WO2009121894A1 - Dispositif d'obturation electro-optique - Google Patents

Dispositif d'obturation electro-optique Download PDF

Info

Publication number
WO2009121894A1
WO2009121894A1 PCT/EP2009/053834 EP2009053834W WO2009121894A1 WO 2009121894 A1 WO2009121894 A1 WO 2009121894A1 EP 2009053834 W EP2009053834 W EP 2009053834W WO 2009121894 A1 WO2009121894 A1 WO 2009121894A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
cell
intensity
light signal
threshold
Prior art date
Application number
PCT/EP2009/053834
Other languages
English (en)
Inventor
Jean-Louis De Bougrenet De La Tocnaye
Emmanuel Daniel
Thibault De Bougrenet De La Tocnaye
Bertrand Caillaud
Pascal Gautier
Original Assignee
Groupe Des Ecoles Des Telecommunications / Ecole Nationale Superieure Des Telecommunications De Bretagne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Groupe Des Ecoles Des Telecommunications / Ecole Nationale Superieure Des Telecommunications De Bretagne filed Critical Groupe Des Ecoles Des Telecommunications / Ecole Nationale Superieure Des Telecommunications De Bretagne
Publication of WO2009121894A1 publication Critical patent/WO2009121894A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/04Eye-masks ; Devices to be worn on the face, not intended for looking through; Eye-pads for sunbathing
    • A61F9/06Masks, shields or hoods for welders
    • A61F9/065Masks, shields or hoods for welders use of particular optical filters
    • A61F9/067Masks, shields or hoods for welders use of particular optical filters with variable transmission

Definitions

  • the invention relates to the field of designing and producing optical shutters using liquid crystal materials.
  • the invention is particularly, but not exclusively, its application for making helmets used to perform arc welding operations.
  • the MIG / MAG operating regimes can be broken down into two signals: a continuous signal (or level) corresponding to the lowest arc current intensity, keeping the arc running. and generating an emitted light intensity (which is substantially proportional to the arc current intensity) which is superimposed on: - a pulse signal, superimposed on the continuous signal, and alternating
  • the continuous level corresponds to a continuous level of protection (or hue) of 9 (which corresponds to a light attenuation of 32dB) and the maximum level of the dynamic signal at a protection level of 13 (which corresponds to a light attenuation of 49dB).
  • MIG / MAG to protect the eyes of the welder (or operator), it is necessary to implement dynamic shutters adapted to let more or less light from the work scene following the intensity of the arc Welding.
  • liquid crystals Most of the dynamic shutters used today to protect the operator's eyes are based on liquid crystals. Such materials based on liquid crystals constitute materials whose optical properties, and in particular birefringence, can be modified by applying an electric field to them. By inserting such liquid crystal materials into one or more cells placed between polarizers and / or cross analyzers, voltage controllable shutters are provided.
  • the shutters used today generally comprise a stack of liquid crystal cells arranged between polarizers and UV (for Ultra-Violet) or IR (for Infra-Red) filters.
  • optical shutters employing nematic liquid crystal materials (as described in patent document WO0122906) and other shutters using smectic liquid crystal materials are known.
  • Nematic liquid crystal The dominant technology for making dynamic shutters (eg for arc welding stations) is nematic liquid crystal.
  • Nematic technology provides: strong attenuation contrast (with a protection level of up to 13); a quasi-continuous and progressive variation of the attenuation as a function of the electric field; a short response time for the transition from the transparent state to the blocking state, otherwise known as the shutter time, less than 1 millisecond.
  • the nematic technology does not allow to obtain a short response time for the transition from the blocking state to the transparent state (otherwise called opening time). Indeed, it is limited to opening times of the order of a few tens of milliseconds. These opening times are too long for certain MIG / MAG operating regimes. Nematic technology therefore does not allow tracking of MIG / MAG pulses.
  • smectic liquid crystal Another technology for achieving dynamic shutters is smectic liquid crystal.
  • the smectic technology makes it possible to obtain: a short response time for the transition from the transparent state to the blocking state of the order of 400 ⁇ s; a short opening time of the order of 400 ⁇ s.
  • the smectic technology is not adapted to ensure a strong contrast of attenuation.
  • a French patent document filed under the number FR0604153 and describing a dynamic shutter based on crystal cells is known.
  • this document proposes an electrooptic shutter device with double shutter speed having shutter times (or response time) and short opening times, a strong contrast of attenuation and a quasi-continuous variation and progressive attenuation as a function of the electric field applied when the dynamic shutter is energized.
  • This device comprises: at least one cell of a first type comprising two blades of optically transparent material and at least one layer of a first material based on a nematic liquid crystal provided between the blades; at least one cell of a second type comprising two blades of optically transparent material and at least one layer of a second smectic liquid crystal material provided between the blades.
  • this type of helmet does not dynamically adapt to several light intensity variation profiles depending on the welding position and the selected arc speed. The vision of the scene is then not optimized from one welding station to another.
  • the invention in at least one embodiment, has the particular objective of overcoming these various disadvantages of the state of the art.
  • an object of the invention is to provide a dynamic shutter based on liquid crystals, in particular for welding helmet, making it possible to adapt in complete safety to the development of arc welding stations, current and future, presenting various welding regimes imposing protection regimes more and more sophisticated and varied.
  • a complementary objective of at least one embodiment of the invention is to provide a dynamic shutter having short shutter and open times as well as a high attenuation contrast to ensure the most accurate vision. possible clear of the working scene in the immediate environment of a welding arc.
  • an electro-optical shutter device for attenuating a light signal, said electro-optical shutter device comprising at least a first cell comprising a first liquid crystal material .
  • the electro-optical shutter device of the invention is remarkable in that it further comprises: at least one second cell comprising a second liquid crystal material; means for comparing the intensity of the light signal with a first predetermined threshold; first means for generating and applying to each first cell a first control voltage adapted to pass said first cell in a blocking state, as long as said comparing means detects that the intensity of the light signal is greater than said first threshold; second means for generating and applying to each second cell a second control voltage adapted to switch said second cell between an on state and a blocking state to form a stroboscopic shutter, as long as said comparison means detects that the intensity the light signal is less than or equal to said first threshold, said first and second cells operating in phase opposition.
  • the first liquid crystal material of the first cell (s) of this first shutter makes it possible to respond to the problem of protecting the eyes of a user when generating a light signal.
  • This first liquid crystal material is particularly adapted to follow the dynamics of the light signal.
  • the second material of the second cell (s) of this stroboscopic shutter allows protection of the eyes of the user when the intensity of the light signal is less but still harmful to the eyes of the user.
  • the attenuation of this second shutter (varying for example between shades 9 to 11) thus prevents accidental dazzle of the operator.
  • the vision of the work scene is improved.
  • each first cell and each second cell makes it possible to obtain two shutters complementary to each other, each second cell being active (blocking state) when each first cell is inactive (on state), and conversely, thanks to using the first common trigger threshold of each first and second cells.
  • the second control voltage is a signal modulated according to a pulse width modulation.
  • contrast is defined as the difference between the maximum intensity (passing state of the cell) and the minimum intensity (blocking state of the cell) divided by the sum of the maximum intensity and the minimum intensity .
  • the electro-shutter device comprises means for adjusting a parameter of the pulse width of the pulse width modulation.
  • this adjustment means constitutes a contrast control of each second cell.
  • the electro-optical shutter device further comprises: at least a third cell comprising a third liquid crystal material; third means for generating and applying to each third cell a third control voltage adapted to pass said third cell in a blocking state, as long as said comparing means detects that the intensity of the light signal is greater than a second predetermined threshold said second threshold being lower than said first threshold.
  • the third liquid crystal of the third cell (s) of this third shutter operates as a dimmer according to the value of the third control voltage applied to each third cell. They guarantee the minimum level of protection while offering a visual comfort of observation.
  • This third liquid crystal must make it possible to achieve a strong contrast of attenuation and to have a quasi-continuous variation of the protection level (or shade) (for example from 1 to 9 in DIN scale, the hue 9 corresponding to 32 dB of attenuation) without constraint in terms of duration of shutter and opening times.
  • the first material is a thin nematic liquid crystal.
  • a nematic crystal advantageously makes it possible to adjust the dynamics in shade of the shutter.
  • This nematic crystal makes it possible to obtain a strong attenuation contrast according to the protection levels (or hues) ranging, for example, from 10 to 13. It also makes it possible to obtain a short response time for the transition from the transparent state to the blocking state, otherwise called shutter time to allow to perfectly follow the dynamics of the light signal.
  • This nematic liquid crystal thus provides a quasi-binary operation implementing a rapid alternation between a low protection level (9 for example) and a high protection level (13 for example) in DIN scale (13 corresponding to 49 dB attenuation) with short shutter times (or rise time) and adjustable hue dynamics.
  • the first material is a FLC ferroelectric smectic liquid crystal.
  • This liquid crystal smectic FLC FLC for "Ferroelectric Liquid Crystal” in English
  • FLC Freroelectric Liquid Crystal
  • the smectic technology is not adapted to ensure a strong attenuation contrast like the nematic liquid crystal.
  • the first material comprises a combination of at least one FLC ferroelectric smectic liquid crystal and a polymer, better known as PSFLC.
  • Such a liquid crystal stabilized by a polymer is also shock resistant. This characteristic thus makes it possible to produce a closure device that is resistant to a large number of manipulations.
  • the second material is a FLC ferroelectric smectic liquid crystal.
  • Such a second liquid crystal material makes it possible to obtain a short response time for the transition from the transparent state to the blocking state, of the order of 400 ⁇ s, as well as a short opening time, of the order 400 ⁇ s.
  • the second material comprises a combination of at least one FLC ferroelectric smectic liquid crystal and a polymer, better known as PSFLC.
  • the third material is a twisted nematic liquid crystal
  • Using a twisted nematic liquid crystal adjusts the shade of the shutter to provide the minimum level of continuous protection as long as the light signal persists.
  • the dynamics of the hues vary for example between 1 and 9.
  • Either the third material is an anti-ferroelectric smectic liquid crystal AFLC
  • an anti-ferroelectric smectic liquid crystal has two symmetrical addressed states and a secure state in the absence of a field applied to the liquid crystal. This secure state thus makes it possible to fulfill the attenuator function in the event of failure of the application of the supply voltage on the liquid crystal.
  • the third material comprises a combination of an anti-ferroelectric smectic liquid crystal AFLC and a polymer, better known as PSAFLC.
  • the first material is a thin nematic liquid crystal and the second material comprises a combination of at least one FLC ferroelectric smectic liquid crystal and a polymer, better known as PSFLC.
  • this combination is particularly interesting in terms of synergy between each first cell and each second cell. Indeed, this first and second liquid crystal material make it possible to obtain two shutters complementary to each other, each second cell being active (blocking state) as long as each first cell is inactive (on state), and vice versa.
  • the first nematic liquid crystal has an adjustable hue dynamic as well as short shutter times (or rise time) for the transition to the blocking state of each first cell.
  • the combination with a second smectic liquid crystal PSFLC having a short response time for the transition from the transparent state to the blocking state advantageously makes it possible to overcome the times long response of the first liquid crystal for the transition from the blocking state to the transparent state (otherwise called opening time).
  • opening time the times long response of the first liquid crystal for the transition from the blocking state to the transparent state.
  • the second liquid crystal PSFLC also has a short opening time of the order of 400 ⁇ s necessary to ensure the strobe mode.
  • this combination of a first nematic liquid crystal and a second liquid crystal PSFLC offers the possibility of viewing the scene safely thanks to the stroboscopic effect of the stroboscopic shutter on all shades 8 to 13 by example.
  • the first material is a thin nematic liquid crystal
  • the second material comprises a combination of at least one FLC ferroelectric smectic liquid crystal and a polymer, better known as PSFLC
  • the third material is a liquid crystal. twisted nematic.
  • the combination of these three liquid crystal materials allows an optimized view of the scene safely, the third liquid crystal ensuring a constant attenuation regardless of the intensity of the light signal.
  • the invention also relates to a helmet for arc welding characterized by implementing the electropoptive closure device of the invention.
  • the electro-optical shutter device of the present invention makes it possible, in the context of a helmet for arc welding, to protect the eyes of the operator against an excessive intensity of the light pulses. the light signal coming from the welding arc.
  • it makes it possible to respond to the constraints of both the brightness of the light signal (composed of a continuous background and of light pulses) of the various arc welding regimes by: a dynamic adjustment of the hue of the first and third cells and; by using a first fast cell for tracking the light pulses of the light signal from the solder arc and; - by the use of a second cell operating in strobe mode only in time intervals where the intensity of the light signal is less intense (cold cycle of the arc).
  • the use of the second cell in strobe mode in particular makes it possible to make the vision as clear as possible of the scene while ensuring protection of the eye of the user during the cold cycle of the welding arc.
  • the use of the second cell thus makes it possible to adapt to all current and future welding positions.
  • FIG. 1 schematically illustrates a headset classically used for arc welding
  • Figure 2 illustrates the continuous level and the maximum level of the light signal coming from the arc of welding according to a standard operating mode of the arc according to the technique MIG / MAG
  • 3 schematically illustrates a sectional view along the Z axis of the electro-optical shutter device constituting the helmet screen for arc welding
  • Figure 4 schematically illustrates the control device of the helmet screen cells for arc welding
  • FIGS. 5a, 5b and 5c show the chronogram of the voltages applied to each liquid crystal cell and the hue dynamics of the associated cells.
  • This helmet 40 conventionally comprises a display screen 41 of the work scene.
  • This screen 41 comprises in particular an electro-optical shutter device which is described in greater detail in connection with FIG. 3, according to a preferred embodiment of the invention.
  • FIG. 2 illustrates the operating regimes according to the MIG / MAG technique as described above.
  • the intensity of the light signal coming from the soldering arc comprises two distinct levels: a level 51 of continuous signal corresponding to the intensity of the lowest light signal; a maximum signal level 52 corresponding to light pulses of the light signal 2 of the solder arc. These luminous pulses correspond to the intensity of the strongest light signal, which itself determines the maximum level of protection to be provided to the welder.
  • the welding arc regime alternates (dynamically) between the continuous signal level 51 and the maximum signal level 52.
  • FIG 3 is a schematic view of the electro-optical shutter device 1 according to one embodiment of the invention.
  • This device comprises three distinct cells (10, 20, 30): a first cell 10 consisting of two substrates (101, 102), generally made of glass, and placed facing one another. Once assembled, these two substrates form a cavity adapted to receive a first liquid crystal 11 of smectic type FLC (for "Ferroeletric Liquid Crystal” in English) or PSFLC (for "Polymer Stabilized
  • a thin nematic liquid crystal is a liquid crystal of thickness between 1 and 1, 5 microns in the visible range.
  • the structure of a nematic liquid crystal a second cell 20 consisting of two substrates (201, 202), generally made of glass, and placed facing one another.Only assembled, these two substrates form a cavity adapted to receive a third liquid crystal 21 of the smectic type FLC (for "Ferroeletric Liquid Crystal” in English) or PSFLC (for "Polymer Stabilized Ferroeletric Liquid Crystal"), a third cell 30 consisting of two substrates (301, 302), generally made of glass, These two substrates, once assembled, form a cavity adapted to receive a third liquid crystal 31 of twisted nematic type or of anti-ferroelectric smectic type AFL.
  • C for "Anti-Ferroelectric Liquid
  • polarized blade is meant: a blade on which a polarizer is affixed; or a blade forming itself a polarizer.
  • FIG. 4 diagrammatically illustrates a control device 60 enabling the transition from a state to a blocking state of each cell 10, 20 and 30.
  • This control device 60 comprises: a means 61 for detecting the light signal 2; a means 62 for comparing the intensity of the light signal 2 with a first predetermined intensity threshold S1 and a second threshold with a predetermined intensity S2 (the role of the thresholds S1 and S2 will be detailed later in the description); control voltage generating means 63 comprising: a first means 63a for generating and applying to each first cell 10 a first control voltage Vl adapted to pass said first cell 10 in a blocking state, as long as said means
  • Comparative method 62 detects that the intensity of the light signal 2 is greater than said first threshold S 1; second means 63b for generating and applying to each second cell 20 a second control voltage V2 adapted to switch said second cell 20 between an on state and a blocking state to form a stroboscopic shutter, as long as said comparison means 62 detects that the intensity of the light signal 2 is less than or equal to said first threshold S1.
  • a third means 63c making it possible to generate and apply to each third cell 30 a third control voltage V3 adapted to make said third cell 30 go into a state blocking, as long as said comparison means 62 detects that the intensity of the light signal 2 is greater than at a second predetermined threshold S2.
  • This comparison means 62 makes two comparisons: a first comparison compares the intensity of the light signal 2 with a first threshold in predetermined intensity S1. It thus generates a first control signal C1 when the intensity of the light signal 2 becomes greater than the first predetermined threshold S1. It also generates a second control signal C2 when the intensity of the light signal 2 becomes lower than the first predetermined threshold S1. a second comparison compares the intensity of the light signal 2 with a second threshold in predetermined intensity S2. It thus generates a third control signal C3. Each control signal C1, C2 and C3 is then sent to a means 63 for generating control voltages.
  • the command Cl is sent to generating means 63 for control voltages.
  • the first means 63a then generates and applies the first control voltage Vl to the first cell (s) 10.
  • the first cell (s) then switches from the on state to the first state (s). blocker.
  • the command C2 is sent to the generating means 63 of the control voltages.
  • the second means 63b then generates and applies the second control voltage V2 to the second cell (s) 20 to switch it from the on state to the blocking state.
  • a stroboscopic shutter is thus formed as long as the intensity of the light signal 2 is less than the first threshold Sl.
  • the first cell (s) 10 then passes from the blocking state to the on state, each first cell being no longer voltage controlled by the first control voltage Vl.
  • control signal C3 is generated when the intensity of the light signal 2 becomes greater than the second predetermined threshold S2.
  • This control signal C3 is then sent to the generation means 63 of control voltages.
  • the third means 63c then generates and applies a third control voltage V3 in order to block the third cell (s) 30.
  • the blocking state of each third cell 30 is maintained as long as the intensity of the light signal 2 is greater than the second intensity threshold S2.
  • Figures 5a, 5b and 5c show more precisely the electro-optical effect of each cell 10, 20 and 30 respectively in response to light pulses of the light signal 2 from the solder arc. These pulses are notably detected and analyzed by the control device 60 of FIG. 4.
  • FIG. 5a illustrates the action of the first cell (s) 10 as a function of the intensity of the light pulses of the light signal 2.
  • This or these first cell (s) 10 constitute a first shutter fast adapted to protect the eyes of the operator of the light pulses generated by the welding arc.
  • This first fast shutter filter is in particular slaved on each detected light pulse by triggering (passage to the closed state of the liquid crystal cell 10) at each detection of light pulses.
  • the on state or the closed state of each first cell 10 is a function of comparing the intensity of the light pulse 2 with the first intensity threshold S 1.
  • the first liquid crystal material 11 of the smectic type (FLC or PSFLC) used for producing the first cell (s) makes it possible to follow the impulses of the arc instantaneously, in particular during the times. fast descent of the arc pulse.
  • these liquid crystals (FLC and PSFLC) provide a quasi-binary operation implementing a rapid alternation between the protection level 9 (corresponding to the DC level) and the protection level 13 (corresponding to the maximum level of the pulse signal).
  • DIN scale 13 corresponding to 49dB attenuation).
  • the first liquid crystal material of the first cell (s) 10 may also be of the thin nematic type.
  • Such a liquid crystal material 11 has the advantage of being dynamically adjustable in hue in continuous mode by applying the first control voltage Vl to the first cell (s) 10.
  • the first Thin nematic liquid crystal material 11 is switched to the dark state by a high voltage HV1 signal and El period.
  • the hue is then adjusted by a peak voltage signal Vl and of period P1.
  • the return to the light state (passing state of the first liquid crystal material 11) is achieved by discharging the first cell (s) 10 in a low resistance.
  • FIG. 5b illustrates the action of the second cell (s) 20 as a function of the intensity of the light signal 2.
  • the second smectic-type liquid crystal material (FLC or PSFLC) of the second cell (s) 20 constitutes a stroboscopic shutter.
  • This stroboscopic shutter allows in particular a vision of the scene by a fast sampling (stroboscopic effect).
  • this stroboscopic shutter is triggered when the intensity of the light signal 2 becomes lower than the first intensity threshold Sl.
  • this stroboscopic shutter is active only in time intervals where the intensity of the arc is less intense (cold cycle).
  • the second liquid crystal material 21 of the stroboscopic shutter is switched to the dark state (blocking state) by the second control voltage V2.
  • the second control voltage V2 is for example a signal modulated according to a pulse width modulation (PWM), said PWM being adjusted by the contrast control during the cold time of the arc ( period E2).
  • PWM pulse width modulation
  • the second liquid crystal material 21 is switched to a light state by a short HV2 inverse high voltage pulse of period E2.
  • this stroboscopic shutter makes it possible to protect the eyes during the descent times of the pulse of the arc (cold cycle of the arc) between the protection level (or shade) 8 and the protection level 11.
  • the vision of the scene is improved while maintaining maximum safety for the eyes of the operator even when the light pulse of the light signal 2 relaxes.
  • the dynamics of the stroboscopic shutter and the associated hue level are shown in the timing chart 200 of FIG. 5b.
  • FIG. 5c illustrates the action of the third cell (s) 30 as a function of the intensity of the light signal 2.
  • the third liquid crystal material 31 of twisted nematic type of the third cell (s) (s) 30 is a liquid crystal with high attenuation dynamics. It constitutes a shutter operating as a dimmer.
  • the third liquid crystal material 31 switches (see timing diagram 300 of FIG. 5) to the activation of the arc and since the intensity of the light signal 2 becomes greater than the second intensity threshold S2.
  • Each of the third nematic liquid crystal cells 30 of the optical attenuator is then controlled by the third control voltage V3 P3 period to adjust the attenuator attenuation level.
  • the hue of the attenuation shutter is then adjustable in the range of 1 to 9.
  • the third liquid crystal material 31 is switched to the blocking state by application of a HV3 high voltage signal. of period E3.
  • the duration of operation of this dimming shutter corresponds to the duration at which the intensity of the light signal remains greater than the second threshold in intensity S2.
  • its duration is greater than the duration of the electric arc to compensate for the remanence of the brightness of the arc at the extinction of the welding station (see timing chart 300 of Figure 5c).
  • the third liquid crystal materials 31 can also be of the smectic AFLC or PSAFLC type because of the existence of a secure state off.
  • the third material 31 liquid crystal (twisted nematic, AFLC or
  • PSAFLC PSAFLC of the third cell (s) 30 operating dimmer ensures the minimum level of protection and visual comfort of observation for the continuous signal of the arc.
  • This or these third cell (s) 30 make it possible to obtain a strong attenuation contrast and a quasi-continuous variation of the level of protection (or attenuation) from 1 to 9 on a DIN scale (9 corresponding to 32 dB attenuation) in terms of the duration of the shutter and opening times.
  • the electro-optical device 1 of the present invention has the advantage of having a dynamic shutter comprising three cells, the combination of three cells to obtain several degrees of freedom (time, pulse duration, dynamics).
  • the combination of three different types of liquid crystals notably makes it possible to optimize the attenuation dynamics in continuous mode thanks to the minus two liquid crystal cells and optimize the vision of the scene by the use of a fast liquid crystal during the duration of the pulse of the arc and the cold weather of the arc.
  • This electro-optical device 1 then makes it possible to take into account and exploit various physical and physiological parameters related to human vision by the combination of impulse regimes, temporal and continuous. The viewing time of the scene is optimized
  • the electro-optical device 1 of the invention is entirely adapted to operate on a helmet with arc welding, called “smart helmet", controlled by one or more microprocessors previously programmed according to different regimes.
  • arc known. Indeed, there are several arc regimes for the same welding station.
  • the present invention then makes it possible to optimize the different sealing regimes of the helmet screen at the weld as a function of the different arc welding regimes.
  • the electro-optical device 1 of the present invention makes it possible to adapt to all the arc speeds of the different welding stations by offering the possibility of modifying several control parameters of the welding station. It is thus possible to program the electro-optical device 1 as a function of the welding station and the selected arc speed, and to optimize the different closing regimes of the helmet screen at the weld according to the different speeds. arc welding.
  • This electro-optical device 1 also makes it possible to guarantee maximum safety: when the intensity of the arc current is in the continuous level 51, the protection of the eyes and the visual comfort of the operator are guaranteed by the optical attenuation. of the or the third cells 30.
  • the intensity of the arc current is in the maximum level 52, the eyes of the operator are protected by the shutter rapid shutter of the first cell (s) ( s) 10.
  • the second cell (s) 20 of the shutter strobe light protect the eye from excessive light intensity when the light pulse of the arc relaxes (cold cycle of the arc) around the colors 9 to 11 not covered by the dimmer shutter.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

L'invention concerne un dispositif d'obturation électro-optique (1) permettant d'atténuer un signal lumineux (2) et comprenant au moins une première cellule (10) comprenant un premier matériau (11) cristal liquide. Selon l'invention, le dispositif d'obturation électro-optique (1) comprend au moins une seconde cellule (20) comprenant un second matériau (21) cristal liquide formant un obturateur stroboscopique tant que l'intensité du signal lumineux (2) est inférieure ou égale à un premier seuil, et une première cellule (10) étant dans un état bloquant tant que l'intensité du signal lumineux (2) est supérieure au premier seuil.

Description

Dispositif d'obturation électro-optique.
1. Domaine de l'invention
L'invention concerne le domaine de la conception et de la réalisation des obturateurs optiques mettant en œuvre des matériaux à base de cristaux liquides. L'invention trouve tout particulièrement, mais non exclusivement, son application pour la réalisation de casques utilisés permettant de pratiquer les opérations de soudure à l'arc.
2. Arrière plan technologique
De manière connue, les techniques de soudure à l'arc actuelles se répartissent suivant les trois catégories suivantes : le procédé MIG (pour « Métal Inert Gaz ») et
MAG (pour « Métal Active Gaz ») qui représente 60% du marché, le procédé TIG
(pour « Tungstène Inert Gaz ») qui représente 15% du marché et les autres procédés qui représentent 25% du marché.
Les régimes de fonctionnement conformes par exemple, à la technique MIG/MAG peuvent se décomposer en deux signaux : un signal (ou niveau) continu correspondant à l'intensité de courant d'arc la plus basse, permettant de maintenir l'arc en fonctionnement et générant une intensité lumineuse émise (qui est sensiblement proportionnelle à l'intensité de courant d'arc) auquel est superposé : - un signal impulsionnel, superposé au signal continu, et alternant
(dynamiquement) entre le niveau continu d'intensité de courant d'arc minimum et un niveau d'intensité de courant d'arc maximum correspondant à l'intensité de courant d'arc la plus élevée, qui, elle même, fixe le niveau de protection maximum à apporter aux yeux du soudeur. Généralement, en suivant la norme en vigueur dans la profession (qui est l'échelle DIN décrite dans les normes EN379 et ENl 69), le niveau continu correspond à un niveau de protection (ou teinte) continu de 9 (qui correspond à une atténuation lumineuse de 32dB) et le niveau maximum du signal dynamique à un niveau de protection de 13 (qui correspond à une atténuation lumineuse de 49dB).
A chacun des niveaux continu et maximum correspond donc un niveau de luminosité pouvant être nocive pour les yeux du soudeur. Ainsi, dans le cadre de la mise en œuvre de la technique de soudure
MIG/MAG, afin de protéger les yeux du soudeur (ou opérateur), il est nécessaire de mettre en œuvre des obturateurs dynamiques adaptés à laisser passer plus ou moins la lumière en provenance de la scène de travail suivant l'intensité de l'arc de soudure.
La plupart des obturateurs dynamiques utilisés de nos jours pour protéger les yeux de l'opérateur sont à base de cristaux liquides. De tels matériaux à base de cristaux liquides constituent des matériaux dont on peut modifier les propriétés optiques et notamment la biréfringence en leur appliquant un champ électrique. En insérant de tels matériaux à base de cristaux liquides dans une ou plusieurs cellules, placées entre des polariseurs et/ou des analyseurs croisés, on obtient des obturateurs pouvant être commandés par une tension.
Les obturateurs utilisés de nos jours comprennent généralement un empilement de cellules de cristaux liquides disposées entre des polariseurs et des filtres UV (pour Ultra-Violet) ou IR (pour Infra-Rouge).
Ainsi on connaît des obturateurs optiques mettant en œuvre des matériaux à base de cristaux liquides nématiques (tel que décrit dans le document de brevet WO0122906) et d'autres obturateurs mettant en œuvre des matériaux à base de cristaux liquides smectiques.
La technologie dominante pour réaliser les obturateurs dynamiques (par exemple, pour les postes de soudure à l'arc) est le cristal liquide nématique. La technologie nématique permet d'obtenir : un fort contraste d'atténuation (avec notamment un niveau de protection pouvant atteindre 13) ; une variation quasi continue et progressive de l'atténuation en fonction du champ électrique ; un temps de réponse court pour le passage de l'état transparent à l'état bloquant, autrement appelé temps d'obturation, inférieur à la milliseconde. Cependant, la technologie nématique ne permet pas d'obtenir un temps de réponse court pour le passage de l'état bloquant à l'état transparent (autrement appelé temps d'ouverture). En effet, elle est limitée à des temps d'ouverture de l'ordre de quelques dizaines de millisecondes. Ces temps d'ouverture sont trop longs pour certains régimes de fonctionnement conformes à la technique MIG/MAG. La technologie nématique ne permet donc pas de suivre les impulsions MIG/MAG.
Une autre technologie pour réaliser les obturateurs dynamiques est le cristal liquide smectique. La technologie smectique permet d'obtenir : un temps de réponse court pour le passage de l'état transparent à l'état bloquant de l'ordre de 400 μs ; - un temps d'ouverture court de l'ordre de 400 μs.
Cependant, la technologie smectique n'est pas adaptée pour assurer un fort contraste d'atténuation.
Ainsi, ces obturateurs à base de cristaux liquides nématiques ou smectiques présentent un certain nombre d'inconvénients diminuant leur intérêt, pris individuellement, pour la réalisation de casques de soudure à l'arc.
Dans le cadre de la protection des yeux d'un utilisateur placé en regard d'un poste de soudure à l'arc (ou, plus généralement, dans le cadre de la protection de tout système optique), une contrainte, souvent liée aux normes de sécurité, impose qu'il n'y ait pas de risque de passage d'une lumière d'intensité trop forte à travers le dispositif d'obturation.
On connaît un document de brevet français déposé sous le numéro FR0604153 et décrivant un obturateur dynamique à base de cellules de cristaux liquide, notamment pour casque de soudure, permettant de répondre aux exigences de sécurité avec et sans alimentation de l'obturateur dynamique du casque.
Plus particulièrement, ce document propose un dispositif d'obturation électrooptique à double régime d'obturation présentant des temps d'obturation (ou temps de réponse) et des temps d'ouverture courts, un fort contraste d'atténuation et une variation quasi continue et progressive de l'atténuation en fonction du champ électrique appliqué lors de la mise sous tension de l'obturateur dynamique. Ce dispositif comprend : au moins une cellule d'un premier type comprenant deux lames de matériau optiquement transparent et au moins une couche d'un premier matériau à base d'un cristal liquide nématique prévue entre les lames ; au moins une cellule d'un second type comprenant deux lames de matériau optiquement transparent et au moins une couche d'un second matériau à base de cristal liquide smectique prévue entre les lames. Cependant, ce type de casques ne permet pas de s'adapter dynamiquement à plusieurs profils de variation d'intensité lumineuse en fonction du poste de soudure et du régime d'arc sélectionné. La vision de la scène n'est alors pas optimisée d'un poste de soudure à un autre.
3. Objectifs de la présente invention L'invention, dans au moins un mode de réalisation, a notamment pour objectif de pallier ces différents inconvénients de l'état de la technique.
Plus précisément, dans au moins un mode de réalisation de l'invention, un objectif de l'invention est de proposer un obturateur dynamique à base de cristaux liquides, notamment pour casque de soudure, permettant de s'adapter en toute sécurité au développement de postes de soudure à l'arc puisés, actuels et futurs, présentant divers régimes de soudure imposant des régimes de protection de plus en plus sophistiqués et variés. Un objectif complémentaire d'au moins un mode de réalisation de l'invention est de fournir un obturateur dynamique possédant des temps d'obturation et d'ouverture courts ainsi qu'un un fort contraste d'atténuation afin d'assurer la vision la plus claire possible de la scène de travail dans l'environnement immédiat d'un arc de soudure.
4. Exposé de l'invention
Dans un mode de réalisation particulier de l'invention, il est proposé un dispositif d'obturation électro-optique permettant d'atténuer un signal lumineux, ledit dispositif d'obturation électro-optique comprenant au moins une première cellule comprenant un premier matériau cristal liquide.
Le dispositif d'obturation électro-optique de l'invention est remarquable en ce qu'il comprend en outre : au moins une seconde cellule comprenant un second matériau cristal liquide ; un moyen de comparaison de l'intensité du signal lumineux à un premier seuil prédéterminé; un premier moyen permettant de générer et appliquer à chaque première cellule une première tension de commande adaptée à faire passer ladite première cellule dans un état bloquant, tant que ledit moyen de comparaison détecte que l'intensité du signal lumineux est supérieure audit premier seuil ; - un second moyen permettant de générer et appliquer à chaque seconde cellule une deuxième tension de commande adaptée à faire commuter ladite seconde cellule entre un état passant et un état bloquant pour former un obturateur stroboscopique, tant que ledit moyen de comparaison détecte que l'intensité du signal lumineux est inférieure ou égale audit premier seuil, lesdites première et seconde cellules fonctionnant en opposition de phase.
Ainsi, le premier matériau cristal liquide de la ou les première(s) cellule(s) de ce premier obturateur permettent de répondre au problème de la protection des yeux d'un utilisateur lors de la génération d'un signal lumineux. Ce premier matériau cristal liquide est notamment adapté à suivre la dynamique du signal lumineux.
Le second matériau de la ou les secondes cellule(s) de cet obturateur stroboscopique permettent la protection des yeux de l'utilisateur dès lors que l'intensité du signal lumineux est moindre mais encore néfaste pour les yeux de l'utilisateur. L'atténuation de ce second obturateur (variant par exemple entre les teintes 9 à 11) permet ainsi d'éviter un éblouissement accidentel de l'opérateur. La vision de la scène de travail s'en trouve améliorée.
Cette combinaison de chaque première cellule et de chaque seconde cellule permet d'obtenir deux obturateurs complémentaires l'un de l'autre, chaque seconde cellule étant active (état bloquant) quand chaque première cellule est inactive (état passant), et inversement, grâce à l'utilisation du premier seuil commun de déclenchement de chaque première et seconde cellules.
De façon avantageuse, la deuxième tension de commande est un signal modulé selon une modulation de largeur d'impulsion.
Ainsi, le choix du nombre d'impulsions et le choix de la largeur des impulsions permettent de définir la durée de l'état passant et la durée de l'état bloquant de chaque seconde cellule. Le contraste de chaque seconde cellule est ainsi défini. Pour rappel, le contraste est défini comme étant la différence entre l'intensité maximale (état passant de la cellule) et l'intensité minimale (état bloquant de la cellule) divisé par la somme de l'intensité maximale et de l'intensité minimale.
Avantageusement, le dispositif d'obturation électro-comprend un moyen de réglage d'un paramètre de la largeur d'impulsion de la modulation de largeur d'impulsion.
Ainsi, ce moyen de réglage constitue une commande de contraste de chaque seconde cellule. Avantageusement, le dispositif d'obturation électro-optique comprend en outre : au moins une troisième cellule comprenant un troisième matériau cristal liquide ; un troisième moyen permettant de générer et appliquer à chaque troisième cellule une troisième tension de commande adaptée à faire passer ladite troisième cellule dans un état bloquant, tant que ledit moyen de comparaison détecte que l'intensité du signal lumineux est supérieure à un second seuil prédéterminé, ledit second seuil étant inférieur audit premier seuil.
Le troisième cristal liquide de la ou les troisièmes cellule(s) de ce troisième obturateur fonctionnent en variateur de teinte suivant la valeur de la troisième tension de commande appliquée à chaque troisième cellule. Elles permettent de garantir le niveau de protection minimal tout en proposant un confort visuel d'observation. Ce troisième cristal liquide doit permettre de réaliser un fort contraste d'atténuation et posséder une variation quasi continue du niveau de protection (ou teinte) (par exemple de 1 à 9 en échelle DIN, la teinte 9 correspondant à 32dB d'atténuation) sans contrainte en terme de durée des temps d'obturation et d'ouverture.
Avantageusement, le premier matériau est un cristal liquide nématique mince.
L'utilisation d'un cristal nématique permet avantageusement d'ajuster la dynamique en teinte de l'obturateur. Ce cristal nématique permet d'obtenir un fort contraste d'atténuation suivant les niveaux de protection (ou teintes) allant par exemple de 10 à 13. Il permet également d'obtenir un temps de réponse court pour le passage de l'état transparent à l'état bloquant, autrement appelé temps d'obturation pour permettre de suivre parfaitement la dynamique du signal lumineux. Ce cristal liquide nématique assure ainsi un fonctionnement quasi binaire mettant en œuvre une alternance rapide entre un niveau de protection bas (9 par exemple) et un niveau de protection haut (13 par exemple) en échelle DIN (13 correspondant à 49dB d'atténuation) avec de courts temps d'obturation (ou temps de montée) et une dynamique en teinte ajustable.
Ou bien le premier matériau est un cristal liquide smectique ferro électrique FLC. Ce cristal liquide smectique FLC (FLC pour « Ferroelectric Liquid Crystal » en anglais) permet notamment d'obtenir de courts temps d'obturation (ou temps de montée) et de courts temps d'ouverture (ou temps de descente). Cependant, la technologie smectique n'est pas adaptée pour assurer un fort contraste d'atténuation comme le cristal liquide nématique.
Ou encore le premier matériau comprend une association d'au moins un cristal liquide smectique ferroélectrique FLC et d'un polymère, plus connu sous le nom de PSFLC.
L'utilisation d'un cristal liquide stabilisé par un polymère permet ainsi de prévenir la formation des défauts spécifiques au cristal liquide smectique.
Un tel cristal liquide stabilisé par un polymère est également robuste aux chocs. Cette caractéristique permet ainsi de réaliser un dispositif d'obturation résistant à un nombre de manipulations élevés.
Selon une caractéristique avantageuse, le second matériau est un cristal liquide smectique ferroélectrique FLC.
Un tel second matériau cristal liquide permet d'obtenir un temps de réponse court pour le passage de l'état transparent à l'état bloquant, de l'ordre de 400 μs ainsi qu'un temps d'ouverture court, de l'ordre de 400 μs.
Ou bien le second matériau comprend une association d'au moins un cristal liquide smectique ferroélectrique FLC et d'un polymère, plus connu sous le nom de PSFLC.
L'utilisation d'un cristal liquide stabilisé par un polymère permet ainsi de prévenir la formation des défauts spécifiques au cristal liquide smectique.
Selon une autre caractéristique avantageuse, le troisième matériau est un cristal liquide nématique torsadé
L'utilisation d'un cristal liquide nématique torsadé permet d'ajuster la teinte de l'obturateur afin d'assurer le niveau minimum de protection en continu tant que le signal lumineux persiste. La dynamique des teintes varie par exemple entre 1 et 9. Ou bien le troisième matériau est un cristal liquide smectique anti- ferroélectrique AFLC
Tel que décrit dans le brevet n° FR0604153, un cristal liquide smectique anti- ferroélectrique possède deux états adressés symétriques et un état sécurisé en l'absence de champ appliqué sur le cristal liquide. Cet état sécurisé permet ainsi de remplir la fonction d'atténuateur en cas de défaillance de l'application de la tension d'alimentation sur le cristal liquide.
Ou encore le troisième matériau comprend une association d'un cristal liquide smectique anti-ferroélectrique AFLC et d'un polymère, plus connu sous le nom PSAFLC.
En comparaison avec un cristal liquide smectique ferroélectrique (FLC), un cristal liquide smectique anti-ferroélectrique (AFLC) possède moins de défauts. L'utilisation du polymère se justifie ici afin d'améliorer les temps de relaxation (encore appelé temps de retour). Selon un mode de réalisation de l'invention, le premier matériau est un cristal liquide nématique mince et le second matériau comprend une association d'au moins un cristal liquide smectique ferroélectrique FLC et d'un polymère, plus connu sous le nom de PSFLC.
Cette combinaison est particulièrement intéressante en terme de synergie entre chaque première cellule et chaque seconde cellule. En effet, ce premier et second matériau cristal liquide permettent d'obtenir deux obturateurs complémentaires l'un de l'autre, chaque seconde cellule étant active (état bloquant) tant que chaque première cellule est inactive (état passant), et inversement.
Le premier cristal liquide nématique possède une dynamique en teinte ajustable ainsi que de courts temps d'obturation (ou temps de montée) pour le passage à l'état bloquant de chaque première cellule. La combinaison avec un second cristal liquide smectique PSFLC possédant un temps de réponse court pour le passage de l'état transparent à l'état bloquant permet avantageusement de s'affranchir des temps de réponse longs du premier cristal liquide pour le passage de l'état bloquant à l'état transparent (autrement appelé temps d'ouverture). Ainsi, le risque d'exposer les yeux de l'utilisateur à un signal lumineux toujours intense aux alentours, par exemple, des teintes 9 et 10 est réduit grâce à chaque seconde cellule de l'obturateur stroboscopique couvrant ces teintes non couvertes par chaque première cellule.
Le second cristal liquide PSFLC possède en outre un temps d'ouverture court de l'ordre de 400 μs nécessaire pour assurer le mode stroboscopique.
Ainsi, cette combinaison d'un premier cristal liquide nématique et d'un second cristal liquide PSFLC offre la possibilité de visualiser la scène en toute sécurité grâce à l'effet stroboscopique de l'obturateur stroboscopique sur l'ensemble des teintes 8 à 13 par exemple.
Avantageusement, le premier matériau est un cristal liquide nématique mince, le second matériau comprend une association d'au moins un cristal liquide smectique ferroélectrique FLC et d'un polymère, plus connu sous le nom de PSFLC, et le troisième matériau est un cristal liquide nématique torsadé.
Ainsi, la combinaison de ces trois matériaux cristaux liquides permet une vision optimisée de la scène en toute sécurité, le troisième cristal liquide assurant une atténuation constante quel que soit l'intensité du signal lumineux.
L'invention concerne également un casque pour la soudure à l'arc caractérisé mettant en œuvre le dispositif d'obturation électro -optique de l'invention.
Les avantages du casque pour la soudure à l'arc sont bien évidemment les mêmes que ceux du dispositif d'obturation.
Ainsi, le dispositif d'obturation électro-optique de la présente invention permet d'assurer, dans le cadre d'un casque pour la soudure à l'arc, la protection des yeux de l'opérateur contre une intensité trop importante des impulsions lumineuses du signal lumineux en provenance de l'arc de soudure. Particulièrement, il permet de répondre aux contraintes à la fois de la luminosité du signal lumineux (composé d'un fond continu et d'impulsions lumineuses) des divers régimes de soudure à l'arc par : un ajustement dynamique de la teinte des première et troisième cellules et ; par l'utilisation d'une première cellule rapide permettant de suivre les impulsions lumineuses du signal lumineux en provenance de l'arc de soudure et ; - par l'utilisation d'une seconde cellule fonctionnant en mode stroboscopique uniquement dans les intervalles de temps où l'intensité du signal lumineux est moins intense (cycle froid de l'arc). L'utilisation de la seconde cellule en mode stroboscopique permet notamment de rendre la vision la plus claire possible de la scène tout en assurant une protection de l'oeil de l'utilisateur durant le cycle froid de l'arc de soudure.
En association avec des premières et troisièmes cellules ajustables en teinte, l'utilisation de la seconde cellule permet ainsi de s'adapter à l'ensemble des postes de soudure actuels et futurs.
L'utilisation combinée de ces trois cellules permet ainsi d'atténuer en toute sécurité le signal lumineux en provenance de l'arc de soudure sur l'ensemble des teintes de la gamme 1 à 13.
5. Liste des figures
D'autres objets, caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante, donnée à titre d'exemple indicatif et non limitatif, et des dessins annexés, parmi lesquels : la figure 1 illustre schématiquement un casque classiquement utilisé pour la soudure à l'arc ; la figure 2 illustre le niveau continu et le niveau maximum du signal lumineux en provenance de l'arc de soudure selon un régime de fonctionnement standard de l'arc conforme à la technique MIG/MAG ; la figure 3 illustre schématiquement une vue en coupe selon l'axe Z du dispositif d'obturation électro-optique constituant l'écran du casque pour la soudure à l'arc ; la figure 4 illustre schématiquement le dispositif de commande des cellules de l'écran du casque pour la soudure à l'arc ; les figures 5a, 5b et 5c présentent le chronogramme des tensions appliquées à chaque cellule de cristaux liquides et la dynamique en teinte des cellules associées.
6. Description détaillée
On se place dans la suite de la description dans le cadre d'un opérateur utilisant un poste de soudure à l'arc mettant en œuvre un régime de fonctionnement standard conforme à la technique MIG/MAG. Bien évidemment, les avantages de la solution technique de la présente invention ne se limitent pas à cet exemple particulier non limitatif.
Afin de protéger les yeux de l'opérateur, il est d'usage d'équiper ce dernier avec un casque 40 pour la soudure à l'arc tel qu'illustré sur la figure 1. Ce casque 40 comporte classiquement un écran 41 de visualisation de la scène de travail. Cet écran 41 comprend notamment un dispositif d'obturation électro-optique plus amplement détaillé par la suite en relation avec la figure 3, selon un mode de réalisation préférentiel de l'invention.
On illustre, en relation avec la figure 2, les régimes de fonctionnement conformes à la technique MIG/MAG telle que décrite précédemment. L'intensité du signal lumineux en provenance de l'arc de soudure comprend deux niveaux distincts : un niveau 51 de signal continu correspondant à l'intensité du signal lumineux la plus basse ; un niveau 52 de signal maximum correspondant à des impulsions lumineuses du signa lumineux 2 de l'arc de soudure. A ces impulsions lumineuses correspond une intensité du signal lumineux la plus forte, qui, elle même, fixe le niveau de protection maximum à apporter aux yeux du soudeur. Ainsi, le régime d'arc de soudure alterne (dynamiquement) entre le niveau de signal continu 51 et le niveau de signal maximum 52.
La figure 3 est une vue schématique du dispositif d'obturation électro-optique 1 selon un mode de réalisation de l'invention. Ce dispositif comprend trois cellules (10, 20, 30) distinctes : une première cellule 10 constituée de deux substrats (101, 102), généralement en verre, et placés en regard l'un de l'autre. Une fois assemblés, ces deux substrats forment une cavité adaptée à recevoir un premier cristal liquide 11 de type smectique FLC (pour « Ferroeletric Liquid Crystal » en anglais) ou PSFLC (pour "Polymer Stabilized
Ferroeletric Liquid Crystal" en anglais) ou de type nématique mince. Par définition, un cristal liquide nématique mince est un cristal liquide d'épaisseur comprise entre 1 et 1 ,5 μm dans le domaine du visible. La structure d'un cristal liquide nématique mince est uniforme. - une seconde cellule 20 constituée de deux substrats (201, 202), généralement en verre, et placés en regard l'un de l'autre. Une fois assemblés, ces deux substrats forment une cavité adaptée à recevoir un troisième cristal liquide 21 de type smectique FLC (pour « Ferroeletric Liquid Crystal » en anglais) ou PSFLC (pour "Polymer Stabilized Ferroeletric Liquid Crystal" en anglais). une troisième cellule 30 constituée de deux substrats (301, 302), généralement en verre, et placés en regard l'un de l'autre. Une fois assemblés, ces deux substrats forment une cavité adaptée à recevoir un troisième cristal liquide 31 de type nématique torsadé ou bien de type smectique anti-ferroélectrique AFLC (pour "Anti-Ferroelectric Liquid
Crystal" en anglais) ou bien de type PSAFLC (pour "Polymer Stabilized Anti-Ferroeletric Liquid Crystal" en anglais). En comparaison aux cristaux liquides AFLC ou PSAFLC, le cristal liquide nématique torsadé est mieux adapté pour la réalisation de cette troisième cellule du fait notamment d'une meilleure dynamique d'atténuation et d'une sensibilité moindre aux variations de longueur d'onde. On entend par lame polarisée : soit une lame sur laquelle est apposé un polariseur ; - soit une lame formant elle-même un polariseur.
La figure 4 illustre schématiquement un dispositif 60 de commande permettant le passage d'un état passant à un état bloquant de chaque cellule 10, 20 et 30. Ce dispositif 60 de commande comprend : un moyen 61 de détection du signal lumineux 2; - un moyen 62 de comparaison de l'intensité du signal lumineux 2 à un premier seuil en intensité Sl prédéterminé et à un second seuil en intensité S2 prédéterminé (le rôle des seuils Sl et S2 sera détaillé dans la suite de la description) ; un moyen 63 de génération de tensions de commande comprenant : un premier moyen 63 a permettant de générer et appliquer à chaque première cellule 10 une première tension de commande Vl adaptée à faire passer ladite première cellule 10 dans un état bloquant, tant que ledit moyen
62 de comparaison détecte que l'intensité du signal lumineux 2 est supérieure audit premier seuil S 1 ; un second moyen 63b permettant de générer et appliquer à chaque seconde cellule 20 une deuxième tension de commande V2 adaptée à faire commuter ladite seconde cellule 20 entre un état passant et un état bloquant pour former un obturateur stroboscopique, tant que ledit moyen 62 de comparaison détecte que l'intensité du signal lumineux 2 est inférieure ou égal audit premier seuil S 1. - un troisième moyen 63c permettant de générer et appliquer à chaque troisième cellule 30 une troisième tension de commande V3 adaptée à faire passer ladite troisième cellule 30 dans un état bloquant, tant que ledit moyen 62 de comparaison détecte que l'intensité du signal lumineux 2 est supérieure à un second seuil S2 prédéterminé.
Dès qu'un signal lumineux 2 est détecté par le moyen 61 de détection (un capteur optique par exemple), l'intensité du signal lumineux 2 détectée est ensuite transmise au moyen 62 de comparaison. Ce moyen 62 de comparaison réalise deux comparaisons : une première comparaison compare l'intensité du signal lumineux 2 à un premier seuil en intensité Sl prédéterminé. Il génère ainsi un premier signal de commande Cl lorsque l'intensité du signal lumineux 2 devient supérieure au premier seuil Sl prédéterminé. Il génère en outre un second signal de commande C2 lorsque l'intensité du signal lumineux 2 devient inférieure au premier seuil Sl prédéterminé. une deuxième comparaison compare l'intensité du signal lumineux 2 à un second seuil en intensité S2 prédéterminé. Il génère ainsi un troisième signal de commande C3. Chaque signal de commande Cl, C2 et C3 est ensuite envoyé à un moyen de génération 63 de tensions de commande.
Selon un mode de réalisation préférentiel, lorsque l'intensité du signal lumineux 2 devient supérieure au premier seuil en intensité Sl (c'est-à-dire lorsqu'une impulsion lumineuse de l'arc est détectée), la commande Cl est envoyée au moyen de génération 63 de tensions de commande. Le premier moyen 63a génère et applique ensuite la première tension de commande Vl à la ou les première(s) cellule(s) 10. La ou les première(s) cellule(s) commute alors de l'état passant à l'état bloquant. Lorsque l'intensité du signal lumineux 2 devient inférieure au premier seuil Sl (c'est-à-dire lorsque l'impulsion lumineuse de l'arc relaxe), la commande C2 est envoyée au moyen de génération 63 de tensions de commande. Le second moyen 63b génère et applique alors la deuxième tension de commande V2 sur la ou les seconde(s) cellule(s) 20 pour la faire commuter de l'état passant à l'état bloquant . Un obturateur stroboscopique est ainsi formé tant que l'intensité du signal lumineux 2 est inférieure au premier seuil Sl . La ou les première(s) cellule(s) 10 passe alors de l'état bloquant à l'état passant, chaque première cellule n'étant plus commandée en tension par la première tension de commande Vl .
Selon le mode de réalisation préférentiel, le signal de commande C3 est généré lorsque l'intensité du signal lumineux 2 devient supérieure au second seuil S2 prédéterminé. Ce signal de commande C3 est ensuite envoyé au moyen de génération 63 de tensions de commande. Le troisième moyen 63c génère et applique alors une troisième tension de commande V3 afin de faire passer à l'état bloquant la ou les troisième(s) cellule(s) 30. L'état bloquant de chaque troisième cellule 30 est maintenu tant que l'intensité du signal lumineux 2 est supérieure au second seuil en intensité S2.
Les figures 5a, 5b et 5c représentent plus précisément l'effet électro-optique de chaque cellule 10, 20 et 30 respectivement en réponse à des impulsions lumineuses du signal lumineux 2 provenant de l'arc de soudure. Ces impulsions sont notamment détectées et analysées par le dispositif de commande 60 de la figure 4.
Les impulsions lumineuses du signal lumineux 2 sont modélisées par un signal créneau. Le niveau de signal maximum 52 du créneau correspond au niveau 13 de protection (ou teinte 13). Le niveau de signal minimum 51 (ou encore niveau continu) correspond quant à lui au niveau 9 de protection (ou teinte 9). La figure 5a illustre l'action de la ou les première(s) cellule(s) 10 en fonction de l'intensité des impulsions lumineuses du signal lumineux 2. Ce ou ces première(s) cellule(s) 10 constituent un premier obturateur rapide adapté à protéger les yeux de l'opérateur des impulsions lumineuses générées par l'arc de soudure. Ce premier filtre obturateur rapide est notamment asservi sur chaque impulsion lumineuse détectée en se déclenchant (passage à l'état obturé de la cellule 10 de cristal liquide) à chaque détection d'impulsions lumineuses. Tel que décrit précédemment en relation avec la figure 4, l'état passant ou l'état obturé de chaque première cellule 10 est fonction de la comparaison de l'intensité de l'impulsion lumineuse 2 avec le premier seuil en intensité S 1.
Selon l'invention, le premier matériau cristal liquide 11 de type smectique (FLC ou PSFLC) utilisé pour la réalisation de la ou les première(s) cellule(s) 10 permettent de suivre instantanément les impulsions de l'arc notamment lors des temps de descente rapide de l'impulsion de l'arc. En effet, ces cristaux liquides (FLC et PSFLC) assurent un fonctionnement quasi binaire mettant en œuvre une alternance rapide entre le niveau de protection 9 (correspondant au niveau continu) et le niveau de protection 13 (correspondant au niveau maximum du signal impulsionnel) en échelle DIN (13 correspondant à 49dB d'atténuation).
Le premier matériau cristal liquide de la ou les première(s) cellule(s) 10 peuvent également être du type nématique mince. Un tel matériau cristal liquide 11 présente l'avantage d'être ajustable dynamiquement en teinte en régime continu par application de la première tension de commande Vl sur la ou les première(s) cellule(s) 10. Pour accélérer sa transition, le premier matériau 11 cristal liquide nématique mince est commuté à l'état sombre par un signal de haute tension HVl et de période El . La teinte est ensuite réglée par un signal de tension crête Vl et de période Pl . Le retour à l'état clair (état passant du premier matériau cristal liquide 11) est réalisé en déchargeant la ou les première(s) cellule(s) 10 dans une résistance faible.
Ainsi, l'obturateur rapide protège l'utilisateur des impulsions lumineuses intenses de l'arc en les filtrant pendant toute leur durée. La dynamique de l'obturateur rapide ainsi que le niveau de teinte associé sont représentés sur le chronogramme 100 de la figure 5. La figure 5b illustre l'action de la ou les seconde(s) cellule(s) 20 en fonction de l'intensité du signal lumineux 2. Le second matériau cristal liquide de type smectique (FLC ou PSFLC) de la ou les seconde(s) cellule(s) 20 constituent un obturateur stroboscopique. Cet obturateur stroboscopique permet notamment une vision de la scène par un échantillonnage rapide (effet stroboscopique). Selon le mode de réalisation de l'invention, cet obturateur stroboscopique est déclenché dès lors que l'intensité du signal lumineux 2 devient inférieure au premier seuil d'intensité Sl . Le chronogramme 200 de la figure 5 illustre la dynamique en teinte de cet obturateur stroboscopique. Ainsi, cet obturateur stroboscopique est actif uniquement dans les intervalles de temps où l'intensité lumineuse de l'arc est moins intense (cycle froid). Notamment, le second matériau 21 cristal liquide de l'obturateur stroboscopique est commuté à l'état sombre (état bloquant) par la deuxième tension de commande V2. Pour former l'obturateur stroboscopique, la deuxième tension de commande V2 est par exemple un signal modulé selon une modulation de largeur d'impulsion (ou MLI), ladite MLI étant réglée par la commande de contraste pendant le temps froid de l'arc (période E2). Le second matériau 21 cristal liquide est commuté à l'état clair par une brève impulsion de haute tension inverse HV2 de période E2.
Ainsi, cet obturateur stroboscopique permet de protéger les yeux lors des temps de descente de l'impulsion de l'arc (cycle froid de l'arc) entre le niveau de protection (ou teinte ) 8 et le niveau de protection 11. La vision de la scène est améliorée tout en conservant une sécurité maximale pour les yeux de l'opérateur même lorsque l'impulsion lumineuse du signal lumineux 2 se relaxe.
La dynamique de l'obturateur stroboscopique ainsi que le niveau de teinte associé sont représentés sur le chronogramme 200 de la figure 5b.
La figure 5c illustre l'action de la ou les troisième(s) cellule(s) 30 en fonction de l'intensité du signal lumineux 2. Le troisième matériau cristal liquide 31 de type nématique torsadé de la ou les troisième(s) cellule(s) 30 est un cristal liquide à forte dynamique d'atténuation. Il constitue un obturateur fonctionnant en variateur de teinte. Le troisième matériau 31 cristal liquide commute (voir chronogramme 300 de la figure 5) à la mise sous fonction de l'arc et dès lors que l'intensité du signal lumineux 2 devient supérieure au second seuil en intensité S2. Chacune des troisièmes cellules 30 de cristal liquide nématique de l'atténuateur optique est ensuite commandée par la troisième tension de commande V3 de période P3 permettant de régler le niveau d'atténuation de l'atténuateur. La teinte de l'obturateur d'atténuation est alors ajustable dans la gamme de 1 à 9. Egalement, pour accélérer sa transition, le troisième matériau 31 cristal liquide est commuté à l'état bloquant par application d'un signal de haute tension HV3 de période E3. La durée de fonctionnement de cet obturateur variateur de teinte correspond à la durée à laquelle l'intensité du signal lumineux reste supérieure au second seuil en intensité S2. Notamment, sa durée est supérieure à la durée de l'arc électrique pour compenser la rémanence de la luminosité de l'arc à l'extinction du poste de soudure (voir chronogramme 300 de la figure 5c).
Les troisièmes matériaux 31 cristaux liquides peuvent également être du type smectique AFLC ou PSAFLC du fait de l'existence d'un état sécurisé hors tension.
Ainsi, le troisième matériau 31 cristal liquide (nématique torsadé, AFLC ou
PSAFLC) de la ou les troisièmes cellule(s) 30 fonctionnant en variateur de teinte permet de garantir le niveau de protection minimal et un confort visuel d'observation pour le signal continu de l'arc. Ce ou ces troisième(s) cellule(s) 30 permettent d'obtenir un fort contraste d'atténuation et une variation quasi continue du niveau de protection (ou de l'atténuation) de 1 à 9 en échelle DIN (9 correspondant à 32dB d'atténuation) sans contrainte en terme de durée des temps d'obturation et d'ouverture.
La dynamique de l'obturateur variateur de teinte ainsi que le niveau de teinte associé sont représentés sur le chronogramme 300 de la figure 5c.
Ainsi, le dispositif électro-optique 1 de la présente invention présente l'intérêt de disposer d'un obturateur dynamique comprenant trois cellules, la combinaison des trois cellules permettant d'obtenir plusieurs degrés de liberté (temps, durée des impulsions, dynamique).
La combinaison de trois différents types de cristaux liquides permet notamment d'optimiser la dynamique d'atténuation en régime continu grâce à au moins deux cellules de cristaux liquides et d'optimiser la vision de la scène par l'utilisation d'un cristal liquide rapide pendant la durée de l'impulsion de l'arc et le temps froid de l'arc. Ce dispositif électro-optique 1 permet alors de prendre en compte et d'exploiter différents paramètres physiques et physiologiques liés à la vision humaine par la combinaison de régimes d'obturations impulsionnel, temporel et continu. Le temps de vision de la scène est optimisé
Avantageusement, le dispositif électro-optique 1 de l'invention est tout à fait adapté pour opérer sur un casque à la soudure à l'arc, dit « casque intelligent », piloté par un ou plusieurs microprocesseurs préalablement programmés en fonction de différents régimes d'arc connus. En effet, il existe plusieurs régimes d'arc pour un même poste de soudure. La présente invention permet alors d'optimiser les différents régimes d'obturation de l'écran du casque à la soudure en fonction des différents régimes de soudure à l'arc.
Ainsi, le dispositif électro-optique 1 de la présente invention permet de s'adapter à tous les régimes d'arc des différents postes de soudure en offrant la possibilité de modifier plusieurs paramètres de pilotage du poste à soudure. Il est ainsi possible de programmer le dispositif électro-optique 1 en fonction du poste de soudure et du régime d'arc sélectionné, et d'optimiser les différents régimes d'obturation de l'écran du casque à la soudure en fonction des différents régimes de soudure à l'arc.
Ce dispositif électro-optique 1 permet en outre de garantir une sécurité maximale : lorsque l'intensité du courant d'arc est dans le niveau continu 51, la protection des yeux et le confort visuel de l'opérateur sont garantis par l'atténuation optique de la ou les troisièmes cellules 30. lorsque l'intensité du courant d'arc est dans le niveau maximum 52, les yeux de l'opérateur sont protégés par l'obturateur l'obturation rapide de la ou les première(s) cellule(s) 10. La ou le(s) seconde(s) cellule(s) 20 de l'obturateur stroboscopique permettent de protéger l'oeil d'une sur-intensité lumineuse lorsque l'impulsion lumineuse de l'arc relaxe (cycle froid de l'arc) aux alentours des teintes 9 à 11 non couvertes par l'obturateur variateur de teinte.

Claims

REVENDICATIONS
1. Dispositif d'obturation électro-optique (1) permettant d'atténuer un signal lumineux (2), ledit dispositif d'obturation électro-optique (1) comprenant au moins une première cellule (10) comprenant un premier matériau (11) cristal liquide, ledit dispositif d'obturation électro-optique (1) étant caractérisé en ce qu'il comprend en outre : au moins une seconde cellule (20) comprenant un second matériau (21) cristal liquide ; un moyen (62) de comparaison de l'intensité du signal lumineux (2) à un premier seuil (Sl) prédéterminé; un premier moyen (63a) permettant de générer et appliquer à chaque première cellule une première tension de commande (Vl) adaptée à faire passer ladite première cellule (10) dans un état bloquant, tant que ledit moyen (62) de comparaison détecte que l'intensité du signal lumineux (2) est supérieure audit premier seuil (Sl) ; - un second moyen (63b) permettant de générer et appliquer à chaque seconde cellule une deuxième tension de commande (V2) adaptée à faire commuter ladite seconde cellule (20) entre un état passant et un état bloquant pour former un obturateur stroboscopique, tant que ledit moyen (62) de comparaison détecte que l'intensité du signal lumineux (2) est inférieure ou égale audit premier seuil (Sl), lesdites première et seconde cellules fonctionnant en opposition de phase.
2. Dispositif selon la revendication 1, caractérisé en ce que la deuxième tension de commande (V2) est un signal modulé selon une modulation de largeur d'impulsion.
3. Dispositif selon la revendication 2, caractérisé en ce qu'il comprend un moyen de réglage d'un paramètre de la largeur d'impulsion de la modulation de largeur d'impulsion.
4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comprend en outre : au moins une troisième cellule (30) comprenant un troisième matériau (31) cristal liquide ; un troisième moyen (63c) permettant de générer et appliquer à chaque troisième cellule une troisième tension de commande (V3) adaptée à faire passer ladite troisième cellule (30) dans un état bloquant, tant que ledit moyen (62) de comparaison détecte que l'intensité du signal lumineux (2) est supérieure à un second seuil (S2) prédéterminé, ledit second seuil (S2) étant inférieur audit premier seuil (Sl).
5. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le premier matériau (11) est un cristal liquide nématique mince.
6. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le premier matériau (11) est un cristal liquide smectique ferroélectrique FLC.
7. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le premier matériau (11) comprend une association d'au moins un cristal liquide smectique ferroélectrique FLC et d'un polymère, plus connu sous le nom de PSFLC.
8. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le second matériau (21) est un cristal liquide smectique ferroélectrique FLC.
9. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le second matériau (21) comprend une association d'au moins un cristal liquide smectique ferroélectrique FLC et d'un polymère, plus connu sous le nom de PSFLC.
10. Dispositif selon l'une quelconque des revendications 4 à 9, caractérisé en ce que le troisième matériau (31) est un cristal liquide nématique torsadé
11. Dispositif selon l'une quelconque des revendications 4 à 9, caractérisé en ce que le troisième matériau (31) est un cristal liquide smectique anti-ferro électrique AFLC
12. Dispositif selon l'une quelconque des revendications 4 à 9, caractérisé en ce que le troisième matériau (31) comprend une association d'un cristal liquide smectique anti-ferroélectrique AFLC et d'un polymère, plus connu sous le nom PSAFLC.
13. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le premier matériau (11) est un cristal liquide nématique mince et le second matériau (21) comprend une association d'au moins un cristal liquide smectique ferroélectrique FLC et d'un polymère, plus connu sous le nom de PSFLC.
14. Dispositif selon la revendication 13 quand elle dépend de la revendication 4, caractérisé en ce que le troisième matériau (31) est un cristal liquide nématique torsadé.
15. Casque pour la soudure à l'arc caractérisé en ce qu'il comporte un dispositif d'obturation électro-optique (1) selon l'une quelconque des revendications 1 à 14.
PCT/EP2009/053834 2008-03-31 2009-03-31 Dispositif d'obturation electro-optique WO2009121894A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0852081 2008-03-31
FR0852081A FR2929420B1 (fr) 2008-03-31 2008-03-31 Dispositif d'obturation electro-optique

Publications (1)

Publication Number Publication Date
WO2009121894A1 true WO2009121894A1 (fr) 2009-10-08

Family

ID=39789358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/053834 WO2009121894A1 (fr) 2008-03-31 2009-03-31 Dispositif d'obturation electro-optique

Country Status (2)

Country Link
FR (1) FR2929420B1 (fr)
WO (1) WO2009121894A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966834B (zh) * 2016-10-20 2020-08-28 泰克曼(南京)电子有限公司 可实现高遮光号的自动变光过滤器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0091514A2 (fr) * 1982-04-14 1983-10-19 André M. Eggenschwiler Filtre de protection contre la lumière en particulier pour des écrans ou des lunettes de protection pour le soudage
WO1994027180A1 (fr) * 1993-05-10 1994-11-24 Optrel Ag Dispositif protecteur
WO2006125770A1 (fr) * 2005-05-25 2006-11-30 GET/ENST BRETAGNE : Groupe des Ecoles des Télécommunications/Ecole Nationale Supérieure des Télécommunications de Bretagne Utilisation d'un materiau a base de cristal liquide afin de fabriquer un dispositif d'obturation electro-optique, dispositif et casque stroboscopique conformes a cette utilisation
WO2007128720A1 (fr) * 2006-05-10 2007-11-15 Groupe Des Ecoles Des Telecommunications/Ecole Nationale Superieure Des Telecommunications De Bretagne Obturateur rapide a double regime d'obturation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0091514A2 (fr) * 1982-04-14 1983-10-19 André M. Eggenschwiler Filtre de protection contre la lumière en particulier pour des écrans ou des lunettes de protection pour le soudage
WO1994027180A1 (fr) * 1993-05-10 1994-11-24 Optrel Ag Dispositif protecteur
WO2006125770A1 (fr) * 2005-05-25 2006-11-30 GET/ENST BRETAGNE : Groupe des Ecoles des Télécommunications/Ecole Nationale Supérieure des Télécommunications de Bretagne Utilisation d'un materiau a base de cristal liquide afin de fabriquer un dispositif d'obturation electro-optique, dispositif et casque stroboscopique conformes a cette utilisation
WO2007128720A1 (fr) * 2006-05-10 2007-11-15 Groupe Des Ecoles Des Telecommunications/Ecole Nationale Superieure Des Telecommunications De Bretagne Obturateur rapide a double regime d'obturation

Also Published As

Publication number Publication date
FR2929420B1 (fr) 2010-08-20
FR2929420A1 (fr) 2009-10-02

Similar Documents

Publication Publication Date Title
WO2015044354A1 (fr) Filtre optique adaptatif pour verre de lunettes
EP2715437B1 (fr) Filtre optique adaptatif
FR2530039A1 (fr) Lunettes de protection a transmission reglable automatiquement utilisant des cristaux liquides
US20140320771A1 (en) Device and method for dazzle protection
WO2014013142A1 (fr) Dispositif et procede d'emission d'un faisceau lumineux destine a former une image, systeme de projection et afficheur utilisant ledit dispositif
WO2014013144A1 (fr) Dispositif et procede d'emission d'un faisceau lumineux destine a former une image, systeme de projection et afficheur utilisant ledit dispositif
FR2742555A1 (fr) Dispositif de protection des yeux
WO2015177356A1 (fr) Dispositif d'obturation électro-optique à double mode d'atténuation
EP2830899B1 (fr) Procédé et dispositif d'aide à la conduite diurne des véhicules automobiles
US5877825A (en) Method and device including electro-optical shutter for protection from pulsed radiation
EP2089943B1 (fr) Système laser à emission d'impulsions picosecondes
FR3015704B1 (fr) Systeme et procede de projection d'image et afficheur utilisant ledit systeme
WO2009121894A1 (fr) Dispositif d'obturation electro-optique
EP2273303B1 (fr) Viseur tête haute à combinaison optique assurant la protection contre l'éclairement solaire
EP3349059B1 (fr) Écran adaptatif sectorisé et système d'aide à la conduite comprenant un tel écran adaptatif
CA3080726C (fr) Dispositif optique facilitant la lecture
WO2007128720A1 (fr) Obturateur rapide a double regime d'obturation
FR2886418A1 (fr) Utilisation d'un materiau a base de cristal liquide afin de fabriquer un dispositif d'obturation electro-optique, dispositif et casque stroboscopique conformes a cette utilisation
FR2753898A1 (fr) Dispositif de protection des yeux d'un utilisateur contre des faisceaux lumineux
WO2008095843A1 (fr) Dispositif d'obturation electro-optique pour systeme anti-eblouissement a base d'au moins une couche photosensible
EP4376699A1 (fr) Dispositif de vision pour la detection du mouvement des yeux
FR2973523A1 (fr) Procedes d'affichage stereoscopique supprimant les images fantomes
FR2681443A1 (fr) Dispositif electro-optique de protection des yeux.
EP4110640A1 (fr) Dispositif d'affichage tête-haute
WO2019002412A1 (fr) Unité de génération d'image et afficheur tête haute comprenant une telle unité de génération d'image

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09726593

Country of ref document: EP

Kind code of ref document: A1