunghwa Picture Tubes, Ltd. Antistatic/antireflective coating for video display screen with adjustable light transmission
US6557995B1 (en) 2002-01-11 2003-05-06 James L. Edwards Temporary, disposable glare shield for eyeglasses
FR2846756A1 (fr) 2002-11-04 2004-05-07 Pechon Stephane Jean Martin Le Dispositif de vision nocturne destine a la conduite
JP4366944B2 (ja) 2003-01-31 2009-11-18 株式会社ニコン ヘッドマウントディスプレイ
FR2868553B1 (fr) * 2004-04-02 2006-06-09 Essilor Int Element de vision transparent et polarisant ayant une zone associee a un filtre de polarisation oriente verticalement
FR2868554B1 (fr) * 2004-04-02 2006-06-09 Essilor Int Element de vision transparent et polarisant ayant une zone associee a un filtre de polarisation oriente de facon oblique
GB0424997D0 (en) 2004-11-12 2004-12-15 Evans Patrick A system for the reduction of unwanted light
US20060140502A1 (en) 2004-12-25 2006-06-29 Allan Tseng Active visor system for eliminating glare in field-of-vision from mobile and transient light sources and reflective surfaces
US7134707B2 (en) 2005-02-10 2006-11-14 Motorola, Inc. Selective light attenuation system
US7751122B2 (en) 2005-02-10 2010-07-06 Lumus Ltd. Substrate-guided optical device particularly for vision enhanced optical systems
CA2537569C (fr) 2005-02-24 2014-04-29 National Research Council Of Canada Microstores et methode de fabrication
US7970172B1 (en) 2006-01-24 2011-06-28 James Anthony Hendrickson Electrically controlled optical shield for eye protection against bright light
US7328998B2 (en) * 2006-05-31 2008-02-12 Hobbs Raymond L Specially tinted lenses for sunglasses for use during flying
US7990603B2 (en) 2006-06-09 2011-08-02 Gentex Corporation Variable transmission window system
GB2445365A (en) 2007-01-05 2008-07-09 Michael Robert Garrard Anti-dazzle apparatus
AR064985A1 (es) * 2007-01-22 2009-05-06 E Vision Llc Lente electroactivo flexible
KR101238791B1 (ko) 2007-01-31 2013-03-04 도레이 카부시키가이샤 백색 폴리에스테르 필름 및 반사시트
US7893890B2 (en) 2007-03-05 2011-02-22 The Boeing Company Electrically dimmable combiner optics for head-up display
US7874666B2 (en) 2007-03-26 2011-01-25 University Of Washington Through Its Center For Commercialization Smart sunglasses, helmet faceshields and goggles based on electrochromic polymers
US20100161177A1 (en) 2007-08-06 2010-06-24 Yuter Seymour C Vehicle glare reducing systems
US8143563B2 (en) 2007-09-05 2012-03-27 Craig Broude Enhanced glare reduction
JP2009098649A (ja) * 2007-09-26 2009-05-07 Panasonic Corp 電子眼鏡
US20090213283A1 (en) 2008-02-27 2009-08-27 Burlingame Robert G Apparatus and method for adjustable variable transmissivity polarized eye glasses
CA2718521A1 (fr) * 2008-03-18 2009-09-24 Pixeloptics, Inc. Dispositif optique electroactif perfectionne
US9375886B2 (en) * 2008-10-31 2016-06-28 Johnson & Johnson Vision Care Inc. Ophthalmic device with embedded microcontroller
US9375885B2 (en) * 2008-10-31 2016-06-28 Johnson & Johnson Vision Care, Inc. Processor controlled ophthalmic device
US20110072961A1 (en) 2008-11-20 2011-03-31 GKN Aerospace Transparency Systems, Inc. Environmental seal technology for spaced transparent armor
US20100194857A1 (en) 2009-02-03 2010-08-05 Bit Cauldron Corporation Method of stereoscopic 3d viewing using wireless or multiple protocol capable shutter glasses
FR2941786B1 (fr) 2009-02-03 2011-04-29 Laster Dispositif portable d'affichage tete haute et de realite augmentee
CN201373949Y (zh) * 2009-03-24 2009-12-30 贺州学院 一种能防止近视加深的眼镜
JP5642778B2 (ja) 2009-06-11 2014-12-17 スイッチ マテリアルズ インコーポレイテッドSwitch Materials Inc. 可変透過率光学フィルタおよびその使用
US8964298B2 (en) 2010-02-28 2015-02-24 Microsoft Corporation Video display modification based on sensor input for a see-through near-to-eye display
TW201132526A (en) 2010-03-26 2011-10-01 Ind Tech Res Inst Glare reduction apparatus
JP2011237687A (ja) * 2010-05-12 2011-11-24 Panasonic Corp 表示装置及び映像視聴システム
US20120019891A1 (en) 2010-07-22 2012-01-26 Dewell Douglas A Window Having A Selective Light Modulation System
JP5555857B2 (ja) * 2010-08-13 2014-07-23 東海光学株式会社 夜間用遮光レンズ
USD665009S1 (en) 2010-10-14 2012-08-07 Adlens Beacon, Inc. Spectacles frame
US20120126099A1 (en) 2010-11-22 2012-05-24 Gm Global Technology Operations, Inc. Method for reducing glare from light sources through windscreens
KR101367656B1 (ko) 2011-02-21 2014-02-28 송영철 3차원 안경렌즈와 이를 이용한 안경
JP2012173675A (ja) * 2011-02-24 2012-09-10 Seiko Epson Corp レンズの製造方法
FR2976089B1 (fr) 2011-05-31 2014-01-03 Laster Dispositif de realite augmentee.
US9087471B2 (en) 2011-11-04 2015-07-21 Google Inc. Adaptive brightness control of head mounted display
JP5922384B2 (ja) * 2011-11-30 2016-05-24 Hoya株式会社 眼鏡レンズの製造方法
US9759916B2 (en) 2012-05-10 2017-09-12 Christopher V. Beckman Mediated reality display system improving lenses, windows and screens
US8888304B2 (en) 2012-05-10 2014-11-18 Christopher V. Beckman Optical control techniques
US9321329B2 (en) 2012-05-10 2016-04-26 Chris Beckman Glare elimination and image enhancement system improving lenses, windows and displays
US9277159B2 (en) 2011-12-29 2016-03-01 Samsung Electronics Co., Ltd. Display apparatus, and remote control apparatus for controlling the same and controlling methods thereof
CN202548457U (zh) 2012-01-18 2012-11-21 深圳市时代华影科技开发有限公司 镜片结构及兼具太阳镜功能和3d眼镜功能的两用眼镜
FR2988493B1 (fr) 2012-03-26 2014-11-21 Valeo Vision Lunettes adaptatives pour conducteur ou passager de vehicule automobile
DE102012008913A1 (de) 2012-05-03 2012-11-29 Daimler Ag Vorrichtung und Verfahren zur gezielten Lichtabschattung von Raumbereichen innerhalb eines Fahrzeugs
CN202710864U (zh) * 2012-08-23 2013-01-30 江苏亿成光电科技有限公司 智能防炫目眼镜
FR3010964B1 (fr) 2013-09-26 2017-01-06 Valeo Vision Dispositif d'aide a la conduite, procede et programme d'ordinateur, enregistrable dans une memoire d'un terminal mobile, pour la mise en œuvre dudit dispositif
FR3011091A1 (fr) 2013-09-26 2015-03-27 Valeo Vision Lunettes a affichage de donnees munies d'un ecran anti-eblouissement
FR3010941B1 (fr) 2013-09-26 2017-01-13 Valeo Vision Dispositif et procede d'aide a la conduite
US9511650B2 (en) 2014-03-30 2016-12-06 Bob Momot Adjustable opacity control based on operator and light source position
USD717865S1 (en) 2014-04-15 2014-11-18 Tenacious Holdings, Inc. Protective eyewear
USD734808S1 (en) 2014-09-16 2015-07-21 Costa Del Mar, Inc. Eyeglasses
USD735799S1 (en) 2014-09-16 2015-08-04 Costa Del Mar, Inc. Eyeglasses
USD747403S1 (en) 2014-09-23 2016-01-12 Costa Del Mar, Inc. Eyeglasses
USD746362S1 (en) 2014-09-23 2015-12-29 Costa Del Mar, Inc. Eyeglasses
USD763944S1 (en) 2015-05-11 2016-08-16 Oakley, Inc. Eyeglass
FR3039291B1 (fr) 2015-07-23 2018-08-24 Valeo Vision Lunettes anti-eblouissement munies d'un dispositif de commutation automatique
USD769962S1 (en) 2015-08-14 2016-10-25 Costa Del Mar, Inc. Eyeglasses
USD769362S1 (en) 2015-08-14 2016-10-18 Costa Del Mar, Inc. Eyeglasses
USD769358S1 (en) 2015-08-14 2016-10-18 Costa Del Mar, Inc. Eyeglasses
USD765761S1 (en) 2015-08-26 2016-09-06 Tenacious Holdings, Inc. Protective eyewear

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4311368A (en) * 1978-06-08 1982-01-19 Toray Industries, Inc. Light shielding material
US4248501A (en) 1978-06-16 1981-02-03 Bos-Knox, Ltd. Light control device
EP0341519A2 (fr) 1988-05-11 1989-11-15 Seiko Epson Corporation Lunettes solaires électroniques
WO1992010130A1 (fr) * 1990-12-14 1992-06-25 Humphrey Engineering, Inc. Procede et appareil permettant de commander la luminosite perçue a l'aide d'un obturateur faisant varier la duree
EP0498143A1 (fr) * 1991-02-08 1992-08-12 Alberto Agostini Dispositif anti-éblouissement actif pour conducteur de voiture automobile et autre véhicule
US5784189A (en) 1991-03-06 1998-07-21 Massachusetts Institute Of Technology Spatial light modulator
FR2693562A1 (fr) 1992-07-10 1994-01-14 Dynaprog Sarl Lunettes solaires à filtres électro-optiques.
FR2722581A1 (fr) 1994-07-13 1996-01-19 Delanoe Christophe Dispositif de vision polarise, type lunettes, son utilisation, et son procede d'obtention
WO1998027452A1 (fr) 1996-12-17 1998-06-25 Christophe Delanoe Lunette avec un degrade en polarisation
FR2781289A1 (fr) 1998-07-17 2000-01-21 Jean Claude Dumas Dispositif optique a filtre electro-optique commande automatiquement en fonction de la lumiere qui l'atteint
WO2012036638A1 (fr) 2010-09-16 2012-03-22 Ceepro Pte. Ltd. Lunettes ophtalmologiques électroactives et leur procédé de réalisation
US20120180204A1 (en) * 2011-01-13 2012-07-19 Hawkins Victor J Gradient tinted shield
FR2975792A1 (fr) 2011-05-25 2012-11-30 Evelyne Casbi Filtre optique adaptatif

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155653A1 (fr) * 2016-03-07 2017-09-14 Sergio Maggi Appareil pour améliorer l'acuité visuelle dans des points d'intérêt du champ visuel
US10120205B2 (en) 2016-03-07 2018-11-06 Sergio Maggi Apparatus for improving vision acuity in points of interest of the visual field
US10345624B2 (en) 2016-03-07 2019-07-09 Sergio Maggi Apparatus for improving vision acuity in points of interest of the visual field
US10545356B2 (en) 2016-03-07 2020-01-28 Sergio Maggi Apparatus for improving vision acuity in points of interest of the visual field

Also Published As

Publication number Publication date
EP3049862A1 (fr) 2016-08-03
US9915831B2 (en) 2018-03-13
CN105579894A (zh) 2016-05-11
JP6502328B2 (ja) 2019-04-17
US20160202497A1 (en) 2016-07-14
JP2016535289A (ja) 2016-11-10
KR20160063330A (ko) 2016-06-03
FR3011095A1 (fr) 2015-03-27
FR3011095B1 (fr) 2016-12-23

Similar Documents

Publication Publication Date Title
WO2015044354A1 (fr) Filtre optique adaptatif pour verre de lunettes
EP3049855B1 (fr) Lunettes à affichage de données munies d'un écran anti-éblouissement
EP2715437B1 (fr) Filtre optique adaptatif
FR2530039A1 (fr) Lunettes de protection a transmission reglable automatiquement utilisant des cristaux liquides
EP2830899B1 (fr) Procédé et dispositif d'aide à la conduite diurne des véhicules automobiles
EP1807727B1 (fr) Afficheur ophtalmique comportant une lentille ophtalmique et un imageur optique
EP1074863A1 (fr) Dispositif optique à réflexion de Bragg et procédés pour sa fabrication
EP3049854B1 (fr) Lunettes à affichage de données munies d'un écran anti-éblouissement
EP3688525B1 (fr) Procede de modification de la couleur en transmission d'un systeme optique et systeme optique
CA3080726C (fr) Dispositif optique facilitant la lecture
EP3349059B1 (fr) Écran adaptatif sectorisé et système d'aide à la conduite comprenant un tel écran adaptatif
EP1118899A1 (fr) Dispositif optique à filtre électro-optique commandé automatiquement en fonction de la lumière qui l'atteint
FR3011096A1 (fr) Lunettes anti-eblouissement et de vision a trois dimensions
WO2009121894A1 (fr) Dispositif d'obturation electro-optique
EP0601158A1 (fr) Lunettes solaires a ecrans electro-optiques
WO2018042218A1 (fr) Dispositif oculaire de filtration et methode utilisant un tel dispositif
FR3021800A1 (fr) Dispositif d'affichage reflectif a tres haute luminosite et a surface photovoltaique integree
CA2138485A1 (fr) Lunettes solaires a filtres electro-optiques
FR2799012A1 (fr) Lunettes a composite electro optique permettant une commutation alternee transparence/opacite
FR2973523A1 (fr) Procedes d'affichage stereoscopique supprimant les images fantomes
FR2719391A1 (fr) Lentilles optiques oculaires solaires.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480053054.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14777072

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014777072

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014777072

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14912235

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167007708

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016517294

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE