US20120126099A1 - Method for reducing glare from light sources through windscreens - Google Patents

Method for reducing glare from light sources through windscreens Download PDF

Info

Publication number
US20120126099A1
US20120126099A1 US12/951,275 US95127510A US2012126099A1 US 20120126099 A1 US20120126099 A1 US 20120126099A1 US 95127510 A US95127510 A US 95127510A US 2012126099 A1 US2012126099 A1 US 2012126099A1
Authority
US
United States
Prior art keywords
icf
light source
windscreen
schedule
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/951,275
Inventor
Asim Tewari
Rohit Gupta
Chandra S. Namuduri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Priority to US12/951,275 priority Critical patent/US20120126099A1/en
Assigned to GM GLOBAL TECHNOLOGY OPERATIONS, INC. reassignment GM GLOBAL TECHNOLOGY OPERATIONS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TEWARI, ASIM, GUPTA, ROHIT, NAMUDURI, CHANDRA S.
Assigned to GM Global Technology Operations LLC reassignment GM Global Technology Operations LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Assigned to WILMINGTON TRUST COMPANY reassignment WILMINGTON TRUST COMPANY SECURITY AGREEMENT Assignors: GM Global Technology Operations LLC
Priority to DE102011118802A priority patent/DE102011118802A1/en
Priority to CN2011103731185A priority patent/CN102555737A/en
Publication of US20120126099A1 publication Critical patent/US20120126099A1/en
Priority to US14/153,382 priority patent/US9186963B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/04Antiglare equipment associated with windows or windscreens; Sun visors for vehicles adjustable in transparency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/02Antiglare equipment associated with windows or windscreens; Sun visors for vehicles adjustable in position
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses

Definitions

  • This disclosure relates to reducing glare between light sources and vehicles or vehicle occupants using intensity control films.
  • Headlamps also referred to as headlights
  • Headlamps usually have the purpose of illuminating the road ahead during periods of low visibility, such as darkness or precipitation, but also serve to alert or signal the location of the vehicle to other vehicles and pedestrians.
  • Headlamps When two or more vehicles approach each other, their respective headlamps may cause glare to the driver of the opposing vehicle. Depending upon the brightness of the headlamps, the glare may reduce visibility for one or both of the drivers, especially at night. Headlamps are often configured to operate with more than one level of brightness or intensity, often referred to as low beams and high beams. Operation of the vehicle with high beams may increase glare to the driver of the oncoming vehicle.
  • road-side signage may incorporate bright lights projecting onto the roadway, spot lights may be used for numerous purposes on or near roadways, or the sun may be positioned in the view of drivers—especially during early morning or late afternoon driving.
  • a method for reducing glare may occur between a first vehicle and a second vehicle or between a light source and an occupant's eye.
  • the first vehicle has a first light source with a first light source intensity control film (ICF) and a first windscreen with a first windscreen ICF
  • the second vehicle has a second light source with a second light source ICF and a second windscreen with a second windscreen ICF.
  • ICF light source intensity control film
  • Each respective ICF is selectively changeable between a substantially opaque state and a substantially clear state.
  • the method may include: sensing the first light source with the second vehicle, and sensing the second light source with the first vehicle; oscillating the first light source ICF between the substantially opaque state and the substantially clear state on a first schedule; and oscillating the second windscreen ICF between the substantially opaque state and the substantially clear state on a second schedule different from the first schedule.
  • the method may also include sensing a position of the light source and estimating an eye position of the occupant.
  • An intersecting region of the selectively-darkenable ICF is calculated. The intersecting region being located substantially along a line from the position of the light source to the estimated eye position. The intersecting region of the ICF is then darkened, such that a reduced amount of light from the light source passes through the intersecting region.
  • the method may include sensing the eye position of the occupant, and calculating the intersecting region of the windscreen based upon the sensed eye position.
  • FIG. 1 is a schematic diagram of anti-glare systems for two vehicles
  • FIG. 2 is a schematic flow chart of an algorithm or method for reducing glare from light sources
  • FIG. 3 is a schematic flow chart of a subroutine of the method shown in FIG. 2 ;
  • FIG. 4 is a schematic flow chart of another subroutine of the method shown in FIG. 2 ;
  • FIG. 5 is a schematic front view of one of the windscreens shown in FIG. 1 , shown with a matrix of selectively-darkenable intensity control film (ICF) cells;
  • ICF intensity control film
  • FIG. 6 is a schematic diagram showing the directions of travel of two vehicles relative to magnetic north (upward, as viewed in FIG. 6 );
  • FIG. 7 is a schematic chart showing the oscillating schedules for controlling the ICF of each of the two vehicles shown in FIG. 6 .
  • FIG. 1 a schematic diagram of two anti-glare systems.
  • the diagram shown in FIG. 1 is highly schematic and many elements of the system may have been omitted in order to clarify the diagram.
  • a first anti-glare system 10 for a first vehicle (not separately shown) is represented on the left side of FIG. 1 .
  • the first vehicle may be a sedan, a convertible, an SUV, a pickup truck, a motor cycle, or any other vehicle.
  • the first anti-glare system 10 includes a first windscreen 12 , which may be a glass windshield, a plastic windscreen for motorcycles, a helmet visor, eye glasses, or other components through which the driver or occupants of the first vehicle view light.
  • the first windscreen 12 includes a selectively-darkenable intensity control film (ICF), which may be referred to as a first windscreen ICF 13 .
  • ICF intensity control film
  • Generally intensity control films are thin substances which may be attached to transparent objects (such as the first windscreen 12 ) and may be controlled to selectively, and variably, adjust the amount of light which is able to pass through the ICF and the transparent object.
  • the first windscreen ICF 13 covers much of the first windscreen 12 .
  • a controller may change the first windscreen ICF 13 from substantially transparent to substantially opaque, or may levels of opacity therebetween.
  • the first anti-glare system 10 also includes a first light source 14 , which may be a headlamp, headlight, spot light, or other source of projecting light.
  • the first light source 14 is also covered with a first light source ICF 15 , which may be selectively darkened to prevent escape of light (especially bright light) from the first light source 14 .
  • a first light sensor 18 is configured to sense the existence of oncoming light sources and may also sense the intensity of light sources.
  • the first light sensor 18 is shown mounted on the first windscreen 12 , but the first light sensor 18 may be mounted elsewhere.
  • the first light sensor 18 may also be integrated with the controller (not separately shown) to process signals from the first light sensor 18 and control the first windscreen ICF 13 . Sensing the light source may also include sensing a light source position.
  • an eye position 20 is a schematic representation of the location of an occupant's eyes—such as the driver of the vehicle.
  • An eye position sensor 22 is configured to determine the eye position 20 and signal the controller.
  • the eye position 20 may be estimated, instead of sensed by the eye position sensor 22 .
  • the eye position 20 may be estimated based upon known characteristics (such as height) or biometric data of the driver or drivers, average population characteristics, the position of an adjustable head rest, or sensors located within the vehicle seat, seat back, or headrest.
  • an intersecting region 24 can be determined.
  • the third light source 44 may be a non-vehicular source, such as, and without limitation: a bright road-side light, sign, or billboard; a spot light; or the sun.
  • the intersecting region 24 is located substantially along a line from the third light source 44 position to the estimated eye position 20
  • the first windscreen ICF 13 may include a matrix of ICF cells (not shown in FIG. 1 , but shown and described in as ICF cells 526 in FIG. 5 ), each of which may be selectively controlled. Therefore, portions or regions of the first windscreen ICF 13 may be made opaque while other regions remain transparent.
  • a second anti-glare system 30 for a second vehicle (not separately shown) is represented on the right side of FIG. 1 , and may be a motorcycle or any other vehicle.
  • the second anti-glare system 30 includes a second windscreen 32 , which may be a helmet visor.
  • the second windscreen 32 is covered with a second windscreen ICF 33 , which is in communication with a controller (not shown) configured to selectively change the second windscreen ICF 33 between transparent, opaque, and semi-opaque states.
  • the second anti-glare system 30 also includes a second light source 34 , this light source may be the headlight or headlights of the second vehicle. As shown in FIG. 1 , the second light source 34 projects light toward the first vehicle and the first light source 14 projects light toward the second vehicle. The second light source 34 is also covered with a second light source ICF 35 , which is controllable to selectively (and possibly variably) prevent escape of light (especially bright light) from the second light source 34 .
  • a second light source ICF 35 which is controllable to selectively (and possibly variably) prevent escape of light (especially bright light) from the second light source 34 .
  • a second light sensor 38 is shown mounted near the second windscreen 32 , but may be located else where on the second vehicle.
  • the second light sensor 38 may also be integrated with the controller (not separately shown) to process signals from the second light sensor 38 and to control the second windscreen ICF 33 .
  • FIGS. 2-4 there is shown a schematic flow chart of an algorithm or method 200 for reducing glare through a windscreen (such as the first windscreen 12 ) of a vehicle (such as the first vehicle) from a light source (such as the third light source 44 ) to an occupant.
  • the method 200 utilizes windscreens covered with a selectively-darkenable ICF (such as the first windscreen ICF 13 ).
  • FIG. 3 shows a subroutine 300 of the method 200
  • FIG. 4 shows a subroutine 400 of the method 200 .
  • Step 210 Sense Light Source(s).
  • the method 200 begins as the first light sensor 18 senses a light source, such as the third light source 44 .
  • the first light sensor 18 may be operating continually, such that any time a sufficient light source is sensed the method 200 may be initiated.
  • Step 212 Sense Intensity.
  • the method 200 may sense the intensity of the third light source 44 .
  • This functionality may be incorporated into the first light sensor 18 , such that only lights of sufficient intensity (or brightness) will be registered by the first light sensor 18 and trigger the method 200 .
  • Sensing the intensity of the potential source of glare may include factoring in ambient light conditions. For example, and without limitation, headlights of the oncoming vehicle may not be registered by the first light sensor 18 during bright daylight but may be sufficiently intense to start the method 200 during the evening or nighttime, or when weather conditions cause low ambient light conditions.
  • the method 200 may be occurring on either or both of the first vehicle and the second vehicle.
  • the method 200 is described largely in relation to the first anti-glare system 10 of the first vehicle, but execution of the method 200 on the second anti-glare system 30 of the second vehicle may be very similar, depending upon the components with which each vehicle is equipped.
  • Step 214 Another Equipped Vehicle?
  • the method 200 determines whether the oncoming light source is from another vehicle which is equipped with a similar anti-glare system. In FIG. 1 , this may include determining whether the sensed light source is from the second vehicle (the second light source 34 ) or is an extraneous source, such as the third light source 44 . If the oncoming light source is from another equipped vehicle, the two vehicles may cooperate in reducing the glare from each other's light sources. However, if the oncoming light source is not from an equipped vehicle, then the first anti-glare system 10 will have to reduce glare with its own components.
  • step 214 determines that the sensed light source is not emanating from another equipped vehicle, the method 200 proceeds to a subroutine 300 , the intersecting region subroutine. If the step 214 determines that the sensed light source is emanating from another equipped vehicle (such as the second vehicle having the second anti-glare system 30 ), the method 200 proceeds to a subroutine 400 , the switching system subroutine. Either of the subroutines 300 or 400 may be implemented as independent algorithms, separate from each other and separate from the remainder of the method 200 .
  • Subroutine 300 Intersecting Region Subroutine.
  • the intersecting region subroutine 300 looks to create a small region of opacity with the first windscreen ICF 13 on the first windscreen 12 . Therefore, the source of glare—either the third light source 44 or the second light source 34 —may be blocked without blocking the whole range of the driver's vision.
  • the subroutine 300 may be used to reduce glare to the eyes of the driver, to other occupants of the vehicle, or to both.
  • the subroutine 300 is described in relation to reducing glare from the third light source 44 , which may be the sun or a bright spot light located in the driver's field of vision through the first windscreen 12 .
  • Step 310 Source Position.
  • the subroutine 300 includes sensing a light source position.
  • the first light sensor 18 determines the position of the third light source 44 relative to the first vehicle and the first windscreen 12 . Because the source of the glare—in this example the third light source 44 —may vary considerably, the location of the third light source 44 may also vary considerably.
  • the subroutine 300 may only be determining or sensing the direction of the third light source 44 . Therefore, the subroutine 300 may not be concerned as to whether the source is 200 yards or 92 million miles away, but is concerned with the direction and intensity of the third light source 44 .
  • Step 312 Eye Position.
  • the subroutine 300 includes either estimating the eye position 20 of the occupant or sensing the eye position 20 of the occupant.
  • the eye position sensor 22 may determine the actual location of each of the driver's eyes, the general location of the driver's eyes, or of the driver's head (which provides an approximation for the eyes).
  • Step 314 Calculate Intersecting Region.
  • the subroutine 300 also includes calculating the intersecting region 24 of the first windscreen ICF 13 .
  • the intersecting region 24 is located substantially along a line from the position of the third light source 44 to the (estimated or sensed) eye position 20 .
  • Step 316 Match Intersecting Region to ICF Cells.
  • the first windscreen ICF 13 may be formed from the matrix of selectively-darkenable ICF cells 526 .
  • the subroutine 300 includes matching the intersecting region 24 to one or more of the ICF cells 526 .
  • the subroutine 300 may select the ICF cell 526 whose center is nearest to the intersecting region 24 , or may select a plurality of ICF cells 526 which encompass or surround the intersecting region 24 . Therefore, the controller will be configured to determine which ICF cell 526 or plurality of ICF cells 526 are nearest to the intersecting region 24 .
  • Step 318 Activate ICF Cells.
  • the subroutine 300 then includes darkening the intersecting region 24 , such that a reduced amount of light from the third light source 44 passes through the intersecting region 24 .
  • step 318 would change the plurality of the ICF cells 526 encompassing the intersecting region 24 to become sufficiently opaque to block the glare from the third light source 44 from reaching the driver's eyes. Therefore, the glare is reduced in the intersecting region 24 , but the remainder of the first windscreen ICF 13 is substantially transparent and the driver's field of vision is not significantly reduced (the driver would not likely be looking at the bright light emanating from the third light source 44 anyway).
  • the first windscreen ICF 13 may not need to be changed to completely opaque in order to reduce the glare to the driver's eyes.
  • the first windscreen ICF 13 may be capable of increasing the opacity without separately-controllable ICF cells 526 .
  • the first windscreen ICF 13 may be composed of a single membrane or film, but still be capable of selectively darkening regions or portions thereof, or the first windscreen ICF 13 may be composed of an infinite number of very small ICF cells 526 .
  • Subroutine 400 Switching System Subroutine.
  • the switching system subroutine looks to make the whole first windscreen ICF 13 opaque for short, oscillating periods of time.
  • the subroutine 400 may control both the first windscreen ICF 13 and the first light source ICF 15 between a substantially opaque state and a substantially clear state. On its own, this oscillation reduces to the total passage of light and glare to the eyes of occupants.
  • the drivers and occupants of both the first vehicle and the second vehicle may be nearly-completely shielded from the glare produced by the oncoming vehicle.
  • Both the first anti-glare system 10 and the second anti-glare system 30 are running the subroutine 400 , such that the subroutine may be considered to include both vehicles or to be operating substantially simultaneously, but separately, in both vehicles.
  • Step 410 Adjustable Schedules?
  • the method 200 has included sensing the first light source 14 with the second anti-glare system 30 of the second vehicle, and sensing the second light source 34 with the first anti-glare system 10 of the first vehicle, and has already determined that both the first anti-glare system 10 and the second anti-glare system 30 are capable of running the switching system subroutine 400 .
  • Decision step 410 determines if the vehicles are both capable of altering the schedules of oscillation for the first windscreen ICF 13 and the second windscreen ICF 33 between the opaque and transparent states. This determination may be made by communication between the first anti-glare system 10 and the second anti-glare system 30 or by the first light sensor 18 and the second light sensor 38 .
  • Step 412 Initiate Fixed Schedule A.
  • the subroutine 400 proceeds to step 412 .
  • the first anti-glare system 10 is equipped with its own fixed schedule (a first schedule) and the controller begins oscillating the first light source ICF 15 between the substantially opaque state and the substantially clear state on the first schedule.
  • Step 412 also includes oscillating the first windscreen ICF 13 between the substantially opaque state and the substantially clear state on the first schedule. Therefore, the first anti-glare system 10 is switching between states of blocking both incoming light with the first windscreen ICF 13 and blocking outgoing light with the first light source ICF 15 .
  • Step 414 Initiate Fixed Schedule B.
  • the second anti-glare system 30 is equipped with its own fixed schedule (a second schedule) and the controller begins oscillating the second light source ICF 35 between the substantially opaque state and the substantially clear state on the second schedule.
  • Step 414 also includes oscillating the second windscreen ICF 33 between the substantially opaque state and the substantially clear state on the second schedule. Therefore, the second anti-glare system 30 is switching between states of blocking both incoming light with the second windscreen ICF 33 and blocking outgoing light with the second light source ICF 35 .
  • Both the first and second schedules operate at high frequencies.
  • Step 416 Harmonic Beat.
  • the second schedule is different from the first schedule because the first schedule has a first frequency and the second schedule has a second frequency, which is different from the first frequency. Therefore, as the first anti-glare system 10 oscillates at the first schedule and the second anti-glare system 30 oscillates at the second schedule, a harmonic beat occurs between the anti-glare systems of the two vehicles.
  • the drivers of both the first vehicle and the second vehicle may perceive the harmonic beat as a fluctuating or pulsating of the oncoming light source, but both drivers will also be exposed to significantly reduced amounts of glare from the oncoming light source.
  • the second frequency may be between one to thirty percent different from the first frequency. Reducing the glare to the drivers of the first vehicle and the second vehicle may be especially important in low light conditions, such as night time driving, or when one or both of the first vehicle and the second vehicle has its high beams on.
  • the subroutine 400 proceeds to steps 420 and 422 .
  • the subroutine 400 establishes oscillation schedules for the first anti-glare system 10 and the second anti-glare system 30 which allow the first windscreen ICF 13 to be opaque and blocking glare from the second light source 34 when the second light source ICF 35 is transparent.
  • These schedules operate on a common frequency.
  • opaque refers to any level of opacity of the ICF which sufficiently reduces the passage of light through the ICF to benefit vehicle occupants by reducing glare. Depending upon the lighting conditions, this may be only slightly opaque to simply reduce passage of light, or may be nearly blackening the ICF to prevent all light passage.
  • the second schedule is one hundred eighty degrees out of phase from the first schedule, such that the first light source ICF 15 is in the substantially opaque state while the second windscreen ICF 33 is in the substantially clear state.
  • the second schedule may be offset by ⁇ radians from the second schedule.
  • Steps 420 and 422 Determine Common Frequency.
  • the first anti-glare system 10 and the second anti-glare system 30 select a common frequency for oscillating between the opaque and the transparent states of the respective ICFs. Therefore, if no harmonic beat will be established and, if the phase lag for each vehicle is correctly established, the first anti-glare system 10 and the second anti-glare system 30 will operate in concert to reduce glare to and from the other, on-coming vehicle.
  • Steps 424 and 426 Sense Angle to Magnetic North.
  • One mechanism for correctly establishing the phase lag is for both the first anti-glare system 10 and the second anti-glare system 30 to be sensing magnetic north.
  • FIG. 6 there is shown a diagram 600 showing the direction of travel of the first vehicle and the second vehicle relative to magnetic north, which is illustrated by a double arrow 602 .
  • An arrow 610 shows the direction of travel of the first vehicle and an arrow 630 shows the direction of travel of the second vehicle.
  • the first anti-glare system 10 determines a first offset angle 611 relative to magnetic north
  • the second anti-glare system 30 determines a second offset angle 631 relative to magnetic north.
  • the second offset angle 631 is approximately 180 degrees rotated from the first offset angle 611 .
  • the subroutine 400 includes calculating the first schedule as a function of the first offset angle 611 and calculating the second schedule as a function of the second offset angle 631 .
  • the vehicles when the vehicles are equipped with GPS devices, the vehicles may sense geographic north and calculate the offset angle relative to geographic north instead of magnetic north.
  • the first vehicle and the second vehicle may not always be traveling exactly 180 degrees (head on) relative to each other. However, this will often be the case, and when one or both of the vehicles is rounding a corner, the offset angles will become closer to 180 degrees as the glare from the oncoming light sources becomes more intense.
  • Steps 428 and 430 Phase Lag from Common Clock.
  • the subroutine 400 may also include monitoring a common clock cycle, such that calculating the first schedule includes phase lagging the first offset angle 611 from the common clock cycle, and calculating the second schedule includes phase lagging the second offset angle 631 from the common clock cycle.
  • the common clock cycle provides a constant reference point for beginning the schedules for the first anti-glare system 10 and the second anti-glare system 30 , respectively. Therefore, the first anti-glare system 10 and the second anti-glare system 30 have a common reference to allow scheduling ICF oscillations which allow the second light source ICF 35 to be projecting light only while the first windscreen ICF 13 is blocking light, and the first light source ICF 15 to be projecting light only while the second windscreen ICF 33 is blocking light.
  • Steps 432 and 434 Initiate First Schedule and Second Schedule.
  • a y-axis 710 represents the control state for the first windscreen ICF 13 and the first light source ICF 15 .
  • the control state is 1, the first windscreen ICF 13 and the first light source ICF 15 are active and opaque, such that a reduced amount of light passes through.
  • the control state is 0, the first windscreen ICF 13 and the first light source ICF 15 are inactive and transparent, such that most light passes through.
  • An x-axis 712 represents the passage of time for the first anti-glare system 10 relative to the common clock cycle. Each dashed line division along the x-axis 712 represents one half cycle of the frequency, which may is equal to 180 degrees or ⁇ radians.
  • a line 714 shows the first schedule for the first windscreen ICF 13 and the first light source ICF 15 .
  • a first phase lag 716 is calculated from the first offset angle 611 , and either delays or adjusts the first schedule by the first offset angle 611 .
  • a y-axis 720 represents the control state for the second windscreen ICF 33 and the second light source ICF 35
  • an x-axis 722 represents the passage of time for the second anti-glare system 30 relative to the common clock cycle.
  • a line 724 shows the second schedule for the second windscreen ICF 33 and the second light source ICF 35 .
  • a second phase lag 726 is calculated from the second offset angle 631 , and either delays or adjusts the second schedule by the second offset angle 631 .
  • Steps 436 and 438 Near Complete Reduction in Glare.
  • the first phase lag 716 adjusts the first schedule (shown as line 714 ) to be approximately 180 degrees different from the second schedule (shown as line 724 ). Therefore, the first schedule is oscillating the first windscreen ICF 13 between the substantially opaque state and the substantially clear state while the second schedule 724 is oscillating the second light source ICF 35 between the substantially clear state and the substantially opaque state on the second schedule 724 .
  • the first windscreen ICF 13 is in the substantially opaque state during periods when the second light source ICF 35 is in the substantially clear state.
  • the second light source 34 will be seen as a very low-intensity source
  • the first light source 14 will be seen as a very low-intensity source.

Abstract

A method of reducing glare may include sensing a first light source with a second vehicle, and sensing a second light source with a first vehicle and oscillating a first light source ICF between a substantially opaque state and a substantially clear state on a first schedule. A second windscreen ICF may be oscillating between the substantially opaque state and the substantially clear state on a second schedule different from the first schedule. A position of the light source may be sensed and an eye position of the occupant estimated. An intersecting region of the selectively-darkenable ICF, which is located substantially along a line from the position of the light source to the eye position, is calculated. The intersecting region of the ICF is darkened, such that a reduced amount of light from the light source passes through the intersecting region.

Description

    TECHNICAL FIELD
  • This disclosure relates to reducing glare between light sources and vehicles or vehicle occupants using intensity control films.
  • BACKGROUND
  • Many vehicles include one or more headlamps (also referred to as headlights) usually attached to the front of the vehicle. Headlamps usually have the purpose of illuminating the road ahead during periods of low visibility, such as darkness or precipitation, but also serve to alert or signal the location of the vehicle to other vehicles and pedestrians.
  • When two or more vehicles approach each other, their respective headlamps may cause glare to the driver of the opposing vehicle. Depending upon the brightness of the headlamps, the glare may reduce visibility for one or both of the drivers, especially at night. Headlamps are often configured to operate with more than one level of brightness or intensity, often referred to as low beams and high beams. Operation of the vehicle with high beams may increase glare to the driver of the oncoming vehicle.
  • Other sources of light may also cause glare to the driver of the vehicle. For example, and without limitation, road-side signage may incorporate bright lights projecting onto the roadway, spot lights may be used for numerous purposes on or near roadways, or the sun may be positioned in the view of drivers—especially during early morning or late afternoon driving.
  • SUMMARY
  • A method for reducing glare is provided. The glare may occur between a first vehicle and a second vehicle or between a light source and an occupant's eye. The first vehicle has a first light source with a first light source intensity control film (ICF) and a first windscreen with a first windscreen ICF, and the second vehicle has a second light source with a second light source ICF and a second windscreen with a second windscreen ICF. Each respective ICF is selectively changeable between a substantially opaque state and a substantially clear state.
  • The method may include: sensing the first light source with the second vehicle, and sensing the second light source with the first vehicle; oscillating the first light source ICF between the substantially opaque state and the substantially clear state on a first schedule; and oscillating the second windscreen ICF between the substantially opaque state and the substantially clear state on a second schedule different from the first schedule.
  • The method may also include sensing a position of the light source and estimating an eye position of the occupant. An intersecting region of the selectively-darkenable ICF is calculated. The intersecting region being located substantially along a line from the position of the light source to the estimated eye position. The intersecting region of the ICF is then darkened, such that a reduced amount of light from the light source passes through the intersecting region. Instead of estimating the eye position of the occupant, the method may include sensing the eye position of the occupant, and calculating the intersecting region of the windscreen based upon the sensed eye position.
  • The above features and advantages, and other features and advantages, of the present invention are readily apparent from the following detailed description of some of the best modes and other embodiments for carrying out the invention, as defined in the appended claims, when taken in connection with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram of anti-glare systems for two vehicles;
  • FIG. 2 is a schematic flow chart of an algorithm or method for reducing glare from light sources;
  • FIG. 3 is a schematic flow chart of a subroutine of the method shown in FIG. 2;
  • FIG. 4 is a schematic flow chart of another subroutine of the method shown in FIG. 2;
  • FIG. 5 is a schematic front view of one of the windscreens shown in FIG. 1, shown with a matrix of selectively-darkenable intensity control film (ICF) cells;
  • FIG. 6 is a schematic diagram showing the directions of travel of two vehicles relative to magnetic north (upward, as viewed in FIG. 6); and
  • FIG. 7 is a schematic chart showing the oscillating schedules for controlling the ICF of each of the two vehicles shown in FIG. 6.
  • DETAILED DESCRIPTION
  • Referring to the drawings, wherein like reference numbers correspond to like or similar components throughout the several figures, there is shown in FIG. 1 a schematic diagram of two anti-glare systems. The diagram shown in FIG. 1 is highly schematic and many elements of the system may have been omitted in order to clarify the diagram. A first anti-glare system 10 for a first vehicle (not separately shown) is represented on the left side of FIG. 1. The first vehicle may be a sedan, a convertible, an SUV, a pickup truck, a motor cycle, or any other vehicle. The first anti-glare system 10 includes a first windscreen 12, which may be a glass windshield, a plastic windscreen for motorcycles, a helmet visor, eye glasses, or other components through which the driver or occupants of the first vehicle view light.
  • While the present invention is described in detail with respect to automotive applications, those skilled in the art will recognize the broader applicability of the invention. Those having ordinary skill in the art will recognize that terms such as “above,” “below,” “upward,” “downward,” et cetera, are used descriptively of the figures, and do not represent limitations on the scope of the invention, as defined by the appended claims.
  • The first windscreen 12 includes a selectively-darkenable intensity control film (ICF), which may be referred to as a first windscreen ICF 13. Generally intensity control films are thin substances which may be attached to transparent objects (such as the first windscreen 12) and may be controlled to selectively, and variably, adjust the amount of light which is able to pass through the ICF and the transparent object. The first windscreen ICF 13 covers much of the first windscreen 12. By controlling either a voltage across the first windscreen ICF 13 or a current which passes through the first windscreen ICF 13, a controller (not separately shown) may change the first windscreen ICF 13 from substantially transparent to substantially opaque, or may levels of opacity therebetween.
  • The first anti-glare system 10 also includes a first light source 14, which may be a headlamp, headlight, spot light, or other source of projecting light. The first light source 14 is also covered with a first light source ICF 15, which may be selectively darkened to prevent escape of light (especially bright light) from the first light source 14.
  • A first light sensor 18 is configured to sense the existence of oncoming light sources and may also sense the intensity of light sources. The first light sensor 18 is shown mounted on the first windscreen 12, but the first light sensor 18 may be mounted elsewhere. The first light sensor 18 may also be integrated with the controller (not separately shown) to process signals from the first light sensor 18 and control the first windscreen ICF 13. Sensing the light source may also include sensing a light source position.
  • In FIG. 1, an eye position 20 is a schematic representation of the location of an occupant's eyes—such as the driver of the vehicle. An eye position sensor 22 is configured to determine the eye position 20 and signal the controller. Alternatively, the eye position 20 may be estimated, instead of sensed by the eye position sensor 22. For example, and without limitation, the eye position 20 may be estimated based upon known characteristics (such as height) or biometric data of the driver or drivers, average population characteristics, the position of an adjustable head rest, or sensors located within the vehicle seat, seat back, or headrest.
  • Once the eye position 20 and the position of an oncoming light source, such as a third light source 44, are both known, an intersecting region 24 can be determined. The third light source 44 may be a non-vehicular source, such as, and without limitation: a bright road-side light, sign, or billboard; a spot light; or the sun. The intersecting region 24 is located substantially along a line from the third light source 44 position to the estimated eye position 20
  • The first windscreen ICF 13 may include a matrix of ICF cells (not shown in FIG. 1, but shown and described in as ICF cells 526 in FIG. 5), each of which may be selectively controlled. Therefore, portions or regions of the first windscreen ICF 13 may be made opaque while other regions remain transparent.
  • A second anti-glare system 30 for a second vehicle (not separately shown) is represented on the right side of FIG. 1, and may be a motorcycle or any other vehicle. The second anti-glare system 30 includes a second windscreen 32, which may be a helmet visor. The second windscreen 32 is covered with a second windscreen ICF 33, which is in communication with a controller (not shown) configured to selectively change the second windscreen ICF 33 between transparent, opaque, and semi-opaque states.
  • The second anti-glare system 30 also includes a second light source 34, this light source may be the headlight or headlights of the second vehicle. As shown in FIG. 1, the second light source 34 projects light toward the first vehicle and the first light source 14 projects light toward the second vehicle. The second light source 34 is also covered with a second light source ICF 35, which is controllable to selectively (and possibly variably) prevent escape of light (especially bright light) from the second light source 34.
  • A second light sensor 38 is shown mounted near the second windscreen 32, but may be located else where on the second vehicle. The second light sensor 38 may also be integrated with the controller (not separately shown) to process signals from the second light sensor 38 and to control the second windscreen ICF 33.
  • Referring now to FIGS. 2-4, and with continued reference to FIG. 1, there is shown a schematic flow chart of an algorithm or method 200 for reducing glare through a windscreen (such as the first windscreen 12) of a vehicle (such as the first vehicle) from a light source (such as the third light source 44) to an occupant. The method 200 utilizes windscreens covered with a selectively-darkenable ICF (such as the first windscreen ICF 13). FIG. 3 shows a subroutine 300 of the method 200, and FIG. 4 shows a subroutine 400 of the method 200.
  • For illustrative purposes, much of the method 200 may be described with reference to many of the elements and components shown and described in relation to FIG. 1. However, other components may be used to practice the method 200 and the invention defined in the appended claims. The exact order of the steps of the algorithm or method 200 shown in FIGS. 2-4 is not required. Steps may be reordered, steps may be omitted, and additional steps may be included. As viewed in FIG. 2, decision steps answered positively (as a yes) follow the path labeled with a “+” sign (the mathematical plus or addition operator). Similarly, decision steps answered negatively (as a no) follow the path labeled with a “−” sign (the mathematical minus or subtraction operator).
  • Step 210: Sense Light Source(s).
  • The method 200 begins as the first light sensor 18 senses a light source, such as the third light source 44. The first light sensor 18 may be operating continually, such that any time a sufficient light source is sensed the method 200 may be initiated.
  • Step 212: Sense Intensity.
  • In order to determine whether or not the anti-glare system needs to be implemented, the method 200 may sense the intensity of the third light source 44. This functionality may be incorporated into the first light sensor 18, such that only lights of sufficient intensity (or brightness) will be registered by the first light sensor 18 and trigger the method 200. Sensing the intensity of the potential source of glare may include factoring in ambient light conditions. For example, and without limitation, headlights of the oncoming vehicle may not be registered by the first light sensor 18 during bright daylight but may be sufficiently intense to start the method 200 during the evening or nighttime, or when weather conditions cause low ambient light conditions.
  • The method 200 may be occurring on either or both of the first vehicle and the second vehicle. The method 200 is described largely in relation to the first anti-glare system 10 of the first vehicle, but execution of the method 200 on the second anti-glare system 30 of the second vehicle may be very similar, depending upon the components with which each vehicle is equipped.
  • Step 214: Another Equipped Vehicle?
  • The method 200 then determines whether the oncoming light source is from another vehicle which is equipped with a similar anti-glare system. In FIG. 1, this may include determining whether the sensed light source is from the second vehicle (the second light source 34) or is an extraneous source, such as the third light source 44. If the oncoming light source is from another equipped vehicle, the two vehicles may cooperate in reducing the glare from each other's light sources. However, if the oncoming light source is not from an equipped vehicle, then the first anti-glare system 10 will have to reduce glare with its own components.
  • If step 214 determines that the sensed light source is not emanating from another equipped vehicle, the method 200 proceeds to a subroutine 300, the intersecting region subroutine. If the step 214 determines that the sensed light source is emanating from another equipped vehicle (such as the second vehicle having the second anti-glare system 30), the method 200 proceeds to a subroutine 400, the switching system subroutine. Either of the subroutines 300 or 400 may be implemented as independent algorithms, separate from each other and separate from the remainder of the method 200.
  • Subroutine 300: Intersecting Region Subroutine.
  • Generally, the intersecting region subroutine 300 looks to create a small region of opacity with the first windscreen ICF 13 on the first windscreen 12. Therefore, the source of glare—either the third light source 44 or the second light source 34—may be blocked without blocking the whole range of the driver's vision. The subroutine 300 may be used to reduce glare to the eyes of the driver, to other occupants of the vehicle, or to both. For illustrative purposes, the subroutine 300 is described in relation to reducing glare from the third light source 44, which may be the sun or a bright spot light located in the driver's field of vision through the first windscreen 12.
  • Step 310: Source Position.
  • The subroutine 300 includes sensing a light source position. The first light sensor 18 determines the position of the third light source 44 relative to the first vehicle and the first windscreen 12. Because the source of the glare—in this example the third light source 44—may vary considerably, the location of the third light source 44 may also vary considerably. The subroutine 300 may only be determining or sensing the direction of the third light source 44. Therefore, the subroutine 300 may not be concerned as to whether the source is 200 yards or 92 million miles away, but is concerned with the direction and intensity of the third light source 44.
  • Step 312: Eye Position.
  • The subroutine 300 includes either estimating the eye position 20 of the occupant or sensing the eye position 20 of the occupant. The eye position sensor 22 may determine the actual location of each of the driver's eyes, the general location of the driver's eyes, or of the driver's head (which provides an approximation for the eyes).
  • Step 314: Calculate Intersecting Region.
  • The subroutine 300 also includes calculating the intersecting region 24 of the first windscreen ICF 13. The intersecting region 24 is located substantially along a line from the position of the third light source 44 to the (estimated or sensed) eye position 20.
  • Step 316: Match Intersecting Region to ICF Cells.
  • As shown in FIG. 5, the first windscreen ICF 13 may be formed from the matrix of selectively-darkenable ICF cells 526. The subroutine 300 includes matching the intersecting region 24 to one or more of the ICF cells 526. The subroutine 300 may select the ICF cell 526 whose center is nearest to the intersecting region 24, or may select a plurality of ICF cells 526 which encompass or surround the intersecting region 24. Therefore, the controller will be configured to determine which ICF cell 526 or plurality of ICF cells 526 are nearest to the intersecting region 24.
  • Step 318: Activate ICF Cells.
  • The subroutine 300 then includes darkening the intersecting region 24, such that a reduced amount of light from the third light source 44 passes through the intersecting region 24. If the first windscreen ICF 13 includes the matrix of ICF cells 526, then step 318 would change the plurality of the ICF cells 526 encompassing the intersecting region 24 to become sufficiently opaque to block the glare from the third light source 44 from reaching the driver's eyes. Therefore, the glare is reduced in the intersecting region 24, but the remainder of the first windscreen ICF 13 is substantially transparent and the driver's field of vision is not significantly reduced (the driver would not likely be looking at the bright light emanating from the third light source 44 anyway).
  • Depending upon the intensity of the third light source 44, the first windscreen ICF 13 may not need to be changed to completely opaque in order to reduce the glare to the driver's eyes. In an alternative configuration, the first windscreen ICF 13 may be capable of increasing the opacity without separately-controllable ICF cells 526. The first windscreen ICF 13 may be composed of a single membrane or film, but still be capable of selectively darkening regions or portions thereof, or the first windscreen ICF 13 may be composed of an infinite number of very small ICF cells 526.
  • Subroutine 400: Switching System Subroutine.
  • Generally, the switching system subroutine looks to make the whole first windscreen ICF 13 opaque for short, oscillating periods of time. The subroutine 400 may control both the first windscreen ICF 13 and the first light source ICF 15 between a substantially opaque state and a substantially clear state. On its own, this oscillation reduces to the total passage of light and glare to the eyes of occupants. When combined with a similar system on the second vehicle, the drivers and occupants of both the first vehicle and the second vehicle may be nearly-completely shielded from the glare produced by the oncoming vehicle. Both the first anti-glare system 10 and the second anti-glare system 30 are running the subroutine 400, such that the subroutine may be considered to include both vehicles or to be operating substantially simultaneously, but separately, in both vehicles.
  • Step 410: Adjustable Schedules?
  • The method 200 has included sensing the first light source 14 with the second anti-glare system 30 of the second vehicle, and sensing the second light source 34 with the first anti-glare system 10 of the first vehicle, and has already determined that both the first anti-glare system 10 and the second anti-glare system 30 are capable of running the switching system subroutine 400. Decision step 410 determines if the vehicles are both capable of altering the schedules of oscillation for the first windscreen ICF 13 and the second windscreen ICF 33 between the opaque and transparent states. This determination may be made by communication between the first anti-glare system 10 and the second anti-glare system 30 or by the first light sensor 18 and the second light sensor 38.
  • Step 412: Initiate Fixed Schedule A.
  • If both the first anti-glare system 10 and the second anti-glare system 30 are not configured to adjust to each other's schedules, the subroutine 400 proceeds to step 412. The first anti-glare system 10 is equipped with its own fixed schedule (a first schedule) and the controller begins oscillating the first light source ICF 15 between the substantially opaque state and the substantially clear state on the first schedule. Step 412 also includes oscillating the first windscreen ICF 13 between the substantially opaque state and the substantially clear state on the first schedule. Therefore, the first anti-glare system 10 is switching between states of blocking both incoming light with the first windscreen ICF 13 and blocking outgoing light with the first light source ICF 15.
  • Step 414: Initiate Fixed Schedule B.
  • The second anti-glare system 30 is equipped with its own fixed schedule (a second schedule) and the controller begins oscillating the second light source ICF 35 between the substantially opaque state and the substantially clear state on the second schedule. Step 414 also includes oscillating the second windscreen ICF 33 between the substantially opaque state and the substantially clear state on the second schedule. Therefore, the second anti-glare system 30 is switching between states of blocking both incoming light with the second windscreen ICF 33 and blocking outgoing light with the second light source ICF 35. Both the first and second schedules operate at high frequencies.
  • Step 416: Harmonic Beat.
  • The second schedule is different from the first schedule because the first schedule has a first frequency and the second schedule has a second frequency, which is different from the first frequency. Therefore, as the first anti-glare system 10 oscillates at the first schedule and the second anti-glare system 30 oscillates at the second schedule, a harmonic beat occurs between the anti-glare systems of the two vehicles. The drivers of both the first vehicle and the second vehicle may perceive the harmonic beat as a fluctuating or pulsating of the oncoming light source, but both drivers will also be exposed to significantly reduced amounts of glare from the oncoming light source.
  • Depending upon the configuration of the first anti-glare system 10 and the second anti-glare system 30, the second frequency may be between one to thirty percent different from the first frequency. Reducing the glare to the drivers of the first vehicle and the second vehicle may be especially important in low light conditions, such as night time driving, or when one or both of the first vehicle and the second vehicle has its high beams on.
  • If both the first anti-glare system 10 and the second anti-glare system 30 are configured to adjust to each other's schedules, the subroutine 400 proceeds to steps 420 and 422. In this situation, the subroutine 400 establishes oscillation schedules for the first anti-glare system 10 and the second anti-glare system 30 which allow the first windscreen ICF 13 to be opaque and blocking glare from the second light source 34 when the second light source ICF 35 is transparent. These schedules operate on a common frequency. As used herein, opaque refers to any level of opacity of the ICF which sufficiently reduces the passage of light through the ICF to benefit vehicle occupants by reducing glare. Depending upon the lighting conditions, this may be only slightly opaque to simply reduce passage of light, or may be nearly blackening the ICF to prevent all light passage.
  • In order to similarly block glare to both vehicles, the second schedule is one hundred eighty degrees out of phase from the first schedule, such that the first light source ICF 15 is in the substantially opaque state while the second windscreen ICF 33 is in the substantially clear state. Alternatively expressed, the second schedule may be offset by π radians from the second schedule.
  • Steps 420 and 422: Determine Common Frequency.
  • The first anti-glare system 10 and the second anti-glare system 30 select a common frequency for oscillating between the opaque and the transparent states of the respective ICFs. Therefore, if no harmonic beat will be established and, if the phase lag for each vehicle is correctly established, the first anti-glare system 10 and the second anti-glare system 30 will operate in concert to reduce glare to and from the other, on-coming vehicle.
  • Steps 424 and 426: Sense Angle to Magnetic North.
  • One mechanism for correctly establishing the phase lag is for both the first anti-glare system 10 and the second anti-glare system 30 to be sensing magnetic north. Referring to FIG. 6, and with continued reference to FIGS. 1-5, there is shown a diagram 600 showing the direction of travel of the first vehicle and the second vehicle relative to magnetic north, which is illustrated by a double arrow 602.
  • An arrow 610 shows the direction of travel of the first vehicle and an arrow 630 shows the direction of travel of the second vehicle. The first anti-glare system 10 determines a first offset angle 611 relative to magnetic north, and the second anti-glare system 30 determines a second offset angle 631 relative to magnetic north. As shown, the second offset angle 631 is approximately 180 degrees rotated from the first offset angle 611. The subroutine 400 includes calculating the first schedule as a function of the first offset angle 611 and calculating the second schedule as a function of the second offset angle 631.
  • Alternatively, when the vehicles are equipped with GPS devices, the vehicles may sense geographic north and calculate the offset angle relative to geographic north instead of magnetic north. The first vehicle and the second vehicle may not always be traveling exactly 180 degrees (head on) relative to each other. However, this will often be the case, and when one or both of the vehicles is rounding a corner, the offset angles will become closer to 180 degrees as the glare from the oncoming light sources becomes more intense.
  • Steps 428 and 430: Phase Lag from Common Clock.
  • The subroutine 400 may also include monitoring a common clock cycle, such that calculating the first schedule includes phase lagging the first offset angle 611 from the common clock cycle, and calculating the second schedule includes phase lagging the second offset angle 631 from the common clock cycle. The common clock cycle provides a constant reference point for beginning the schedules for the first anti-glare system 10 and the second anti-glare system 30, respectively. Therefore, the first anti-glare system 10 and the second anti-glare system 30 have a common reference to allow scheduling ICF oscillations which allow the second light source ICF 35 to be projecting light only while the first windscreen ICF 13 is blocking light, and the first light source ICF 15 to be projecting light only while the second windscreen ICF 33 is blocking light.
  • Steps 432 and 434: Initiate First Schedule and Second Schedule.
  • Referring to FIG. 7, and with continued reference to FIGS. 1-6, there is shown a schematic chart 700 illustrating the oscillating schedules for controlling the ICFs on each of the first anti-glare system 10 and the second anti-glare system 30, as calculated relative to magnetic north in FIG. 6. A y-axis 710 represents the control state for the first windscreen ICF 13 and the first light source ICF 15. When the control state is 1, the first windscreen ICF 13 and the first light source ICF 15 are active and opaque, such that a reduced amount of light passes through. Similarly, when the control state is 0, the first windscreen ICF 13 and the first light source ICF 15 are inactive and transparent, such that most light passes through.
  • An x-axis 712 represents the passage of time for the first anti-glare system 10 relative to the common clock cycle. Each dashed line division along the x-axis 712 represents one half cycle of the frequency, which may is equal to 180 degrees or π radians. A line 714 shows the first schedule for the first windscreen ICF 13 and the first light source ICF 15. A first phase lag 716 is calculated from the first offset angle 611, and either delays or adjusts the first schedule by the first offset angle 611.
  • Similarly, a y-axis 720 represents the control state for the second windscreen ICF 33 and the second light source ICF 35, and an x-axis 722 represents the passage of time for the second anti-glare system 30 relative to the common clock cycle. A line 724 shows the second schedule for the second windscreen ICF 33 and the second light source ICF 35. A second phase lag 726 is calculated from the second offset angle 631, and either delays or adjusts the second schedule by the second offset angle 631.
  • Steps 436 and 438: Near Complete Reduction in Glare.
  • As shown in FIG. 7, because the first offset angle 611 is 180 degrees from the second offset angle 631, the first phase lag 716 adjusts the first schedule (shown as line 714) to be approximately 180 degrees different from the second schedule (shown as line 724). Therefore, the first schedule is oscillating the first windscreen ICF 13 between the substantially opaque state and the substantially clear state while the second schedule 724 is oscillating the second light source ICF 35 between the substantially clear state and the substantially opaque state on the second schedule 724. The first windscreen ICF 13 is in the substantially opaque state during periods when the second light source ICF 35 is in the substantially clear state. To the driver of the first vehicle, the second light source 34 will be seen as a very low-intensity source, and to the driver of the second vehicle, the first light source 14 will be seen as a very low-intensity source.
  • The detailed description and the drawings or figures are supportive and descriptive of the invention, but the scope of the invention is defined solely by the claims. While some of the best modes and other embodiments for carrying out the claimed invention have been described in detail, various alternative designs and embodiments exist for practicing the invention defined in the appended claims.

Claims (11)

1. A method for reducing glare through a windscreen from a light source to an occupant's eye, wherein the windscreen is covered with a selectively-darkenable intensity control film (ICF), the method comprising:
sensing a position of the light source;
estimating an eye position of the occupant;
calculating an intersecting region of the selectively-darkenable ICF, wherein the intersecting region is located substantially along a line from the position of the light source to the estimated eye position; and
darkening the intersecting region, such that a reduced amount of light from the light source passes through the intersecting region.
2. The method of claim 1, further comprising:
sensing the eye position of the occupant; and
wherein the intersecting region of the windscreen is calculated based upon the sensed eye position instead of the estimated eye position.
3. The method of claim 2,
wherein the selectively-darkenable ICF further includes a matrix of selectively-darkenable ICF cells;
determining which of the ICF cells has a center nearest to the intersecting region; and
wherein darkening the intersecting region includes darkening the ICF cell determined to be nearest to the intersecting region.
4. The method of claim 2, wherein darkening the intersecting region includes darkening a plurality of the ICF cells encompassing the intersecting region.
5. The method of claim 4, wherein the light source is moving relative to the windscreen, and further comprising:
sensing a new position of the light source;
calculating a new intersecting region of the selectively-darkenable ICF, wherein the new intersecting region is located substantially along a line from the new position of the light source to the sensed eye position; and
darkening the new intersecting region by darkening a plurality of the ICF cells encompassing the new intersecting region, such that a reduced amount of light from the light source passes through the new intersecting region.
6. A method for reducing glare between a first vehicle and a second vehicle, wherein the first vehicle has a first light source with a first light source intensity control film (ICF) and a first windscreen with a first windscreen ICF, and the second vehicle has a second light source with a second light source ICF and a second windscreen with a second windscreen ICF, the method comprising:
sensing the first light source with the second vehicle, and sensing the second light source with the first vehicle;
oscillating the first light source ICF between a substantially opaque state and a substantially clear state on a first schedule; and
oscillating the second windscreen ICF between the substantially opaque state and the substantially clear state on a second schedule different from the first schedule.
7. The method of claim 6, wherein the second schedule is one hundred eighty degrees out of phase from the first schedule, such that the first light source ICF is in the substantially opaque state while the second windscreen ICF is in the substantially clear state.
8. The method of claim 7, further comprising:
oscillating the first windscreen ICF between the substantially opaque state and the substantially clear state on the first schedule; and
oscillating the second light source ICF on the second schedule, such that the first windscreen ICF is in the substantially opaque state while the second light source ICF is in the substantially clear state.
9. The method of claim 8, further comprising:
sensing magnetic north;
determining a first offset angle for the first vehicle relative to magnetic north;
determining a second offset angle for the second vehicle relative to magnetic north;
calculating the first schedule as a function of the first offset angle; and
calculating the second schedule as a function of the second offset angle.
10. The method of claim 9, further comprising:
monitoring a common clock cycle;
wherein calculating the first schedule includes phase lagging the first offset angle from the common clock cycle; and
wherein calculating the second schedule includes phase lagging the second offset angle from the common clock cycle.
11. The method of claim 6,
wherein the first schedule has a first frequency and the second schedule has a second frequency different from the first frequency; and
wherein the second frequency is between one to thirty percent different from the first frequency.
US12/951,275 2010-11-22 2010-11-22 Method for reducing glare from light sources through windscreens Abandoned US20120126099A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/951,275 US20120126099A1 (en) 2010-11-22 2010-11-22 Method for reducing glare from light sources through windscreens
DE102011118802A DE102011118802A1 (en) 2010-11-22 2011-11-17 Method for reducing glare from light sources through windshields
CN2011103731185A CN102555737A (en) 2010-11-22 2011-11-22 Method for reducing glare from light sources through windscreens
US14/153,382 US9186963B2 (en) 2010-11-22 2014-01-13 Method for reducing glare from light sources through windscreens with intensity control film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/951,275 US20120126099A1 (en) 2010-11-22 2010-11-22 Method for reducing glare from light sources through windscreens

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/153,382 Division US9186963B2 (en) 2010-11-22 2014-01-13 Method for reducing glare from light sources through windscreens with intensity control film

Publications (1)

Publication Number Publication Date
US20120126099A1 true US20120126099A1 (en) 2012-05-24

Family

ID=46021560

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/951,275 Abandoned US20120126099A1 (en) 2010-11-22 2010-11-22 Method for reducing glare from light sources through windscreens
US14/153,382 Expired - Fee Related US9186963B2 (en) 2010-11-22 2014-01-13 Method for reducing glare from light sources through windscreens with intensity control film

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/153,382 Expired - Fee Related US9186963B2 (en) 2010-11-22 2014-01-13 Method for reducing glare from light sources through windscreens with intensity control film

Country Status (3)

Country Link
US (2) US20120126099A1 (en)
CN (1) CN102555737A (en)
DE (1) DE102011118802A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2993509A1 (en) * 2012-07-17 2014-01-24 Airbus ELECTRONIC DEVICE FOR PROTECTION AGAINST LIGHTENING OF A PILOT OR DRIVER.
US8899656B1 (en) 2013-11-01 2014-12-02 Sam Mingsan Chen Independent and anonymous night time glare reduction system
FR3010940A1 (en) * 2013-09-26 2015-03-27 Valeo Vision DEVICE AND METHOD FOR DRIVING ASSISTANCE
FR3010941A1 (en) * 2013-09-26 2015-03-27 Valeo Vision DEVICE AND METHOD FOR DRIVING ASSISTANCE
WO2015128158A1 (en) * 2014-02-25 2015-09-03 Bayerische Motoren Werke Aktiengesellschaft Sun shield
CN105667260A (en) * 2014-12-04 2016-06-15 丰田自动车株式会社 Anti-dazzling apparatus
US20170001553A1 (en) * 2013-09-26 2017-01-05 Valeo Vision Driving assistance method and device
WO2017053040A1 (en) * 2015-09-21 2017-03-30 Proteq Technologies Llc Active glare suppression system
FR3050564A1 (en) * 2016-04-26 2017-10-27 Valeo Vision METHOD FOR ADAPTING THE FREQUENCY AND / OR PHASE OF A VARIABLE TRANSMISSION SCREEN OF A DRIVER ASSISTANCE SYSTEM FOR A MOTOR VEHICLE
US9897809B2 (en) 2013-09-26 2018-02-20 Valeo Vision Data-display glasses comprising an anti-glare screen
US9915831B2 (en) 2013-09-26 2018-03-13 Valeo Vision Adaptive optical filter for spectacle lenses
US10073275B2 (en) 2013-09-26 2018-09-11 Valeo Vision Anti-glare 3D glasses
US10254545B2 (en) 2013-09-26 2019-04-09 Valeo Vision Data-display glasses comprising an anti-glare screen
WO2021226202A1 (en) * 2020-05-06 2021-11-11 Milwaukee Electric Tool Corporation Glare reduction system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012008736A1 (en) * 2012-05-04 2013-11-07 Ingenieurgesellschaft Inno-Factum, Thomas Vorsatz & Partner Kollektivgesellschaft nach schweizer Recht, vertreten durch Herrn Thomas Vorsatz Dynamic light flux filtering system for use in motor car to minimize glare effect on eyes of driver, has central computing and control unit transmitting signal for adjusting light transmittance of partial surface of filter
US9511650B2 (en) * 2014-03-30 2016-12-06 Bob Momot Adjustable opacity control based on operator and light source position
AT518589A1 (en) * 2016-05-02 2017-11-15 Zkw Group Gmbh A method for improving lighting conditions from the perspective of a driver of a motor vehicle
CN108045061A (en) * 2018-01-16 2018-05-18 苏州远征魂车船技术有限公司 A kind of shield glass pad pasting bonding tool
DE102021209213A1 (en) 2021-08-23 2023-02-23 Robert Bosch Gesellschaft mit beschränkter Haftung Sun visor system, method of driving same and condition monitoring system
CN114214979B (en) * 2021-12-21 2022-12-13 安徽省路桥工程集团有限责任公司 Multifunctional integrated rod piece for urban crossroads

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060158715A1 (en) * 2005-01-19 2006-07-20 Hitachi, Ltd. Variable transmissivity window system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818011A (en) * 1987-05-13 1989-04-04 Gabe Cherian Anti-glare visor system
US6646801B1 (en) * 2000-06-09 2003-11-11 Benjamin Sley Glare reduction system and method
DE10046103A1 (en) * 2000-09-18 2001-12-06 Felix Blank Sun or headlight dazzle protection device for vehicle driver, has segments which can be individually darkened based on position and intensity of light source
US20060285207A1 (en) * 2001-01-09 2006-12-21 Hay Ranald J Techniques for controlling observed glare using polarized optical transmission and reception devices
US6450652B1 (en) * 2001-05-24 2002-09-17 Daniel Nathan Karpen Neodymium oxide doped motor vehicle windshield and safety glazing material
AU2003214595A1 (en) * 2002-03-07 2003-09-16 Yechezkal Evan Spero Enhanced vision for driving
DE102004007521A1 (en) * 2003-08-04 2005-02-24 Robert Bosch Gmbh Glare protection system for a vehicle
US20060215076A1 (en) * 2005-03-22 2006-09-28 Karim John H Selective light transmitting and receiving system and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060158715A1 (en) * 2005-01-19 2006-07-20 Hitachi, Ltd. Variable transmissivity window system

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2993509A1 (en) * 2012-07-17 2014-01-24 Airbus ELECTRONIC DEVICE FOR PROTECTION AGAINST LIGHTENING OF A PILOT OR DRIVER.
US20140039730A1 (en) * 2012-07-17 2014-02-06 Airbus (S.A.S) Systems, methods, and computer readable media for protecting an operator against glare
US9566946B2 (en) * 2012-07-17 2017-02-14 Airbus (S.A.S.) Systems, methods, and computer readable media for protecting an operator against glare
WO2015044146A3 (en) * 2013-09-26 2015-10-08 Valeo Vision Driving assistance device and driving assistance method
US10073275B2 (en) 2013-09-26 2018-09-11 Valeo Vision Anti-glare 3D glasses
US10254545B2 (en) 2013-09-26 2019-04-09 Valeo Vision Data-display glasses comprising an anti-glare screen
FR3010940A1 (en) * 2013-09-26 2015-03-27 Valeo Vision DEVICE AND METHOD FOR DRIVING ASSISTANCE
WO2015044384A3 (en) * 2013-09-26 2016-01-07 Valeo Vision Driving assistance device and method
US10195982B2 (en) * 2013-09-26 2019-02-05 Valeo Vision Driving assistance method and device
FR3010941A1 (en) * 2013-09-26 2015-03-27 Valeo Vision DEVICE AND METHOD FOR DRIVING ASSISTANCE
JP2016534918A (en) * 2013-09-26 2016-11-10 ヴァレオ ビジョンValeo Vision Driving support apparatus and method
US20170001553A1 (en) * 2013-09-26 2017-01-05 Valeo Vision Driving assistance method and device
US9915831B2 (en) 2013-09-26 2018-03-13 Valeo Vision Adaptive optical filter for spectacle lenses
US9897809B2 (en) 2013-09-26 2018-02-20 Valeo Vision Data-display glasses comprising an anti-glare screen
US9623728B2 (en) 2013-09-26 2017-04-18 Valeo Vision Driving assistance device and driving assistance method
US9827835B2 (en) 2013-09-26 2017-11-28 Valeo Vision Driving assistance device and method
US8899656B1 (en) 2013-11-01 2014-12-02 Sam Mingsan Chen Independent and anonymous night time glare reduction system
CN106029416A (en) * 2014-02-25 2016-10-12 宝马股份公司 Sun shield
WO2015128158A1 (en) * 2014-02-25 2015-09-03 Bayerische Motoren Werke Aktiengesellschaft Sun shield
US11084357B2 (en) 2014-02-25 2021-08-10 Bayerische Motoren Werke Aktiengesellschaft Sun shield
CN105667260A (en) * 2014-12-04 2016-06-15 丰田自动车株式会社 Anti-dazzling apparatus
WO2017053040A1 (en) * 2015-09-21 2017-03-30 Proteq Technologies Llc Active glare suppression system
US11130391B2 (en) 2015-09-21 2021-09-28 Apple Inc. Active glare suppression system
FR3050564A1 (en) * 2016-04-26 2017-10-27 Valeo Vision METHOD FOR ADAPTING THE FREQUENCY AND / OR PHASE OF A VARIABLE TRANSMISSION SCREEN OF A DRIVER ASSISTANCE SYSTEM FOR A MOTOR VEHICLE
WO2021226202A1 (en) * 2020-05-06 2021-11-11 Milwaukee Electric Tool Corporation Glare reduction system

Also Published As

Publication number Publication date
US9186963B2 (en) 2015-11-17
DE102011118802A1 (en) 2012-05-24
US20140153076A1 (en) 2014-06-05
CN102555737A (en) 2012-07-11

Similar Documents

Publication Publication Date Title
US9186963B2 (en) Method for reducing glare from light sources through windscreens with intensity control film
KR101805585B1 (en) System and method for controlling exterior vehicle lights on motorways
US10527251B2 (en) Headlight control system
CN105291955B (en) Method and device for orienting the illumination area of a headlight of a vehicle as a function of the surroundings of the vehicle
US10655819B2 (en) Lamp for vehicle and method for controlling the same
JP6165851B2 (en) System and method for controlling a vehicle device responsive to multi-stage settlement detection
JP2000238576A (en) Lighting unit for vehicle
EP2657078B1 (en) Headlight unit and headlight system for use in vehicle that leans into turns, vehicle that leans into turns, and method for controlling a headlight unit
CN105555611A (en) Vehicle imaging system and method for distinguishing reflective objects form lights of another vehicle
JP2012121521A (en) Light quantity controller and light quantity control program
CN109311416A (en) Imaging system with the control of adaptive distance light
US20180319317A1 (en) Control device for a lighting unit in a motor vehicle, and method for controlling a lighting unit of said type
US10427590B2 (en) Apparatus and method for controlling high lamp of vehicle
JP2005297716A (en) Vehicular window glass light transmission variable device
JP2008030518A (en) Device for showing information in front of vehicle in night
JP2009078652A (en) Vehicular anti-dazzling device
JP2008168705A (en) Vehicular mirror device
US11325526B2 (en) Headlamp control device
CN113212292A (en) Vehicle control method and device, vehicle-mounted equipment, vehicle and medium
US20140153782A1 (en) Imaging system and method for detecting a winding road
CN112026637A (en) Passenger vehicle far and near light control system and method capable of intelligently adjusting illumination area
JP6354805B2 (en) Visibility control device
US20240109489A1 (en) Method for operating a lighting assistance system
JPH1128971A (en) Headlight device for vehicle
KR101390905B1 (en) System and method for controlling headlight according to the recognition of circumstances surrounding

Legal Events

Date Code Title Description
AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TEWARI, ASIM;GUPTA, ROHIT;NAMUDURI, CHANDRA S.;SIGNING DATES FROM 20100914 TO 20101119;REEL/FRAME:025391/0552

AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN

Free format text: CHANGE OF NAME;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:025780/0482

Effective date: 20101202

AS Assignment

Owner name: WILMINGTON TRUST COMPANY, DELAWARE

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS LLC;REEL/FRAME:026499/0267

Effective date: 20101027

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION